

AMAXI/V Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

General Description

The MAX4810/MAX4811/MAX4812 integrated circuits generate high-voltage, high-frequency, unipolar or bipolar pulses from low-voltage logic inputs. These dual pulsers feature independent logic inputs, independent high-voltage pulser outputs with active clamps and independent high-voltage supply inputs.
The MAX4810/MAX4811/MAX4812 feature a 9Ω output impedance for the high-voltage outputs, and a 27Ω impedance for the active clamp. The high-voltage outputs are guaranteed to provide 1.3A output current.
All devices use three logic inputs per channel to control the positive and negative pulses and active clamp. Also included are two independent enable inputs. Disabling EN ensures the output MOSFETs are not accidentally turned on during fast power-supply ramping. This allows for faster ramp times and smaller delays between pulsing modes. A low-power shutdown mode reduces power consumption to less than $1 \mu \mathrm{~A}$. All digital inputs are CMOS compatible.
The MAX4810 includes clamp output overvoltage protection, while the MAX4811 features both pulser output and clamp output overvoltage protection. The MAX4812 does not provide overvoltage protection. See the Ordering Information/Selector Guide.
The MAX4810/MAX4811/MAX4812 are available in a $56-$ pin ($7 \mathrm{~mm} \times 7 \mathrm{~mm}$), TQFN exposed-pad package and are specified over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ commercial temperature range.

Applications

Ultrasound Medical	Flaw Detection
Imaging	Piezoelectric Drivers
Cleaning Equipment	Test Instruments

Ordering Information/

 Selector Guide| PART | PROTECTED OUTPUTS | OUTPUT CURRENT (A) | PIN-
 PACKAGE |
| :---: | :---: | :---: | :---: |
| MAX4810CTN+ | OCP_, OCN_ | 1.3 | 56 TQFN-EP** |
| MAX4811CTN+ | $\begin{gathered} \mathrm{OCP}_{-}, \mathrm{OCN}_{-}, \\ \mathrm{OP}_{-}, \mathrm{ON}_{-} \end{gathered}$ | 1.3 | 56 TQFN-EP** |
| MAX4812CTN+* | None | 1.3 | 56 TQFN-EP** |

Note: All devices are specified over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead-free/RoHS-compliant package.
*Future product-contact factory for availability.
${ }^{* *} E P=$ Exposed pad.

Features

- Highly Integrated, High-Voltage, High-Frequency Unipolar/Bipolar Pulser
- 9Ω Output Impedance and 1.3A (min) Output Current
- 27Ω Active Clamp
- Pulser and Clamp Overvoltage Protection (MAX4810/MAX4811)
- 0 to +220 V Unipolar or $\pm 110 \mathrm{~V}$ Bipolar Outputs
- Matched Rise/Fall Times and Matched Propagation Delays
- CMOS-Compatible Logic Inputs
- 56-Pin, $7 \mathrm{~mm} \times 7 \mathrm{~mm}$, TQFN Package

Pin Configuration

*EP = EXPOSED PAD, CONNECT EP TO VSS.

Warning: The MAX4810/MAX4811/MAX4812 are designed to operate with high voltages. Exercise caution.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)
VDD Logic Supply Voltage.......................................-0.3V to +6V
VCC_Output Driver Positive Supply Voltage -0.3 V to +15 V
VEE_ Output Driver Negative Supply Voltage-15V to +0.3 V
VPP_High Positive Supply Voltage. .-0.3 V to +230 V
$V_{\text {NN_ }}$ High Negative Supply Voltage -230 V to +0.3 V
VSS Voltage ...(VPP_ - 250V) to VNN
$V_{P P 1}-V_{N N 1}, V_{P P 2}-V_{N N 2}$ Supply Voltage............-0.6V to +250 V
INP_, INN_, INC_, EN_, SHDN Logic Input...-0.3V to VDD +0.3 V
Op_, OCP_, OLN_, ON_ (-0.3V + VNN_) to (-0.3 V to $\mathrm{V}_{\text {PP_ }}$)
CGN_Voltage........................... $\left(-0.3 \mathrm{~V}+\mathrm{V}_{\mathrm{NN}} \mathrm{C}_{-}\right)$to $\left(+15 \mathrm{~V}+\mathrm{V}_{\mathrm{NN}} \mathrm{K}_{-}\right)$

CGC_Voltage..-15V to +15 V

CDC_, CDP_, CDN_Voltage......................................-0.3V to VCC
Peak Current per Output Channel ..3.0A
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)($ Note 1)
56-Pin TQFN (derate $40 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 3200 mW Thermal Resistance (Note 2)

${ }^{\theta} \mathrm{JA}$.

$.25^{\circ} \mathrm{C} / \mathrm{W}$

$.0 .8^{\circ} \mathrm{C} / \mathrm{W}$

Operating Temperature Range.
Junction Temperature .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Note 1: This specification is based on the thermal characteristic of the package, the maximum junction temperature, and the setup described by JEDEC 51. The maximum power dissipation for the MAX4810/MAX4811/MAX4812 might be limited by the thermal protection included in the device.
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}_{C C_{-}}=+4.75 \mathrm{~V}$ to $+12.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}_{-}}=-12.6 \mathrm{~V}$ to $-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}_{-}}=-200 \mathrm{~V}$ to $0, \mathrm{~V}_{\mathrm{PP}}=0$ to $\left(\mathrm{V}_{\mathrm{NN}}-+200 \mathrm{~V}\right), \mathrm{V}_{\mathrm{SS}} \leq$ the lower of $\mathrm{V}_{\mathrm{NN} 1}$ or $\mathrm{V}_{\mathrm{NN} 2}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{J}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3) (See Figures 8, 9, and 10.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY ($\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {CC_, }}, \mathrm{V}_{\text {EE_, }}, \mathrm{V}_{\text {PP_ }}, \mathrm{V}_{\text {NN_ }}$)						
Logic Supply Voltage	VDD		+2.7	+3	+6	V
Positive Drive Supply Voltage	VCC_		+4.75	+12	+12.6	V
Negative Drive Supply Voltage	$\mathrm{VEE}_{\text {_ }}$		-12.6	-12	-4.75	V
High-Side Supply Voltage	VPP_		0		$\begin{gathered} \mathrm{V}_{\text {NN_ }}+ \\ 220 \end{gathered}$	V
Low-Side Supply Voltage	V_{NN}		-200		0	V
VPP_- VNN_ Supply Voltage			0		+220	V
SUPPLY CURRENT (Single Channel)						
VDD Supply Current	IDD	$V_{\text {INN_ }} / V_{\text {INP }}=0, V V_{\text {SHDN }}=0$			1	$\mu \mathrm{A}$
		$\begin{aligned} & V_{E N_{-}}=V_{D D}, V_{\text {SHDN }}=V_{D D}, V_{I N C_{-}}=0 \text { or } V_{D D}, \\ & V_{I N N_{-}}=V_{I N P_{-}}, f=5 \mathrm{MHz} \end{aligned}$		100	200	
VCC_ Supply Current	ICC_	$V_{\text {SHDN }}=0, \mathrm{CH} 1$ and CH 2			1	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {EN_ }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {SHDN }}=\mathrm{V}_{\text {DD }}, \mathrm{CH} 1$ and CH 2		130	200	
				15		mA
		$\begin{aligned} & \mathrm{V}_{\text {EN }}=V_{\text {DD }}, \mathrm{V}_{\text {SHDN }}=V_{\text {DD }}, \mathrm{V}_{\text {INC }}=0 \text { or } \mathrm{V}_{\text {DD }}, \\ & \mathrm{V}_{\text {INN }}=\mathrm{V}_{\text {INP }}, f=5 \mathrm{mHz}, \mathrm{~V}_{\text {CC_ }}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V}, \\ & \text { only one channel switching } \end{aligned}$		36		

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to $+12.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12.6 \mathrm{~V}$ to $-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-200 \mathrm{~V}$ to $0, \mathrm{~V}_{\mathrm{PP}}=0$ to ($\left.\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}\right)$, $\mathrm{V}_{\mathrm{SS}} \leq$ the lower of $\mathrm{V}_{\text {NN1 }}$ or $\mathrm{V}_{\text {NN2 }}, T_{A}=T_{J}=T_{\text {MIN }}^{-}$to $T_{M A X}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.) (Note 3) (See Figures 8, 9, and 10.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
VEE_Supply Current	lee_	$V_{\text {SHDN }}=0, \mathrm{CH} 1$ and CH 2			25	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {EN_ }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {SHDN }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{CH} 1$ and CH 2			1	
		$\begin{aligned} & \mathrm{V}_{\text {EN }}=V_{\text {DD }}, \mathrm{V}_{\text {SHDN }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {INC }}=0 \text { or } \mathrm{V}_{\text {DD }}, \\ & \mathrm{V}_{\text {INN }}=\mathrm{V}_{\text {INP_, }}, f=5 \mathrm{mHz}, \mathrm{~V}_{E E_{-}}=-5 \mathrm{~V}, \\ & \text { only one channel switching } \end{aligned}$			200	
		$\begin{aligned} & \mathrm{V}_{\text {EN_ }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\text {SHDN }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {INC_ }}=0 \text { or } \mathrm{V}_{\text {DD }}, \\ & \mathrm{VINN}_{\text {I }}=\mathrm{VINP}_{\text {INP }}, f=5 \mathrm{fHz}, \mathrm{~V}_{\text {EE_ }}=-12 \mathrm{~V}, \\ & \text { only one channel switching } \end{aligned}$			200	
VPP_Supply Current	IPP_	$V_{\text {SHDN }}=0, \mathrm{CH} 1$ and CH 2			1	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {EN_ }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {SHDN }}=\mathrm{V}_{\text {DD }}, \mathrm{CH} 1$ and CH 2		90	160	
		$\begin{array}{\|l} \hline \mathrm{V}_{\text {EN_ }}=V_{D D}, V_{\text {SHDN }}=V_{D D}, V_{\text {INC_ }}=0 \text { or } V_{D D}, \\ V_{\text {INN }}=V_{I N P_{1},} f=5 \mathrm{MHz}, \mathrm{~V}_{P P_{-}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-5 \mathrm{~V}, \\ \text { no load, only one channel switching } \\ \hline \end{array}$		9		mA
		$V_{E N_{-}}=V_{D D}, V_{S H D N}=V_{D D}, V_{I N C_{-}}=0$ or $V_{D D}$, $\mathrm{V}_{\text {PP_ }}=+80 \mathrm{~V}, \mathrm{~V}_{\text {NN_ }}=-80 \mathrm{~V}$, pulse repetition frequency $=10 \mathrm{kHz}, \mathrm{f}=10 \mathrm{MHz}, 4$ periods, no load, only one channel switching		0.6		
VNN_ Supply Current	${ }^{\text {INN_}}$	$V_{\text {SHDN }}=0, \mathrm{CH} 1$ and CH 2			1	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {EN_ }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {SHDN }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{CH} 1$ and CH 2		40	80	
		$\begin{aligned} & \hline \mathrm{V}_{\text {EN_ }}=V_{D D}, V_{\text {SHDN }}=V_{D D}, V_{\text {INC_ }}=0 \text { or } V_{D D}, \\ & V_{\text {INN_ }}=V_{\text {INP_, }} f=5 \mathrm{MHz}, \mathrm{~V}_{\text {NN_ }}=-5 \mathrm{~V}, \mathrm{~V}_{\text {PP_ }}=+5 \mathrm{~V}, \\ & \text { no load, only one channel switching } \\ & \hline \end{aligned}$		9		mA
		$V_{E N}=V_{D D}, V_{S H D N}=V_{D D}, V_{I N C}=0$ or $V_{D D}$, $\mathrm{V}_{\text {PP_ }}=+80 \mathrm{~V}, \mathrm{~V}_{\text {NN_ }}=-80 \mathrm{~V}$, pulse repetition frequency $=10 \mathrm{kHz}, \mathrm{f}=10 \mathrm{MHz}, 4$ periods, no load, only one channel switching		0.6		
LOGIC INPUTS (EN_, $\overline{\text { SHDN, }}$ INN_, INP_, INC_)						
Low-Level Input Voltage	VIL				$\begin{gathered} 0.25 x \\ V_{D D} \end{gathered}$	V
High-Level Input Voltage	V_{IH}		$\begin{gathered} 0.75 \times \\ V_{D D} \end{gathered}$			V
Logic-Input Capacitance	CIN_{1}			5		pF
Logic-Input Leakage	IIN	$\mathrm{V}_{\text {IN }}=0$ or V_{DD}			± 1	$\mu \mathrm{A}$
OUTPUT (OUT_)						
OUT_ Output-Voltage Range	Vout_	No load at OUT_	V_{NN}		VPP_	V
		Unprotected outputs (see the Ordering Information/Selector Guide), 100mA load	$\begin{gathered} \mathrm{V}_{\mathrm{NN}_{-}+}+ \\ 1.5 \end{gathered}$		$\begin{gathered} \hline \text { VPP_ }^{-} \\ 1.5 \end{gathered}$	
		Protected outputs (see the Ordering Information/Selector Guide), 100mA load	$\begin{gathered} \hline \mathrm{V}_{\mathrm{NN}_{-}+}+ \\ 2.5 \end{gathered}$		$\begin{gathered} \hline \text { VPP_ }_{-}- \\ 2.5 \end{gathered}$	
Low-Side Small-Signal Output Impedance	Rols	IOP_= $=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 5 \%$, DC-coupled		9	17	Ω
		$\mathrm{IOP}_{-}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {cC_ }}=+5 \mathrm{~V} \pm 5 \%$, DC-coupled		9.5	18	

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}_{C C_{-}}=+4.75 \mathrm{~V}$ to $+12.6 \mathrm{~V}, \mathrm{~V}_{E_{E}}=-12.6 \mathrm{~V}$ to $-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-200 \mathrm{~V}$ to $0, \mathrm{~V}_{\text {PP }}=0$ to $\left(\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}\right), \mathrm{V}_{\mathrm{SS}} \leq$ the lower of $\mathrm{V}_{\text {NN1 }}$ or $\mathrm{V}_{\text {NN2 }}, T_{A}=T_{J}=T_{\text {MIN }}^{-}$to $T_{M A X}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}^{-}$) (Note 3) (See Figures 8, 9, and 10.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
High-Side Small-Signal Output Impedance	Rohs	$\mathrm{lOP}_{-}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 5 \%$, DC-coupled			10.5	17	Ω
		$\mathrm{IOP}_{-}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}_{-}}=+5 \mathrm{~V} \pm 5 \%$, DC-coupled			12	18	
Low-Side Output Current	IOL	$\mathrm{V}_{\text {CC_ }}=+12 \mathrm{~V} \pm 5 \%$, VOUT- $-\mathrm{V}_{\text {NN_ }}=100 \mathrm{~V}$		1.3			A
High-Side Output Current	IOH	$\mathrm{V}_{\text {CC_ }}=+12 \mathrm{~V} \pm 5 \%$, V $\mathrm{OUT}_{-}-\mathrm{V}_{\text {PP_ }}=100 \mathrm{~V}$		1.3			A
Off-Output Capacitance	Co(OFF)	OP_, ON_, OCP_ and OCN_ connected together, $\mathrm{V}_{\text {PP }}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}^{-}=-100 \mathrm{~V}$	MAX4810		45		pF
			MAX4811		75		
Off-Output Leakage Current	ILK	$\begin{aligned} & V_{N N_{-}}=-100 \mathrm{~V}, V_{P P}=100 \mathrm{~V}, E N_{-}=0, \\ & O U T=-100 \mathrm{~V} \text { to }+100 \mathrm{~V} \end{aligned}$		-1		+1	$\mu \mathrm{A}$
Low-Side Signal-Clamp Output	Rcls	$\begin{aligned} & \mathrm{l}_{\mathrm{CN}}=-100 \mathrm{~mA}, \mathrm{DC}-\text { coupled, } \mathrm{V}_{\mathrm{CC}}-=+12 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~V}_{\mathrm{EE}}^{-}=-\mathrm{V}_{\mathrm{CC}}^{-} \end{aligned}$			22	50	Ω
Impedance		$\begin{aligned} & \mathrm{loCN}_{-}=-100 \mathrm{~mA}, \mathrm{DC}-\mathrm{coupled}, \mathrm{~V}_{C C_{-}}=+5 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~V}_{\mathrm{EE}-}=-\mathrm{V}_{C C_{-}} \end{aligned}$			24	65	
High-Side Signal-Clamp Output Impedance	RCHS	$\begin{aligned} & \mathrm{loCP}_{-}=-100 \mathrm{~mA}, \mathrm{DC}-\text { coupled, } \mathrm{V}_{\mathrm{CC}}^{-}= \\ & \mathrm{V}_{\mathrm{EE}_{-}=}=+12 \mathrm{~V} \pm 5 \%, \end{aligned}$			28	50	Ω
		$\begin{aligned} & \text { locP_ }=-100 \mathrm{~mA}, \mathrm{DC}-\mathrm{coupled}, \mathrm{~V}_{C C}=+5 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~V}_{\mathrm{EE}}^{-}=-\mathrm{VCC}_{-} \end{aligned}$			38	65	
Low-Side Gate Short Impedance	RLSH	$\begin{aligned} & \mathrm{VCC}_{-}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-\mathrm{V}_{\mathrm{CC}}, \mathrm{ICGN}=10 \mathrm{~mA}, \\ & \mathrm{EN}_{-}=0 \end{aligned}$				100	Ω
		$\begin{aligned} & \mathrm{V}_{C C_{-}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}_{-}}=-\mathrm{V}_{C C_{-}}, \mathrm{ICGN}=10 \mathrm{~mA}, \\ & \mathrm{EN}_{-}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$		5	7.5	10	k Ω
High-Side Gate Short Impedance	RHSH	$\begin{aligned} & \mathrm{VCC}_{C}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-\mathrm{V}_{C C_{-}}, \mathrm{ICGN}=10 \mathrm{~mA}, \\ & E N_{-}=0 \end{aligned}$				100	Ω
		$\begin{aligned} & \mathrm{V}_{C C_{-}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{E E}=-\mathrm{V}_{C C}, \mathrm{ICGN}=10 \mathrm{~mA}, \\ & E N_{-}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$		5	7.5	10	k Ω
THERMAL SHUTDOWN							
Thermal Shutdown	TSHDN	Junction temperature rising			150		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis					20		${ }^{\circ} \mathrm{C}$
DYNAMIC CHARACTERISTICS ($\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, unless otherwise noted)							
Logic Input to Output Rise Propagation Delay	tPLH	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V}, \mathrm{~V}_{\text {PP- }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {NN- }}=-5 \mathrm{~V}$, Figure 4			15		ns
Logic Input to Output Fall Propagation Delay	tPHL	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V}, \mathrm{VPP}_{-}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}{ }_{-}=-5 \mathrm{~V}$, Figure 4			15		ns
Logic Input to Output Rise Propagation Delay	tPOH	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V}, \mathrm{VPP}_{-}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}^{-}=-5 \mathrm{~V}$, Figure 4			15		ns
Logic Input to Output Fall Propagation Delay	tPOL	$\mathrm{V}_{\text {CC_- }}=+12 \mathrm{~V}, \mathrm{~V}_{\text {PP }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {NN_ }}=-5 \mathrm{~V}$, Figure 4			15		ns
Logic Input to Output-Rise Propagation Delay Clamp	tPLO	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V}, \mathrm{VPP}_{-}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}{ }^{-}=-5 \mathrm{~V}$, Figure 4			15		ns

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to $+12.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12.6 \mathrm{~V}$ to $-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-200 \mathrm{~V}$ to $0, \mathrm{~V}_{\mathrm{PP}}=0$ to ($\left.\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}\right)$, $\mathrm{V}_{\mathrm{SS}} \leq$ the lower of $\mathrm{V}_{\text {NN1 }}$ or $\mathrm{V}_{\text {NN2 }}, \mathrm{T}_{A}=\mathrm{T}_{J}=\mathrm{T}_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$.) (Note 3) (See Figures 8, 9, and 10.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Logic Input to Output-Fall Propagation Delay Clamp	tPHO	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V}, \mathrm{~V}_{\text {PP_ }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {NN_ }}=-5 \mathrm{~V}$, Figure 4		15		ns	
OUT_ Rise Time (GND to VPP_)	trop	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}_{-}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~V}_{\mathrm{EE}}=-\mathrm{V}_{\mathrm{CC}}, \text {, Figure } 4 \end{aligned}$		9	20	ns	
OUT_ Rise Time (VNN_ to GND)	trNo	$\begin{aligned} & \mathrm{V}_{\text {PP_ }}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~V}_{\mathrm{EE}}=-\mathrm{V}_{C C_{-}} \text {, Figure } 4 \end{aligned}$		17	35	ns	
OUT_ Rise Time (VNN_ to VPP_)	tRNP	$\begin{aligned} & \mathrm{V}_{\text {PP_ }}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~V}_{\mathrm{EE}}=-\mathrm{V}_{\mathrm{CC}}, \text {, Figure } 4 \end{aligned}$		10.5	35	ns	
OUT_ Fall Time (GND to VNN_)	tFON	$\begin{aligned} & \mathrm{V}_{\text {PP_ }}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~V}_{\mathrm{EE}}=-\mathrm{V}_{\mathrm{CC}}, \text {, Figure } 4 \end{aligned}$		9	20	ns	
OUT_ Fall Time (VPp_to GND)	tFPO	$\begin{aligned} & \mathrm{V}_{\text {PP_ }}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~V}_{\mathrm{EE}}=-\mathrm{V}_{C C_{-}} \text {, Figure } 4 \end{aligned}$		17	35	ns	
OUT_ Fall Time (VPP_ to VNN_)	tFPN	$\begin{aligned} & \mathrm{V}_{\text {PP_ }}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~V}_{\mathrm{EE}}=-\mathrm{V}_{\mathrm{CC}}, \text { Figure } 4 \end{aligned}$		10.5	35	ns	
OUT Enable Time from EN (Figure 5)	ten	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-\mathrm{V}_{C C}$			100	ns	
		$\mathrm{V}_{\text {CC_ }}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {EE_- }}=-\mathrm{V}_{\text {CC_ }}$			150		
OUT Disable Time from EN (Figure 5)	tDI	$\mathrm{VCC}_{-}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {EE }}=-\mathrm{V}_{C C_{-}}$			100	ns	
		$\mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%$, $\mathrm{VEE}_{-}=-\mathrm{V}_{C C}$			150		
Clamp Enable Time from INC (Figure 6)	ten-CL	$\mathrm{VCC}_{-}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {EE }}=-\mathrm{V}_{C C_{-}}$			150	ns	
		$\mathrm{V}_{C C_{-}}=+5 \mathrm{~V} \pm 5 \%$, $\mathrm{VEE}_{-}=-\mathrm{V}_{\text {CC_ }}$			180		
Clamp Disable Time from INC (Figure 6)	tDI-CL	$V_{C C-}=+12 \mathrm{~V} \pm 5 \%, V_{E E}=-V_{C C}$			150	ns	
		$\mathrm{V}_{C C_{-}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}_{-}}=-\mathrm{V}_{\mathrm{CC}}$			150		
Short Enable Time from EN (Figure 7)	ten_SH	$\begin{array}{\|l} \mathrm{VPP}_{-}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}^{-} \end{array}=0, \mathrm{~V}_{C C_{-}}=+12 \mathrm{~V} \pm 5 \%,$			1000	ns	
		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}_{-}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=0, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \\ & \mathrm{VEE}_{-}=-\mathrm{V}_{C C_{-}} \end{aligned}$			1000		
Short Disable Time from EN (Figure 7)	tDI_SH	$\begin{array}{\|l} \hline \mathrm{VPP}_{-}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}^{-} \\ \\ \mathrm{V}_{\mathrm{EE}_{-}}=-\mathrm{V}_{C C_{-}} \end{array}$			250	ns	
		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}_{-}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=0, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~V}_{\mathrm{EE}_{-}}=-\mathrm{V}_{\mathrm{CC}} \mathrm{C}_{-} \end{aligned}$			250		
INP_ to INN_ Overlap Tolerance				\|3			ns
Crosstalk		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}_{-}}=\mathrm{V}_{\mathrm{CC}}^{-} \\ & \\ & \mathrm{f}=5 \mathrm{MHz} \end{aligned}$		69		dB	
2nd Harmonic Distortion	2HD	$\mathrm{V}_{\text {PP_ }}=\mathrm{V}_{\text {NN_ }}=100 \mathrm{~V}$, fout $=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}_{-}}=12 \mathrm{~V}$		-48		dB	
RMS Output Jitter	tJ	$V_{C C}=12 \mathrm{~V}$		9		ps	

Note 3: Specifications are guaranteed for the stated global conditions, unless otherwise noted and are 100\% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{T}_{A}=+70^{\circ} \mathrm{C}$. Specifications at $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ are guaranteed by design.
Note 4: 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by design.

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Icc vs. TEMPERATURE

Icc vs. TEMPERATURE

Ipp vs. TEMPERATURE

InN vs. OUTPUT FREQUENCY

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V}, \mathrm{~V}_{E E}=-12 \mathrm{~V}, \mathrm{~V}_{S S}=-100 \mathrm{~V}, \mathrm{~V}_{\text {PP_ }}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}\right.$, fout $=5 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

OUT RISE TIME (GND TO VPP) vs. VCc_/Vee_SUPPLY VOLTAGE

$V_{C C} N_{\text {EE }}$ SUPPLY VOLTAGE (V)

INP-TO-OUT RISE PROPAGATION DELAY vs. TEMPERATURE

InN vs. TEMPERATURE

OUT FALL TIME (GND TO VNN)
vs. VCc_/Vee_ SUPPLY VOLTAGE

$V_{\text {CC_ }} N_{\text {EE }}$ SUPPLY VOLTAGE (V)

INP-TO-OUT FALL PROPAGATION DELAY
vs. Vcc_/Vee_ SUPPLY VOLTAGE

$\mathrm{V}_{\text {CC_ }} / \mathrm{N}_{\text {EE_ }}$ SUPPLY VOLTAGE (V)

Inn vs. TEMPERATURE

INP-TO-OUT RISE PROPAGATION DELAY vs. Vcc_/Vee_SUPPLY VOLTAGE

$V_{\text {CC_ }} N_{\text {EE }}$ SUPPLY VOLTAGE (V)

INP-TO-OUT FALL PROPAGATION DELAY vs. TEMPERATURE

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Pin Description

PIN	NAME	FUNCTION
1	CGP1	Channel 1 High-Side Gate Input. Connect a 1nF to 10nF capacitor between CDP1 and CGP1 as close as possible to the device.
2,3	VPP1	Channel 1 High-Side Positive Supply Voltage Input. Bypass VPP1 to GND with a $0.1 \mu \mathrm{~F}$ as close as possible to the device. See the Power Supplies and Bypassing section. Depending on the output, additional bypassing may be required.
$\begin{gathered} \hline 4,10,33, \\ 39 \end{gathered}$	N.C.	No Connection. Not connected internally.
5	OP1	Channel 1 High-Side Drain Output
6	OCP1	Channel 1 High-Side Clamp Output
$\begin{aligned} & \hline 7,15,28, \\ & 36,44,55 \end{aligned}$	GND	Ground
8	OCN1	Channel 1 Low-Side Clamp Output
9	ON1	Channel 1 Low-Side Drain Output
11, 12	$\mathrm{V}_{\text {NN1 }}$	Channel 1 High-Side Negative Supply Voltage Input. Bypass VNN1 to GND with a $0.1 \mu \mathrm{~F}$ as close as possible to the device. See the Power Supplies and Bypassing section. Depending on the output, additional bypassing may be required.
13	CGN1	Channel 1 Low-Side Gate Input. Connect a 1nF to 10nF capacitor between CDN1 and CGN1 as close as possible to the device.
14	CDN1	Channel 1 Low-Side Driver Output. Connect a 1nF to 10nF capacitor between CDN1 and CGN1 as close as possible to the device.
16, 54	$V_{\text {CC1 }}$	Channel 1 Gate-Drive Supply Voltage Input. Bypass $\mathrm{V}_{\mathrm{CC} 1}$ to GND with a $0.1 \mu \mathrm{~F}$ as close as possible to the device. See the Power Supplies and Bypassing section. Depending on the output, additional bypassing may be required.
17	INN1	Channel 1 Low-Side Logic Input (Table 1)
18	INC1	Channel 1 Clamp Logic Input. Clamps OCP1 and OCN1 are turned on when INC1 is high and when INP1 and INN1 are low (see Table 1).
19	INP1	Channel 1 High-Side Logic Input (Table 1)
20	EN1	Channel 1 Enable Logic Input. Drive EN1 high to enable OP1 and ON1. Pull EN1 low to turn on the gatesource short circuit (see Table 1).
21	$\overline{\text { SHDN }}$	Shutdown Logic Input (Table 1)
22	AGND	Analog Ground. Must be connected to common GND.
23	EN2	Channel 2 Enable Logic Input. Drive EN2 high to enable OP2 and ON2. Pull EN2 low to turn on the gatesource short circuit. See Table 1.
24	INP2	Channel 2 High-Side Logic Input (Table 1)
25	INC2	Channel 2 Clamp Logic Input. Clamps OCP2 and OCN2 are turned on when INC2 is high and when INP2 and INN2 are low. See Table 1.
26	INN2	Channel 2 Low-Side Logic Input (Table 1)
27, 45	VCC2	Channel 2 Gate-Drive Supply Voltage Input. Bypass V_{CC} to GND with a $0.1 \mu \mathrm{~F}$ as close as possible to the device. See the Power Supplies and Bypassing section. Depending on the output, additional bypassing may be required.
29	CDN2	Channel 2 Low-Side Driver Output. Connect a 1nF to 10nF capacitor between CDN2 and CGN2 as close as possible to the device.
30	CGN2	Channel 2 Low-Side Gate Input. Connect a 1nF to 10nF capacitor between CDN2 and CGN2 as close as possible to the device.

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Pin Description (continued)

PIN	NAME	FUNCTION
31,32	$\mathrm{V}_{\mathrm{NN} 2}$	Channel 2 High-Side Negative Supply Voltage Input. Bypass V NN2 2 to GND with a $0.1 \mu \mathrm{~F}$ as close as possible to the device. See the Power Supplies and Bypassing section. Depending on the output, additional bypassing may be required.
34	ON2	Channel 2 Low-Side Drain Output
35	OCN2	Channel 2 Low-Side Clamp Output
37	OCP2	Channel 2 High-Side Clamp Output
38	OP2	Channel 2 High-Side Drain Output
40, 41	VPP2	Channel 2 High-Side Supply Voltage Input. Bypass VPP2 to GND with a $0.1 \mu \mathrm{~F}$ as close as possible to the device. See the Power Supplies and Bypassing section. Depending on the output, additional bypassing may be required.
42	CGP2	Channel 2 High-Side Gate Input. Connect a 1nF to 10nF capacitor between CDP2 and CGP2 as close as possible to the device.
43	CDP2	Channel 2 High-Side Driver Output. Connect a 1nF to 10nF capacitor between CDP2 and CGP2 as close as possible to the device.
46	CGC2	Channel 2 High-Side Clamp Gate Input. Connect a 1nF to 10nF capacitor between CDC2 and CGC2 as close as possible to the device.
47	CDC2	Channel 2 High-Side Clamp Driver Output. Connect a 1nF to 10nF capacitor between CDC2 and CGC2 as close as possible to the device.
48	VEE2	Channel 2 Negative Supply Input. IVEE2 $1 \leq \mathrm{V}_{C C 2}$. Gate Drive Supply Voltage for the OCP clamp. Bypass $V_{\text {EE2 }}$ to GND with a $0.1 \mu \mathrm{~F}$ as close as possible to the device. See the Power Supplies and Bypassing section. Depending on the output, additional bypassing may be required.
49	VDD	Logic Supply Voltage Input. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ as close as possible to the device. See the Power Supplies and Bypassing section. Depending on the output, additional bypassing may be required.
50	VSS	Substrate Voltage. Connect $\mathrm{V}_{\text {SS }}$ to a voltage equal to or more negative than the more negative of $\mathrm{V}_{\mathrm{NN} 1}$ or VNN2.
51	VEE1	Channel 1 Negative Supply Input. IVEE1I $\leq \mathrm{V}_{C C} 1$. Gate Drive Supply Voltage for the OCP clamp. Bypass $\mathrm{V}_{\mathrm{EE} 1}$ to GND with a $0.1 \mu \mathrm{~F}$ as close as possible to the device. See the Power Supplies and Bypassing section. Depending on the output, additional bypassing may be required.
52	CDC1	Channel 1 High-Side Clamp Driver Output. Connect a 1nF to 10nF capacitor between CDC1 and CGC1 as close as possible to the device.
53	CGC1	Channel 1 High-Side Clamp Gate Input. Connect a 1nF to 10nF capacitor between CDC1 and CGC1 as close as possible to the device.
56	CDP1	Channel 1 High-Side Driver Output. Connect a 1nF to 10nF capacitor between CDP1 and CGP1 as close as possible to the device.
-	EP	Exposed Pad. EP must be connected to V ${ }_{\text {SS }}$. Do not use EP as the only $\mathrm{V}_{\text {SS }}$ connection for the device.

Detailed Description

The MAX4810/MAX4811/MAX4812 are dual high-voltage, high-speed pulsers that can be independently configured for either unipolar or bipolar pulse outputs. These devices have independent logic inputs for full pulse control and independent active clamps. The clamp input, INC_, can be set high to activate the
clamp automatically when the device is not pulsing to the positive or negative high-voltage supplies.

Logic Inputs (INP_, INN_, INC_, EN_, $\overline{\text { SHDN }}$

The MAX4810/MAX4811/MAX4812 have a total of nine logic input signals. SHDN controls power-up and powerdown of the device. There are two sets of INP_, INN_, $I N C_{-}$, and $E N_{-}$signals: one for each channel. $I N P_{-}$

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Table 1. Truth Table

INPUTS					OUTPUTS			STATE
$\overline{\text { SDHN }}$	EN_	INP_	INN_	INC_	OP_	ON_	$\begin{aligned} & \text { OCP_, }^{\text {OCN_ }} \end{aligned}$	
0	X	X	X	0	High impedance	High impedance	High impedance	Powered down, INP_INN_ disabled, gate-source short disabled
0	X	X	X	1	High impedance	High impedance	GND	Powered down, INP_/INN_ disabled, gate-source short disabled
1	0	X	X	0	High impedance	High impedance	High impedance	Powered up, INP_/INN_ disabled, gate-source short enabled
1	0	X	X	1	High impedance	High impedance	GND	Powered up, INP_/INN_ disabled, gate-source short enabled
1	1	0	0	0	High impedance	High impedance	High impedance	Powered up, all inputs enabled, gate-source short disabled
1	1	0	0	1	High impedance	High impedance	GND	Powered up, all inputs enabled, gate-source short disabled
1	1	0	1	X	High impedance	V_{NN}	High impedance	Powered up, all inputs enabled, gate-source short disabled
1	1	1	0	X	VPP_	High impedance	High impedance	Powered up, all inputs enabled, gate-source short disabled
1	1	1	1	X	VPP_	V_{NN}	High impedance	Not allowed (3ns maximum overlap)

$X=$ Don't care.
$0=$ Logic-low.
$1=$ Logic-high .
controls the on and off states of the high side FET, INN_ controls the on and off states of the low side FET, INC_ controls the active clamp and EN_ controls the gate to source short. These signals give complete control of the output stage of each driver (see Table 1 for all logic combinations).
The MAX4810/MAX4811/MAX4812 logic inputs are CMOS logic compatible and the logic level are referenced to VDD for maximum flexibility. The low 5pF (typ) input capacitance of the logic inputs reduces loading and increases switching speed.

High-Voltage Output Protection (MAX4811 Only)

The high-voltage outputs of the MAX4811 feature an integrated overvoltage protection circuit that allows the user to implement multilevel pulsing by connecting the outputs of multiple pulser channels in parallel. Internal diodes in series with the ON_ and OP_ outputs prevent the body diode of the high-side and low-side FETs from switching on when a voltage greater than VNN_ or VPP_ is present on the output. See Figure 2.

Active Clamps

The MAX4810/MAX4811/MAX4812 feature an active clamp circuit to improve pulse quality and reduce 2nd harmonic output. The clamp circuit consists of an N channel (DC-coupled) and a P-channel (AC and DC delay coupled) high-voltage FETs that are switched on or off by the logic clamp input (INC_). The MAX4810/ MAX4811 feature protected clamp devices, allowing the clamp circuit to be used in bipolar pulsing circuits (see Figures 1 and 2). A diode in series with the OCN_ output prevents the body diode of the low-side FET from turning on when a voltage lower than GND is present. Another diode in series with the OCP_ output prevents the body diode of the high-side FET from turning on when a voltage higher than ground is present. The MAX4812 does not have diode protection on the clamp outputs. Thus, the device is suitable for use in circuits where only unipolar pulsing is required.
The user can connect the active clamp input (INC_) to a logic-high voltage and drive only the INP_ and INN_ inputs to minimize the number of signals used to drive the

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

device. In this case, whenever both the INP_ and INN_ inputs are low and the INC_ input is high, the active clamp circuit pulls the output to GND through the OCP_ and OCN_ outputs (see Table 1 for more information).

Power-Supply Ramping and Gate-Source Short Circuit

 The MAX4810/MAX4811/MAX4812 include a gatesource short circuit that is controlled by the enable input (EN_). When SHDN is high and EN is low, a 60Ω switch shorts together the gate and source of the high-side output FET. At the same time, a similar switch shorts the gate and source of the low-side output FET (Table 1). The gate-source short circuit prevents accidental turnon of the output FETs due to the ramping voltage on $\mathrm{V}_{P P_{-}}$and $\mathrm{V}_{\mathrm{NN}}^{-}$, and allows for faster ramping rates and smaller delay times between pulsing modes.
Shutdown Mode

$\overline{\mathrm{SHDN}}$ is common to both channel 1 and channel 2 and powers up or down the device. Drive $\overline{\text { SHDN }}$ low to power down all internal circuits (except the clamp circuits). When SHDN is low, the device is in the lowest power state $(1 \mu \mathrm{~A})$ and the gate-source short circuit is disabled. The device takes $1 \mu \mathrm{~s}$ (typ) to become active when $\overline{\text { SHDN }}$ is disabled.

Thermal Protection
A thermal shutdown circuit with a typical threshold of $+150^{\circ} \mathrm{C}$ prevents damage due to excessive power dissipation. When the junction temperature exceeds $T_{J}=$ $+150^{\circ} \mathrm{C}$, all outputs are disabled. Normal operation typically resumes after the IC's junction temperature drops below $+130^{\circ} \mathrm{C}$.

Applications Information

AC-Coupling Capacitor Selection

 The value of all AC-coupling capacitors (between CDP_ and CGP, and between CDN_ and CGN_) should be between 1 nF to 10 nF . The voltage rating of the capacitor should be at least as high as VPP_. The capacitors should be placed as close as possible to the device.Because INP_ and part of INC_ are AC-coupled to the output devices, they cannot be driven high indefinitely when the device is active.

Power Dissipation

The power dissipation of the MAX4810/MAX4811/ MAX4812 consists of three major components caused by the current consumption from VCC_, VPP_, and VNN_. The sum of these components (PVCC_, PVPP_ and

PVNn_) must be kept below the maximum power-dissipation limit. See the Typical Operating Characteristics section for more information on typical supply currents versus switching frequencies.
The device consumes most of the supply current from VCC_ supply to charge and discharge internal nodes such as the gate capacitance of the high-side FET (CP) and the low-side FET (CN). Neglecting the small quiescent supply current and a small amount of current used to charge and discharge the capacitances at the internal gate clamp FETs, the power consumption can be estimated as follows:

$$
\begin{gathered}
P_{\mathrm{VCC}}=\left[\left(\mathrm{C}_{\mathrm{N}} \times \mathrm{V}_{\mathrm{CC}_{-}}{ }^{2} \times \mathrm{f}_{\mathrm{N}}\right)+\left(\mathrm{C}_{\mathrm{P}} \times \mathrm{V}_{\mathrm{CC}_{-}}{ }^{2} \times \mathrm{f}_{\mathrm{N}}\right)\right] \times(\mathrm{BRF} \times \mathrm{BTD}) \\
\mathrm{f}_{\mathrm{N}}=\mathrm{f}_{\mathrm{NN}}+\mathrm{f}_{\mathrm{INP}}
\end{gathered}
$$

Where finn and finp are the switching frequency of the inputs INN, INP respectively, and where BRF is the burst repitition frequency and BTD is the burst time duration. The typical value of the gate capacitances of the power FET are $\mathrm{CN}=0.2 \mathrm{nF}, \mathrm{CP}=0.4 \mathrm{nF}$.
For an output load that has a resistance of R_{L} and capacitance of CL, the MAX4810/MAX4811/MAX4812 power dissipation can be estimated as follows (assume square wave output and neglect the resistance of the switches):

$$
P_{V P P}=\left\{\left[\left(C_{O}+C_{L}\right) \times f_{N} \times\left(V_{P P}-V_{N N_{-}}\right)^{2}\right]+\left[\frac{V_{\text {PP }}{ }^{2}}{R_{L}} \times \frac{1}{2}\right] \times(B R F \times B T D)\right\}
$$

where Co is the output capacitance of the device.

Power Supplies and Bypassing

The MAX4810/MAX4811/MAX4812 operate from independent supply voltage sets (only VDD and VSS are common to both channels). The logic input circuit operates from a +2.7 V to +6 V single supply (VDD). The level-shift driver dual supplies, VCC_NEE_ operate from $\pm 4.75 \mathrm{~V}$ to $\pm 12.6 \mathrm{~V}$.
The VPP_/VNN_ high-side and low-side supplies are driven from a single positive supply up to +220 V , from a single negative supply up to -200 V , or from $\pm 110 \mathrm{~V}$ dual supplies. Either VPP_ or VNN_ can be set at 0 . Bypass each supply input to ground with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device.
Depending on the load of the input, additional bypassing may be needed to keep the output of V_{NN} _ and VPP_ stable during output transitions. For example, with

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Figure 1. MAX4810 Simplified Functional Diagram for One Channel

Cout $=100 \mathrm{pF}$ and Rout $=100 \Omega$ load, additional $10 \mu \mathrm{~F}$ (typ) capacitor is recommended. VSS is the substrate voltage and must be connected to a voltage equal to or more negative than the more negative voltage of $\mathrm{V}_{\mathrm{NN}} 1$ or $\mathrm{V}_{\mathrm{NN} 2}$.

Exposed Pad and Layout Concerns
The MAX4810/MAX4811/MAX4812 provide an exposed pad (EP) underneath the TQFN package for improved thermal performance. EP is internally connected to Vss. Connect EP to Vss externally and do not run traces
under the package to avoid possible short circuits. To aid heat dissipation, connect EP to a similarly sized pad on the component side of the PCB. This pad should be connected through to the solder-side copper by several plated holes to a large heat spreading copper area to conduct heat away from the device.
The MAX4810/MAX4811/MAX4812 high-speed pulsers require low-inductance bypass capacitors to their supply inputs. High-speed PCB trace design practices are recommended. Pay particular attention to minimize

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Figure 2. MAX4811 Simplified Functional Diagram for One Channel
trace lengths and use sufficient trace width to reduce inductance. Use of surface-mount components is recommended.

Supply Sequencing
VSS must be lower than or equal to the more negative voltage of $\mathrm{V}_{\mathrm{NN} 1}$ or $\mathrm{V}_{\mathrm{NN} 2}$ at all times. No other powersupply sequencing is required for the MAX4810/ MAX4811/MAX4812.

Typical Application Circuits
Figures 8, 9, and 10 show typical applications for the MAX4810/MAX4811/MAX4812. Figure 8 shows the MAX4810 used in a bipolar pulsing connection. Figure 9 shows the MAX4811 in a five-level pulsing application, and Figure 10 shows the MAX4812 used in a unipolar application.

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Figure 3. MAX4812 Simplified Functional Diagram for One Channel
\qquad

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Figure 4. Detailed Timing ($R_{L}=100 \Omega, C_{L}=100 \mathrm{pF}$)

Figure 5. Enable Timing ($R_{L}=100 \Omega, C_{L}=100 \mathrm{pF}$)

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Figure 6. Active Clamp Timing

Figure 7. Short-Circuit Timing

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Figure 8. MAX4810: Dual Bipolar Pulsing, $\pm 100 \mathrm{~V}$, GND

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

MAX4810/MAX4811/MAX4812

Figure 9. MAX4811: Five-Level Pulsing, $\pm 100 \mathrm{~V}, \pm 50 \mathrm{~V}, \mathrm{GND}$

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Z $-8 t X \forall W / \perp \perp 8 t X \forall W / O-8 t X V W$

Figure 10. MAX4812: Dual Unipolar Pulsing, + 100V, GND

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
56 TQFN	T5677-1	$\underline{\mathbf{2 1 - 0 1 4 4}}$

