Part Number Hot Search : 
AIC1117 SM240 ULA24DF 80022 S6C0671 2SK231 MUN5111 MUN5111
Product Description
Full Text Search
 

To Download BUH100-D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  switchmode  npn silicon planar power transistor the buh100 has an application specific stateofart die designed for use in 100 watts halogen electronic transformers. this power transistor is specifically designed to sustain the large inrush current during either the startup conditions or under a short circuit across the load. this high voltage/high speed product exhibits the following main features: ? improved efficiency due to the low base drive requirements: high and flat dc current gain h fe fast switching ? robustness thanks to the technology developed to manufacture this device ? on semiconductor six sigma philosophy provides tight and reproducible parametric distributions ????????????????????????????????? ????????????????????????????????? maximum ratings ????????????????????? ????????????????????? rating ????? ????? symbol ????? ????? value ????? ????? unit ????????????????????? ????????????????????? collectoremitter sustaining voltage ????? ????? v ceo ????? ????? 400 ????? ????? vdc ????????????????????? ????????????????????? collectorbase breakdown voltage ????? ????? v cbo ????? ????? 700 ????? ????? vdc ????????????????????? ????????????????????? collectoremitter breakdown voltage ????? ????? v ces ????? ????? 700 ????? ????? vdc ????????????????????? ????????????????????? emitterbase voltage ????? ????? v ebo ????? ????? 10 ????? ????? vdc ????????????????????? ????????????????????? collector current e continuous e peak (1) ????? ????? i c i cm ????? ????? 10 20 ????? ????? adc ????????????????????? ? ??????????????????? ? ????????????????????? base current e continuous base current e peak (1) ????? ? ??? ? ????? i b i bm ????? ? ??? ? ????? 4 10 ????? ? ??? ? ????? adc ????????????????????? ? ??????????????????? ? ????????????????????? *total device dissipation @ t c = 25  c *derate above 25 c ????? ? ??? ? ????? p d ????? ? ??? ? ????? 100 0.8 ????? ? ??? ? ????? watt w/  c ????????????????????? ????????????????????? operating and storage temperature ????? ????? t j , t stg ????? ????? 65 to 150 ????? ?????  c ????????????????????????????????? ????????????????????????????????? thermal characteristics ????????????????????? ? ??????????????????? ? ????????????????????? thermal resistance e junction to case e junction to ambient ????? ? ??? ? ????? r q jc r q ja ????? ? ??? ? ????? 1.25 62.5 ????? ? ??? ? ?????  c/w ????????????????????? ? ??????????????????? ? ????????????????????? maximum lead temperature for soldering purposes: 1/8 from case for 5 seconds ????? ? ??? ? ????? t l ????? ? ??? ? ????? 260 ????? ? ??? ? ?????  c (1) pulse test: pulse width = 5 ms, duty cycle 10%. on semiconductor  ? semiconductor components industries, llc, 2002 april, 2002 rev. 3 1 publication order number: buh100/d buh100 power transistor 10 amperes 700 volts 100 watts case 221a09 to220ab 1 2 3 style 1: pin 1. base 2. collector 3. emitter 4. collector
buh100 http://onsemi.com 2 electrical characteristics (t c = 25 c unless otherwise noted) ??????????????????? ??????????????????? characteristic ???? ???? symbol ???? ???? min ???? ???? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? off characteristics ??????????????????? ? ????????????????? ? ??????????????????? collectoremitter sustaining voltage (i c = 100 ma, l = 25 mh) ???? ? ?? ? ???? v ceo(sus) ???? ? ?? ? ???? 400 ???? ? ?? ? ???? 460 ???? ? ?? ? ???? ??? ? ? ? ??? vdc ??????????????????? ??????????????????? collectorbase breakdown voltage (i cbo = 1 ma) ???? ???? v cbo ???? ???? 700 ???? ???? 860 ???? ???? ??? ??? vdc ??????????????????? ? ????????????????? ? ??????????????????? emitterbase breakdown voltage (i ebo = 1 ma) ???? ? ?? ? ???? v ebo ???? ? ?? ? ???? 10 ???? ? ?? ? ???? 12.5 ???? ? ?? ? ???? ??? ? ? ? ??? vdc ??????????????????? ? ????????????????? ? ??????????????????? collector cutoff current (v ce = rated v ceo , i b = 0) ???? ? ?? ? ???? i ceo ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 ??? ? ? ? ??? m adc ??????????????? ??????????????? collector cutoff current (v ce = rated v ces , v eb = 0) ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? i ces ???? ???? ???? ???? ???? ???? 100 1000 ??? ??? m adc ??????????????? ? ????????????? ? ??????????????? collector base current (v cb = rated v cbo , v eb = 0) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? i cbo ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 1000 ??? ? ? ? ??? m adc ??????????????????? ? ????????????????? ? ??????????????????? emittercutoff current (v eb = 9 vdc, i c = 0) ???? ? ?? ? ???? i ebo ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 ??? ? ? ? ??? m adc ????????????????????????????????? ????????????????????????????????? on characteristics ??????????????? ? ????????????? ? ??????????????? baseemitter saturation voltage (i c = 5 adc, i b = 1 adc) ????? ? ??? ? ????? @ t c = 25 c ???? ? ?? ? ???? v be(sat) ???? ? ?? ? ???? ???? ? ?? ? ???? 1 ???? ? ?? ? ???? 1.1 ??? ? ? ? ??? vdc ??????????????? ??????????????? collectoremitter saturation voltage (i c = 5 adc, i b = 1 adc) ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? v ce(sat) ???? ???? ???? ???? 0.37 0.37 ???? ???? 0.6 0.6 ??? ??? vdc ??????????????? ? ????????????? ? ??????????????? (i c = 7 adc, i b = 1.5 adc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 0.5 0.6 ???? ? ?? ? ???? 0.75 1.5 ??? ? ? ? ??? vdc ??????????????? ? ????????????? ? ??????????????? dc current gain (i c = 1 adc, v ce = 5 vdc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? h fe ???? ? ?? ? ???? 15 16 ???? ? ?? ? ???? 24 28 ???? ? ?? ? ???? ??? ? ? ? ??? e ??????????????? ??????????????? dc current gain (i c = 5 adc, v ce = 5 vdc) ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? ???? ???? 10 10 ???? ???? 15 14.5 ???? ???? ??? ??? e ??????????????? ? ????????????? ? ??????????????? dc current gain (i c = 7 adc, v ce = 5 vdc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? ???? ? ?? ? ???? 8 7 ???? ? ?? ? ???? 12 10.5 ???? ? ?? ? ???? ??? ? ? ? ??? e ??????????????? ? ????????????? ? ??????????????? dc current gain (i c = 10 adc, v ce = 5 vdc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? ???? ? ?? ? ???? 6 4 ???? ? ?? ? ???? 9.5 8 ???? ? ?? ? ???? ??? ? ? ? ??? e ????????????????????????????????? ????????????????????????????????? dynamic saturation voltage ???????? ???????? dynamic saturation vlt ???????? ???????? i c = 5 adc, i b1 = 1 adc ????? ????? @ t c = 25 c ???? ???? v ce(dsat) ???? ???? ???? ???? 1.1 ???? ???? ??? ??? v ???????? ???????? voltage: determined 3 m s after ???????? ???????? i c 5 adc , i b1 1 adc v cc = 300 v ????? ????? @ t c = 125 c ???? ???? () ???? ???? ???? ???? 2.1 ???? ???? ??? ??? v ???????? ???????? determined 3 m s after rising i b1 reaches 90% of final i b1 ???????? ???????? i c = 7.5 adc, i b1 = 1.5 adc ????? ????? @ t c = 25 c ???? ???? ???? ???? ???? ???? 1.7 ???? ???? ??? ??? v ???????? ???????? 90% o f fi na l i b1 (see figure 19) ???????? ???????? i c 7 . 5 adc , i b1 1 . 5 adc v cc = 300 v ????? ????? @ t c = 125 c ???? ???? ???? ???? ???? ???? 5 ???? ???? ??? ??? v ????????????????????????????????? ????????????????????????????????? dynamic characteristics ??????????????????? ? ????????????????? ? ??????????????????? current gain bandwidth (i c = 1 adc, v ce = 10 vdc, f = 1 mhz) ???? ? ?? ? ???? f t ???? ? ?? ? ???? ???? ? ?? ? ???? 23 ???? ? ?? ? ???? ??? ? ? ? ??? mhz ??????????????????? ? ????????????????? ? ??????????????????? output capacitance (v cb = 10 vdc, i e = 0, f = 1 mhz) ???? ? ?? ? ???? c ob ???? ? ?? ? ???? ???? ? ?? ? ???? 100 ???? ? ?? ? ???? 150 ??? ? ? ? ??? pf ??????????????????? ??????????????????? input capacitance (v eb = 8 vdc, f = 1 mhz) ???? ???? c ib ???? ???? ???? ???? 1300 ???? ???? 1750 ??? ??? pf
buh100 http://onsemi.com 3 electrical characteristics (t c = 25 c unless otherwise noted) ??????????????????? ??????????????????? characteristic ???? ???? symbol ???? ???? min ???? ???? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? switching characteristics: resistive load (d.c. 10%, pulse width = 40 m s) ???????? ? ?????? ? ???????? turnon time ???????? ? ?????? ? ???????? i c = 1 adc, i b1 = 0.2 adc i b2 =02adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t on ???? ? ?? ? ???? ???? ? ?? ? ???? 130 140 ???? ? ?? ? ???? 200 ??? ? ? ? ??? ns ???????? ???????? turnoff time ???????? ???????? i b2 = 0.2 adc v cc = 300 vdc ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t off ???? ???? ???? ???? 6.8 8.5 ???? ???? 8 ??? ??? m s ???????? ? ?????? ? ???????? turnon time ???????? ? ?????? ? ???????? i c = 1 adc, i b1 = 0.2 adc i b2 =04adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t on ???? ? ?? ? ???? ???? ? ?? ? ???? 140 150 ???? ? ?? ? ???? 200 ??? ? ? ? ??? ns ???????? ? ?????? ? ???????? turnoff time ???????? ? ?????? ? ???????? i b2 = 0.4 adc v cc = 300 vdc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t off ???? ? ?? ? ???? ???? ? ?? ? ???? 3.4 4.3 ???? ? ?? ? ???? 4 ??? ? ? ? ??? m s ???????? ???????? turnon time ???????? ???????? i c = 5 adc, i b1 = 1 adc i b2 = 1 adc ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t on ???? ???? ???? ???? 250 800 ???? ???? 500 ??? ??? ns ???????? ? ?????? ? ???????? turnoff time ???????? ? ?????? ? ???????? i b2 = 1 adc v cc = 300 vdc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t off ???? ? ?? ? ???? ???? ? ?? ? ???? 2.9 3.6 ???? ? ?? ? ???? 3.5 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? turnon time ???????? ? ?????? ? ???????? i c = 7.5 adc, i b1 = 1.5 adc i b2 =15adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t on ???? ? ?? ? ???? ???? ? ?? ? ???? 500 900 ???? ? ?? ? ???? 700 ??? ? ? ? ??? ns ???????? ? ?????? ? ???????? turnoff time ???????? ? ?????? ? ???????? i b2 = 1.5 adc v cc = 300 vdc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t off ???? ? ?? ? ???? ???? ? ?? ? ???? 2.1 2.5 ???? ? ?? ? ???? 2.5 ??? ? ? ? ??? m s ????????????????????????????????? switching characteristics: inductive load (v clamp = 300 v, v cc = 15 v, l = 200 m h) ???????? ? ?????? ? ???????? fall time ???????? ? ?????? ? ???????? ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t fi ???? ? ?? ? ???? ???? ? ?? ? ???? 150 180 ???? ? ?? ? ???? 250 ??? ? ? ? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? i c = 1 adc i b1 = 0.2 adc i b2 = 0 .2 a dc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t si ???? ? ?? ? ???? ???? ? ?? ? ???? 5.1 5.8 ???? ? ?? ? ???? 6 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? i b2 = 0 . 2 adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 230 300 ???? ? ?? ? ???? 325 ??? ? ? ? ??? ns ???????? ???????? fall time ???????? ???????? ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t fi ???? ???? ???? ???? 150 170 ???? ???? 250 ??? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? i c = 1 adc i b1 = 0.2 adc i b2 = 0 . 5 a dc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t si ???? ? ?? ? ???? ???? ? ?? ? ???? 2.5 2.8 ???? ? ?? ? ???? 3 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? i b2 = 0 . 5 adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 260 300 ???? ? ?? ? ???? 350 ??? ? ? ? ??? ns ???????? ???????? fall time ???????? ???????? ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t fi ???? ???? ???? ???? 100 140 ???? ???? 150 ??? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? i c = 5 adc i b1 = 1 adc i b2 = 1 a dc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t si ???? ? ?? ? ???? ???? ? ?? ? ???? 2.9 4.6 ???? ? ?? ? ???? 3.5 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? i b2 = 1 adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 220 450 ???? ? ?? ? ???? 300 ??? ? ? ? ??? ns ???????? ???????? fall time ???????? ???????? ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t fi ???? ???? ???? ???? 100 150 ???? ???? 150 ??? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? i c = 7.5 adc i b1 = 1.5 adc i b2 = 1. 5 a dc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t si ???? ? ?? ? ???? ???? ? ?? ? ???? 2 2.5 ???? ? ?? ? ???? 2.5 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? i b2 = 1 . 5 adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 250 475 ???? ? ?? ? ???? 350 ??? ? ? ? ??? ns
buh100 http://onsemi.com 4 typical static characteristics figure 1. dc current gain @ 1 volt 100 10 1 10 1 0.1 0.001 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = 25 c t j = -20 c v ce = 1 v figure 2. dc current gain @ 3 volt 100 10 1 10 1 0.1 0.001 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = -20 c v ce = 3 v 0.01 0.01 figure 3. dc current gain @ 5 volt 100 10 1 100 1 0.1 0.01 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = -20 c v ce = 5 v 10 figure 4. collectoremitter saturation voltage 10 1 0.01 10 1 0.1 0.001 i c , collector current (amps) t j = 125 c t j = 25 c t j = -20 c i c /i b = 5 v ce , voltage (volts) 0.1 figure 5. collectoremitter saturation voltage 10 1 0.01 10 1 0.1 0.001 i c , collector current (amps) t j = 125 c t j = -20 c i c /i b = 10 v ce , voltage (volts) 0.1 0.01 figure 6. baseemitter saturation region 1.5 1 0 10 1 0.01 0.001 i c , collector current (amps) v be , voltage (volts) t j = 125 c t j = 25 c t j = -20 c i c /i b = 5 0.5 0.1 0.01 t j = 25 c t j = 25 c t j = 25 c
buh100 http://onsemi.com 5 typical static characteristics figure 7. baseemitter saturation region 1.5 0.5 0 10 1 0.1 0.001 i c , collector current (amps) v be , voltage (volts) t j = 125 c t j = 25 c t j = -20 c 1 0.01 i c /i b = 10 figure 8. collector saturation region 2 1 0 10 1 0.1 0.01 i b , base current (a) v ce(sat) (i c = 1 a) v ce , voltage (volts) t j = 25 c 2 a 5 a 3 a 1.5 0.5 8 a 10 a 15 a figure 9. capacitance 10000 10 100 10 1 v r , reverse voltage (volts) c, capacitance (pf) 100 c ib t j = 25 c f (test) = 1 mhz 1000 c ob figure 10. resistive breakdown 900 700 400 100000 100 10 r be ( w ) bvcer (volts) t j = 25 c bvcer @ 10 ma 800 600 500 bvcer(sus) @ 500 ma, 25 mh 10000 1000
buh100 http://onsemi.com 6 t, time (s) m typical switching characteristics figure 11. resistive switching time, t on 2500 1000 0 10 2 0 i c , collector current (amps) 4 t, time (ns) 1500 500 t j = 125 c t j = 25 c i b1 = i b2 v cc = 300 v pw = 40 m s figure 12. resistive switch time, t off 10 6 0 10 6 0 i c , collector current (amps) figure 13. inductive storage time, t si 7 1 10 4 1 i c , collector current (amps) 5 3 8 4 2 7 t j = 125 c t j = 25 c i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h 2000 i c /i b = 5 figure 14. inductive storage time, t c & t fi @ i c /i b = 5 600 0 10 7 1 i c , collector current (amps) t, time (ns) 200 4 t j = 125 c t j = 25 c t c t fi 400 68 i c /i b = 10 i c /i b = 5 125 c 25 c 24 8 t j = 125 c t j = 25 c i b1 = i b2 v cc = 300 v pw = 20 m s i c /i b = 10 i c /i b = 5 t, time (s) m figure 13 bis. inductive storage time, t si 6 0 10 4 1 i c , collector current (amps) 5 2 7 t j = 125 c t j = 25 c i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h t, time (s) m 4 3 1 i c /i b = 10 i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h figure 15. inductive storage time, t c & t fi @ i c /i b = 10 800 0 10 7 1 i c , collector current (amps) t, time (ns) 200 4 t j = 125 c t j = 25 c t c t fi 400 i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h 600
buh100 http://onsemi.com 7 typical switching characteristics 4 0 10 4 2 h fe , forced gain 8 3 6 t j = 125 c t j = 25 c figure 16. inductive storage time 2 i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h figure 17. inductive fall time 200 0 10 3 h fe , forced gain 150 t fi , fall time (ns) 100 50 467 t j = 125 c t j = 25 c , storage time ( t si m s) i c = 7.5 a i c = 5 a 589 i boff = i b2 v cc = 15 v v z = 300 v l c = 200 m h figure 18. inductive crossover time, t c 800 300 100 h fe , forced gain 600 t c , crossover time (ns) 700 400 500 200 10 34 6 7 589 i b1 = i b2 v cc = 15 v v z = 300 v l c = 200 m h t j = 125 c t j = 25 c 1 i c = 7.5 a i c = 5 a i c = 5 a i c = 7.5 a
buh100 http://onsemi.com 8 typical switching characteristics table 1. inductive load switching drive circuit v (br)ceo(sus) l = 10 mh r b2 = v cc = 20 volts i c(pk) = 100 ma inductive switching l = 200 m h r b2 = 0 v cc = 15 volts r b1 selected for desired i b1 rbsoa l = 500 m h r b2 = 0 v cc = 15 volts r b1 selected for desired i b1 figure 19. dynamic saturation voltage measurements time v ce 0 v i b 90% i b 1 m s 3 m s dyn 1 m s dyn 3 m s figure 20. inductive switching measurements 10 4 0 8 2 0 time 6 8 6 2 4 9 7 5 3 1 13 5 7 i b i c v clamp t si t c t fi 90% i c 10% i c 90% i b1 10% v clamp +15 v 1 m f 150 w 3 w 100 w 3 w mpf930 +10 v 50 w common -v off 500 m f mpf930 mtp8p10 mur105 mje210 mtp12n10 mtp8p10 150 w 3 w 100 m f i out a r b1 r b2 1 m f i c peak v ce peak v ce i b i b 1 i b 2
buh100 http://onsemi.com 9 typical thermal response figure 21. forward bias power derating 1 0 160 100 20 t c , case temperature ( c) 0.8 power derating factor 0.6 0.4 0.2 60 140 second breakdown derating 40 80 120 thermal derating there are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. safe operating area curves indicate i c v ce limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. the data of figure 22 is based on t c = 25 c; t j(pk) is variable depending on power level. second breakdown pulse limits are valid for duty cycles to 10% but must be derated when t c > 25 c. second breakdown limitations do not derate the same as thermal limitations. allowable current at the voltages shown on figure 22 may be found at any case temperature by using the appropriate curve on figure 21. t j(pk) may be calculated from the data in figure 24. at any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. for inductive loads, high voltage and current must be sustained simultaneously during turnoff with the base to emitter junction reverse biased. the safe level is specified as a reverse biased safe operating area (figure 23). this rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. figure 22. forward bias safe operating area 100 0.01 1000 10 v ce , collector-emitter voltage (volts) figure 23. reverse bias safe operating area 12 6 0 800 200 v ce , collector-emitter voltage (volts) 100 500 1 0.1 i c , collector current (amps) i c , collector current (amps) dc 5 ms 1 ms 10 m s 1 m s extended soa 8 2 gain 5 0 v -1.5 v -5 v t c 125 c l c = 2 mh 10 300 400 700 600 10 4
buh100 http://onsemi.com 10 typical thermal response figure 24. typical thermal response (z q jc (t)) for buh100 1 0.01 10 0.1 0.01 t, time (ms) 0.1 1 100 1000 r(t), transient thermal resistance (normalized) r q jc (t) = r(t) r q jc r q jc = 1.25 c/w max d curves apply for power pulse train shown read time at t 1 t j(pk) - t c = p (pk) r q jc (t) p (pk) t 1 t 2 duty cycle, d = t 1 /t 2 0.05 single pulse 0.5 0.2 0.1 0.02
buh100 http://onsemi.com 11 package dimensions case 221a09 issue aa to220ab notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 3. dimension z defines a zone where all body and lead irregularities are allowed. dim min max min max millimeters inches a 0.570 0.620 14.48 15.75 b 0.380 0.405 9.66 10.28 c 0.160 0.190 4.07 4.82 d 0.025 0.035 0.64 0.88 f 0.142 0.147 3.61 3.73 g 0.095 0.105 2.42 2.66 h 0.110 0.155 2.80 3.93 j 0.018 0.025 0.46 0.64 k 0.500 0.562 12.70 14.27 l 0.045 0.060 1.15 1.52 n 0.190 0.210 4.83 5.33 q 0.100 0.120 2.54 3.04 r 0.080 0.110 2.04 2.79 s 0.045 0.055 1.15 1.39 t 0.235 0.255 5.97 6.47 u 0.000 0.050 0.00 1.27 v 0.045 --- 1.15 --- z --- 0.080 --- 2.04 b q h z l v g n a k f 123 4 d seating plane t c s t u r j style 1: pin 1. base 2. collector 3. emitter 4. collector
buh100 http://onsemi.com 12 on semiconductor and are registered trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to mak e changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and s pecifically disclaims any and all liability, including without limitation special, consequential or incidental damages. atypicalo parameters which may be provided in scillc data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including atypicalso must be validated for each customer application by customer's technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indem nify and hold scillc and its of ficers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and re asonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized u se, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employ er. publication ordering information japan : on semiconductor, japan customer focus center 4321 nishigotanda, shinagawaku, tokyo, japan 1410031 phone : 81357402700 email : r14525@onsemi.com on semiconductor website : http://onsemi.com for additional information, please contact your local sales representative. buh100/d literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 3036752175 or 8003443860 toll free usa/canada fax : 3036752176 or 8003443867 toll free usa/canada email : onlit@hibbertco.com n. american technical support : 8002829855 toll free usa/canada


▲Up To Search▲   

 
Price & Availability of BUH100-D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X