

ALL SILICON VOLTAGE REGULATOR

1 Features

- High side field driver
- Thermal protection
- Field driver short circuit protection
- RVC interface
- Overvoltage protection
- Complex diagnostics
- Load Response Control

2 Description

The L9474 is a monolithic multifunction generator Voltage regulator intended for use in automotive applications.

This device regulates the output of an automotive generator by controlling the field winding current by means of a variable frequency PWM high side driver.

Figure 1. Package

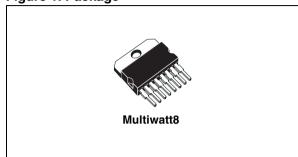
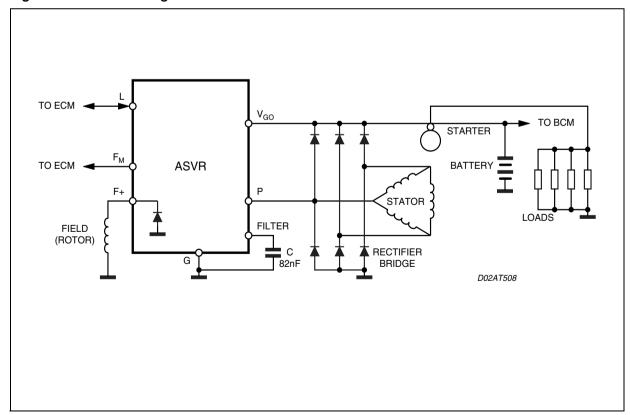
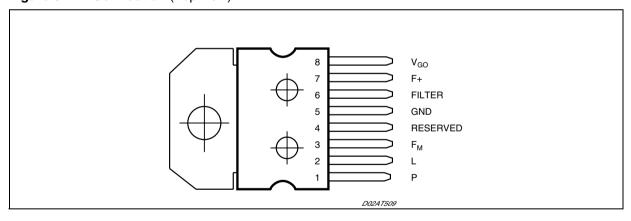



Table 1. Order Codes

Part Number	Package
L9474	Multiwatt8

The setpoint voltage reference is selected by the EN-GINE CONTROL UNIT via RVC protocol.

Figure 2. Schematic Diagram


Table 2. Pin Description

N°	Pin	Function
1	Р	Phase sense input
2	L	Warning terminal output and ECM PWM input
3	F _M	Field monitor output
4	RESERVED	Reserved
5	GND	
6	FILTER	Regulation loop filter
7	F+	Field high side driver output
8	V _{GO}	Generator output sense and voltage supply to L9474

Table 3. Absolute Maximum Ratings

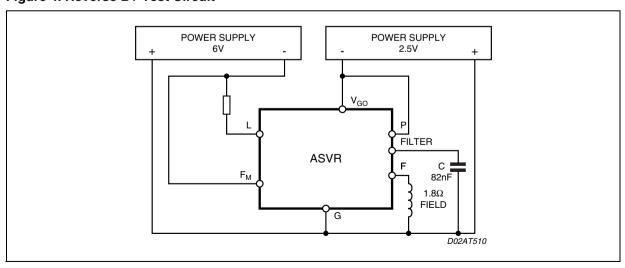
Symbol	Parameter	Value	Unit
Vs	Transient Supply Voltage (load dump)	40	V
Io	Output Current Capability	Internally limited	Α
P _{tot}	Power Dissipation (@T _j = 150°C, I _{Field} = 6A)	6	W
V _{REV}	Reverse Voltage (see fig.1)	-2.5 to -6	V

Figure 3. Pin Connection (Top view)

Table 4. Thermal Data

Symbol	Parameter	Value	Unit
Tj	Junction temperature	-40 to 150	°C
T _{stg}	Storage Temperature	-50 to 150	°C
T _{sd}	Thermal Shut Down	175 ±15	°C
R _{th j-case}	Thermal Resistance Junction to Case	1.5	°C/W

47/


Table 5. Electrical Characteristcs (T_j -35°C to +150°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vos	Operating Supply Voltage		8		16 ¹	V
I _{SB}	Stand-by Current ²	$V_{GO} = 12.6V$, $T_{case} -35 \text{ to } +80^{\circ}\text{C}$			400	μΑ
		V _{GO} = 12.6 V, 80 <t<sub>case< +150 °C</t<sub>			1	mA
V _{SF}	Regulator Set-Point in Fault	PWM signal loss		13.8		V
V _{NB}	Generator output, no battery	No battery, I _{OUT} =2A to 50% max load	V _S -2		V _S +2	V
T _C	Thermal compensation	Driven by ECM	R	VC or FL	AT	V
V _{LR}	Load Regulation	6500 grpm, 10% to 95% load			300	mV
V _{SR}	Speed Regulation	15A load, 2,000 to 10,000 grpm			100	mV
V _{FON}	Output Saturation Voltage	I _F = 9A, T _{case} < = 25°C			750	mV
V _{FON}	Output Saturation Voltage	I _F = 6A, T _{case} > 25°C			850	mV
I _{FLIM}	Field limit current	F shorted to gnd, T _{case} < = 25°C	9			Α
		F shorted to gnd, T _{case} = 150 °C	6			Α
V _F	Field Discharge Rectifier	I _F =6A, T _{case} = 25 °C			1.85	V
I _R	Diode Reverse Current	V _R = 16 V			1	mA
fosc	Oscillation frequency	During LRC operation	340	400	460	Hz
MFDC	Minimum Field Duty-Cycle	V(V _{GO}) < V _{OV} ³		6.25		%
R _{FM}	Impedance @ F _M pin	Impedance between FM and F+	0.8		2.5	ΚΩ

Notes:

- 1. 16 Volts is the maximum operating voltage.
 2. Stand-by current measured with L, FM open; F connected to gnd; P open or tied to gnd.
- 3. When the voltage sensed at VGO terminal is above VOV the Minimum Field Duty-Cycle will be 0 %.

Figure 4. Reverse B+ Test Circuit

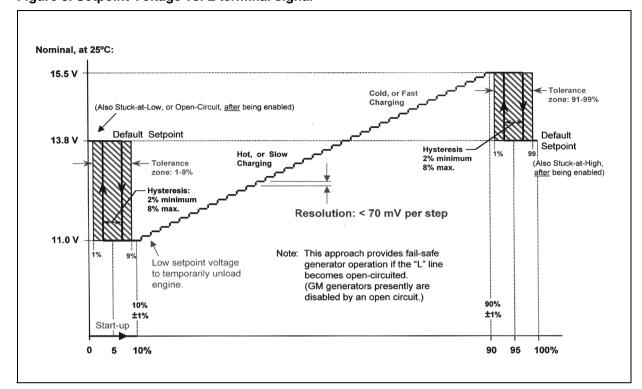


Figure 5. Setpoint Voltage vs. L terminal signal

Table 6. Diagnostic (T_j -35°C to +150°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{OV}	Overvoltage ⁴		16.5		22	V
V _{LSAT}	L Saturation Voltage	I _L = 50 mA			1.35	٧
T _{DELAY}	Fault Indication Delay Time		0.935	1.1	1.265	s

Note:

Table 7. FAULT

The following table lists the conditions that cause the fault driver to function (L terminal now switching be-tween 0V and VLSAT. To prevent L flicker, specific faults are required to be present for TDELAY seconds be-fore the fault driver is activated. This delay is indicated in the table.

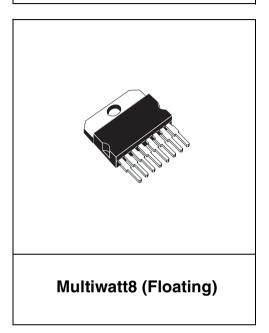
Conditions	Delay
Key-on (RVC PWM signal acknowledgement)	No
2. Phase Voltage < VP2 AND V _{GO} < setpoint	Yes

^{4.} When the Vgo voltage overcomes this value the MFDC is cancelled

Table 8. Regulation Features

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{LON}	Lamp term turn on ⁵ threshold	fL = 128Hz +/-5%	0.65	0.9	1.15	V
I _{LON}		VL = 0.65V	0.3		1.5	mA
V _{P1}	Initiation of regulation detection phase voltage threshold ⁶	I _P = 1mA (sinking current)		0.35		V
V _{P2}	Fault detection phase voltage threshold ⁷		7	8	9	V
lρ	Sinking current @ P terminal	V _P = 1.5V	0.5	1	1.8	mA
fIFR	Initiation of field regulation frequency			72		Hz
FSDF	Field Strobe Duty Factor	@ "power up" with fPHASE < fIFR		12.5		%
LRC	Load Response Control rate ⁸		2.125	2.5	2.875	S
fLRC	LRC transition frequency	LRC disabled above this value	263	310	357	Hz
∆gnd	Difference between ECM & Alternator ground		-0.2		0.2	V

Notes:


- 5. A 128Hz PWM signal applied to L input, higher than this threshold, will turn on the device.
- 6. This threshold on the phase signal is used to detect the phase frequency, fIFR, for the Initiation of field regulation.
- 7. This threshold on the phase signal is used to sense the presence of the phase for fault detection purposes. Furthermore, to prevent the loss of phase signal, a 31.25% duty cycle is applied to field output when phase drops below Vp2 and Vgo is above setpoint.
- 8. This is the time duration the L9474 takes to rump up from 0 % to 100% duty cycle in response to an increased load on the generator. The LRC ratio is set 1:4 and the Vreg comparator status is latched at foundamental frequency rate.

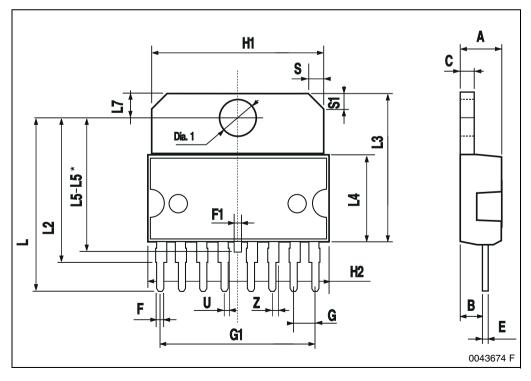

Package Information

Figure 6. Multiwatt8 Mechanical Data & Package Dimensions

DIM.		mm	•		inch	
DIW.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			5			0.197
В			2.65			0.104
С			1.6			0.063
Е	0.49		0.55	0.019		0.022
F	0.78		0.85	0.030		0.033
F1	0.68		0.75	0.027		0.029
G	2.40	2.54	2.68	0.094	0.10	0.105
G1	17.64	17.78	17.92	0.69	0.70	0.71
H1	19.6			0.772		
H2			20.2			0.795
L	20.35		20.65	0.80		0.81
L2	17.05	17.20	17.35	0.67	0.68	0.68
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L5	15.45		15.75	0.61		0.62
L5*	15.05		15.35	0.59		0.60
L7	2.65		2.9	0.104		0.114
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
U	0.40		0.55	0.015		0.022
Z	0.70		0.85	0.028		0.034
Dia1	3.65		3.85	0.144		0.152
L5 = with wedged frame std.						

OUTLINE AND MECHANICAL DATA

L5* = with wedged frame anchor holes.

4 Revision History

Table 9. Revision History

Date	Revision	Description of Changes
March 2005	1	First Issue

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

STMicroelectronics

Products

Applications Support Buy SEARCH

Part Number Search

News & Events

Search For Part #:

L9474

Example: <u>*74*00*</u>

About ST

Matching Documents: 1 - 1 of 1

Product Generic Part Number(s) Orderable Part Number(s) Status Page/ Description **Datasheet**

<u>L9474</u> <u>L9474</u> Active

ALL SILICON VOLTAGE REGULATOR

<u>Application Specific for Automotive|Specific Functions|Alternator</u> Regulators

Search time: 0.073s

