Part Number Hot Search : 
MM129 SA2005MP 0603C10 TPCS8209 LA1805 CM8685ES 12E5S ST3232EC
Product Description
Full Text Search
 

To Download IRHLNA793064SCS Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  absolute maximum ratings parameter units i d @v gs = -4.5v,t c = 25c continuous drain current -56* i d @v gs = -4.5v,t c = 100c continuous drain current -56* i dm pulsed drain current  -224 p d @ t c = 25c max. power dissipation 250 w linear derating factor 2.0 w/c v gs gate-to-source voltage 10 v e as single pulse avalanche energy  1060 mj i ar avalanche current  -56 a e ar repetitive avalanche energy  25 mj dv/dt peak diode recovery dv/dt  -3.7 v/ns t j operating junction -55 to 150 t stg storage temperature range pckg. mounting surface temp. 300 (for 5s) weight 3.3 (typical) g pre-irradiation c a radiation hardened irhlna797064logic level power mosfet surface mount (smd-2)  www.irf.com 1 60v, p-channel technology product summary part number radiation level r ds(on) i d irhlna797064 100k rads (si) 0.015 ? -56a* irhlna793064 300k rads (si) 0.015 ? -56a* for footnotes refer to the last page smd-2 features:  5v cmos and ttl compatible  fast switching  single event effect (see) hardened  low total gate charge  simple drive requirements  ease of paralleling  hermetically sealed  ceramic package  surface mount  light weight international rectifiers r7 tm logic level power mosfets provide simple solution to interfacingcmos and ttl control circuits to power devices in space and other radiation environments. the threshold voltage remains within acceptable operating limits over the full operating temperature and post radiation. this is achieved while maintaining single event gate rupture and single event burnout immunity. these devices are used in applications such as current boost low signal source in pwm, voltage comparator and operational amplifiers.  
  

2n7622u2 pd-97174a preliminary downloaded from: http:///
irhlna797064, 2n7622u2 pre-irradiation 2 www.irf.com preliminary for footnotes refer to the last page source-drain diode ratings and characteristics parameter min typ max units t est conditions i s continuous source current (body diode) -56* i sm pulse source current (body diode)  -224 v sd diode forward voltage -5.0 v t j = 25c, i s = -56a, v gs = 0v  t rr reverse recovery time 159 ns t j = 25c, i f = -56a, di/dt -100a/ s q rr reverse recovery charge 430 nc v dd -25v  t on forward turn-on time intrinsic turn-on time is negligible. turn-on speed is substantially controlled by l s + l d . a note: corresponding spice and saber models are available on international rectifier web site. electrical characteristics @ tj = 25c (unless otherwise specified) parameter min typ max units test conditions bv dss drain-to-source breakdown voltage -60 v v gs = 0v, i d = -250 a ? bv dss / ? t j temperature coefficient of breakdown -0.06 v/c reference to 25c, i d = -1.0ma voltage r ds(on) static drain-to-source on-state 0.015 ? v gs = -4.5v, i d = -56a resistance v gs(th) gate threshold voltage -1.0 -2.0 v v ds = v gs , i d = -250 a ? v gs(th) / ? t j gate threshold voltage coefficient 4.1 mv/c g fs forward transconductance 82 s v ds = -15v, i ds = -56a  i dss zero gate voltage drain current -1.0 v ds = -48v ,v gs =0v -10 v ds = -48v, v gs = 0v, t j = 125c i gss gate-to-source leakage forward -100 v gs = -10v i gss gate-to-source leakage reverse 100 v gs = 10v q g total gate charge 190 v gs = -4.5v, i d = -56a q gs gate-to-source charge 53 nc v ds = -30v q gd gate-to-drain (miller) charge 56 t d (on) turn-on delay time 38 v dd = -30v, i d = -56a, t r rise time 265 v gs = -6.0v, r g = 2.35 ? t d (off) turn-off delay time 210 t f fall time 70 l s + l d total inductance 4.0 ciss input capacitance 10520 v gs = 0v, v ds = -25v c oss output capacitance 2780 p f f = 1.0mhz c rss reverse transfer capacitance 310 na  nh ns a measured from the center of drain pad to center of source pad 
  

thermal resistance parameter min typ max units test conditions r thjc junction-to-case 0.5 r thj-pcb junction-to-pc board 1.6   

 

  c/w r g gate resistance 2.3 ? f = 1.0mhz, open drain downloaded from: http:///
www.irf.com 3 pre-irradiation irhlna797064, 2n7622u2 preliminary international rectifier radiation hardened mosfets are tested to verify their radiation hardness capability. the hardness assurance program at international rectifier is comprised of two radiation environments. every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the to-3 package. both pre- and post-irradiation performance are tested and specified using the same drive circuitry and testconditions in order to provide a direct comparison. radiation characteristics international rectifier radiation hardened mosfets have been characterized in heavy ion environment for single event effects (see). single event effects characterization is illustrated in fig. a and table 2. fig a. single event effect, safe operating area for footnotes refer to the last page table 1. electrical characteristics @ tj = 25c, post total dose irradiation  parameter upto 300k rads (si) 1 units test conditions min max bv dss drain-to-source breakdown voltage -60 v v gs = 0v, i d = -250a v gs(th) gate threshold voltage -1.0 -2.0 v gs = v ds , i d = -250a i gss gate-to-source leakage forward -100 na v gs = -10v i gss gate-to-source leakage reverse 100 v gs = 10v i dss zero gate voltage drain current -10 a v ds = -48v, v gs =0v r ds(on) static drain-to-source  on-state resistance (to-3) 0.015 ? v gs = -4.5v, i d = -56a r ds(on) static drain-to-source on-state  v sd diode forward voltage  -5.0 v v gs = 0v, i d = -56a resistance (smd-2) 0.015 ? v gs = -4.5v, i d = -56a 1. part numbers irhlna797064, irhlna793064 table 2. single event effect safe operating area ion let ener g y ran g ev d s ( v ) ( mev/ ( m g /cm 2 )) ( mev ) ( m ) @vgs= @vgs= @vgs= @vgs= @vgs= @vgs= @vgs= @vgs= 0v 2v 4v 5v 6v 7v 8v 10v br 37 305 39 -60 -60 -60 -60 -40 -30 -25 -20 i 60 370 34 -60 -60 -60 -40 -20 - - - au 82 390 30 -60 -60 -60 - - - - - -70 -60 -50 -40 -30 -20 -10 0 012345678910 vgs vds br i au downloaded from: http:///
irhlna797064, 2n7622u2 pre-irradiation 4 www.irf.com preliminary   normalized on-resistance vs. temperature   typical output characteristics   typical output characteristics    typical transfer characteristics 15 0.1 1 10 100 -v ds , drain-to-source voltage (v) 1 10 100 1000 10000 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 25c vgs top -10v -7.5v -5.0v -4.5v -3.5v -3.0v -2.5v bottom -2.25v -2.25v 0.1 1 10 100 -v ds , drain-to-source voltage (v) 1 10 100 1000 10000 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 150c vgs top -10v -7.5v -5.0v -4.5v -3.5v -3.0v -2.5v bottom -2.25v -2.25v 22 . 533 . 54 -v gs , gate-to-source voltage (v) 10 100 1000 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) v ds = -25v 60 s pulse width t j = 150c t j = 25c -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) v gs = -4.5v i d = -56a downloaded from: http:///
www.irf.com 5 pre-irradiation irhlna797064, 2n7622u2 preliminary fig 7. typical drain-to-source breakdown voltage vs temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , temperature ( c ) 50 55 60 65 70 75 - v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) i d = -1.0ma fig 8. typical threshold voltage vs temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , temperature ( c ) 0.0 0.5 1.0 1.5 2.0 - v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = -50a i d = -250a i d = -1.0ma i d = -150ma 2 4 6 8 10 12 -v gs, gate -to -source voltage (v) 0 5 10 15 20 25 30 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = -56a t j = 25c t j = 150c fig 5. typical on-resistance vs gate voltage fig 6. typical on-resistance vs drain current 0 20 40 60 80 100 -i d , drain current (a) 8 10 12 14 16 18 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) t j = 25c t j = 150c vgs = -4.5v downloaded from: http:///
irhlna797064, 2n7622u2 pre-irradiation 6 www.irf.com preliminary  maximum drain current vs. case temperature 25 50 75 100 125 150 0 20 40 60 80 100 120 -i , drain current (a) d limited by package t c , case temperature (c) 
  typical gate charge vs. gate-to-source voltage 1 10 100 -v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 10000 12000 14000 16000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss    typical capacitance vs. drain-to-source voltage   typical source-to-drain diode forward voltage 012345 -v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 - i s d , r e v e r s e d r a i n c u r r e n t ( a ) v gs = 0v t j = 150c t j = 25c 0 50 100 150 200 250 300 q g, total gate charge (nc) 0 4 8 12 - v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = -48v v ds = -30v vds= -12v i d = -56a for test circuit see figure 17 downloaded from: http:///
www.irf.com 7 pre-irradiation irhlna797064, 2n7622u2 preliminary fig 15. maximum effective transient thermal impedance, junction-to-case    maximum safe operating area 1 10 100 -v ds , drain-to-source voltage (v) 1 10 100 1000 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1ms 10ms operation in this area limited by r ds (on) 1 00 s fig 14. maximum avalanche energy vs. drain current 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 25 50 75 100 125 150 starting t j , junction temperature (c) 0 400 800 1200 1600 2000 2400 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top -25a -35.4a bottom -56a p t t dm 1 2 downloaded from: http:///
irhlna797064, 2n7622u2 pre-irradiation 8 www.irf.com preliminary fig 17b. gate charge test circuit fig 17a. basic gate charge waveform q g q gs q gd v g charge  d.u.t. v ds i d i g -3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 16a. unclamped inductive test circuit r g i as 0.01 ? t p d.u.t l v ds v dd driver a 15v -20v       fig 16b. unclamped inductive waveforms t p v ( br ) dss i as fig 18a. switching time test circuit     
 1 
  0.1 %         !"!#! + - fig 18b. switching time waveforms v ds 90% 10% v gs t d(on) t r t d(off) t f downloaded from: http:///
www.irf.com 9 pre-irradiation irhlna797064, 2n7622u2 preliminary  pulse width 300 s; duty cycle 2%  total dose irradiation with v gs bias. -10 volt v gs applied and v ds = 0 during irradiation per mil-std-750, method 1019, condition a.  total dose irradiation with v ds bias. -48 volt v ds applied and v gs = 0 during irradiation per mll-std-750, method 1019, condition a.  repetitive rating; pulse width limited by maximum junction temperature.  v dd = -25v, starting t j = 25c, l= 0.67mh peak i l = -56a, v gs = -10v  i sd -56a, di/dt -380a/ s, v dd -60v, t j 150c footnotes: ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 ir leominster : 205 crawford st., leominster, massachusetts 01453, usa tel: (978) 534-5776 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . data and specifications subject to change without notice. 03/2011 case outline and dimensions smd-2 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRHLNA793064SCS

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X