Panasonic ideas for life

RoHS compliant

FEATURES

1. Miniature and high capacity

Miniature relay capable of high 60 A capacity control.
Size: $29.0(\mathrm{~L}) \times 38.0(\mathrm{~W}) \times 17.3(\mathrm{H}) \mathrm{mm}$ $1.142(\mathrm{~L}) \times 1.496(\mathrm{~W}) \times .681(\mathrm{H})$ inch
Nominal switching capacity:
60A 250V AC
2. Latching type

Latching type contributes to device energy efficiency.
Nominal operating power

- 500 mW (1 coil latching)
-1W (2 coil latching)

3. High insulation

Between contact and coil
Breakdown voltage: 4,000 V AC
Surge breakdown voltage: $10,000 \mathrm{~V}$
4. Cd-free, Pb-free
5. Flux-Resistant type

TYPICAL APPLICATIONS

1. Remote control of electric power meters
2. Time switches

ORDERING INFORMATION

TYPES

Contact arrangement	Nominal coil voltage	1 coil latching	Part No.
	4.5 V DC	ADQM1604H	2 coil latching
	6 V DC	ADQM16006	ADQM2604H
	9 V DC	ADQM16009	ADQM26006
	12 V DC	ADQM16012	ADQM26009
	24 V DC	ADQM16024	ADQM26012

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

RATING

1. Coil data

1) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
4.5 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	111.1 mA	40.5Ω	500 mW	$130 \% \mathrm{~V}$ of nominal voltage
6V DC			83.3 mA	72Ω		
9V DC			55.6 mA	162Ω		
12 V DC			41.7 mA	288Ω		
24V DC			20.8 mA	1,152 Ω		

2) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
4.5V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	221.7 mA	20.3Ω	1,000mW	$130 \% \mathrm{~V}$ of nominal voltage
6 V DC			166.7 mA	36Ω		
9 V DC			111.1 mA	81Ω		
12 V DC			83.3 mA	144Ω		
24V DC			41.7 mA	576Ω		

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form A
	Contact resistance (Initial)		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Ag alloy (Cadmium free)
Rating	Nominal switching capacity (resistive load)		60 A 250V AC
	Max. switching power (resistive load)		$15,000 \mathrm{~V} \mathrm{~A}$
	Max. switching voltage		250V AC
	Max. switching current		60 A
	Nominal operating power		500 mW (1 coil latching), 1,000mW (2 coil latching)
	Min. switching capacity (Reference value)*1		100 mA 5 V DC
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M (at 500V DC) Measurement at same location as "Breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
		Between contact and coil	$4,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
	Surge breakdown voltage*2 (Initial)	Between contact and coil	Min. 10,000 V
	Temperature rise (coil) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, max. switching current) (Coil; de-energized)
	Set time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 20 ms (Nominal voltage applied to the coil, excluding contact bounce time.)
	Reset time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 20 ms (Nominal voltage applied to the coil, excluding contact bounce time.)
Mechanical characteristics	Shock resistance	Functional	Min. $200 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 2.0 mm
Expected life	Mechanical		Min. 10^{6} (at 180 times/min.)
	Electrical		60A 250V AC Min. 10^{3} (resistive load, operating frequency: 15 s ON, 45s OFF)
			50A 250V AC Min. 10^{4} (resistive load, operating frequency: 15 s ON, 45s OFF)
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 75% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		1 times/min. (at rated load)
Unit weight			Approx. 35 g 1.23 oz

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

DIMENSIONS (mm inch)

The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/

CAD Data

Note 1)
These are dummy terminals for the strength reinforcement for the M4 screw terminal connection. Fix or solder these to the PC board in case setting M4 screw. However, do not use the dummy terminals as wiring to the PC board. In case wiring of the dummy terminals, the conductor of the dummy terminals, the conductor current.
Current.
No 3rd terminal on 1 coil latching type

External dimensions
PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view) 1 coil latching type 2 coil latching type

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5\%. However, check it with the actual circuit since the characteristics may be slightly different. Also, the power waveform should be square and we recommend it be at least 0.1 seconds. Please keep continuous power to the coil to within 10 seconds.

2. Usage, transport and storage conditions

1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
2) Humidity: 5 to 75% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage

3. Installation of M4 securing screw Do not apply excessive pressure on the terminals. This could adversely affect relay performance. Secure to the PC board a dummy terminal designed for reinforcement of the terminal and use a washer in order to prevent deformation. Keep the installation torque to within 1.2 and $1.4 \mathrm{~N} \cdot \mathrm{~m}$ (12 to $14 \mathrm{kgf} \cdot \mathrm{cm}$). Also, use a spring washer to prevent it from loosening. Do not use the dummy terminals as wiring to the PC board. In case wiring of the dummy terminals, the conductor destruction may occur due to the high current.

For Cautions for Use.

