AIMEL

e —————
WIRELESS & uC

FPGA Design

Good FPGA Design Practices, Aid FPGA Conversion to a

ULC

Scope

This Application Note describes design practices that
make a ULC conversion schedule shorter, and accom-
plished with reduced risk. This noteis recommended for
adesigner considering aconversiontoaULC, or for ade-
signer before starting an FPGA design. For the designer
consideringaconversiontoaULC, thisApplication Note
will give background on the reasons for the questionsin
the ULC Design Checklist. For the designer just starting
and FPGA design, thisApplication Note showsthat much
can bedoneduring the FPGA design processto reducethe
UL C conversion schedule and risk. This application note
isprobably not needed by an experienced ASIC designer,
becausethe experienced ASIC designer isalmost certain-
ly following these design practices already.

This Application noteisin three sections:
® QOvercoming Timing Difficulties— An Introductionto
Good Design Practices

® Good Design Practices.
® Good Simulation Practices.

These “good design practices’ aso apply to good FPGA
design, evenif not convertingtoaUL C, andtogood ASIC
design.

Although following these practicesis not mandatory, it is
recommended. Inall cases, foraUL C conversion, afeasi-
bility study is done first to determine if a conversion
should be successful. Thefeasibility study includesade-
termination of thedegree of conformanceto these practic-
es, and an assessment of the degree of difficulty of acon-
version. If these good design practices have been
followed, itisvirtually assuredthat theresultsof thefeasi-
bility study will be positive; if the practiceshave not been
followed, there isachance that the results of the feasibil-
ity study will be negative.

Notethat the effective use of CAD/CAE toolsdependson
the designer following these design practices. If good de-
sign practices have been followed, the tools work much
better, faster, with much less manual intervention, and re-
port fewer errors and warnings that must be resolved by
the ULC designer.

Overcoming Timing Difficulties— An
I ntroduction to Good Design Practices

First aword about good FPGA design practices. Good
FPGA design practicesinclude allowing marginsfor tim-
ing variations. Timing variations occur as the chip oper-
atesover atemperature range, and dueto fabrication pro-
cessvariations. Whenadesigner usestrial anderrorinthe
system lab to design an FPGA, with no system-level
specificationfor the FPGA and littleknowledge of timing
margins, theresulting FPGA could be undependable over
temperature and process. FPGA designers should use
good design practices, and simulation, to make sure that
thisdoesnot happen. However, notethat if the FPGA op-
eratesin production without problemsfor sometime, this
isproof that itislikely that adequatetiming marginsexist.
Now, on to conversion considerations. Converting the
FPGA design to anything el se (not just UL Cs) meansre—
targeting the design to a new set of timing parameters,
similar to those of the FPGA, but not exactly the same.
A ULCissmaller and generally faster, like most ASICs,
relative to an FPGA. The fastness of the ULC can be a
problem if the FPGA requireslong delays on some paths.
On the other hand, the ULC can be slower than Global
Clock (fast—path) features on FPGAS, and this can be a
problem if the signal travels across the chip. Also, ULC
setup and hold are usually different; ULC setup is about
zero, and hold is about 2-5ns, whereas FPGA setup and
hold isgenerally the opposite. UL C designersknow how
to handletheconversions, but theconversionismuch eas-
ier if the FPGA designer uses good design practices, and
simulation.

If thetiming tolerancesareknown, Atmel Wireless& Mi-
crocontrollersassuresthat asuccessful FPGA conversion
can be achieved, whether or not the FPGA hasbeen simu-
lated. Thisis assured by using ATPG (Automatic Test
Program Generation) and associated fault simulation/
grading. Before tapeout of the ULC, the ULC vectors,
whether generated by the customers’ simulations or by
Atmel Wireless & Microcontrollers ATPG, are tested on
the FPGA in an IC tester, where timing is analyzed, and
functionality isverified if tester or simulation vectorsare
provided by the customer.

Note that only customer—provided vectorswill check for
correct functional operation; the Atmel Wireless & Mi-
crocontrollers ATPG vectors are used to check logic con-
formanceto acustomer specification and/or within toler-
ance of the FPGA timing, but these |atter vectors do not
check functionality (so the logic in the FPGA had better
represent the desired functionality). Also note that only
pin—to—pin vectors contribute to assuring the correctness

Rev. B — 25 May. 98

6-1



FPGA Design

AIMEL

Y )
WIRELESS & uC

of the conversion; simulation vectors that set internal
nodes during simulation are welcome information but do
not directly aidin checking theconversion. Also, notethe
Test Vectors, used after fabrication, are created from cus-
tomer—provided vectors and may not reach 85% of fault
coverage asrequired. Inthiscase, Atmel Wireless & Mi-
crocontrollersinserts scan to increase fault coverage. Of
course, JTAG is supported.

Atmel Wirdless & Microcontrollers has proven tech-
niques that have been used to convert hundreds of
FPGAs, many done when the original FPGA designer
was hot available to answer questions. However, we al-
ways do a (free) feasibility study to make sure that the
conversion should succeed, and the result of the feasibil-
ity study is generaly positive.

Good Design Practices

Atmel Wireless& MicrocontrollersULC designersusea
“Feasibility Risk Assessment” checklist to record their
analysis of the FPGA submitted for a feasibility study.
This checklist covers the design practices described in
this Application Note, and it makes sure that the UL C de-
signer assesses the potential problems in those areas
where good design practices have not been followed and
therefore there is increased risk that the conversion will
take longer, or be unsuccessful, unless appropriate mea-
suresaretaken. ThissheetisshowninFigurel. Thefol-
lowing paragraphs are adescription of theseitems, inthe
same order, and same numbering, asthe table.

62

Rev. B — 25 May. 98



ATMEL

e —————
WIRELESS & uC

FPGA Design

Figure 1. Feasibility Risk Assessment (Rev. 1)

Mask & Company Name:

Feasibility Study Designer(s):

Date: [ With Vectors [J Without Vectors
ANALYZE THE FOLLOWING Risk Rating Estimated Extra Days if COMMENTS:
(Assign arisk factor if the " good design (0-10; 10 is bad)* Need

practice” hasnot been used)

1. Timing Well—specified (internal and
external), i.e., a specification (with timing)

2. Master Clear (Initialization); or small set of
vectors to get to known state; away to
circumvent POR (if any)

3. Only FFsdrivereset (No combinatorial
logic driving reset)

4. Avoided Gated Clocks

5. Avoided internally—generated clocks (used
on—chip)

6. Avoided Counters or control states over 10
bits without taps

7. Glitchesinto a FF data—in before clk

8. Avoided combinatorial loops (including no
home-made FFs)

9. Avoided interna tri—states

10.Avoided redundant or fault tolerant circuits

11.Avoided Global Clocks too fast to meet tim-
ing; & delay blocks or programmed delays; &
deglitching circuits

12.Avoided demand for high fault coverage,
eg., 95%

13.Avoided special noise standards

14.Avoided Asynchronous circuits

15.No dynamic programming (fatal)

TOTALS:

1. Writeaspecification onfunctionality and timing of the
FPGA. Thisis for the reasons described above. Also,
provide schematicsand other items|isted on the Custom-
er questionnaire.

2. Use Master Clear, i.e., an asynchronous reset from an
external pin. Second bestisasmall set of vectorsto get
to aknown state. This meansthat there must be away to
circumvent any POR (Power On Reset), and rapidly get
toaknown state. Timing cannot beverified usingsimula-
tion if the logic cannot be efficiently taken to a known
state. Thesameistruefor fault simulation/grading (used
to generate tests that determine if the fabrication process

isOK, and if enough logic hasbeen tested to assureasuc-
cessful conversion). (Don’'t use abi—direct buffer on re-
set, or clock inputs, because it will make a mess of the
simulation vectors when it goes to the Z state.)

3. Use only FFs to drive Reset (in addition to master
Clear). In other words, the reset to a FF needs to be syn-
chronized and stabilized, and this is done by driving the
reset from adataoutput of another FF, or elseglitchescan
occur, causing errors.  So, for example, the correct
construction of adivide—by—3 counter would be asshown
in Figure 2.

Rev. B — 25 May. 98

6-3



FPGA Design

AIMEL

4
WIRELESS & uC

®

NCK

CK

CK

NQ

CK

NQ

NR

CK

NQ

NR

CK

NQ

NR

Figure 2. Correct Construction of a Divide-by—3 Counter

Also, if you need to generate ashort pulse, instead of connecting a FF's Q to itsreset, do as shown in figure 3.

IN D Q — ouT
D Q
o CK  NQ @_,7
T .
— - CK NQ

Figure 3. If Must Make Pulses, Do It ThisWay

4. Try to minimize the use of gated clocks, because they
cause more skew between the clock and the data. In lay-
out, the skew can be areal challengeto accommodate. If
the skew cannot be accommodated, spikes occur. Of
course, an enable on the clock that has been built into the
cell library is OK, because this circuit is specialy con-
trolled by the CAE tooals, including the layout tools, but
designer—generated gated clocks cause errors and warn-
ings by the CAE tools and, if there are enough of them
spread around the logic, layout may not be ableto get rid
of the skew everywhere, and the conversion may haveto
be aborted (aborted toward the end of the design phase,
which means that much design time will have been
wasted).

5. Try to minimize internally generated and used clocks
(created using sequential or combinatorial logic), because
thedistribution of such clock linesinsidethechip are sub-
ject to skew that may not be accounted for by clock tree
generation software and thus will likely have skew prob-
lems. Thisissimilar totheproblemsinitems3and4. (So
use of equationsto generate clock signalsinan FPGA de-
signisnot advised.)

6. Try tokeep counters, dividers, control statelogic, etc.,
segmentsto less than 10 bits, as seen from the input/out-
put pins, or add taps. If morethan 10 bits, long counters
should have taps for monitoring, or at least have a pre-
load function. These taps should somehow easily propa-

64

Rev. B — 25 May. 98



AIMEL

e —————
WIRELESS & uC

FPGA Design

gate their data to output pins. The reason for this good
practice isthat the number of simulation vectors and test
times required are too much without it.

7. Construct logicto minimizeglitches, andwhenaglitch
isunavoidable, make surethat it settles out at the datain-
put of a FF (Flip Flop) before this FF is clocked. Also,
glitchesinto reset, set, or clock inputsto aflip flop must
be avoided; as stated above, we recommend not using
combinatorial logicinreset, set, or clock inthefirst place.

8. Avoid combinatoria loops (including combinatorial
latches), and pulsegenerators. Any combinatorial design
whose proper operation depends on delays through logic
elementsis dangerous. Thisisespecialy truein ULCs
and ASICshutisasotruefor FPGAs. Sodon'tdesignas-
suming that the delay down any combinatorial pathispre-
dictable, and that the difference in time down two differ-
ent paths to the same destination is predictable. Itisn't
(unlessvery carefully controlled, asisdonewhen creating
thelogicinsidethecell of acell library). Pulsewidthsand
delaysvary substantially over temperature, processvaria-
tions, re-layouts, and voltage variations.

9. Internal tri—states are best avoided, although we prob-
ably can handlethemwith somedifficulty. If internal tri—
states are unavoidable, avoid floating nodes. These can
occur when al of the buffers driving a bus are disabled.
Add abuffer to drivethe buswhen al of the other buffers
are OFF.

10. Try to avoid redundant or fault tolerant circuits, al-
though we can handlethem with somedifficulty. Thedif-
ficulty comes during re-synthesisto the ULC, wherere-
dundant logic is minimized out (and thus must be
manually added back in). Pleaseinform usif thistype of
circuitry isin your design.

11. Minimize the use of global clocks (fast paths), delay
blocks, programmed delays, and deglitching circuits, be-
causeitisdifficult (but generally notimpossible) tomatch
the timing. The Global Clock is only a problem when
converting (toaULC) if thesignal travel sacrossthechip.
The delay blocks and programmed delays are problems
because any function that depends on delay of the logic
elements is difficult to reproduce (the min/max delay
window intheconverted material istoo big), asexplained
in item 8above. Deglitching circuitsarealso difficult to
reproduce for the same reason — the min/max delay win-
dow in the converted materia istoo big.

12. Try not to insist on high fault coverage (e.g., 95%).
Althoughit sounds good to demand the samefault cover-
ageason an ASIC, thisaddsto thetime (and thus cost) of
the conversion and does not provide the degree of benefit
itdoesforan ASIC. First of all, ASICsare designed with
design—for-test rules so that scan logic can be efficiently
added, and itssupporting CAE toolswill work efficiently.
FPGAs usually are not designed using these rules. The
good design practices of this Application Note are nearly

the same as the design—for—test rulesfor scan, so if these
good design practices are followed completely, adding
scan should not be a problem. However, if the practices
are not rigorously followed, adding scan can take much
time, and, inafew cases, may not bemadeto work proper-
ly. (Scanisamethod wherelogicisaddedtoeachflipflop
to allow all of the flip flops to be connected in a serial
string in test mode so that test bits can beinserted and ex-
tractedin/out of the FFsbetween each normal clock pul se,
effectively turning theflip flopsinto 1/O pinsfor test, thus
eliminating the very negative effect of the flip flops on
generating an effective test using just real 1/0 pins.) We
try to achieve 85% fault coverage without adding scan.
Keep in mind that the merit of high fault coverageisthat
it provides a somewhat better check on the fabrication
process—it contributesnothing to the accuracy of thecon-
version. Wehave other waysto check thefabrication pro-
cess, including conservative process and packaging yield
monitoring, and I DDQ testing can beaddedif the custom-
er deemsit necessary. Of courseal of thiswill not bean
issueif thefault coverage percentage getsto 95% without
adding scan logic, asisoften the case. Onthe other hand,
at the other extreme, if the design has a big function but
few pinsin and/or out, e.g., adigital filter, we may not be
ableto achieve agreat enough fault coverage percentage
to be confident of the conversion, not to mentionthemon-
itoring of the processing. In other words, our primary
concernisan accurate conversion, which depends on get-
ting the fault coverage up using testing from the I/O pins
only, and adding scan logic will not help this (at least at
present—day levelsof relatively low logic usagein FPGASs
as converted). We have found that 85% test coverageis
good; 60% is OK; and under 50% is definitely risky.

13. Let us know about any noise regquirements or stan-
dardsthat must bemet, becausewe can useour slow slew
rate buffers to avoid noise problems (we have slew rate
control).

14. Try to use synchronous design as much as possible,
because asynchronous design often depends on element
delays, which, aswesaid in severa placesabove, isdiffi-
cult to duplicate in a conversion.

15. No dynamic reprogramming if you plan to do a con-
version. We can handle on—board RAM, but not if used
for dynamic reprogramming. In other words, we can
generally assure timing with one set of program parame-
tersinan FPGA but it getstoo complicated whenthese pa-
rametersarechanged onthefly. So,infact, weonly hard—
wiretheprogrammed parts. (Notethat thismeansthat, for
FPGAsthat use the daisy chain method of programming,
we can convert al of this set of FPGAS, or any FPGAS
that are not the master, but we can’t be the master when
theslavesarenot our conversions, i.e., notif theslavesare
expecting to be programmed. That is, our converted
slaves simply pass the programming data down the daisy
chain. Our master cannot generate daisy chain program-
ming information.)

Rev. B — 25 May. 98

6-5



FPGA Design

AIMEL

Y )
WIRELESS & uC

Good Simulation Practices

Why Simulate?

An FPGA designer should simulate to:
® Make sure that the FPGA timing margins are
adequate.

® Savetimeinthelab by designing onthecomputer, and
using simulation to make sure that functionality is
right and that all functions have been provided.

e Endupwithan FPGA ingood shapefor conversionto
aULC.

® | earnthesamedesigntechniquesthat will preparethe
designer for ASIC design.

Don't forget to follow the Good Design Practices too.
Also, remember to always go back to the design file and
simulations on the computer asthe” master” of your de-
sign.

Two Kinds of Simulation

Ashasbeen discussed somewhat above, weareinterested
in two different kinds of simulation — functional, and
ATPG-hased simulation with fault grading. Definitions
of these terms is not consistent in the industry, so let’s
makeit clear that " functional” simulation isgenerated by
the designer and is used to verify the design, whereas,
ATPG (Automatic Test Program (testlist) Generation) is
softwarethat isapplied against adesign fileby atest engi-
neer and it analyzesthe circuit and generatestest vectors
for testersthat exercisethelogic such that any stuck—at—1
or stuck—at—zero faults will propagate to the output pins
and thus be detected. So notethat ATPG vectors have no
ideaabout the function of thelogic; they only try to exer-
ciseit to detect faults (whatever the functional use of the
logic).

ATPG test was invented when functional test on testers
started takingtoolong. It started with circuit boards, long
before ASICs were invented. The ATPG—generated test
exercisesthecombinational logicinjust afew secondson
thetester. Itisthesequential logicthat causesthe prohibi-
tively long test times. A popular solutionfor thisproblem
for ASICs, in conjunctionwith ATPG, isadding scan log-
ic to effectively get rid of the sequential logic in the test
generation. Asexplained in item 12 above, scan makes
more sense for ASICs than for ULCs.

Inthe ULC & ASIC worlds, ATPG testing ismainly in-
tended to provide good partstesting to determine that the
fabrication processfor the UL C or ASIC isworking prop-
erly. It has nothing to do with verifying the design or
proper functionality of thechip. Sotheless percentage of
fault coverage, the less confident that the ATPG test will

catch IC processing faults. Notehowever that AT PG test-
ing isessentially astatic test, and dynamic faults may not
be detected by it. Also, stuck—at faults don’t include
bridging faults, etc. So we're not talking a perfect per-
centagewhen weachieve acertain percent of fault cover-
age. However, oneof thebig appeal sof thismethod isthat
is does indicate some relative degree of test coveragein
theform of apercentage, whether it'sexactly right or not.

When generating ATPG tests, the test engineer often
startswith asubset of the functional testsvectors, if these
type of vectors are available from the designer. The de-
signer selects afew hundred or thousand functional vec-
torsto " prime’ the ATPG testing. These vectors usually
result in about 60% fault coverage. Then the designer
goeson to generate the ATPG vectors, adding to the fault
coverage.

Take special note that the designer, in functional ssmula-
tion, may often set and monitor nodes other than the in-
puts or output to the chip. These parts of the functional
simulation are of no direct benefit to the ATPG testing.
ATPG testing requires input/output vectors only. (But
send al vectors for a conversion; al information is use-
ful.)

When creating functional vectorsfor simulation, think in
termsof alimited number of vectorsto achievefunctional
verification — don’t think in terms of real time, because
real timetakestoo long. One second of real time of chip
operation can be days of simulation time. One cannot &f -
ford to simulate POR (Power On Reset) or thingslikereal
diagnostic programs. |nstead, onemust devisesimulation
vectorsthat test the functionality in just afew hundred or
thousand vectors. A 15K vector test on the tester should
be the target (no extra charge); however well over 100K
can be accommodated but may cost more (because of the
cost of the tester time, which is hundreds of dollars per
hour).

Simulation and Conversion to ULCs

In converting an FPGA to aUL C, the ATPG vectors pro-
vide another use besides increasing the quality via better
testing for detecting processing faults, and this additional
useisthat thesevectorsare used to check thetiming, espe-
cidly I/O pin—to—pin timing, to make surethat thetiming
of the converted design into the UL C iswithin the neces-
sary windows as compared to the timing of the FPGA be-
ing converted. In other words, the ULC designer takes
any customer—provided functional test vectorswhose”1/
Os’ areat thel/Osof the FPGA and usesthemin thefront
of his ATPG program. The ULC designer then runsthe
ATPG softwareto add morevectors. Theresultingtestis
analyzed for timing compatibility with the FPGA being
converted. This is done before and after layout of the
ULC. Thesetests are also applied to the FPGA itself in
an IC tester, after layout but before tapeout, of the ULC.

66

Rev. B — 25 May. 98



AIMEL

e —————
WIRELESS & uC

FPGA Design

Thesetest arealso used in wafer probetest, prototypetest
(before sending the fabricated part to the customer for
checkout), and production test. So these test vectors are
targeted to several testers, using software made for that
purpose. (Note that the FPGA designer—generated ATPG
vectors would be welcome but an FPGA designer likely
won't be producing them because FPGAs are built with-
out benefit of fault grading. ASIC designs generally use
fault grading.)

What You Can Do

So what can an FPGA designer do to make conversions
easier, inlight of what is needed for the conversion? One
thing isthat the FPGA designer can use simulationsat the
1/0 pins as much as possible. It often works to simulate
piecesof thedesign, and then combinethepiecesandsim-
ulate the whole (from the 1/0O pins). Note however that
each piecethat issimulated requiresthe designer to set up
anew simulation environment, which doestake consider-
abletime. Soit paysto plan how thiswill bedoneand how
much timeit will taketo doit. Doing all smulationfrom
thel/O pinsfrom the beginning isbest, but only if the de-
signer is confident that it will take less time to debug the
designthanif itweredonein piecesfirst. Obviously, large
designs must be done in pieces. Also, the more experi-
enced designers can probably do larger pieces than the
|ess experienced.

Another thing that will help in conversion is vectors that
do not try to stress the clock skew or variations due to
processing, temperature, layout, etc. Depend ontheenvi-
ronment options of thesimulator for this (worst casetem-
perature, etc., best case, normal, etc.). Use good design
practicesand conservativedesign rulesso that you are not
tweaking the logic to make it work. If good design rules
arefollowed, itisfineif thedata” just makesit” tothenext
clock pulse.

FPGA Vendor Simulation Tools

The FPGA vendors al provide simulation tools. They
may charge extrafor thesetools. The books provided by
the vendor teach how to do simulation. Most also have
orn-ine help, and hotlines. Further information, and the
latest information, isfound on the home page of the ven-
dor’sWorld Wide Web site. They all have email aswell,
whichisvery convenient. Inaddition, most haveregular-
ly—scheduled training classes.

Conclusion

Givesimulation atry if you haven't already. Itwill result
inan FPGA lesslikely to haveproblemsinitsapplication,
and it will make conversionto aULC much easier. Give
the Good Design Practicesatry too, and thusincreasethe
quality of the parts, and conversion to a ULC will be a
breezel

Rev. B — 25 May. 98

6-7



