2ch DCDC for OLED

OUTLINE

The R1285L 2ch DC/DC converter is designed for OLED Display power source. It contains a step up DC/DC converter and an inverting DC/DC converter to generate two required voltages by OLED Display.
Step up DC/DC converter generates boosted output voltage to 4.6V ~ 5.0V. Inverting DC/DC converter generates negative voltage $-2.0 \mathrm{~V} \sim-6.0 \mathrm{~V}$ independently. Each of the R1285 series consists of an oscillator, a PWM control circuit, a voltage reference, error amplifiers, over current protection circuits, short protection circuits, an under voltage lockout circuit (UVLO), a complete shutdown switch and an Nch driver for boost operation, a Pch driver for inverting, and so on. A high efficiency boost and inverting DC/DC converter can be composed with external inductors, diodes, capacitors and resistors. Start up sequence is internally made.

FEATURES

- Operating Voltage •••• 2.3V ~4.8V
- \quad Step Up DC/DC (CH1)

Internal Pch MOSFET for complete shutdown (Ron=300m ${ }^{\text {Typ. }}$)
Internal Nch MOSFET Driver (Ron=300m Ω Typ.)
Output Voltage (Voutp) • . . . 4.6V ~ 5.0V (0.2VStep)
Auto Discharge function for positive output
Internal Soft start function (Typ. 4.5ms)
Over Current Protection
Maximum Duty Cycle: 85\%(Typ.)

- Inverting DC/DC (CH2)

Internal Pch MOSFET Driver (Ron=600m Ω Typ.)
Output Voltage (Voutn) ••• -2V ~-6V (0.1VStep) [R1285LxxxA]
Adjustable Vout Up to -6V with external resistors [R1285L00xB]
Auto Discharge function for negative output
Internal Soft start function (Typ. 4.5ms)
Over Current Protection
Maximum Duty Cycle: 90\%(Typ.)

- Control

Short Protection with timer latch function (Typ. 50ms)
Short condition for either or both two outputs makes all output drivers off and latches. If the maximum duty cycle continues for a certain time, these output drivers will be turned off. This function prevents irregular current from overheating the R1285.
CE with start up sequence function ($\mathrm{CH} 1 \rightarrow \mathrm{CH} 2$)
UVLO function.
Operating Frequency •••• 1400kHz

- Small package ••• DFN12 ($2.7 \mathrm{~mm} \times 3.0 \mathrm{~mm}$)

APPLICATION

- Fixed voltage power supply for portable equipment
- Fixed voltage power supply for OLED

BLOCK DIAGRAM

OR1285LxxxA

-R1285L00xB

SELECTION GUIDE

The mask option for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below.

code	contents
a	Setting inverting output voltage ($\mathrm{V}_{\text {OUTN }}$) Stepwise setting with a step of 0.1 V in the range of -2.0 V to -6.0 V is possible for fixed output version (R1285LXXXA) "00" is for Output Voltage Adjustable version (R1285L00XB)
b	$\begin{aligned} & \text { Setting positive output voltage }\left(\mathrm{V}_{\text {OUTP }}\right) \\ & \text { 1: } 4.6 \mathrm{~V} \\ & 2: 4.8 \mathrm{~V} \\ & \text { 3: } 5.0 \mathrm{~V} \end{aligned}$
C	Designation of method of setting $\mathrm{V}_{\text {outn }}$ A: Fixed output version B: Adjustable version

PIN CONFIGURATION

DFN -2730-12

Top View

Bottom View

R1285L

PIN DESCRIPTIONS

- R1285LxxxA

PIN No.	NAME	FUNCTION
1	PGND	Power GND pin
2	V $_{\text {OUTP }}$	Output Voltage feedback pin for Step up DC/DC
3	PV $_{\text {CC }}$	Power input pin
4	V $_{\text {CC }}$	Analog power source input pin
5	GND	Analog GND pin
6	CE	Chip enable pin
7	TST2	TEST pin
8	TST1	TEST pin
9	V $_{\text {OUTN }}$	Output Voltage feedback pin for Inverting DC/DC
10	L $x \mathrm{xN}$	Switching pin for Inverting DC/DC
11	$\mathrm{~L}_{\text {xP }} 1$	Shutdown switch output pin
12	$\mathrm{~L}_{\mathrm{xP}} 2$	Switching pin for Step up DC/DC

P1285L00xB

PIN No.	NAME	FUNCTION
1	PGND	Power GND pin
2	V $_{\text {OUTP }}$	Output Voltage feedback pin for Step up DC/DC
3	PV $_{\text {CC }}$	Power input pin
4	$\mathrm{~V}_{\mathrm{CC}}$	Analog power source input pin
5	GND	Analog GND pin
6	CE	Chip enable pin
7	$\mathrm{~V}_{\text {REF }}$	Reference voltage output pin for Inverting DC/DC
8	$\mathrm{~V}_{\text {FBN }}$	Feedback pin for Inverting DC/DC
9	$\mathrm{~V}_{\text {OUTN }}$	Output Voltage feedback pin for Inverting DC/DC
10	$\mathrm{~L}_{\text {XN }}$	Switching pin for Inverting DC/DC
11	$\mathrm{~L}_{\mathrm{XP}} 1$	Shutdown switch output pin
12	$\mathrm{~L}_{\mathrm{XP}} 2$	Switching pin for Step up DC/DC

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
$\mathrm{V}_{\mathrm{cc}} / \mathrm{P} \mathrm{V}_{\mathrm{cc}}$ pin Voltage	$\mathrm{V}_{\text {cc }}$	6.0	V
$\mathrm{V}_{\text {оutP }}$ pin Voltage	$V_{\text {OUTP }}$	-0.3 ~ 6.0	V
CE pin Voltage	$\mathrm{V}_{\text {CE }}$	$-0.3 \sim \mathrm{~V}_{\mathrm{cc}}+0.3$	V
Lxp 1 pin Voltage	$\mathrm{V}_{\text {LXP }} 1$	$-0.3 \sim \mathrm{~V}_{\mathrm{cc}}+0.3$	V
Lxp2 2 in Voltage	$\mathrm{V}_{\text {LXP }} 2$	-0.3 ~ 6.0	V
$\mathrm{L}_{\text {xN }}$ pin Voltage	$\mathrm{V}_{\text {LXN }}$	$\mathrm{V}_{\mathrm{cc}}-14 \sim \mathrm{~V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {outn }}$ pin Voltage	$V_{\text {OUtN }}$	$\mathrm{V}_{\mathrm{cC}}-14 \sim \mathrm{~V}_{\mathrm{cc}}+0.3$	V
TST1/TST2 pin Voltage [R1285LxxxA]	$\mathrm{V}_{\text {TST }}$	-0.3 ~ $\mathrm{V}_{\mathrm{cc}}+0.3$	V
$\mathrm{V}_{\text {FBN }}$ pin Voltage [R1285L00xB]	$\mathrm{V}_{\text {FBN }}$	$-0.7{ }^{\text {"2 }} \sim \mathrm{V}_{\mathrm{cc}}+0.3$	V
$\mathrm{V}_{\text {REF }}$ pin Voltage [R1285L00xB]	$\mathrm{V}_{\text {REF }}$	$-0.7^{+2} \sim \mathrm{~V}_{\mathrm{cc}}+0.3$	V
Power Dissipation ${ }^{* 1}$	PD	1000	mW
Operating Temperature Range	Ta	-40 ~ +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

*1) For Power Dissipation, please refer to PACKAGE INFORMATION to be described.
*2)In case the voltage range is from -0.7 V to -0.3 V , permissible current is 10 mA or less.

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum ratings are threshold limit values that must not be exceeded ever for an instant under any conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress ratings only and do not necessarily imply functional operation these limits.

R1285L

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$						
Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit.
V_{Cc}	Operating Input Voltage		2.3		4.8	V
$\mathrm{ICC1}$	$V_{\text {cc }}$ Consumption Current (switching)	$\mathrm{V}_{\mathrm{CC}}=4.8 \mathrm{~V}$		4.0		mA
$\mathrm{ICC2}$	V Cc Consumption Current (at no switching)	$\mathrm{V}_{\mathrm{CC}}=4.8 \mathrm{~V}$		350		uA
$\mathrm{I}_{\text {StB }}$	Standby Current	$\mathrm{V}_{\mathrm{CC}}=4.8 \mathrm{~V}$		0.1	3	uA
V UVLo1	UVLO Detect Voltage	Falling	1.95	2.05	2.15	V
V uvlo2	UVLO Released Voltage	Rising		$\begin{aligned} & \hline \text { VUVLO1 } \\ & +0.10 \\ & \hline \end{aligned}$	2.28	V
Fosc	Oscillator Frequency	$\mathrm{V}_{\mathrm{Cc}}=3.7 \mathrm{~V}$	1200	1400	1600	kHz
$\mathrm{T}_{\text {DLY }}$	Delay Time for Protection	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$		50		ms
$\mathrm{V}_{\text {CEL }}$	CE "L" Input Voltage	$\mathrm{V}_{\mathrm{cc}}=2.3 \mathrm{~V}$			0.3	V
$\mathrm{V}_{\text {CEH }}$	CE "H" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=4.8 \mathrm{~V}$	1.5			V
$\mathrm{R}_{\text {CE }}$	CE pin Pulldown Resistance	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$		600		$k \Omega$

Boost DC/DC

$\mathrm{V}_{\text {OUTP }}$	V ${ }_{\text {OUTP }}$ Voltage Tolerance	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$	x0.985		x1.015	V
$\begin{aligned} & \hline \Delta \mathrm{V}_{\text {OUTP }} \\ & I \Delta \mathrm{~T} \\ & \hline \end{aligned}$	Voutp Voltage Temperature Coefficient	$\mathrm{V}_{\mathrm{CC}}=3.7 \mathrm{~V},-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 85^{\circ} \mathrm{C}$		± 150		$\begin{aligned} & \mathrm{ppm} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\Delta \mathrm{V}_{\text {OUTP }}$ / $\Delta \mathrm{V}$ cc	Voutp Voltage Line Regulation	$2.9 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{Cc}} \leqq 3.4$		± 4		mV
$\Delta \mathrm{V}_{\text {OUTP }}$ / $\Delta \mathrm{I}_{\text {OUT }}$	Voutp Voltage Load Regulation	$\mathrm{V}_{\mathrm{CC}}=3.7 \mathrm{~V}, 10 \mathrm{~mA} \leqq \mathrm{l}$ I ${ }_{\text {OUT }} \leqq 100 \mathrm{~mA}$		± 10		mV
$\Delta \mathrm{V}_{\text {OUTP_TR }}$	Voutp Voltage Line Transient Response	$\mathrm{V}_{\mathrm{CC}}=2.9 \mathrm{~V} \leftrightarrow 3.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}}=50 \mathrm{us}$		± 10		mV
Maxduty1	CH1 Max. Duty Cycle	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$	78	85		\%
$\mathrm{T}_{\text {SS1 }}$	CH1 Soft-Start Time	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$		4.5		ms
$\mathrm{R}_{\text {LXP1 }}$	Lxp1 ON Resistance	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$		300		$\mathrm{m} \Omega$
loff LXP1	Lxp1 Leakage Current	$\mathrm{V}_{\mathrm{CC}}=4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{LXP}} 1=0 \mathrm{~V}$			5	uA
$\mathrm{R}_{\text {LXP2 }}$	Lxp2 ON Resistance	$\mathrm{V}_{\mathrm{Cc}}=3.7 \mathrm{~V}$		300		$\mathrm{m} \Omega$
loff LXP2	Lxp2 Leakage Current	$\mathrm{V}_{\mathrm{CC}}=4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{LxP}} 2=5 \mathrm{~V}$			5	uA
lıIMLXP2	Lxp2 Current Limit	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$	0.7	1.0		A
IVoutp	$V_{\text {OUTP }}$ Discharge Current	$\mathrm{V}_{\text {CC }}=3.7 \mathrm{~V}, \mathrm{~V}_{\text {OUTP }}=0.1 \mathrm{~V}$		10		mA

■ Inverting DC/DC [R1285LxxxA]						
$\mathrm{V}_{\text {OUTN }}$	V outn ${ }^{\text {Voltage }}$ Tolerance	$\mathrm{V}_{\mathrm{CC}}=3.7 \mathrm{~V}$	x0.985		x1.015	
$\begin{array}{\|l} \hline \Delta \mathrm{V}_{\text {OUTN }} \\ I \mathrm{~T} \\ \hline \end{array}$	Voutn Voltage Temperature Coefficient	$\mathrm{V}_{\mathrm{CC}}=3.7 \mathrm{~V},-40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 85^{\circ} \mathrm{C}$		± 150		$\begin{aligned} & \hline \mathrm{ppm} \\ & /^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
$\Delta \mathrm{V}_{\text {outn }}$ I $\Delta \mathrm{Vcc}$	$V_{\text {outn }}$ Voltage Line Regulation	$2.9 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{CC}} \leqq 3.4$		± 6		mV
$\Delta \mathrm{V}_{\text {OUtN }}$ I $\Delta \mathrm{I}_{\text {OUT }}$	Voutn Voltage Load Regulation	$\mathrm{V}_{\mathrm{CC}}=3.7 \mathrm{~V}, 10 \mathrm{~mA} \leqq \mathrm{l}_{\text {OUT }} \leqq 100 \mathrm{~mA}$		± 15		mV
$\Delta \mathrm{V}_{\text {OUTN_TR }}$	Voutn Voltage Line Transient Response	$\mathrm{V}_{\mathrm{CC}}=2.9 \mathrm{~V} \leftrightarrow 3.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}}=50 \mathrm{us}$		± 25		mV
Maxduty2	CH2 Max. Duty Cycle	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$	83	90		\%
$\mathrm{T}_{\text {SS2 }}$	CH2 Soft-Start Time	$\mathrm{V}_{\mathrm{Cc}}=3.7 \mathrm{~V}$		4.5		ms
$\mathrm{R}_{\text {LXN }}$	LxN ON Resistance	$\mathrm{V}_{\mathrm{cc}}=3.7 \mathrm{~V}$		600		$\mathrm{m} \Omega$
loff LXN	L XXN Leakage Current	$\mathrm{V}_{\mathrm{CC}}=4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{LXN}}=-6 \mathrm{~V}$			5	uA
limlxn	LXN Current Limit	$\mathrm{V}_{\mathrm{Cc}}=3.7 \mathrm{~V}$	1.0	1.5		A
IVoutn	$V_{\text {Outn }}$ Discharge Current	$\mathrm{V}_{\text {CC }}=3.7 \mathrm{~V}, \mathrm{~V}_{\text {OUTN }}=-0.3 \mathrm{~V}$		50		mA
■ Inverting DC/DC [R1285L00xB]						
$\mathrm{V}_{\text {FBN }}$	$\mathrm{V}_{\text {FBN }}$ voltage tolerance	$\mathrm{V}_{\mathrm{Cc}}=3.7 \mathrm{~V}$	-25	0	25	mV
$\mathrm{I}_{\text {FBN }}$	$\mathrm{V}_{\text {FBN }}$ input current	$\mathrm{V}_{\mathrm{CC}}=4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{FBN}}=0 \mathrm{~V}$ or 4.8 V	-0.1		0.1	$\mu \mathrm{A}$
$V_{\text {Ref }}$	$\mathrm{V}_{\text {REF }}$ voltage tolerance	$\mathrm{V}_{\mathrm{CC}}=3.7 \mathrm{~V}$	$\begin{aligned} & 1.172 \\ & +V_{\text {FBN }} \\ & \hline \end{aligned}$	$\begin{array}{r} 1.2 \\ +V_{\mathrm{FBN}} \\ \hline \end{array}$	$\begin{aligned} & 1.228 \\ & +V_{\text {FBN }} \\ & \hline \end{aligned}$	V
$\begin{aligned} & \hline \Delta \mathrm{V}_{\mathrm{REF}} \\ & \mathrm{I} \mathrm{\Delta T} \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {REF }}$ Voltage temperature coefficient	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.7 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leqq \mathrm{Ta} \leqq 85^{\circ} \mathrm{C} \end{aligned}$		± 150		$\begin{aligned} & \mathrm{ppm} \\ & /^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
$\Delta \mathrm{V}_{\text {OUtN }}$ $\Delta \mathrm{V}_{\mathrm{Cc}}$	Voutn Voltage Line Regulation	$2.9 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{CC}} \leqq 3.4$		± 6		mV
$\Delta \mathrm{V}_{\text {OUtN }}$ $\Delta \mathrm{I}_{\text {OUT }}$	Voutn Voltage Load Regulation	$\mathrm{V}_{\mathrm{CC}}=3.7 \mathrm{~V}, 10 \mathrm{~mA} \leqq \mathrm{l}_{\text {OUT }} \leqq 100 \mathrm{~mA}$		± 15		mV
$\Delta \mathrm{V}_{\text {OUTN_TR }}$	Voutn Voltage Line Transient Response	$\mathrm{V}_{\mathrm{CC}}=2.9 \mathrm{~V} \leftrightarrow 3.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}}=50 \mathrm{us}$		± 25		mV
Maxduty2	CH2 Max. Duty Cycle	$\mathrm{V}_{\mathrm{Cc}}=3.7 \mathrm{~V}$	83	90		\%
$\mathrm{T}_{\text {SS2 }}$	CH2 Soft-Start Time	$\mathrm{V}_{\mathrm{Cc}}=3.7 \mathrm{~V}$		4.5		ms
$\mathrm{R}_{\text {LXN }}$	LxN ON Resistance	$\mathrm{V}_{\mathrm{Cc}}=3.7 \mathrm{~V}$		600		$\mathrm{m} \Omega$
loff LXN	$\mathrm{L}_{\text {xN }}$ Leakage Current	$\mathrm{V}_{\mathrm{CC}}=4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{LXN}}=-6 \mathrm{~V}$			5	uA
Llimlxn	L_{xN} Current Limit	$\mathrm{V}_{\mathrm{Cc}}=3.7 \mathrm{~V}$	1.0	1.5		A
Ivoutn	$\mathrm{V}_{\text {OUTN }}$ Discharge Current	$\mathrm{V}_{\mathrm{CC}}=3.7 \mathrm{~V}, \mathrm{~V}_{\text {OUTN }}=-0.3 \mathrm{~V}$		50		mA

* In terms of TST pin(TST1, TST2), connect the GND level or remain it open.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

R1285L

TYPICAL APPLICATION AND TECHNICAL NOTES

-R1285LxxxA

Set a ceramic $4.7 \mu \mathrm{~F}$ or more capacitor between Vcc and GND as C1.
Set a ceramic $10 \mu \mathrm{~F}$ or more capacitor between $\mathrm{V}_{\text {Outp }}$ and GND, and between $\mathrm{V}_{\text {outn }}$ and GND for each as C 2 and C3.

- Start up Sequence

When CE level turns from 'L' to 'H' level, the softstart of CH 1 starts the operation. After detecting output voltage of $\mathrm{CH} 1\left(\mathrm{~V}_{\text {outp }}\right)$ as the nominal level, the soft start of CH 2 starts the operation.

CE

Auto Discharge Function

When CE level turns from ' H ' to ' L ' level, the R1285 goes into standby mode and switching of the outputs of $L_{X P 2}$ and $L_{X N}$ will stop. Then dischage switsh between $\mathrm{V}_{\text {OUTN }}$ and $P V_{C C}$ and switch between $V_{\text {OUTP }}$ and GND turn on and discharge the negative output voltage and positive output voltage. When the negative output voltage is discharged to 0 V , the switsh between $\mathrm{V}_{\text {OUTN }}$ and $\mathrm{PV}_{\mathrm{cc}}$ turns off and the negative output will be Hi-Z. Positive output voltage is discharged to OV In standby mode.
If Vcc voltage became lower than UVLO detect voltage, discharge switches also turn on and discharge output voltage $\left(\mathrm{V}_{\text {OUTN }}\right.$ and $\left.\mathrm{V}_{\text {OUTP }}\right)$.
In case of timer latch protection, discharge switches will keep off .

-Short protection circuit timer

In case that the voltage of $\mathrm{V}_{\text {Outp }}$ drops, the error amplifier of CH 1 outputs " H ". In case that the voltage of $V_{\text {outs }}$ rises, the error amplifier of CH 2 outputs "L". The built-in short protection circuit makes the internal timer operate with detecting the output of the error amplifier of CH 1 as " H ", or the output of the error amplifier of CH 2 as "L". After the setting time will pass, the switching of $L_{\text {XP2 }}$ and $L_{\text {XN }}$ will stop and shutdown switch will turn off and both of discharge switches will keep off .
To release the latch operation, make the Vcc set equal or less than UVLO level and restart or set the CE pin as "L" and make it "H" again.
During the softstart operation of CH 1 and CH 2 , the timer operates independently from the outputs of the error amplifiers. Therefore, even if the softstart cannot finish correctly because of the short circuit, the protection timer function will be able to work correctly.

R1285L

Olnverting DC/DC converter output voltage setting [R1285L00xB]

The output voltage $\mathrm{V}_{\text {OUTN }}$ of the inverting DC/DC converter is controlled with maintaining the $\mathrm{V}_{\text {FBN }}$ as 0 V . $\mathrm{V}_{\text {OUTN }}$ can be set with adjusting the values of R1 and R2 as in the next formula.

$$
V_{\text {OUTN }}=V_{\text {FBN }}-\left(V_{\text {REF }}-V_{\text {FBN }}\right) \times R 2 / R 1
$$

DC/DC converter's phase may lose 180 degree by external components of L and C and load current. Because of this, the phase margin of the system will be less and the atability will be worse. Therefore, the pahse must be gaind.
A pole will be formed by external components, L and C.

$$
F_{\text {pole }} \sim 1 /\{2 x \quad \pi \times \sqrt{ }(L 2 x C 2)\}
$$

Zero will be formed with R2 and C4.

$$
\mathrm{F}_{\text {zero }} \sim 1 /(2 \times \pi \times R 2 \times \mathrm{C} 4)
$$

Set the cutt-off frequency of the Zero close to the cutt-off frequency of the pole by L and C.
If the noise of the system is large, the output noise affects the feedback and the operation may be unstable. In that case, another resistor $R 3$ will be set. The appropriate value range is from $1 \mathrm{k} \Omega$ to $5 \mathrm{k} \Omega$.

Set a ceramic $1 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}$ capacitor between $\mathrm{V}_{\text {REF }}$ and GND as C5. [R1285L00xB]

Operation of Step-up DCIDC Converter and Output Current

<Current through L>

There are two operation modes for the PWM control step-up switching regulator, that is the continuous mode and the discontinuous mode.

When the LX Tr. is on, the voltage for the inductor L will be VIN. The inductor current (IL1) will be;

$$
\text { IL1 }=\mathrm{V}_{\text {IN }} \times \mathrm{T}_{\text {on }} / \mathrm{L}
$$

When the Lx transistor turns off, power will supply continuously. The inductor current at off (IL2) will be;

$$
\text { IL2 }=\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right) \times \mathrm{Tf} / \mathrm{L} \quad \text {..Formula2 }
$$

In terms of the PWM control, when the Tf=Toff, the inductor current will be continuous, the operation of the switching regulator will be continuous mode.

In the continuous mode, the current variation of IL1 and IL2 are same, therefore

$$
\mathrm{V}_{\text {IN }} \times \mathrm{T}_{\text {on }} / \mathrm{L}=\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right) \times \mathrm{T}_{\text {off }} / \mathrm{L}
$$

In the continuous mode, the duty cycle will be

If the input power equals to output power,

When $\mathrm{I}_{\text {Out }}$ becomes more then Formula5, it will be continuous mode.
In this moment, the peak current, ILxmax flowing through the inductor is described as follows:

```
ILxmax \(=I_{\text {OUT }} \times \mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}+\mathrm{V}_{\text {IN }} \times \mathrm{T}_{\text {on }} /(2 \times \mathrm{L})\)
Formula6
```


Therefore, peak current is more than $\mathrm{I}_{\text {OUT }}$. Considering the value of ILxmax, the condition of input and output, and external components should be selected.
The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external components is not included.
The actual maximum output current is between 50% and 80% of the calculation.
Especially, when the IL is large, or VIN is low, the loss of VIN is generated with on resistance of the switch. As for $\mathrm{V}_{\text {OUT }}, \mathrm{V}_{\mathrm{F}}$ (as much as 0.3 V) of the diode should be considered.

Operation of Inverting DCIDC Converter and Output Current

<Basic Circuit>

<Current through L>

There are also two operation modes for the PWM control inverting switching regulator, that is the continuous mode and the discontinuous mode.

When the LX Tr. is on, the voltage for the inductor L will be VIN. The inductor current (IL1) will be;

$$
\mathrm{IL} 1=\mathrm{V}_{\mathrm{IN}} \times \mathrm{T}_{\text {on }} / \mathrm{L}
$$

Formula8
Inverting circuit saves energy during on time of Lx Tr, and supplies the energy to output during off time, output voltage opposed to input voltage is obtained. The inductor current at off (IL2) will be;

$$
\text { IL2 }=\mathrm{V}_{\text {OUT }} \mathrm{X} \text { Tf } / \mathrm{L}
$$

Formula9
(The above formula and after, the absolute value of the negative output voltage is assumed to be $\mathrm{V}_{\text {OUT }}$. : Output voltage $=-10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=10$)
In terms of the PWM control, when the $\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\text {off, }}$, the inductor current will be continuous, the operation of the switching regulator will be continuous mode.

In the continuous mode, the current variation of IL1 and IL2 are same, therefore

$$
V_{\text {IN }} \times T_{\text {on }} / L=V_{\text {OUT }} \times T_{\text {off }} / L
$$

Formula10
In the continuous mode, the duty cycle will be:

$$
\text { DUTY }=T_{\text {on }} /\left(\mathrm{T}_{\text {on }}+\mathrm{T}_{\text {off }}\right)=\mathrm{V}_{\text {OUT }} /\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\text {IN }}\right) .
$$

Formula11
If the input power equals to output power,

$$
\mathrm{I}_{\text {OUT }}=\mathrm{V}_{\text {IN }}{ }^{2} \times \mathrm{T}_{\text {on }} /\left(2 \times \mathrm{L} \times \mathrm{V}_{\text {OUT }}\right)
$$

Formula12
When lout becomes more then Formula12, it will be continuous mode.
In this moment ,the peak current, ILxmax flowing through the inductor is described as follows:

```
IL
Formula13
\(\mathrm{IL}_{\text {xmax }}=\mathrm{I}_{\text {OUT }} \times \mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}+\mathrm{V}_{\text {IN }} \times \mathrm{V}_{\text {OUT }} \mathrm{XT} /\left\{2 \times \mathrm{Lx}\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\text {IN }}\right)\right\}\)
Formula14
```

Therefore, peak current is more than lout. Considering the value of ILxmax, the condition of input and output, and external components should be selected.
The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external components is not included.
The actual maximum output current is between 50% and 80% of the calculation.
Especially, when the IL is large, or $\mathrm{V}_{\mathbb{I N}}$ is low, the loss of $\mathrm{V}_{\mathbb{I N}}$ is generated with on resistance of the switch. As for $\mathrm{V}_{\text {OUT }}, \mathrm{V}_{\mathrm{F}}$ (as much as 0.3 V) of the diode should be considered.

