UTC UNISONIC TECHNOLOGIES CO., LTD

UF740-E **Power MOSFET**

10A, 400V, 0.55Ω N-CHANNEL **POWER MOSFET**

DESCRIPTION

The N-Channel enhancement mode silicon gate power MOSFET is designed for high voltage, high speed power switching applications such as switching regulators, switching converters, solenoid, motor drivers, relay drivers.

FEATURES

- * 10A, 400V, $R_{DS(ON)}(0.55\Omega)$
- * Single Pulse Avalanche Energy Rated
- * Rugged SOA is Power Dissipation Limited
- * Fast Switching Speeds
- * Linear Transfer Characteristics
- * High Input Impedance

SYMBOL

ORDERING INFORMATION

Ordering Number		Dooksons	Pin Assignment			Dealine	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UF740L-TA3-T	UF740G-TA3-T	TO-220	G	D	S	Tube	
UF740L-TF1-T	UF740G-TF1-T	TO-220F1	G	D	S	Tube	
UF740L-TF2-T	UF740G-TF2-T	TO-220F2	G	D	S	Tube	
UF740L-TF3-T	UF740G-TF3-T	TO-220F	G	D	S	Tube	
UF740L-TQ2-T	UF740G-TQ2-T	TO-263	G	D	S	Tube	
UF740L-TQ2-R	UF740G-TQ2-R	TO-263	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate S: Source D: Drain

UF740-E

■ **ABSOLUTE MAXIMUM RATINGS** (T_C = 25°C, Unless Otherwise Specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain to Source Voltage (T _J =25°C~125°C)		V_{DS}	400	V
Drain to Gate Voltage (R _{GS} = 20kΩ) (T _J =25°C~125°C)		V_{DGR}	400	V
Gate to Source Voltage		V_{GS}	±20	V
Drain Current	Continuous	I _D	10	Α
	$T_{C} = 100^{\circ}C$	I _D	6.3	Α
	Pulsed	I_{DM}	40	Α
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	520	mJ
	TO-220/TO-263	1	125	
Power Dissipation	TO-220F/TO-220F1		44	W
	TO-220F2		46	
Derating above 25°C	TO-220/TO-263	P_D	1.0	
	TO-220F/TO-220F1		0.35	W/°C
	TO-220F2		0.37	
Junction Temperature		TJ	+150	°C
Operating Temperature		T_OPR	-55 ~ +150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient		θ_{JA}	62.5	°C/W
Junction to Case	TO-220/TO-263		1.0	
	TO-220F/TO-220F1	θ_{Jc}	2.86	°C/W
	TO-220F2		2.72	

■ **ELECTRICAL CHARACTERISTICS** (T_C =25°C, Unless Otherwise Specified.)

PARAMETER Drain to Source Breakdown Voltage Gate to Threshold Voltage On-State Drain Current (Note 1) Zero Gate Voltage Drain Current Gate to Source Leakage Current Drain to Source On Resistance Forward Transconductance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance Reverse - Transfer Capacitance	$\begin{array}{c} \text{SYMBOL} \\ \text{BV}_{DSS} \\ \text{V}_{GS(THR)} \\ \text{I}_{D(ON)} \\ \text{I}_{DSS} \\ \\ \text{I}_{GSS} \\ \text{R}_{DS(ON)} \\ \text{gfs} \\ t_{DLY(ON)} \\ t_{R} \\ \\ t_{DLY(OFF)} \\ t_{F} \\ \\ \text{Q}_{G(TOT)} \\ \\ \text{Q}_{GS} \\ \\ \text{Q}_{GD} \\ \end{array}$	$\begin{split} &V_{GS} = 0\text{V, }I_D = 250\mu\text{A} \\ &V_{GS} = V_{DS}, I_D = 250\mu\text{A} \\ &V_{DS} > I_{D(ON)} \times R_{DS(ON)MAX}, V_{GS} = 10\text{V} \\ &V_{DS} = \text{Rated BV}_{DSS}, V_{GS} = 0\text{V} \\ &V_{DS} = 0.8 \times \text{Rated BV}_{DSS}, V_{GS} = 0\text{V}, T_J = 125^{\circ}\text{C} \\ &V_{GS} = \pm 20\text{V} \\ &V_{GS} = 10\text{V, }I_D = 5.2\text{A (Note 1)} \\ &V_{DS} \geq 50\text{V, }I_D = 5.2\text{A (Note 1)} \\ &V_{DD} = 200\text{V, }I_D \approx 10\text{A}, \\ &R_{GS} = 9.1\Omega, R_L = 20\Omega, V_{GS} = 10\text{V} \\ &MOSFET Switching Times are Essentially \\ &Independent of Operating Temperature \\ &V_{GS} = 10\text{V, }I_D = 10\text{A, }I_{G(REF)} = 1.5\text{mA}, \end{split}$	5.8	0.47 8.9 45	4.0 25 250 ±500 0.55	UNIT V V A μA μA Ω S
Gate to Threshold Voltage On-State Drain Current (Note 1) Zero Gate Voltage Drain Current Gate to Source Leakage Current Drain to Source On Resistance Forward Transconductance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance	$\begin{array}{c} V_{GS(THR)} \\ I_{D(ON)} \\ \\ I_{DSS} \\ \\ I_{GSS} \\ \\ R_{DS(ON)} \\ \\ g_{FS} \\ t_{DLY(ON)} \\ \\ t_{R} \\ \\ t_{DLY(OFF)} \\ \\ t_{F} \\ \\ Q_{G(TOT)} \\ \\ Q_{GS} \\ \end{array}$	$\begin{split} &V_{GS} = V_{DS}, \ I_D = 250 \mu A \\ &V_{DS} > I_{D(ON)} \ x \ R_{DS(ON)MAX}, \ V_{GS} = 10 V \\ &V_{DS} = Rated \ BV_{DSS}, \ V_{GS} = 0 V \\ &V_{DS} = 0.8 \ x \ Rated \ BV_{DSS}, \ V_{GS} = 0 V, T_J = 125 °C V_{GS} = 10 V, I_D = 10$	2.0	8.9 45	25 250 ±500 0.55	V A μA μA nA
On-State Drain Current (Note 1) Zero Gate Voltage Drain Current Gate to Source Leakage Current Drain to Source On Resistance Forward Transconductance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance	$\begin{split} &I_{D(ON)}\\ &I_{DSS}\\ &I_{GSS}\\ &R_{DS(ON)}\\ &g_{FS}\\ &t_{DLY(ON)}\\ &t_{R}\\ &t_{DLY(OFF)}\\ &t_{F}\\ &Q_{G(TOT)}\\ &Q_{GS} \end{split}$	$\begin{split} &V_{DS} > I_{D(ON)} \times R_{DS(ON)MAX}, \ V_{GS} = 10V \\ &V_{DS} = Rated \ BV_{DSS}, \ V_{GS} = 0V \\ &V_{DS} = 0.8 \times Rated \ BV_{DSS}, \ V_{GS} = 0V, T_J = 125^{\circ}C \\ &V_{GS} = \pm 20V \\ &V_{GS} = 10V, \ I_D = 5.2A \ (Note \ 1) \\ &V_{DS} \geq 50V, \ I_D = 5.2A \ (Note \ 1) \\ &V_{DD} = 200V, \ I_D \approx 10A, \\ &R_{GS} = 9.1\Omega, \ R_L = 20\Omega, \ V_{GS} = 10V \\ &MOSFET \ Switching \ Times \ are \ Essentially \\ &Independent \ of \ Operating \ Temperature \\ &V_{GS} = 10V, \ I_D = 10A, \ I_{G(REF)} = 1.5mA, \end{split}$	5.8	8.9 45	25 250 ±500 0.55	Α μΑ μΑ nA
Zero Gate Voltage Drain Current Gate to Source Leakage Current Drain to Source On Resistance Forward Transconductance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance	$\begin{split} &I_{D(ON)}\\ &I_{DSS}\\ &I_{GSS}\\ &R_{DS(ON)}\\ &g_{FS}\\ &t_{DLY(ON)}\\ &t_{R}\\ &t_{DLY(OFF)}\\ &t_{F}\\ &Q_{G(TOT)}\\ &Q_{GS} \end{split}$	$\begin{split} &V_{DS} = \text{Rated BV}_{DSS}, V_{GS} = 0V \\ &V_{DS} = 0.8 \text{x Rated BV}_{DSS}, V_{GS} = 0V, T_J = 125^{\circ}\text{C} \\ &V_{GS} = \pm 20V \\ &V_{GS} = 10V, I_D = 5.2A (\text{Note 1}) \\ &V_{DS} \geq 50V, I_D = 5.2A (\text{Note 1}) \\ &V_{DD} = 200V, I_D \approx 10A, \\ &R_{GS} = 9.1\Omega, R_L = 20\Omega, V_{GS} = 10V \\ &MOSFET \text{Switching Times are Essentially Independent of Operating Temperature} \\ &V_{GS} = 10V, I_D = 10A, I_{G(REF)} = 1.5\text{mA}, \end{split}$	5.8	8.9 45	250 ±500 0.55	μΑ μΑ nA Ω
Gate to Source Leakage Current Drain to Source On Resistance Forward Transconductance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance	I_{GSS} $R_{DS(ON)}$ g_{FS} $t_{DLY(ON)}$ t_{R} $t_{DLY(OFF)}$ t_{F} $Q_{G(TOT)}$ Q_{GS}	$\begin{split} &V_{DS} = \text{Rated BV}_{DSS}, V_{GS} = 0V \\ &V_{DS} = 0.8 \text{x Rated BV}_{DSS}, V_{GS} = 0V, T_J = 125^{\circ}\text{C} \\ &V_{GS} = \pm 20V \\ &V_{GS} = 10V, I_D = 5.2A (\text{Note 1}) \\ &V_{DS} \geq 50V, I_D = 5.2A (\text{Note 1}) \\ &V_{DD} = 200V, I_D \approx 10A, \\ &R_{GS} = 9.1\Omega, R_L = 20\Omega, V_{GS} = 10V \\ &MOSFET \text{Switching Times are Essentially Independent of Operating Temperature} \\ &V_{GS} = 10V, I_D = 10A, I_{G(REF)} = 1.5\text{mA}, \end{split}$	5.8	8.9 45	250 ±500 0.55	μA nA Ω
Gate to Source Leakage Current Drain to Source On Resistance Forward Transconductance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance	I_{GSS} $R_{DS(ON)}$ g_{FS} $t_{DLY(ON)}$ t_{R} $t_{DLY(OFF)}$ t_{F} $Q_{G(TOT)}$ Q_{GS}	$\begin{split} &V_{GS}=\pm 20V\\ &V_{GS}=10V,\ I_D=5.2A\ (Note\ 1)\\ &V_{DS}\geq 50V,\ I_D=5.2A\ (Note\ 1)\\ &V_{DD}=200V,\ I_D\approx 10A,\\ &R_{GS}=9.1\Omega,\ R_L=20\Omega,\ V_{GS}=10V\\ &MOSFET\ Switching\ Times\ are\ Essentially\\ &Independent\ of\ Operating\ Temperature\\ &V_{GS}=10V,\ I_D=10A,\ I_{G(REF)}=1.5mA, \end{split}$	5.8	8.9 45	±500 0.55	nA Ω
Drain to Source On Resistance Forward Transconductance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance	$\begin{aligned} R_{DS(ON)} \\ g_{FS} \\ t_{DLY(ON)} \\ t_{R} \\ t_{DLY(OFF)} \\ t_{F} \\ Q_{G(TOT)} \\ Q_{GS} \end{aligned}$	V_{GS} = 10V, I_D = 5.2A (Note 1) $V_{DS} \ge 50$ V, I_D = 5.2A (Note 1) V_{DD} = 200V, $I_D \approx 10$ A, R_{GS} = 9.1 Ω , R_L = 20 Ω , V_{GS} = 10V MOSFET Switching Times are Essentially Independent of Operating Temperature V_{GS} = 10V, I_D = 10A, $I_{G(REF)}$ = 1.5mA,		8.9 45	0.55	Ω
Forward Transconductance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance	$\begin{array}{c} g_{FS} \\ t_{DLY(ON)} \\ t_{R} \\ \\ t_{DLY(OFF)} \\ t_{F} \\ \\ Q_{G(TOT)} \\ \\ Q_{GS} \end{array}$	$V_{DS} \ge 50V$, $I_D = 5.2A$ (Note 1) $V_{DD} = 200V$, $I_D \approx 10A$, $R_{GS} = 9.1\Omega$, $R_L = 20\Omega$, $V_{GS} = 10V$ MOSFET Switching Times are Essentially Independent of Operating Temperature $V_{GS} = 10V$, $I_D = 10A$, $I_{G(REF)} = 1.5mA$,		8.9 45		
Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance	$\begin{array}{c} g_{FS} \\ t_{DLY(ON)} \\ t_{R} \\ \\ t_{DLY(OFF)} \\ t_{F} \\ \\ Q_{G(TOT)} \\ \\ Q_{GS} \end{array}$	$V_{DS} \ge 50V$, $I_D = 5.2A$ (Note 1) $V_{DD} = 200V$, $I_D \approx 10A$, $R_{GS} = 9.1\Omega$, $R_L = 20\Omega$, $V_{GS} = 10V$ MOSFET Switching Times are Essentially Independent of Operating Temperature $V_{GS} = 10V$, $I_D = 10A$, $I_{G(REF)} = 1.5mA$,		45	55	S
Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance	$\begin{array}{c} t_{\text{DLY(ON)}} \\ t_{\text{R}} \\ \\ t_{\text{DLY(OFF)}} \\ t_{\text{F}} \\ \\ Q_{\text{G(TOT)}} \\ \\ Q_{\text{GS}} \end{array}$	V_{DD} = 200V, $I_D \approx$ 10A, R_{GS} = 9.1 Ω , R_L = 20 Ω , V_{GS} = 10V MOSFET Switching Times are Essentially Independent of Operating Temperature V_{GS} = 10V, I_D = 10A, $I_{G(REF)}$ = 1.5mA,			55	
Turn-Off Delay Time Fall Time Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance	$\begin{array}{c} t_R \\ t_{DLY(OFF)} \\ t_F \\ Q_{G(TOT)} \\ \end{array}$	R_{GS} = 9.1 Ω , R_{L} = 20 Ω , V_{GS} = 10V MOSFET Switching Times are Essentially Independent of Operating Temperature V_{GS} = 10V, I_{D} = 10A, $I_{G(REF)}$ = 1.5mA,		65	55	ns
Fall Time Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance	$\begin{array}{c} t_{\text{DLY(OFF)}} \\ t_{\text{F}} \\ Q_{\text{G(TOT)}} \\ \end{array}$	Independent of Operating Temperature $V_{GS} = 10V$, $I_D = 10A$, $I_{G(REF)} = 1.5mA$,			75	ns
Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance	$\begin{array}{c} t_{\text{F}} \\ Q_{\text{G}(\text{TOT})} \\ Q_{\text{GS}} \end{array}$	$V_{GS} = 10V$, $I_{D} = 10A$, $I_{G(REF)} = 1.5mA$,		150	180	ns
(Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance	Q _{GS}			70	85	ns
Gate to Source Charge Gate to Drain "Miller" Charge Input Capacitance Output Capacitance	Q _{GS}			400	400	
Gate to Drain "Miller" Charge Input Capacitance Output Capacitance		V _{DS} = 0.8 x Rated BV _{DSS}		100	120	nC
Input Capacitance Output Capacitance	Q_{GD}	Gate Charge is Essentially Independent of		10		nC
Output Capacitance		Operating Temperature		20		nC
	C _{ISS}			1225		pF
Reverse - Transfer Capacitance	Coss	$V_{GS} = 0V, V_{DS} = 25V, f = 1.0MHz$		300		pF
	C _{RSS}			80		pF
		Measured From the Contact Screw on Tab to Center of Die Modified MOSFET Symbol Showing the Internal Devices Inductances		3.5		nH
Internal Drain Inductance	L _D	Measured From the Drain Lead, 6mm (0.25in) From Package to Center of Die		4.5		nH
Internal Source Inductance	L _S	Measured From the Source Lead, 6mm (0.25in) From Header to Source Bonding Pad		7.5		nH
SOURCE TO DRAIN DIODE SPECIFIC	ICATIONS	3		1	1	
Source to Drain Diode Voltage	V _{SD}	$T_J = 25^{\circ}C$, $I_{SD} = 10A$, $V_{GS} = 0V$ (Note 1)			2.0	V
Continuous Source to Drain Current	Is	Modified MOSFET			10	Α
Pulse Source to Drain Current (Note 2)	I _{SM}	Symbol Showing the Integral Reverse P-N Junction Diode			40	А
Reverse Recovery Time	ļ	T 0500 L 400 H /H 40001				
Reverse Recovery Charge	t _{rr}	$T_J = 25$ °C, $I_{SD} = 10A$, $dI_{SD}/dt = 100A/\mu s$	170	390	790	ns

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty Cycle≤2%.

- 2. Repetitive rating: Pulse width limited by maximum junction temperature.
- 3. V_{DD} =50V, starting T_J =25°C, L=9.1mH, R_G =25 Ω , peak I_{AS} = 10A

UF740-E Power MOSFET

■ TEST CIRCUITS AND WAVEFORMS

Unclamped Energy Test Circuit

Unclamped Energy Waveforms

Switching Time Test Circuit

Resistive Switching Waveforms

Gate Charge Test Circuit

Gate Charge Waveforms

■ TYPICAL PERFORMANCE CUVES

10

SINGLE PULSE

0.1

Forward Bias Safe Operating Area

Drain to Source Voltage, $V_{\text{DS}}\left(V\right)$

102

10₃

Saturation Characteristics

Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

Capacitance vs. Drain to Source Voltage

■ TYPICAL PERFORMANCE CUVES (Cont.)

Transconduce vs. Drain Current

Source to Drain Diode Voltage

Drain to Source on Resistance vs. Voltage and Drain Current

Gate to Source Voltage vs. Gate Charge

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.