2 0 n - c h a n n e l e n h a n c e m e n t m o d e f i e l d e f f e c t t r a n s i s t o r a b s o l u t e m a x i m u m r a t i n g s ( t a = 2 5 c u n l e s s o t h e r w i s e n o t e d ) p a r a m e t e r s y m b o l l i m i t u n i t d r a i n - s o u r c e v o l t a g e v d s v g a t e - s o u r c e v o l t a g e v g s v d r a i n c u r r e n t - c o n t i n u o u s @ t j = 2 5 c - p u l s e d i d 3 a a a w i d m 1 2 d r a i n - s o u r c e d i o d e f o r w a r d c u r r e n t i s 1 . 2 5 m a x i m u m p o w e r d i s s i p a t i o n p d o p e r a t i n g j u n c t i o n a n d s t o r a g e t e m p e r a t u r e r a n g e t j , t s t g - 5 5 t o 1 5 0 c t h e r m a l c h a r a c t e r i s t i c s t h e r m a l r e s i s t a n c e , j u n c t i o n - t o - a m b i e n t r t h j a 1 0 0 / w c 1 . 2 5 a a a a b g d s s o t - 2 3 s g d 1 s a m h o p m i c r o e l e c t r o n i c s c o r p . p r o d u c t s u m m a r y v d s s i d r d s ( o n ) ( m w ) m a x 2 0 v 3 a 6 0 @ v g s = 4 . 5 v 1 2 0 @ v g s = 2 . 5 v f e a t u r e s s u p e r h i g h d e n s e c e l l d e s i g n f o r l o w r d s ( o n ) . r u g g e d a n d r e l i a b l e . s o t - 2 3 p a c k a g e . 1 0 s t s 2 3 3 6 a d e c 2 6 2 0 0 4
s t s 2 3 3 6 a e l e c t r i c a l c h a r a c t e r i s t i c s ( t a 2 5 c u n l e s s o t h e r w i s e n o t e d ) = p a r a m e t e r s y m b o l c o n d i t i o n m i n t y p m a x u n i t o f f c h a r a c t e r i s t i c s d r a i n - s o u r c e b r e a k d o w n v o l t a g e b v d s s = v g s 0 v , i d 2 5 0 u a = 2 0 v z e r o g a t e v o l t a g e d r a i n c u r r e n t i d s s v d s 1 6 v , v g s 0 v = = 1 u a g a t e - b o d y l e a k a g e i g s s v g s 1 0 v , v d s 0 v = = 1 0 0 n a o n c h a r a c t e r i s t i c s b g a t e t h r e s h o l d v o l t a g e v g s ( t h ) v d s v g s , i d = 2 5 0 u a = 0 . 5 1 . 5 v d r a i n - s o u r c e o n - s t a t e r e s i s t a n c e r d s ( o n ) v g s 4 . 5 v , i d 2 . 5 a 6 0 v g s 2 . 5 v , i d 1 a 1 2 0 o n - s t a t e d r a i n c u r r e n t i d ( o n ) v d s = 5 v , v g s = 4 . 5 v a s f o r w a r d t r a n s c o n d u c t a n c e f s g v d s 5 v , i d d y n a m i c c h a r a c t e r i s t i c s c i n p u t c a p a c i t a n c e c i s s c r s s c o s s o u t p u t c a p a c i t a n c e r e v e r s e t r a n s f e r c a p a c i t a n c e v d s = 1 0 v , v g s = 0 v f = 1 . 0 m h z p f p f p f s w i t c h i n g c h a r a c t e r i s t i c s c t u r n - o n d e l a y t i m e r i s e t i m e t u r n - o f f d e l a y t i m e t d ( o n ) t r t d ( o f f ) t f v d d = 1 0 v , i d = 1 a , v g s = 4 . 5 v , r g e n = 6 o h m n s n s n s n s t o t a l g a t e c h a r g e g a t e - s o u r c e c h a r g e g a t e - d r a i n c h a r g e q g q g s q g d v d s = 1 0 v , i d = 2 . 5 a , v g s = 4 . 5 v n c n c n c c f a l l t i m e = = = = = 2 m - o h m m - o h m 8 = 2 . 5 a 6 3 3 0 1 1 0 6 0 9 . 2 6 . 8 6 . 1 8 . 3 4 . 7 1 . 6 1 . 3 0 . 8 5 0 9 0
s t s 2 3 3 6 a p a r a m e t e r s y m b o l c o n d i t i o n m i n t y p m a x u n i t e l e c t r i c a l c h a r a c t e r i s t i c s ( t a = 2 5 c u n l e s s o t h e r w i s e n o t e d ) d r a i n - s o u r c e d i o d e c h a r a c t e r i s t i c s d i o d e f o r w a r d v o l t a g e v s d v g s = 0 v , i s = 1 . 2 5 a 0 . 8 1 1 . 2 v b c n o t e s c . g u a r a n t e e d b y d e s i g n , n o t s u b j e c t t o p r o d u c t i o n t e s t i n g . b . p u l s e t e s t : p u l s e w i d t h 3 0 0 u s , d u t y c y c l e 2 % . f i g u r e 1 . o u t p u t c h a r a c t e r i s t i c s f i g u r e 2 . t r a n s f e r c h a r a c t e r i s t i c s f i g u r e 4 . o n - r e s i s t a n c e v a r i a t i o n w i t h t e m p e r a t u r e f i g u r e 3 . c a p a c i t a n c e v d s , d r a i n - t o s o u r c e v o l t a g e ( v ) v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v d s , d r a i n - t o - s o u r c e v o l t a g e ( v ) i d , d r a i n c u r r e n t ( a ) c , c a p a c i t a n c e ( p f ) i d , d r a i n c u r r e n t ( a ) a . s u r f a c e m o u n t e d o n f r 4 b o a r d , t 1 0 s e c . 5 0 5 1 0 1 5 2 0 2 5 3 0 c i s s c o s s 7 5 0 6 0 0 4 5 0 3 0 0 1 5 0 0 2 0 1 6 1 2 8 4 0 0 0 . 5 1 1 . 5 2 2 . 5 3 3 2 . 2 1 . 8 1 . 4 1 . 0 0 . 6 0 . 2 0 - 5 0 0 5 0 1 0 0 1 2 5 t j ( c ) - 2 5 2 5 7 5 v g s = 4 . 5 v i d = 2 . 5 a c r s s 2 5 c 1 5 1 2 9 6 3 0 0 . 0 0 . 6 1 . 2 1 . 8 2 . 4 3 . 0 3 . 6 t j = 1 2 5 c - 5 5 c v g s = 2 v v g s = 3 v o n - r e s i s t a n c e r d s ( o n ) , n o r m a l i z e d v g s = 4 v v g s = 4 . 5 v v g s = 1 0 v
w i t h t e m p e r a t u r e f i g u r e 6 . b r e a k d o w n v o l t a g e v a r i a t i o n w i t h t e m p e r a t u r e v t h , n o r m a l i z e d g a t e - s o u r c e t h r e s h o l d v o l t a g e g f s , t r a n s c o n d u c t a n c e ( s ) v g s , g a t e t o s o u r c e v o l t a g e ( v ) b v d s s , n o r m a l i z e d d r a i n - s o u r c e b r e a k d o w n v o l t a g e i s , s o u r c e - d r a i n c u r r e n t ( a ) f i g u r e 7 . t r a n s c o n d u c t a n c e v a r i a t i o n w i t h d r a i n c u r r e n t i d s , d r a i n - s o u r c e c u r r e n t ( a ) f i g u r e 9 . g a t e c h a r g e q g , t o t a l g a t e c h a r g e ( n c ) f i g u r e 1 0 . m a x i m u m s a f e o p e r a t i n g a r e a v d s , d r a i n - s o u r c e v o l t a g e ( v ) f i g u r e 8 . b o d y d i o d e f o r w a r d v o l t a g e v a r i a t i o n w i t h s o u r c e c u r r e n t v s d , b o d y d i o d e f o r w a r d v o l t a g e ( v ) t j , j u n c t i o n t e m p e r a t u r e ( c ) t j , j u n c t i o n t e m p e r a t u r e ( c ) i d , d r a i n c u r r e n t ( a ) 2 0 1 0 0 1 0 . 4 0 . 7 1 . 0 1 . 3 1 . 6 1 . 9 4 5 3 2 1 0 0 1 2 3 4 5 6 7 8 v d s = 1 0 v i d = 2 . 5 a t j = 2 5 c 5 0 1 0 1 1 0 . 1 0 . 0 3 0 . 1 1 1 0 2 0 5 0 r d s ( o n ) l i m i t 1 0 m s 1 0 0 m s 1 s d c v g s = 4 . 5 v s i n g l e p u l s e t c = 2 5 c 4 - 5 0 - 2 5 0 2 5 5 0 7 5 1 0 0 1 2 5 1 . 3 1 . 2 1 . 1 1 . 0 0 . 9 0 . 8 0 . 7 i d = 2 5 0 u a 1 . 3 1 . 2 1 . 1 1 . 0 0 . 9 0 . 8 0 . 7 0 . 6 - 5 0 - 2 5 0 2 5 5 0 7 5 1 0 0 1 2 5 v d s = v g s i d = 2 5 0 u a s t s 2 3 3 6 a 1 0 8 6 4 1 2 0 0 3 6 9 1 2 1 5 2 v d s = 5 v
f i g u r e 1 1 . s w i t c h i n g t e s t c i r c u i t f i g u r e 1 2 . s w i t c h i n g w a v e f o r m s t v v t t d ( o n ) o u t i n o n r 1 0 % t d ( o f f ) 9 0 % 1 0 % 1 0 % 5 0 % 5 0 % 9 0 % t o f f t f 9 0 % p u l s e w i d t h 5 i n v e r t e d v d d r d v v r s v g g s i n g e n o u t l 5 s t s 2 3 3 6 a 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 1 0 100 1000 square wave pulse duration(sec) normalized thermal transient impedance curve n o r m al i z ed t r an si en t t h e r m al r esi st an ce single pulse on p d m t 1 t 2 1 . r t h j a ( t ) = r ( t ) * r j a 2 . r j a = s e e d a t a s h e e t 3 . t j m - t a = p d m * r j a ( t ) 4 . d u t y c y c l e , d = t 1 / t 2 t h t h t h 0 . 0 1 0 . 0 2 0 . 5 0 . 2 0 . 1 0 . 0 5
j 2.70 2.40 1.40 0.35 0 0.45 1.90 ref. 1.00 0.10 3.10 2.80 1.60 0.50 0.10 0.55 1.30 0.20 0.106 0.094 0.055 0.014 0 0.018 0.039 0.004 0.122 0.110 0.063 0.020 0.004 0.022 0.051 0.008 0.40 0.45 1.15 0.016 0.033 0.045 s t s 2 3 3 6 a 6 g a f c b l d (typ .) e h m i f g i j l m 0.075 ref. - - 0x 10x 0x 10x
sot-23 tape and reel data sot-23 carrier tape sot-23 reel s t s 2 3 3 6 a 7 3.20 ?0.10 3.00 ?0.10 1.33 ?0.10 ?1.00 +0.25 ?1.50 +0.10 8.00 +0.30 -0.10 1.75 ?0.10 3.50 ?0.05 4.00 ?0.10 4.00 ?0.10 2.00 ?0.05 0.20 ?0.02 ?178 ?178 ?1 ?60 ?1 9.00 ?0.5 12.00 ?0.5 ?13.5 ?0.5 2.00 ?0.5 ?10.0 18.00 5.00 8p v unit :p r g s k h w1 w n m 10.5 reel size t ape size unit :p p ackage sot -23 a0 b0 k0 d0 d1 e e1 e2 p0 p1 p2 t
|