s p e c i f i c a t i o n 8 5 ~ 2 6 5 v a c 8 5 ~ 2 6 5 v a c 8 5 ~ 2 6 5 v a c 8 5 ~ 2 6 5 v a c 8 5 ~ 2 6 5 v a c 7 3 % 7 6 % 8 2 % 8 2 % 8 2 % 7 0 % 7 4 % 8 0 % 8 0 % 8 0 % 8 5 ~ 2 6 5 v a c 8 5 ~ 2 6 5 v a c 8 5 ~ 2 6 5 v a c + 3 . 3 v d c + 5 v d c + 1 2 v d c + 1 5 v d c + 2 4 v d c 1 2 v d c 1 5 v d c + 5 / + 3 . 3 v d c 4 0 0 0 m a 3 0 0 0 m a 1 2 5 0 m a 1 0 0 0 m a 6 2 5 m a 6 2 5 m a 5 0 0 m a + 1 a / + 3 a 8 1 % 8 0 % 7 4 % 7 9 % 7 8 % 7 2 % 1 3 w a t t s 1 5 w a t t s 1 5 w a t t s 1 5 w a t t s 1 5 w a t t s 1 5 w a t t s 1 5 w a t t s 1 5 w a t t s k a d 1 5 1 2 d k a d 1 5 1 5 d k a d 1 5 5 0 3 d k a d 1 5 0 3 k a d 1 5 0 5 k a d 1 5 1 2 k a d 1 5 1 5 k a d 1 5 2 4 7 0 0 0 f ? 7 0 0 0 f ? 3 5 0 0 f ? 1 5 0 0 f ? 4 7 0 f ? 1 0 0 0 f ? 4 7 0 f ? m o d e l n o . o u t p u t w a t t a g e e f f . ( m i n . ) e f f . ( t y p . ) c a p a c i t o r l o a d ( m a x . ) i n p u t v o l t a g e o u t p u t v o l t a g e o u t p u t c u r r e n t 3 5 0 0 f ? w w w . c h i n f a . c o m s a l e s @ c h i n f a . c o m 2 0 1 0 . 0 3 . 1 9 o a l l s p e c i f i c a t i o n s t y p i c a l a t n o m i n a l l i n e , f u l l l o a d , 2 5 c u n l e s s o t h e r w i s e n o t i c e d s p e c i f i c a t i o n c h a r a c t e r i s t i c s c o n d i t i o n s m i n . t y p . m a x . u n i t v i n o m , i o n o m i n p u t - o u t p u t i n p u t - o u t p u t , @ 5 0 0 v d c k h z 3 0 0 0 / 4 2 4 2 v a c / v d c m ? 1 0 0 o p e r a t i n g a t v i n o m , i o n o m - 4 0 + 7 1 2 o c n o n o p e r a t i o n a l - 4 0 o c o v i n o m , + 5 1 t o + 7 1 c + 1 0 0 1 0 0 2 0 9 5 r e l a t i v e h u m i d i t y s w i t c h i n g f r e q u e n c y i s o l a t i o n v o l t a g e i s o l a t i o n r e s i s t a n c e a m b i e n t t e m p e r a t u r e s t o r a g e t e m p e r a t u r e d e r a t i n g o % / c % r h v i n o m , i o n o m v i n o m , i o m i n o % / c 0 . 0 3 t e m p e r a t u r e c o e f f i c i e n t g e n e r a l k a d 1 5 s e r i e s ' a c / d c p o w e r m o d u l e ' u n i v e r s a l i n p u t 8 5 ~ 2 6 5 v a c ' h i g h e f f i c i e n c y u p t o 8 2 % ' s h o r t c i r c u i t p r o t e c t i o n ' i n t e r n a l i n p u t f i l t e r ' 2 y e a r s w a r r a n t y o p e n f r a m e a c - d c p o w e r m o d u l e 1 3 ~ 1 5 w u l / c u l / t u v / c e f e a t u r e s m o d e l l i s t s i n g l e o u t p u t m o d e l s d u a l o u t p u t m o d e l s p 1 h r u l 6 0 9 5 0 - 1 e n 6 0 9 5 0 - 1 a
o b e l l c o r e i s s u e 6 @ 4 0 c , g b h o u r s h o u r s h o u r s m m t b f a l t i t u d e d u r i n g o p e r a t i o n c h a r a c t e r i s t i c s c o n d i t i o n s m i n . t y p . m a x . u n i t s a l e s @ c h i n f a . c o m w w w . c h i n f a . c o m 2 0 1 0 . 0 3 . 1 9 l i n e f r e q u e n c y i n r u s h c u r r e n t v i n o m , i o n o m h z a 4 7 o a l l s p e c i f i c a t i o n s t y p i c a l a t n o m i n a l l i n e , f u l l l o a d , 2 5 c u n l e s s o t h e r w i s e n o t i c e d s p e c i f i c a t i o n c h a r a c t e r i s t i c s c o n d i t i o n s m i n . t y p . m a x . u n i t i n p u t v o l t a g e r a n g e t a m i n . . . t a m a x , i o n o m r a t e d i n p u t v o l t a g e i o n o m i n p u t c u r r e n t r a t e d i n p u t c u r r e n t v i : 1 1 5 / 2 3 0 v a c , i o n o m v i : 8 5 v a c , i o n o m 8 5 1 2 0 v a c v d c 8 5 v a c a c i n d c i n l e a k a g e c u r r e n t c h a r a c t e r i s t i c s c o n d i t i o n s m i n . u n i t o u t p u t v o l t a g e a c c u r a c y m i n i m u m l o a d l i n e r e g u l a t i o n l o a d r e g u l a t i o n v i n o m , i o n o m v i n o m s i n g l e o u t p u t m o d e l s d u a l o u t p u t m o d e l s ( e a c h o u t p u t ) i o n o m , v i m i n . . . v i m a x v i n o m , i o m i n . . . i o n o m t y p . m a x . 0 2 0 % % % 2 1 % % % s i n g l e o u t p u t m o d e l s d u a l o u t p u t m o d e l s t r a n s i e n t r e c o v e r y t i m e v i n o m , 1 ~ 0 . 5 i o n o m r i p p l e & n o i s e v i n o m , i o n o m , b w = 2 0 m h z e x t e r n a l t r i m a d j . r a n g e 1 ) ( f o r s i n g l e o u t p u t o n l y ) i o = 5 % . . . 1 0 0 % m v + 1 0 2 2 h o l d u p t i m e m s 1 5 / 3 0 c r o s s r e g u l a t i o n a s y m m e t r i c a l l o a d 2 0 % / 1 0 0 % f l % t u r n o n t i m e m s r i s e t i m e m s f a l l t i m e m s m s 3 . 3 v & 1 5 v m o d e l s % 6 3 1 0 / 1 8 2 6 5 3 7 5 5 0 0 2 6 5 6 v i : 1 1 5 / 2 3 0 v a c , i o n o m v i n o m , i o n o m v i n o m , i o n o m v i n o m , i o n o m 1 5 0 1 0 0 1 5 0 1 5 0 1 0 0 0 0 . 2 5 i n p u t - o u t p u t m a m v 1 2 v , 1 5 v , 2 4 v & d u a l - 1 0 m a m a v i : 1 1 5 / 2 3 0 v a c , i o n o m 1 c h a r a c t e r i s t i c s c o n d i t i o n s m i n . u n i t t y p . m a x . t 2 a / 2 5 0 v a c i n t e r n a l i n p u t f u s e o u t p u t s h o r t c i r c u i t i n t e r n a l s u r g e v o l t a g e p r o t e c t i o n v a r i s t o r i e c 6 1 0 0 0 - 4 - 5 h i c c u p m o d e 3 1 0 / 1 9 0 e f f i c i e n c y v i n o m , i o n o m , p o / p i u p t o 8 2 % , s e e m o d e l l i s t a n d t y p e f f i c i e n c y c u r v e 3 . 3 v , 5 v & |