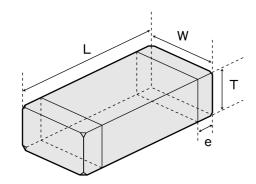


0	3		4		6
Туре	Nominal I	nductance(µH)	Inductanc	e Tolerances (%)	Internal code
LK Multilayer chip inductors	example		к	±10	△ Standard Products
	47N	0.047	M	±20	Blank space
	R10	0.1			
2	1R0	1			
9	100	10			
External Dimensions (LXW)(mm)		*R=decimal point	5		
1608(0603) 1.6×0.8		*N=0.0(nH type)			
2125(0805) 2.0×1.25		51.5	Packagir	Ig	

-т

Tape & Reel


3216(1206)

3.2×1.6

EXTERNAL DIMENSIONS

Туре	L	W	Т	е
LK1608	1.6±0.15	0.8±0.15	0.8±0.15	0.3±0.2
(0603)	(0.063 ± 0.006)	(0.031 ± 0.006)	(0.031 ± 0.006)	(0.012 ± 0.008)
	2.0+0.3		0.85±0.2	
LK2125		1.25±0.2	1.25±0.2	0.5±0.3
(0805)	(0.079 + 0.012) - 0.004)	(0.049±0.008)	(0.033±0.008)	(0.020 ± 0.012)
	0.004		(0.049±0.008)	
			0.6±0.2	
LK3216	3.2±0.2	1.6±0.2	1.1±0.3	0.5±0.3
(1206)	(0.126±0.008)	(0.063±0.008)	(0.024 ± 0.008)	(0.020 ± 0.012)
			(0.043 ± 0.012)	

A. 24 44		AVAILABI	E INDUCTAN	CE RANGE	1 4 1 1	1. 1. 1. 1. S.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Range	Туре	LK16	08		LK2125		LK3216
		0.04	7		0.047		0.047
	0.1	Imax [mA] 50	Rdcmax [Ω] 0.50	Imax [mA] 250	Rdcmax _ <u>0.30</u>	[Ω] Imax [mA] 250	Rdcmax [Ω] 0.25
		25	0.60	50	0.40	100	0.40
Inductance [µH]	1						
Induct							
	10	5.	2.55	15_	<u>1.15</u>	25	- <u>1.00</u>
		33			33		33

ples	Inductance	Imax [mA]	Rdcmax [Ω]	Imax [mA]	Rdcmax [Ω]	Imax [mA]	Rdcmax [Ω]
	0.1 <i>µ</i> H	50	0.50	250	0.30	250	0.25
Exar	1 <i>µ</i> H	25	0.60	50	0.40	100	0.40
	10 <i>µ</i> H	5	2.55	15	1.15	25	1.00

Selection Guide

Part Numbers P.234

Precautions

P.270

PART NUMBERS	1 4 4 4			A. 5 4.	1. 15	** .*.	1. J. 1.
--------------	---------	--	--	---------	-------	--------	----------

LK1608 -

A. Stan 2

Ordering code	Inductance [µH]	Inductance tolerance	(min.)	Self resonant frequency [MHz] (min.)	DC Resistance [Ω](max.)	Rated current [mA] (max.)	Measuring frequency (MHz)	Thickness (mm) (inch)
LK 1608 47NM	0.047		10	260	0.30	50	50	
LK 1608 68NM	0.068	±20%	10	250	0.30	50	50	
LK 1608 82NM	0.082		10	245	0.30	50	50	
LK 1608 R10	0.10		15	240	0.50	50	25	
LK 1608 R12	0.12		15	205	0.50	50	25	
LK 1608 R15	0.15	1	15	180	0.60	50	25	
LK 1608 R18	0.18		15	165	0.60	50	25	
LK 1608 R22	0.22	1	15	150	0.80	50	25	
LK 1608 R27	0.27	1	15	136	0.80	50	25	
LK 1608 R33	0.33	1	15	125	0.85	35	25	
LK 1608 R39	0.39	1	15	110	1.00	35	25	
LK 1608 R47	0.47		15	105	1.35	35	25	
LK 1608 R56	0.56		15	95	1.55	35	25	0.8±0.15
LK 1608 R68	0.68		15	80	1.70	35	25	
LK 1608 R82	0.82		15	75	2.10	35	25	
LK 1608 1R0	1.0	±10%	35	70	0.60	25	10	
LK 1608 1R2	1.2	±20%	35	60	0.80	25	10	
LK 1608 1R5	1.5		35	55	0.80	25	10	(0.031±0.00
LK 1608 1R8	1.8	1	35	50	0.95	25	10	-
LK 1608 2R2	2.2		35	45	1.15	15	10	
LK 1608 2R7	2.7	1	35	40	1.35	15	10	
LK 1608 3R3	3.3		35	38	1.55	15	10	
LK 1608 3R9	3.9	1	35	36	1.70	15	10	
LK 1608 4R7	4.7		35	33	2.10	15	10	
LK 1608 5R6	5.6	1	35	22	1.55	5	4	
LK 1608 6R8	6.8		35	20	1.70	5	4	
LK 1608 8R2	8.2		35	18	2.10	5	4	
LK 1608 100	10	1	35	17	2.55	5	2	1
LK 1608 120	12		35	15	2.75	5	2	1
LK 1608 150M	15		20	14	1.70	1	1]
LK 1608 180M	18	1	20	13	1.85	1	1	1
LK 1608 220M	22	±20%	20	11	2.10	1	1	1
LK 1608 270M	27	1	20	10	2.75	1	1	1
LK 1608 330M	33	1	20	9	2.95	1	1	1

LK2125 -

 $\boldsymbol{\cdot} \square$ Please specify the Inductance tolerance code (K or M).

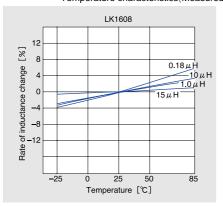
Ordering code	Inductance (µH)	Inductance tolerance	(min.)	Self resonant frequency [MHz] (min.)	DC Resistance (Ω)(max.)	Rated current [mA] (max.)	Measuring frequency (MHz)	Thickness [mm] (inch)
LK 2125 47NM	0.047		15	320	0.20	300	50	
LK 2125 68NM	0.068	±20%	15	280	0.20	300	50	
LK 2125 82NM	0.082		15	255	0.20	300	50	
LK 2125 R10	0.10		20	235	0.30	250	25	
LK 2125 R12	0.12		20	220	0.30	250	25	
LK 2125 R15	0.15	1	20	200	0.40	250	25	0.85±0.2
LK 2125 R18	0.18]	20	185	0.40	250	25	(0.033±0.008)
LK 2125 R22	0.22		20	170	0.50	250	25	
LK 2125 R27	0.27		20	150	0.50	250	25	
LK 2125 R33	0.33		20	145	0.55	250	25	
LK 2125 R39	0.39		25	135	0.65	200	25	
LK 2125 R47	0.47		25	125	0.65	200	25	
LK 2125 R56	0.56]	25	115	0.75	150	25	1.25±0.2
LK 2125 R68	0.68		25	105	0.80	150	25	(0.049±0.008)
LK 2125 R82	0.82]	25	100	1.00	150	25	
LK 2125 1R0	1.0	±10%	45	75	0.40	50	10	
LK 2125 1R2	1.2	±20%	45	65	0.50	50	10	
LK 2125 1R5	1.5		45	60	0.50	50	10	0.85±0.2
LK 2125 1R8	1.8	1	45	55	0.60	50	10	(0.033±0.008)
LK 2125 2R2	2.2		45	50	0.65	30	10	
LK 2125 2R7	2.7	1	45	45	0.75	30	10	
LK 2125 3R3	3.3		45	41	0.80	30	10	
LK 2125 3R9	3.9		45	38	0.90	30	10	
LK 2125 4R7	4.7]	45	35	1.00	30	10	
LK 2125 5R6	5.6		50	32	0.90	15	4	
LK 2125 6R8	6.8	1	50	29	1.00	15	4	
LK 2125 8R2	8.2		50	26	1.10	15	4	1.25±0.2
LK 2125 100	10	1	50	24	1.15	15	2	(0.049±0.008)
LK 2125 120	12		50	22	1.25	15	2	-
LK 2125 150M	15		30	19	0.80	5	1	
LK 2125 180M	18		30	18	0.90	5	1	1
LK 2125 220M	22	±20%	30	16	1.10	5	1	1
LK 2125 270M	27		30	14	1.15	5	1	1
LK 2125 330M	33	-	30	13	1.25	5	0.4	-

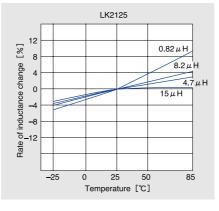
 $\boldsymbol{\cdot} \Box$ Please specify the Inductance tolerance code (K or M).

TAIYOYUDEN CO., LTD.

|--|

LK3216

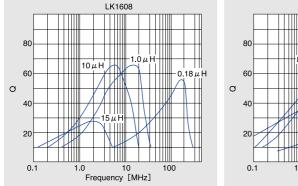

Ordering code	Inductance [µH]	Inductance tolerance	(min.)	Self resonant frequency [MHz] (min.)	DC Resistance [Ω](max.)	Rated current [mA] (max.)	Measuring frequency (MHz)	Thickness [mm] (inch)
LK 3216 47NM	0.047	±20%	20	320	0.15	300	50	
LK 3216 68NM	0.068	120%	20	280	0.25	300	50	
LK 3216 R10	0.10		20	235	0.25	250	25	
LK 3216 R12	0.12		20	220	0.30	250	25	
LK 3216 R15	0.15		20	200	0.30	250	25	0.6±0.2
LK 3216 R18	0.18		20	185	0.40	250	25	(0.024±0.008
LK 3216 R22	0.22		20	170	0.40	250	25	
LK 3216 R27	0.27		20	150	0.50	250	25	
LK 3216 R33	0.33		20	145	0.60	250	25	
LK 3216 R39	0.39		25	135	0.50	200	25	
LK 3216 R47	0.47		25	125	0.60	200	25	
LK 3216 R56	0.56		25	115	0.70	150	25	1.1±0.3
LK 3216 R68	0.68		25	105	0.80	150	25	(0.043±0.012)
LK 3216 R82	0.82		25	100	0.90	150	25	
LK 3216 1R0	1.0	±10%	45	75	0.40	100	10	0.6±0.2
LK 3216 1R2	1.2	±20%	45	65	0.50	100	10	(0.024±0.008
LK 3216 1R5	1.5		45	60	0.50	50	10	
LK 3216 1R8	1.8		45	55	0.50	50	10	_
LK 3216 2R2	2.2	1	45	50	0.60	50	10	
LK 3216 2R7	2.7		45	45	0.60	50	10	
LK 3216 3R3	3.3	1	45	41	0.70	50	10	-
LK 3216 3R9	3.9		45	38	0.80	50	10	=
LK 3216 4R7	4.7	1	45	35	0.90	50	10	_
LK 3216 5R6	5.6		50	32	0.70	25	4	
LK 3216 6R8	6.8	1	50	29	0.80	25	4	1.1±0.3
LK 3216 8R2	8.2		50	26	0.90	25	4	(0.043±0.012
LK 3216 100	10		50	24	1.00	25	2	-
LK 3216 120	12	1	50	22	1.05	15	2	1
LK 3216 150M	15		35	19	0.70	5	1	1
LK 3216 180M	18	1	35	18	0.70	5	1	
LK 3216 220M	22	±20%	35	16	0.90	5	1	1
LK 3216 270M	27		35	14	0.90	5	1	1
LK 3216 330M	33	1	35	13	1.05	5	0.4	-

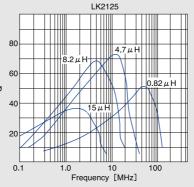

 $\boldsymbol{\cdot} \Box$ Please specify the Inductance tolerance code (K or M).

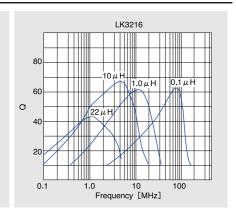
ELECTRICAL CHARACTERISTICS

DC Bias characteristics(Measured by HP4194A) LK1608 LK2125 LK3216 100 100 100 TTT 22 µ H 15μΗ 10μΗ 15μH 8.2μH 10 µ H 10 10 10 [Hη] inductance [μ H] inductance [μ H] 4.7 μ H inductance 1.0 µ H 1.0μH 0.82 µ H 1 1 1 -0.18μH 0.1[']µH 0.1 1000 0.1 0.1 100 DC Bias [mA] ++++ 100 DC Bias [mA] 10 1000 100 10 1 10 DC Bias [mA]

Temperature characteristics(Measured by HP4275A)

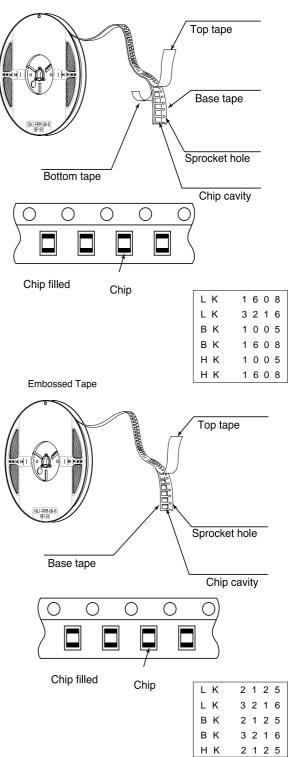




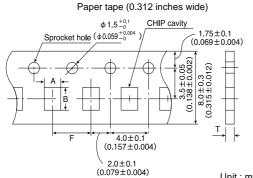


1000

Q-vs-Frequency characteristics(Measured by HP4195A+41951A)

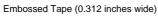

TAIYOYUDEN CO., LTD.

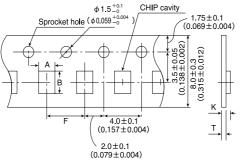
- ① Standard Quantity
- Tape & Reel Packaging


		[pcs]				
	Thickness	Standard	d Quantity			
Туре	[mm] (inch)	Paper Tape	Embossed Tape			
LK1608(0603)	0.8 (0.031)	4000	_			
	0.85 (0.033)	_	4000			
LK2125(0805)	1.25 (0.049)	_	2000			
	0.6 (0.024)	4000	_			
LK3216(1206)	1.1 (0.043)	_	2000			
HK1005(0402)	0.5 (0.020)	10000	_			
HK1608(0603)	0.8 (0.031)	4000	_			
	0.85 (0.033)	_	4000			
HK2125(0805)	1.0 (0.039)	_	3000			
BK1005(0402)	0.5 (0.020)	10000	_			
BK1608(0603)	0.8 (0.031)	4000	_			
	0.85 (0.033)	_	4000			
BK2125(0805)	1.25 (0.049)	_	2000			
BK3216(1206)	0.8 (0.031)	_	4000			

② Taping material

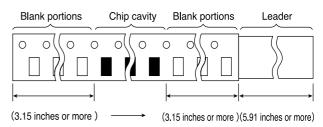
Card board carrier tape



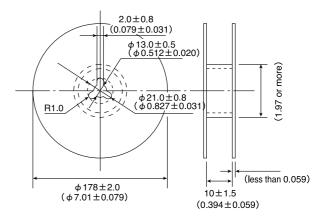

③ Taping Dimensions

Unit : mm (inch)

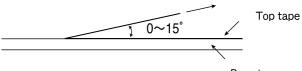
Туре		Chip cavity		Insertion Pitch	Tape Thickness	
	Chip Thickness	А	В	F	т	
LK1608(0603)	0.8	1.0±0.2	1.8±0.2			
ER1000(0003)	(0.031)	(0.039 ± 0.008)	(0.071±0.008)	4.0+0.1	1 1mov	
LK3216(1206)	0.6	2.0±0.2	3.6±0.2	(0.157±0.004)	1.1max (0.043max)	
LK3210(1200)	(0.024)	(0.079 ± 0.008)	(0.142±0.008)	(,	(
HK1005(0402)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max	
HK1005(0402)	(0.020)	(0.026 ± 0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)	
HK1608(0603)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1max	
HK1000(0003)	(0.031)	(0.039 ± 0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max)	
BK1005(0402)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max	
BK 1003(0402)	(0.020)	(0.026 ± 0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)	
PK1609(0602)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1max	
BK1608(0603)	(0.031)	(0.039 ± 0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max)	



Unit : mm (inch)


						max.	
Turne		Chip	cavity	Insertion Pitch	Tape Thickness		
Туре	Chip Thickness	A	В	F	К	Т	
	0.85				1.5		
LK2125(0805)	(0.033)	1.5±0.2	2.3±0.2	4.0±0.1	(0.059)	0.3	
LK2 123(0003)	1.25	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	2.0	(0.012)	
	(0.049)				(0.079)		
LK3216(1206)	1.1	2.0±0.2	3.6±0.2	4.0±0.1	2.0	0.3	
LK3210(1200)	(0.043)	(0.079±0.008)	(0.142±0.008)	(0.157±0.004)	(0.079)	(0.012)	
	0.85				1.5		
HK2125(0805)	(0.033)	1.5±0.2	2.3±0.2	4.0±0.1	(0.059)	0.3	
111/2123(0003)	1.0	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	2.0	(0.012)	
	(0.039)				(0.079)		
	0.85				1.5		
BK2125(0805)	(0.033)	1.5±0.2	2.3±0.2	4.0±0.1	(0.059)	0.3	
DR2123(0003)	1.25	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	2.0	(0.012)	
	(0.049)				(0.079)		
BK3216(1206)	0.8	1.9±0.1	3.5±0.1	4.0±0.1	1.4	0.3	
	(0.031)	(0.075±0.004)	(0.138±0.004)	(0.157±0.004)	(0.055)	(0.012)	

④ LEADER AND BLANK PORTION


Direction of tape feed

5 Reel Size

6 Top tape strength

The top tape requires a peel-off force of 0.1 ${\sim}0.7N$ in the direction of the arrow as illustrated below.

RELIABILITY DATA	4. 24 1. 2 18 4.	1/4
------------------	------------------	-----

					Spec	ified Value					
Item	BK1005	BK1608	BK2125	BK3216	LK1608	LK2125	LK3216	HK1005	HK1608	HK2125	Test Methods and Remarks
1.Operating Temperature Range		—55 to -	+125℃			-40 to +85°	Ċ	—55 to +125°C	-55 to +125°C -40 to +85°C		
2.Storage Tem-		-55 to	+125℃			-40 to +85	C	-55 to +125°C	-40 to -	+85℃	
9.Rated Current	50 ,100mA DC	100 to 1000mA	150 to	50 to 200mA	1 to 50mA DC	5 to 300mA DC	5 to 300mA DC	100 to 300mA	300m.	A DC	
		DC	1000mA DC	DC	DC	DC	DC	DC			
4.Impedance	68 to 1000Ω ±25%	22 to 2500Ω ±25%	15 to 2500Q ±25%	60 to 1000Ω ±25%				_			BK1005 Series: Measuring frequency: 100±1MHz Measuring equipment: HP4291A Measuring jig: 16192A BK1608, 2125 Series: Measuring frequency: 100±1MHz Measuring equipment: HP4291A, 4195A Measuring jig: 16092A or 16192A (HW) BK3216 Series: Measuring frequency: 100±1MHz Measuring equipment: HP4291A,4195A Measuring equipment: HP4291A,4195A Measuring jig: 16192A
5. Inductance					0.047 to 33.0µH: ±20% 0.10 to 12.0µH: ±10%	0.047 to 33.0µH: ±20% 0.10 to 12.0µH: ±10%	0.047 to 33.0μH: ±20% 0.10 to 12.0μH: ±10%	±0.3nH,	1.0 to 5.6nH: ±0.3nH 6.8 to 220nH: ±5% 3.3 to 220nH: ±10%	1.5 to 5.6nH: ±0.3nH 6.8 to 470nH: ±5% 3.3 to 470nH: ±10%	LK Series: Measuring frequency: 1 to 50 MHz (LK1608) Measuring frequency: 0.4 to 50MHz (LK2125,3216) Measuring equipment, jig: HP4194A + 16085B + 16092A (or its equivalent) HP4195A + 41951 -61001 + 16092A (or its equivalent) HP4195A + 41951 -61001 + 16092A (or its equivalent) Measuring current: 1mA rms (0.047 to 4.7μ H) 0.1mA rms (5.6 to 33μ H) HK Series: Measuring frequency: 100MHz (HK1005) Measuring frequency: 50 / 100MHz (HK1005) Measuring equipment, jig: HP4291A + 16193A (HK1005) HP4195A + 16092A + in-house made jig (HK1608, 2125)
6.Q					10 to 35 min.	15 to 50 min.	20 to 50 min.	8 min.	8 to 12 min.	10 to 18 min.	LK Series: Measuring frequency: 1 to 50 MHz (LK1608) Measuring frequency: 0.4 to 50MHz (LK2125,3216) Measuring equipment, jig: HP4194A + 16085B + 16092A (or its equivalent) HP4195A + 41951 -61001 + 16092A (or its equivalent) Measuring current: 1mA rms (0.047 to 4.7μ H) 0.1mA rms (5.6 to 33μ H) HK Series: Measuring frequency: 100MHz (HK1005) Measuring frequency: 50 / 100MHz (HK1608, 2125) Measuring equipment, jig: HP4291A + 16193A(HK1005) HP4195A + 16092A + in-house made jig

* Definition of rated current : In the BK Series, the rated current is the value of current at which the temperature of the element is increased by 20°C.

In the LK and HK Series, the rated current is either the DC value at which the initial L value is decreased by 5% with the application of DC bias, or the value of current at which the temperature of the element is increased by 20°C.

RELIABILITY DATA	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2/4
------------------	--	-----

					Speci	ified Value					
Item	BK1005	BK1608	BK2125	BK3216	LK1608	LK2125	LK3216	HK1005	HK1608	HK2125	Test Methods and RemarKs
7.DC Resistance	0.25 to 1.5Ω	0.05 to 1.8Ω	0.05 to 0.8Ω	0.15 to 0.85Ω	0.3 to 2.95Ω	0.2 to 1.25Ω	0.15 to 1.05Ω	0.12 to 1.60Ω	0.05 to 1.5Ω	0.10 to 1.5Ω	BK Series: DC resistance between electrodes
	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	LK, HK Series:
											Measuring equipment: VOAC-7412
											(made by Iwasaki Tsushinki)
											• VOAC-7512(HK1608, 2125)
8.Self Resonance					9 to 260MHz	13 to 320MHz	13 to 320MHz	600 to 10000	400 to 10000	200 to 4000	LK Series:
Frequency(SRF)					min.	min.	min.	MHz min.	MHz min.	MHz min.	Measuring equipment: HP4195A
											Measuring jig: 41951 - 69001 + 16092A
	-										(or its equivalent)
											HK Series:
											Measuring equipment: HP8719C
											• HP8753D(HK2125)
9.Temperature								Inductance	Inductance	Inductance	HK Series:
Characteristic	_							change:	change:	change:	Temperature range: -30 to +85℃
								Within ±10%	Within ±10%	Within ±10%	Reference temperature: +20°C
10. Resistance to	No				No	No	No	No	No	No	Warp: 2mm
Flexure of	mechanical	—			mechanical	mechanical	mechanical	mechanical	mechanical	mechanical	Testing board: glass epoxy-resin substrate
Substrate	damage.				damage.	damage.	damage.	damage.	damage.	damage.	Thickness: 0.8mm
											BK, LK Series
											Board H-10 Warp
											HK Series
											Board R-S40 Warp
											\

RELIABILITY DATA	推荐 医静脉 盖带 韩	3/4
------------------	-------------	-----

	Specified Value												
Item	BK1005	BK1608	BK2125	BK3216	LK1608	LK2125	LK3216	HK1005	HK1608	HK2125	Test Methods and Remarks		
11.Solderability	At least 75 ⁴ by new sold		l electrode i	s covered				At least 75% of terminal electrode is covered by new solder.			BK Series: Solder temperature: 230±5°C Duration: 4±1 sec. Immersion speed: 25mm/sec. LK, HK Series: Solder temperature: 230±5°C Duration: 4±1 sec. Preheating temperature: 150 to 180°C Preheating time: 2 to 3 min. Flux: Immersion into methanol solution with colophony for 3 to 5 sec.		
12.Resistance to Soldering		e: No signific	cant abnorm	ality		ical damage terminal ele			ical damage terminal elec		BK Series: Solder temperature: 260±5°C Duration: 10±0.5 sec. Preheating temperature: 150°C Preheating time: 3 min. Immersion speed: 25 mm/sec. Recovery: 2 to 3 hrs of recovery under the stan dard condition after the test. (See Note 1)		
											LK, HK Series: Solder temperature: 260±5°C Duration: 10±0.5 sec. Preheating temperature: 150 to 180°C Preheating time: 2 to 3 min. Flux: Immersion into methanol solution with colophony for 3 to 5 sec.		
13.Thermal Shock		e: No signific e change: Wi	cant abnorm	ality		iical damage change: Wi			ical damage change: Wit		BK Series: Conditions for 1 cycle step 1: -55 $\stackrel{+0}{-3}$ °C 30 \pm 3 min. step 2: Room temperature 10 to 15 min.		
					Q change:	Within ±309	6	Q change: 1	Within ±20%	6	step 3: +125 ⁺ ₀ ⁻³ °C 30±3 min. step 4: Room temperature 10 to 15 min. Number of cycles: 5 Recovery: 2 to 3 hrs of recovery under the stan dard condition after the test. (See Note 1) LK Series: Conditions for 1 cycle / step 1: -25°C, 60 min. step 2: +85°C, 60 min. HK1608, 2125 Series: Conditions for 1 cycle / step 1: -40°C, 60 min. step 2: +85°C, 60 min. HK1005 Series: Conditions for 1 cycle / step 1: -55°C, 60 min. step 2: +125°C, 60 min. Number of cycles: 100		

5 FERRITE PRODUCTS

(Note 1) When there are questions concerning mesurement result : measurement shall be made after 48±2 hrs of recovery under the standard condition.

RELIABILITY DATA	1 4 1 1 1	4 1 2 1 1 4 4 1	1. 1. 1. M.	4/4
------------------	-----------	-----------------	-------------	-----

		Specified Value									-
Item	BK1005	BK1608	BK2125	BK3216	LK1608	LK2125	LK3216	HK1005	HK1608	HK2125	Test Methods and RemarKs
14. Damp Heat	Appearance	e: No signifi	l cant abnorm	ality	No mechan	ical damage). Э.	No mechanical damage.			BK Series:
(Steady state)										Temperature: 40±2°C	
	Impedance	change: Wi	thin ±30%		Inductance	change: Wit	thin ±10%	Inductance change: Within $\pm 10\%$			Humidity: 90 to 95%RH
											Duration: 500^{+24}_{-0} hrs
					Q change: Within ±30% Q change: Within ±20%			Recovery: 2 to 3 hrs of recovery under the			
										standard condition after the removal from test chamber.(See Note1)	
											LK, HK Series:
											Temperature: 40±2°C (LK Series)
											60±2°C (HK Series)
											Humidity: 90 to 95%RH
											Duration: 500±12 hours
											Recovery: 1 to 2 hrs of recovery under the
											standard condition after the removal from
											test chamber.
	No				No	No mechani	ical damage.	No mechan	ical damage		BK1005 Series:
15.Loading under	mechanical				mechanical						Temperature: 40±2℃ (LK Series)
Damp Heat	damage,				damage.	Inductanc	e change:	Inductance	change: Wit	hin ±10%	Humidity: 90 to 95%RH
	Inductance				Inductance	Within ±109	%				Duration: 500 ⁺²⁴ ₋₀ hrs
	change:				change:			Q change: \	Within ±20%	D	Applied current: Rated current
	within±30%				0.047 to	Q change: V	Vithin ±30%				Recovery: 2 to 3 hrs of recovery under the standar
					12.0µH:						condition after the removal from test
					Within						chamber.(See Note1)
					±10%						
					15.0 to 33.0						LK, HK Series:
					μH: Within						Temperature: 40±2°C (LK Series)
					±15%						60±2°C (HK Series)
					Q change:						Humidity: 90 to 95%RH
					Within						Duration: 500±12 hrs
					±30%						Applied current: Rated current
											Recovery: 1 to 2 hrs of recovery under the standar condition after the removal from test chamber
	Appearance	e: No signifi	cant abnorm	ality	No	No mechani	ical damage.	No mechani	cal damage.		BK Series:
16.Loading at					mechanical						Temperature: 125±3℃
High	Impedance	change: Wi	thin ±30%		damage.	Inductanc	e change:	Inductance of	change: Withi	in ±10%	Applied current: Rated current
Temperature					Inductance	Within ±109	%				Duration: 500^{+24}_{-0} hrs
					change:			Q change: V	Vithin ±20%		Recovery: 2 to 3 hrs of recovery under the
					0.047 to 12.0	Q change: V	Within $\pm 30\%$				standard condition after the removal from
					μH: Within						test chamber.(See Note 1)
					±10%						
					15.0 to 33.0						
					μ H: Within						LK, HK Series:
					±15%						Temperature: 85±2°C (LK, HK Series)
					Q change:						: 125±2℃ (HK 1005)
					Within ±30%						Applied current: Rated current
											Duration: 500±12 hrs
											Recovery: 1 to 2 hrs of recovery under the
											standard condition after the removal from
											test chamber.

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to 35 ${\rm C}$ of temperature, 45 to 85% relative humidity, and 86 to 106 kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of 20±2°C of temperature, 65 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

(Note 1)

measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

PRECAUTIONS	A. 2 4 18	4. 54 4.	1 4 14	4. 54	1 2 1 4	1/7
-------------	-----------	----------	--------	-------	---------	-----

Stages	Precautions	Technical considerations
1. Circuit Design	 Verification of operating environment, electrical rating and performance A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. Operating Current (Verification of Rated current) The operating current for inductors must always be lower than their rated values. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect. 	
2. PCB Design	 Pattern configurations (Design of Land-patterns) 1. When inductors are mounted on a PCB, the amount of solder used (size of fillet) can directly affect inductor performance. Therefore, the following items must be carefully considered in the design of solder land pat- terns: (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropri- ate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by sol- der-resist. 	 1. The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts (larger fillets which extend about the component end terminations). Examples of improper pattern designs a also shown. (1) Recommended land dimensions for a typical chip inductor land patterns for PCBs Land pattern Chip inductor Chip inductor and patterns for pCBs Recommended land dimensions for wave-soldering (unit: mm) Type 1608 2125 3216 W 0.8 1.25 1.6 A 0.8~1.0 1.0~1.4 1.8~2.5 B 0.5~0.8 0.8~1.5 0.8~1.7 C 0.6~0.8 0.9~1.2 1.2~1.6
		$\begin{tabular}{ c c c c c c c } \hline $Recommended land dimensions for reflow-soldering (unit: mm) \\ \hline \hline $Type$ 1005 1608 2125 3216 \\ \hline W 0.5 1608 2125 3216 \\ \hline W 0.5 0.8 1.25 1.6 \\ \hline A 0.45{\sim}0.55 0.6{\sim}0.8 0.8{\sim}1.2 1.8{\sim}2.5 \\ \hline B 0.40{\sim}0.50 0.6{\sim}0.8 0.6{\sim}1.2 0.6{\sim}1.5 \\ \hline C 0.45{\sim}0.55 0.6{\sim}0.8 0.9{\sim}1.6 1.2{\sim}2.0 \\ \hline \end{tabular}$

PRECAUTIONS

Precautions on the use of Multilayer chip Inductors, Multilayer chip inductors for high frequency, Multilayer ferrite chip beads

Stages	Precautions		Technical consi	derations			
2.PCB Design		(2) Example	s of good and bad solder a	application			
			Not recommended	Recommended			
		Mixed mounting of SMD and leaded compo- nents	Lead wire of component	Solder-resist			
		C o m p o n e n t placement close to the chassis	Chassis Solder(for grounding)	Solder-resist			
		Hand-soldering of leaded com- ponents near mounted compo- nents	Lead wire of component Soldering iron	Solder-resist			
		Horizontal com- ponent place- ment		Solder-resist			
	Pattern configurations (Inductor layout on panelized [breakaway] PC boards)	1-1. The following are examples of good and bad inductor layout; SMD inductors should be located to minimize any possible mechanical stresses from board warp or deflection.					
	1. After inductors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent	Item	Not recommended	Recommended			
	manufacturing processes (PCB cutting, board inspec- tion, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD inductors should be carefully per-	Deflection of the board		Position the component at a right angle to the direction of the mechanical stresses that are anticipated.			
	formed to minimize stress.	1-2. To layout the inductors for the breakaway PC board, it should be noted that the amount of mechanical stresses given will vary depending on inductor layout. An example below should be counted for better design.					
		Perfora	tion	$D = \frac{1}{B}$ ss A>B = C>D>E			
		1-3. When breaking PC boards along their perforations, the amount of mechanical stress on the inductors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, any ideal SMD inductor layout must also consider the PCB splitting procedure.					

2/7

TAIYOYUDEN CO., LTD.

PRECAUTIONS

Stages	Precautions		Technical consider	rations
3.Considerations for automatic placement	 Adjustment of mounting machine Excessive impact load should not be imposed on the inductors when mounting onto the PC boards. The maintenance and inspection of the mounter should be conducted periodically. 	be considered before lowering the pick-up nozzle:		
			Improper method	Proper method
		Single-sided mounting	chipping or cracking	supporting pins or back-up pins
		Double-sided mounting	chipping or cracking	supporting pin- or back-up pins
		chipping or cr inductors. To a in the stopped	acking of the inductors beca avoid this, the monitoring of the	nt of the nozzle height can caus use of mechanical impact on th e width between the alignment pi nspection and replacement of th
	 Selection of Adhesives Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is impera- 	between the s may result in s little or too mu	hrinkage percentage of the a stresses on the inductors and ich adhesive applied to the bo nt, so the following precaution	lation resistance. The difference idhesive and that of the inductor d lead to cracking. Moreover, to pard may adversely affect compo- ns should be noted in the applica
	tive to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.	 a. The adhesive mounting & s b. The adhesive c. The adhesive d. The adhesive e. The adhesive f. The adhesive g. The adhesive 	esive characteristics should be strong enough to h solder process. should have sufficient strengt should have good coating and should be used during its pre should harden rapidly must not be contaminated. should have excellent insulat should not be toxic and have	d thickness consistency. scribed shelf life. ion characteristics.

PRECAUTIONS	4/7
-------------	-----

Stages	Precaution	Technical considerations
3.Considerations for automatic placement		When using adhesives to mount inductors on a PCB, inappropriate amounts of adhesive on the board may adversely affect component placement. Too little adhesive may cause the inductors to fall off the board during the solder process. Too much adhesive may cause defective soldering due excessive flow of adhe- sive on to the land or solder pad.
		[Recommended conditions]
		Figure 2125/3216 case sizes as examples
		a 0.3mm min
		b 100 ~120 μm
		c Area with no adhesive
		Amount of adhesives After inductors are bonded
4.Soldering	 Selection of Flux Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use; Flux used should be with less than or equal to 0.1 wt% (Chlorine conversion method) of halogenated content. Flux having a strong acidity content should not be applied. When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level. When using water-soluble flux, special care should be taken to properly clean the boards. 	 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the Inductor. 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of Inductor in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.
	◆Soldering Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions.	1-1. Preheating when soldering Heating: Chip inductor components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100 °C. Chip inductors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with a great care so as to prevent malfunction of the components due to excessive thermal shock.

PRECAUTIONS	2 # # a. the 2 # # a.	5/7
-------------	-----------------------	-----

Stages	Precautions	Technical considerations
4.Soldering	Precautions	Recommended conditions for soldering [Reflow soldering] Temperature profile Temperature profile Temperature profile Temperature define the solder mass (fillet) controlled to 1/2 to 1/3 of the thickness of the inductor, as shown below: Caution 1 The ideal condition is to have solder mass (fillet) controlled to 1/2 to 1/3 of the thickness of the inductor, as shown below: Caution 1 Seconds 2 Seconds 3 Sec
		soldering only. [Hand soldering] Temperature profile Temperature 300 C C Over 1 minute 3 seconds
		Caution 1. Use a 20W soldering iron with a maximum tip diameter of 1.0 mm. 2. The soldering iron should not directly touch the inductor.
5.Cleaning	 Cleaning conditions When cleaning the PC board after the Inductors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) 	 The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the inductor, resulting in a degradation of the inductor's electrical properties (especially insulation resistance).

|--|

Stages	Precautions	Technical considerations
5.Cleaning	 Cleaning conditions should be determined after verify- ing, through a test run, that the cleaning process does not affect the inductor's characteristics. 	 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the inductors. (1)Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the inductor or the soldered portion, or decrease the terminal electrodes' strength Thus the following conditions should be carefully checked; Ultrasonic output Below 20 w/l Ultrasonic frequency Below 40 kHz Ultrasonic washing period 5 min. or less
6. Post cleaning processes	 Application of resin coatings, moldings, etc. to the PCB and components. 1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the inductor's performance. 2. When a resin's hardening temperature is higher than the inductor's operating temperature, the stresses generated by the excess heat may lead to inductor damage or destruction. 3. Stress caused by a resin's temperature generated expansion and contraction may damage inductors. The use of such resins, molding materials etc. is not recommended. 	
7. Handling	 Breakaway PC boards (splitting along perforations) When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board. Board separation should not be done manually, but by using the appropriate devices. General handling precautions Always wear static control bands to protect against ESD. Keep the inductors away from all magnets and magnetic objects. Use non-magnetic tweezers when handling inductors. Any devices used with the inductors (soldering irons, measuring instruments) should be properly grounded. Keep bare hands and metal products (i.e., metal desk) away from chip electrodes or conductive areas that lead to chip electrodes. Keep inductors away from items that generate magnetic fields such as speakers or coils. Mechanical considerations Be careful not to subject the inductors to excessive mechanical shocks. If inductors are dropped on the floor or a hard surface they should not be used. When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components. 	

.

PRECAUTIONS 7/7

 8. Storage conditions Storage 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature Below 40 ℃ Humidity Humidity decreases as time passes, so inductors should be used within 6 months from the time of delivery. The ambient temperature must be kept below 30 ℃. Even under ideal storage conditions inductor electrode solder-ability decreases as time passes, so inductors should be used within 6 months from the time of delivery. The packaging material should be kept where no chlorine or sulfur exists in the air. In the arcs to character and the arc. In the storage conditions Ambient and the more as the time of delivery. The packaging material should be kept where no chlorine or sulfur exists in the air. In the arcs and the targe of the time of the time. In the arcs and the temperature and humidity in the time of the time of the time of the time. In the arcs are stocked in a high temperature and humidity environment, problem such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of th	Stages	Precautions	Technical considerations
	8. Storage conditions	 To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature Below 40 °C Humidity Below 70% RH The ambient temperature must be kept below 30 °C. Even under ideal storage conditions inductor electrode solder- ability decreases as time passes, so inductors should be used within 6 months from the time of delivery. *The packaging material should be kept where no chlo- 	lems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this rea- son, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the in-

Precautions on the use of Multilayer chip Inductors, Multilayer chip inductors for high frequency, Multilayer ferrite chip beads

-