s m d ty p e w w w . k e x i n . c o m . c n 1 m osf e t f e a tu r e s v d s ( v ) = 3 0 v i d = 8 . 5 a ( v g s = 1 0 v ) r d s ( o n ) 2 4 m ( v g s = 1 0 v ) r d s ( o n ) 3 0 m ( v g s = 4 . 5 v ) r d s ( o n ) 4 8 m ( v g s = 2 . 5 v ) sop -8 0.21 +0.04 -0.02 1.50 0.15 1 source 2 source 3 source 4 gate 5 drain 6 drain 7 drain 8 drain g d s a b s o l u te m a x i m u m ra ti n g s t a = 2 5 s y m b o l r a t i n g u n i t v d s 3 0 v g s 1 2 t a = 2 5 8 . 5 t a = 7 0 7 . 1 i d m 6 0 i a s 1 5 a v a l a n c h e e n e r g y l = 0 . 1 m h e a s 3 4 m j t a = 2 5 3 t a = 7 0 2 . 1 t 1 0 s 4 0 s t e a d y - s t a t e 7 5 r t h jl 2 4 t j 1 5 0 t st g - 5 5 t o 1 5 0 j u n c t i o n t e m p e r a t u r e s t o r a g e t e m p e r a t u r e r a n g e p d w p o w e r d i s s i p a t i o n / w t h e r m a l r e s i s t a n c e . j u n c t i o n - t o - l e a d t h e r m a l r e s i s t a n c e . j u n c t i o n - t o - a m b i e n t p a r a m e t e r c o n t i n u o u s d r a i n c u r r e n t i d d r a i n - s o u r c e v o l t a g e g a t e - s o u r c e v o l t a g e r t h ja a v a l a n c h e c u r r e n t a v p u l s e d d r a i n c u r r e n t p b ? f r e e p a c k a g e m a y b e a v a i l a b l e . t h e g ? s u f f i x d e n o t e s a p b ? f r e e l e a d f i n i s h n- ch an n el m osf et a o 4404- hf ( k o 4 4 0 4 - h f)
s m d ty p e w w w . k e x i n . c o m . c n 2 m o s f e t e l e c tr i c a l ch a r a c te r i s ti c s t a = 2 5 p a r a m e t e r s y m b o l t e s t c o n d i t i o n s m i n t y p m a x u n i t d r a i n - s o u r c e b r e a k d o w n v o l t a g e v d s s i d = 2 5 0 u a , v g s = 0 v 3 0 v v d s = 3 0 v , v g s = 0 v 1 v d s = 3 0 v , v g s = 0 v , t j = 5 5 5 g a t e - b o d y l e a k a g e c u r r e n t i g s s v d s = 0 v , v g s = 1 2 v 1 0 0 n a g a t e t h r e s h o l d v o l t a g e v g s ( t h ) v d s = v g s , i d = 2 5 0 u a 0 . 7 1 . 4 v v g s = 1 0 v , i d = 8 . 5 a 2 4 v g s = 1 0 v , i d = 8 . 5 a t j = 1 2 5 3 6 v g s = 4 . 5 v , i d = 8 . 5 a 3 0 v g s = 2 . 5 v , i d = 5 a 4 8 o n s t a t e d r a i n c u r r e n t i d ( o n ) v g s = 4 . 5 v , v d s = 5 v 4 0 a f o r w a r d t r a n s c o n d u c t a n c e g f s v d s = 5 v , i d = 5 a 1 0 s i n p u t c a p a c i t a n c e c i ss 8 5 7 1 0 5 0 o u t p u t c a p a c i t a n c e c o ss 9 7 r e v e r s e t r a n s f e r c a p a c i t a n c e c r ss 7 1 1 0 0 g a t e r e s i s t a n c e r g v g s = 0 v , v d s = 0 v , f = 1 m h z 0 . 7 2 t o t a l g a t e c h a r g e q g 9 . 7 1 2 g a t e s o u r c e c h a r g e q g s 1 . 6 3 g a t e d r a i n c h a r g e q g d 3 . 1 t u r n - o n d e l a y t i m e t d ( o n ) 3 . 3 5 t u r n - o n r i s e t i m e t r 4 . 7 7 t u r n - o f f d e l a y t i m e t d ( o f f ) 2 6 3 9 t u r n - o f f f a l l t i m e t f 4 . 1 6 . 2 b o d y d i o d e r e v e r s e r e c o v e r y t i m e t r r 1 5 2 0 b o d y d i o d e r e v e r s e r e c o v e r y c h a r g e q r r 8 . 6 1 2 n c m a x i m u m b o d y - d i o d e c o n t i n u o u s c u r r e n t i s 4 . 3 a d i o d e f o r w a r d v o l t a g e v s d i s = 1 a , v g s = 0 v 1 v p f n c n s z e r o g a t e v o l t a g e d r a i n c u r r e n t i d s s u a m v g s = 1 0 v , v d s = 1 5 v , r l = 1 . 8 , r g e n = 6 r d s ( o n ) s t a t i c d r a i n - s o u r c e o n - r e s i s t a n c e v g s = 0 v , v d s = 1 5 v , f = 1 m h z v g s = 4 . 5 v , v d s = 1 5 v , i d = 8 . 5 a i f = 5 a , d i / d t = 1 0 0 a / u s n o t e : t h e s t a t i c c h a r a c t e r i s t i c s i n f i g u r e s 1 t o 6 a r e o b t a i n e d u s i n g < 3 0 0 s p u l s e s , d u t y c y c l e 0 . 5 % m a x . m a r k i n g 4 4 0 4 k c * * * * f m a r k i n g n- ch an n el m osf et a o 4404- hf ( k o 4 4 0 4 - h f)
s m d ty p e w w w . k e x i n . c o m . c n 3 m os f e t t y p i c a l ch a r a c te r i s i ti c s 0 5 10 15 20 25 30 0 1 2 3 4 5 v ds (volts) fig 1: on-region characteristics i d ( a ) v gs =1.5v 2v 2.5v 3v 4.5v 10v 0 4 8 12 16 20 0 0.5 1 1.5 2 2.5 3 v gs (volts) figure 2: transfer characteristics i d ( a ) 10 20 30 40 50 60 0 5 10 15 20 i d (a) figure 3: on-resistance vs. drain current and gate voltage r d s(o n ) ( m ? ) 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 0.0 0.2 0.4 0.6 0.8 1.0 1.2 v sd (volts) figure 6: body-diode characteristics i s ( a ) 25c 125c 0.8 1 1.2 1.4 1.6 1.8 0 25 50 75 100 125 150 175 temperature (c) figure 4: on-resistance vs. junction temperature n o r m a li z e d o n - r es i s t a n c e v gs =2.5v v gs =10v v gs =4.5v 10 20 30 40 50 60 70 80 90 100 0 2 4 6 8 10 v gs (volts) figure 5: on-resistance vs. gate-source voltage r d s(o n ) ( m ? ) 25c 125c v ds =5v v gs =2.5v v gs =4.5v v gs =10v i d =5a 25c 125c n- ch an n el m osf et a o 4404- hf ( k o 4 4 0 4 - h f)
s m d ty p e w w w . k e x i n . c o m . c n 4 m osf e t . t y p i c a l ch a r a c te r i s i ti c s 0 1 2 3 4 5 0 2 4 6 8 10 12 q g (nc) figure 7: gate-charge characteristics v g s ( v o l t s ) 0 200 400 600 800 1000 1200 1400 0 5 10 15 20 25 30 v ds (volts) figure 8: capacitance characteristics c a p a c i t a n c e ( p f ) c iss 0 10 20 30 40 50 0.001 0.01 0.1 1 10 100 1000 pulse width (s) figure 10: single pulse power rating junction-to- ambient (note e) p o w e r ( w ) 0.01 0.1 1 10 0.0000 1 0.0001 0.001 0.01 0.1 1 10 100 1000 pulse width (s) figure 11: normalized maximum transient thermal impedance z j a n o r m a l i ze d t r a n s i e n t t h e r m a l r e s i st a n c e c oss c r ss 0.1 1.0 10.0 100.0 0.1 1 10 100 v ds (volts) i d ( a m p s ) figure 9: maximum forward biased safe operating area (note e) 100 s 1 0 m s 1ms 0.1s 1s 10s d c r ds(on) limited t j(max) =150c t a =25c v ds =15v i d =8.5a single pulse d=t on /t t j,pk =t a +p dm .z ja .r ja r ja =40c/w t on t p d in descending order d=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse t j(max) =150c t a =25c n- ch an n el m osf et a o 4404- hf ( k o 4 4 0 4 - h f)
|