
FPGA Design

6–1Rev. B – 25 May. 98

Scope

This Application Note describes design practices that
make a ULC conversion schedule shorter, and accom-
plished with reduced risk. This note is recommended for
a designer considering a conversion to a ULC, or for a de-
signer before starting an FPGA design. For the designer
considering a conversion to a ULC, this Application Note
will give background on the reasons for the questions in
the ULC Design Checklist. For the designer just starting
and FPGA design, this Application Note shows that much
can be done during the FPGA design process to reduce the
ULC conversion schedule and risk. This application note
is probably not needed by an experienced ASIC designer,
because the experienced ASIC designer is almost certain-
ly following these design practices already.

This Application note is in three sections:
� Overcoming Timing Difficulties – An Introduction to

Good Design Practices
� Good Design Practices.
� Good Simulation Practices.

These “good design practices” also apply to good FPGA
design, even if not converting to a ULC, and to good ASIC
design.

Although following these practices is not mandatory, it is
recommended. In all cases, for a ULC conversion, a feasi-
bility study is done first to determine if a conversion
should be successful. The feasibility study includes a de-
termination of the degree of conformance to these practic-
es, and an assessment of the degree of difficulty of a con-
version. If these good design practices have been
followed, it is virtually assured that the results of the feasi-
bility study will be positive; if the practices have not been
followed, there is a chance that the results of the feasibil-
ity study will be negative.

Note that the effective use of CAD/CAE tools depends on
the designer following these design practices. If good de-
sign practices have been followed, the tools work much
better, faster, with much less manual intervention, and re-
port fewer errors and warnings that must be resolved by
the ULC designer.

Overcoming Timing Difficulties – An
Introduction to Good Design Practices
First a word about good FPGA design practices. Good
FPGA design practices include allowing margins for tim-
ing variations. Timing variations occur as the chip oper-
ates over a temperature range, and due to fabrication pro-
cess variations. When a designer uses trial and error in the
system lab to design an FPGA, with no system–level
specification for the FPGA and little knowledge of timing
margins, the resulting FPGA could be undependable over
temperature and process. FPGA designers should use
good design practices, and simulation, to make sure that
this does not happen. However, note that if the FPGA op-
erates in production without problems for some time, this
is proof that it is likely that adequate timing margins exist.
Now, on to conversion considerations. Converting the
FPGA design to anything else (not just ULCs) means re–
targeting the design to a new set of timing parameters,
similar to those of the FPGA, but not exactly the same.
A ULC is smaller and generally faster, like most ASICs,
relative to an FPGA. The fastness of the ULC can be a
problem if the FPGA requires long delays on some paths.
On the other hand, the ULC can be slower than Global
Clock (fast–path) features on FPGAs, and this can be a
problem if the signal travels across the chip. Also, ULC
setup and hold are usually different; ULC setup is about
zero, and hold is about 2–5ns, whereas FPGA setup and
hold is generally the opposite. ULC designers know how
to handle the conversions, but the conversion is much eas-
ier if the FPGA designer uses good design practices, and
simulation.
If the timing tolerances are known, Atmel Wireless & Mi-
crocontrollers assures that a successful FPGA conversion
can be achieved, whether or not the FPGA has been simu-
lated. This is assured by using ATPG (Automatic Test
Program Generation) and associated fault simulation/
grading. Before tapeout of the ULC, the ULC vectors,
whether generated by the customers’ simulations or by
Atmel Wireless & Microcontrollers ATPG, are tested on
the FPGA in an IC tester, where timing is analyzed, and
functionality is verified if tester or simulation vectors are
provided by the customer.
Note that only customer–provided vectors will check for
correct functional operation; the Atmel Wireless & Mi-
crocontrollers ATPG vectors are used to check logic con-
formance to a customer specification and/or within toler-
ance of the FPGA timing, but these latter vectors do not
check functionality (so the logic in the FPGA had better
represent the desired functionality). Also note that only
pin–to–pin vectors contribute to assuring the correctness

Good FPGA Design Practices, Aid FPGA Conversion to a
ULC

FPGA Design

6–2 Rev. B – 25 May. 98

of the conversion; simulation vectors that set internal
nodes during simulation are welcome information but do
not directly aid in checking the conversion. Also, note the
Test Vectors, used after fabrication, are created from cus-
tomer–provided vectors and may not reach 85% of fault
coverage as required. In this case, Atmel Wireless & Mi-
crocontrollers inserts scan to increase fault coverage. Of
course, JTAG is supported.

Atmel Wireless & Microcontrollers has proven tech-
niques that have been used to convert hundreds of
FPGAs, many done when the original FPGA designer
was not available to answer questions. However, we al-
ways do a (free) feasibility study to make sure that the
conversion should succeed, and the result of the feasibil-
ity study is generally positive.

Good Design Practices

Atmel Wireless & Microcontrollers ULC designers use a
“Feasibility Risk Assessment” checklist to record their
analysis of the FPGA submitted for a feasibility study.
This checklist covers the design practices described in
this Application Note, and it makes sure that the ULC de-
signer assesses the potential problems in those areas
where good design practices have not been followed and
therefore there is increased risk that the conversion will
take longer, or be unsuccessful, unless appropriate mea-
sures are taken. This sheet is shown in Figure 1. The fol-
lowing paragraphs are a description of these items, in the
same order, and same numbering, as the table.

FPGA Design

6–3Rev. B – 25 May. 98

Figure 1. Feasibility Risk Assessment (Rev. 1)

Mask & Company Name:

Date:

Feasibility Study Designer(s):

� With Vectors � Without Vectors

ANALYZE THE FOLLOWING

(Assign a risk factor if the ”good design
practice” has not been used)

Risk Rating

(0–10; 10 is bad)*

Estimated Extra Days if
Need

COMMENTS:

1. Timing Well–specified (internal and
external), i.e., a specification (with timing)

2. Master Clear (Initialization); or small set of
vectors to get to known state; a way to
circumvent POR (if any)

3. Only FFs drive reset (No combinatorial
logic driving reset)

4. Avoided Gated Clocks

5. Avoided internally–generated clocks (used
on–chip)

6. Avoided Counters or control states over 10
bits without taps

7. Glitches into a FF data–in before clk

8. Avoided combinatorial loops (including no
home–made FFs)

9. Avoided internal tri–states

10.Avoided redundant or fault tolerant circuits

11.Avoided Global Clocks too fast to meet tim-
ing; & delay blocks or programmed delays; &
deglitching circuits

12.Avoided demand for high fault coverage,
e.g., 95%

13.Avoided special noise standards

14.Avoided Asynchronous circuits

15.No dynamic programming (fatal)

 TOTALS:

1. Write a specification on functionality and timing of the
FPGA. This is for the reasons described above. Also,
provide schematics and other items listed on the Custom-
er questionnaire.
2. Use Master Clear, i.e., an asynchronous reset from an
external pin. Second best is a small set of vectors to get
to a known state. This means that there must be a way to
circumvent any POR (Power On Reset), and rapidly get
to a known state. Timing cannot be verified using simula-
tion if the logic cannot be efficiently taken to a known
state. The same is true for fault simulation/grading (used
to generate tests that determine if the fabrication process

is OK, and if enough logic has been tested to assure a suc-
cessful conversion). (Don’t use a bi–direct buffer on re-
set, or clock inputs, because it will make a mess of the
simulation vectors when it goes to the Z state.)

3. Use only FFs to drive Reset (in addition to master
Clear). In other words, the reset to a FF needs to be syn-
chronized and stabilized, and this is done by driving the
reset from a data output of another FF, or else glitches can
occur, causing errors. So, for example, the correct
construction of a divide–by–3 counter would be as shown
in Figure 2.

FPGA Design

6–4 Rev. B – 25 May. 98

D Q

NQ

D Q

CK NQ

D Q

CK NQ

D Q

CK NQNCK CK

NR NR NR

CK

Figure 2. Correct Construction of a Divide–by–3 Counter

Also, if you need to generate a short pulse, instead of connecting a FF’s Q to its reset, do as shown in figure 3.

D Q

NQ

D Q

CK NQ

CK CK

IN OUT

R

Figure 3. If Must Make Pulses, Do It This Way

4. Try to minimize the use of gated clocks, because they
cause more skew between the clock and the data. In lay-
out, the skew can be a real challenge to accommodate. If
the skew cannot be accommodated, spikes occur. Of
course, an enable on the clock that has been built into the
cell library is OK, because this circuit is specially con-
trolled by the CAE tools, including the layout tools, but
designer–generated gated clocks cause errors and warn-
ings by the CAE tools and, if there are enough of them
spread around the logic, layout may not be able to get rid
of the skew everywhere, and the conversion may have to
be aborted (aborted toward the end of the design phase,
which means that much design time will have been
wasted).

5. Try to minimize internally generated and used clocks
(created using sequential or combinatorial logic), because
the distribution of such clock lines inside the chip are sub-
ject to skew that may not be accounted for by clock tree
generation software and thus will likely have skew prob-
lems. This is similar to the problems in items 3 and 4. (So
use of equations to generate clock signals in an FPGA de-
sign is not advised.)

6. Try to keep counters, dividers, control state logic, etc.,
segments to less than 10 bits, as seen from the input/out-
put pins, or add taps. If more than 10 bits, long counters
should have taps for monitoring, or at least have a pre–
load function. These taps should somehow easily propa-

FPGA Design

6–5Rev. B – 25 May. 98

gate their data to output pins. The reason for this good
practice is that the number of simulation vectors and test
times required are too much without it.

7. Construct logic to minimize glitches, and when a glitch
is unavoidable, make sure that it settles out at the data in-
put of a FF (Flip Flop) before this FF is clocked. Also,
glitches into reset, set, or clock inputs to a flip flop must
be avoided; as stated above, we recommend not using
combinatorial logic in reset, set, or clock in the first place.

8. Avoid combinatorial loops (including combinatorial
latches), and pulse generators. Any combinatorial design
whose proper operation depends on delays through logic
elements is dangerous. This is especially true in ULCs
and ASICs but is also true for FPGAs. So don’t design as-
suming that the delay down any combinatorial path is pre-
dictable, and that the difference in time down two differ-
ent paths to the same destination is predictable. It isn’t
(unless very carefully controlled, as is done when creating
the logic inside the cell of a cell library). Pulse widths and
delays vary substantially over temperature, process varia-
tions, re–layouts, and voltage variations.

9. Internal tri–states are best avoided, although we prob-
ably can handle them with some difficulty. If internal tri–
states are unavoidable, avoid floating nodes. These can
occur when all of the buffers driving a bus are disabled.
Add a buffer to drive the bus when all of the other buffers
are OFF.

10. Try to avoid redundant or fault tolerant circuits, al-
though we can handle them with some difficulty. The dif-
ficulty comes during re–synthesis to the ULC, where re-
dundant logic is minimized out (and thus must be
manually added back in). Please inform us if this type of
circuitry is in your design.

11. Minimize the use of global clocks (fast paths), delay
blocks, programmed delays, and deglitching circuits, be-
cause it is difficult (but generally not impossible) to match
the timing. The Global Clock is only a problem when
converting (to a ULC) if the signal travels across the chip.
The delay blocks and programmed delays are problems
because any function that depends on delay of the logic
elements is difficult to reproduce (the min/max delay
window in the converted material is too big), as explained
in item 8 above. Deglitching circuits are also difficult to
reproduce for the same reason – the min/max delay win-
dow in the converted material is too big.

12. Try not to insist on high fault coverage (e.g., 95%).
Although it sounds good to demand the same fault cover-
age as on an ASIC, this adds to the time (and thus cost) of
the conversion and does not provide the degree of benefit
it does for an ASIC. First of all, ASICs are designed with
design–for–test rules so that scan logic can be efficiently
added, and its supporting CAE tools will work efficiently.
FPGAs usually are not designed using these rules. The
good design practices of this Application Note are nearly

the same as the design–for–test rules for scan, so if these
good design practices are followed completely, adding
scan should not be a problem. However, if the practices
are not rigorously followed, adding scan can take much
time, and, in a few cases, may not be made to work proper-
ly. (Scan is a method where logic is added to each flip flop
to allow all of the flip flops to be connected in a serial
string in test mode so that test bits can be inserted and ex-
tracted in/out of the FFs between each normal clock pulse,
effectively turning the flip flops into I/O pins for test, thus
eliminating the very negative effect of the flip flops on
generating an effective test using just real I/O pins.) We
try to achieve 85% fault coverage without adding scan.
Keep in mind that the merit of high fault coverage is that
it provides a somewhat better check on the fabrication
process – it contributes nothing to the accuracy of the con-
version. We have other ways to check the fabrication pro-
cess, including conservative process and packaging yield
monitoring, and IDDQ testing can be added if the custom-
er deems it necessary. Of course all of this will not be an
issue if the fault coverage percentage gets to 95% without
adding scan logic, as is often the case. On the other hand,
at the other extreme, if the design has a big function but
few pins in and/or out, e.g., a digital filter, we may not be
able to achieve a great enough fault coverage percentage
to be confident of the conversion, not to mention the mon-
itoring of the processing. In other words, our primary
concern is an accurate conversion, which depends on get-
ting the fault coverage up using testing from the I/O pins
only, and adding scan logic will not help this (at least at
present–day levels of relatively low logic usage in FPGAs
as converted). We have found that 85% test coverage is
good; 60% is OK; and under 50% is definitely risky.

13. Let us know about any noise requirements or stan-
dards that must be met, because we can use our slow slew
rate buffers to avoid noise problems (we have slew rate
control).

14. Try to use synchronous design as much as possible,
because asynchronous design often depends on element
delays, which, as we said in several places above, is diffi-
cult to duplicate in a conversion.

15. No dynamic reprogramming if you plan to do a con-
version. We can handle on–board RAM, but not if used
for dynamic re–programming. In other words, we can
generally assure timing with one set of program parame-
ters in an FPGA but it gets too complicated when these pa-
rameters are changed on the fly. So, in fact, we only hard–
wire the programmed parts. (Note that this means that, for
FPGAs that use the daisy chain method of programming,
we can convert all of this set of FPGAs, or any FPGAs
that are not the master, but we can’t be the master when
the slaves are not our conversions, i.e., not if the slaves are
expecting to be programmed. That is, our converted
slaves simply pass the programming data down the daisy
chain. Our master cannot generate daisy chain program-
ming information.)

FPGA Design

6–6 Rev. B – 25 May. 98

Good Simulation Practices

Why Simulate?

An FPGA designer should simulate to:
� Make sure that the FPGA timing margins are

adequate.
� Save time in the lab by designing on the computer, and

using simulation to make sure that functionality is
right and that all functions have been provided.

� End up with an FPGA in good shape for conversion to
a ULC.

� Learn the same design techniques that will prepare the
designer for ASIC design.

Don’t forget to follow the Good Design Practices too.
Also, remember to always go back to the design file and
simulations on the computer as the ”master” of your de-
sign.

Two Kinds of Simulation

As has been discussed somewhat above, we are interested
in two different kinds of simulation – functional, and
ATPG–based simulation with fault grading. Definitions
of these terms is not consistent in the industry, so let’s
make it clear that ”functional” simulation is generated by
the designer and is used to verify the design, whereas,
ATPG (Automatic Test Program (testlist) Generation) is
software that is applied against a design file by a test engi-
neer and it analyzes the circuit and generates test vectors
for testers that exercise the logic such that any stuck–at–1
or stuck–at–zero faults will propagate to the output pins
and thus be detected. So note that ATPG vectors have no
idea about the function of the logic; they only try to exer-
cise it to detect faults (whatever the functional use of the
logic).

ATPG test was invented when functional test on testers
started taking too long. It started with circuit boards, long
before ASICs were invented. The ATPG–generated test
exercises the combinational logic in just a few seconds on
the tester. It is the sequential logic that causes the prohibi-
tively long test times. A popular solution for this problem
for ASICs, in conjunction with ATPG, is adding scan log-
ic to effectively get rid of the sequential logic in the test
generation. As explained in item 12 above, scan makes
more sense for ASICs than for ULCs.

In the ULC & ASIC worlds, ATPG testing is mainly in-
tended to provide good parts testing to determine that the
fabrication process for the ULC or ASIC is working prop-
erly. It has nothing to do with verifying the design or
proper functionality of the chip. So the less percentage of
fault coverage, the less confident that the ATPG test will

catch IC processing faults. Note however that ATPG test-
ing is essentially a static test, and dynamic faults may not
be detected by it. Also, stuck–at faults don’t include
bridging faults, etc. So we’re not talking a perfect per-
centage when we achieve a certain percent of fault cover-
age. However, one of the big appeals of this method is that
is does indicate some relative degree of test coverage in
the form of a percentage, whether it’s exactly right or not.

When generating ATPG tests, the test engineer often
starts with a subset of the functional tests vectors, if these
type of vectors are available from the designer. The de-
signer selects a few hundred or thousand functional vec-
tors to ”prime” the ATPG testing. These vectors usually
result in about 60% fault coverage. Then the designer
goes on to generate the ATPG vectors, adding to the fault
coverage.

Take special note that the designer, in functional simula-
tion, may often set and monitor nodes other than the in-
puts or output to the chip. These parts of the functional
simulation are of no direct benefit to the ATPG testing.
ATPG testing requires input/output vectors only. (But
send all vectors for a conversion; all information is use-
ful.)

When creating functional vectors for simulation, think in
terms of a limited number of vectors to achieve functional
verification – don’t think in terms of real time, because
real time takes too long. One second of real time of chip
operation can be days of simulation time. One cannot af-
ford to simulate POR (Power On Reset) or things like real
diagnostic programs. Instead, one must devise simulation
vectors that test the functionality in just a few hundred or
thousand vectors. A 15K vector test on the tester should
be the target (no extra charge); however well over 100K
can be accommodated but may cost more (because of the
cost of the tester time, which is hundreds of dollars per
hour).

Simulation and Conversion to ULCs

In converting an FPGA to a ULC, the ATPG vectors pro-
vide another use besides increasing the quality via better
testing for detecting processing faults, and this additional
use is that these vectors are used to check the timing, espe-
cially I/O pin–to–pin timing, to make sure that the timing
of the converted design into the ULC is within the neces-
sary windows as compared to the timing of the FPGA be-
ing converted. In other words, the ULC designer takes
any customer–provided functional test vectors whose ”I/
Os” are at the I/Os of the FPGA and uses them in the front
of his ATPG program. The ULC designer then runs the
ATPG software to add more vectors. The resulting test is
analyzed for timing compatibility with the FPGA being
converted. This is done before and after layout of the
ULC. These tests are also applied to the FPGA itself in
an IC tester, after layout but before tapeout, of the ULC.

FPGA Design

6–7Rev. B – 25 May. 98

These test are also used in wafer probe test, prototype test
(before sending the fabricated part to the customer for
checkout), and production test. So these test vectors are
targeted to several testers, using software made for that
purpose. (Note that the FPGA designer–generated ATPG
vectors would be welcome but an FPGA designer likely
won’t be producing them because FPGAs are built with-
out benefit of fault grading. ASIC designs generally use
fault grading.)

What You Can Do

So what can an FPGA designer do to make conversions
easier, in light of what is needed for the conversion? One
thing is that the FPGA designer can use simulations at the
I/O pins as much as possible. It often works to simulate
pieces of the design, and then combine the pieces and sim-
ulate the whole (from the I/O pins). Note however that
each piece that is simulated requires the designer to set up
a new simulation environment, which does take consider-
able time. So it pays to plan how this will be done and how
much time it will take to do it. Doing all simulation from
the I/O pins from the beginning is best, but only if the de-
signer is confident that it will take less time to debug the
design than if it were done in pieces first. Obviously, large
designs must be done in pieces. Also, the more experi-
enced designers can probably do larger pieces than the
less experienced.

Another thing that will help in conversion is vectors that
do not try to stress the clock skew or variations due to
processing, temperature, layout, etc. Depend on the envi-
ronment options of the simulator for this (worst case tem-
perature, etc., best case, normal, etc.). Use good design
practices and conservative design rules so that you are not
tweaking the logic to make it work. If good design rules
are followed, it is fine if the data ”just makes it” to the next
clock pulse.

FPGA Vendor Simulation Tools

The FPGA vendors all provide simulation tools. They
may charge extra for these tools. The books provided by
the vendor teach how to do simulation. Most also have
on–line help, and hotlines. Further information, and the
latest information, is found on the home page of the ven-
dor’s World Wide Web site. They all have email as well,
which is very convenient. In addition, most have regular-
ly–scheduled training classes.

Conclusion

Give simulation a try if you haven’t already. It will result
in an FPGA less likely to have problems in its application,
and it will make conversion to a ULC much easier. Give
the Good Design Practices a try too, and thus increase the
quality of the parts, and conversion to a ULC will be a
breeze!

