Single 2-Input NAND Gate with Open Drain Output The MC74VHC1G01 is an advanced high speed CMOS 2-input NAND gate with an open drain output fabricated with silicon gate CMOS technology. The internal circuit is composed of multiple stages, including an open drain output which provides the ability to set output switching level. This allows the MC74VHC1G01 to be used to interface 5.0 V circuits to circuits of any voltage between V_{CC} and 7.0 V using an external resistor and power supply. The MC74VHC1G01 input structure provides protection when voltages up to 7.0 V are applied, regardless of the supply voltage. - High Speed: $t_{PD} = 3.7 \text{ ns}$ (Typ) at $V_{CC} = 5.0 \text{ V}$ - Low Internal Power Dissipation: $I_{CC} = 1 \mu A$ (Max) at $T_A = 25$ °C - Power Down Protection Provided on Inputs - Pin and Function Compatible with Other Standard Logic Families - Chip Complexity: FETs = 62 Figure 1. Pinout (Top View) Figure 2. Logic Symbol ### ON Semiconductor® http://onsemi.com SC70-5/SC-88A/SOT-353 DF SUFFIX CASE 419A Pin 1 **MARKING** **DIAGRAMS** SOT23-5/TSOP-5/SC59-5 DT SUFFIX CASE 483 d = Date Code | PIN ASSIG | PIN ASSIGNMENT | | | | | | | |-----------|-----------------|--|--|--|--|--|--| | 1 | IN B | | | | | | | | 2 | IN A | | | | | | | | 3 | GND | | | | | | | | 4 | OUT ₹ | | | | | | | | 5 | V _{CC} | | | | | | | ### **FUNCTION TABLE** | Inp | uts | Output | | | |-----|-----|--------|--|--| | Α | В | Y | | | | L | L | Z | | | | L | Н | z | | | | Н | L | Z | | | | Н | Н | L | | | ### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. ### **MAXIMUM RATINGS** | Symbol | Parameter | | Value | Unit | |-----------------------|--|----------------------------|--------------------------|------| | V _{CC} | DC Supply Voltage | | -0.5 to +7.0 | V | | V _{IN} | DC Input Voltage | | −0.5 to +7.0 | V | | V _{OUT} | DC Output Voltage | | -0.5 to $V_{CC} + 0.5$ | V | | I _{IK} | DC Input Diode Current | | -20 | mA | | I _{OK} | DC Output Diode Current $V_{OUT} < GND; V_{OI}$ | $_{\rm UT}$ > $V_{\rm CC}$ | ±20 | mA | | I _{OUT} | DC Output Sink Current, per Pin | | 25 | mA | | I _{CC} | DC Supply Current, V _{CC} and GND Pin | | ±25 | mA | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds | | 260 | °C | | TJ | Junction Temperature Under Bias | | +150 | °C | | θ_{JA} | Thermal Resistance SC70–5/SC–88/ | A (Note 1)
TSOP-5 | 350
230 | °C/W | | P _D | Power Dissipation in Still Air at 85°C SC70– | 5/SC-88A
TSOP-5 | 150
200 | mW | | MSL | Moisture Sensitivity | | Level 1 | | | F _R | Flammability Rating Oxygen Index | c: 28 to 34 | UL 94 V-0 @ 0.125 in | | | V _{ESD} | ESD Withstand Voltage Human Body Mode
Machine Mode
Charged Device Mode | el (Note 3) | >2000
>200
N/A | V | | I _{LATCH-UP} | Latch-Up Performance Above V _{CC} and Below GND at 125°C | C (Note 5) | ±500 | mA | Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute—maximum—rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions. - 1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow. - 2. Tested to EIA/JESD22-A114-A. - 3. Tested to EIA/JESD22-A115-A. - 4. Tested to JESD22-C101-A. - 5. Tested to EIA/JESD78. ### RECOMMENDED OPERATING CONDITIONS | Symbol | Characteristics | Min | Max | Unit | | |---------------------------------|-----------------------------|--|-------------|-----------|------| | V _{CC} | DC Supply Voltage | 2.0 | 5.5 | V | | | V _{IN} | DC Input Voltage | 0.0 | 5.5 | V | | | V _{OUT} | DC Output Voltage | | 0.0 | 7.0 | V | | T _A | Operating Temperature Range | | - 55 | +125 | °C | | t _r , t _f | Input Rise and Fall Time V | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$
$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$ | 0
0 | 100
20 | ns/V | ## DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES | Junction
Temperature °C | Time, Hours | Time, Years | |----------------------------|-------------|-------------| | 80 | 1,032,200 | 117.8 | | 90 | 419,300 | 47.9 | | 100 | 178,700 | 20.4 | | 110 | 79,600 | 9.4 | | 120 | 37,000 | 4.2 | | 130 | 17,800 | 2.0 | | 140 | 8,900 | 1.0 | Figure 3. Failure Rate vs. Time Junction Temperature ### DC ELECTRICAL CHARACTERISTICS | | | | V _{CC} | 1 | T _A = 25°C | | $T_A \leq 85^{\circ}C$ | | -55°C ≤ T _A ≤ 125°C | | | |------------------|---|--|--------------------------|----------------------------|-----------------------|----------------------------|----------------------------|----------------------------|--------------------------------|----------------------------|------| | Symbol | Parameter | Test Conditions | (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | V _{IH} | Minimum High-Level
Input Voltage | | 2.0
3.0
4.5
5.5 | 1.5
2.1
3.15
3.85 | | | 1.5
2.1
3.15
3.85 | | 1.5
2.1
3.15
3.85 | | V | | V _{IL} | Maximum Low-Level Input Voltage | | 2.0
3.0
4.5
5.5 | | | 0.5
0.9
1.35
1.65 | | 0.5
0.9
1.35
1.65 | | 0.5
0.9
1.35
1.65 | V | | V _{OL} | Maximum Low-Level
Output Voltage
V _{IN} = V _{IH} or V _{IL} | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OL} = 50 \mu\text{A}$ | 2.0
3.0
4.5 | | 0.0
0.0
0.0 | 0.1
0.1
0.1 | | 0.1
0.1
0.1 | | 0.1
0.1
0.1 | V | | | | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OL} = 4 \text{ mA}$
$I_{OL} = 8 \text{ mA}$ | 3.0
4.5 | | | 0.36
0.36 | | 0.44
0.44 | | 0.52
0.52 | | | I _{LKG} | Z-State Output
Leakage Current | $V_{IN} = V_{IL}$
$V_{OUT} = V_{CC}$ or GND | 5.5 | | | ±5 | | ±10 | | ±10 | μΑ | | I _{IN} | Maximum Input
Leakage Current | $V_{IN} = 5.5 \text{ V or GND}$ | 0 to
5.5 | | | ±0.1 | | ±1.0 | | ±1.0 | μΑ | | I _{CC} | Maximum Quiescent
Supply Current | $V_{IN} = V_{CC}$ or GND | 5.5 | | | 1.0 | | 20 | | 40 | μΑ | | l _{OFF} | Power Off–Output
Leakage Current | V _{OUT} = 5.5 V
V _{IN} = 5.5 V | 0 | | | 0.25 | | 2.5 | | 5 | μΑ | ### AC ELECTRICAL CHARACTERISTICS Input $t_{\text{r}} = t_{\text{f}} = 3.0 \text{ ns}$ | | | | 1 | T _A = 25°C | | T _A ≤ 85°C | | -55 ≤ T _A ≤ 125°C | | | |------------------|--------------------------------|--|-----|-----------------------|-------------|-----------------------|-------------|------------------------------|--------------|------| | Symbol | Parameter | Test Conditions | Min | Тур | Max | Min | Max | Min | Max | Unit | | t _{PZL} | Maximum Output Enable Time, | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 5.5
8.0 | 7.9
11.4 | | 9.5
13.0 | | 11.0
15.5 | ns | | | Input A or B to Y | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 3.7
5.2 | 5.5
7.5 | | 6.5
8.5 | | 8.0
10.0 | | | t _{PLZ} | Maximum Output
Disable Time | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 8.0 | 11.4 | | 13.0 | | 15.5 | ns | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 5.2 | 7.5 | | 8.5 | | 10.0 | | | C _{IN} | Maximum Input
Capacitance | | | 4 | 10 | | 10 | | 10 | pF | | | | Typical @ 25°C, V _{CC} = 5.0V | | |----------|--|--|----| | C_{PD} | Power Dissipation Capacitance (Note 6) | 18 | pF | ^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. Figure 4. Output Voltage Mismatch Application Figure 5. Switching Waveforms $C_L = 50 \text{ pF}$ equivalent (Includes jig and probe capacitance) $R_L = R_1 = 500 \Omega$ or equivalent $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω) Figure 6. Test Circuit Figure 7. Complex Boolean Functions Figure 8. LED Driver Figure 9. GTL Driver ### **DEVICE ORDERING INFORMATION** | | | | Device Nome | enclature | | | | | |------------------------|-------------------------------|-----------------------------|-------------|--------------------|-------------------|-------------------------------|--|------------------------------------| | Device Order
Number | Logic
Circuit
Indicator | Temp
Range
Identifier | Technology | Device
Function | Package
Suffix | Tape
and
Reel
Suffix | Package
Type
(Name/SOT#/
Common Name) | Tape and
Reel Size [†] | | MC74VHC1G01DFT1 | MC | 74 | VHC1G | 01 | DF | T1 | SC70-5/SC-88A/
SOT-353 | 178 mm (7 in)
3000 Unit | | MC74VHC1G01DFT2 | MC | 74 | VHC1G | 01 | DF | T2 | SC70-5/SC-88A/
SOT-353 | 178 mm (7 in)
3000 Unit | | MC74VHC1G01DTT1 | MC | 74 | VHC1G | 01 | DT | T1 | SOT23-5/TSOP-5/
SC59-5 | 178 mm (7 in)
3000 Unit | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Figure 10. Tape Ends for Finished Goods Figure 11. SC-70-5/SC-88A/SOT-353 DFT1 Reel Configuration/Orientation Figure 12. SC-70/SC-88A/SOT-353 DFT2 and SOT23-5/TSOP-5/SC59-5 DTT1 Reel Configuration/Orientation Figure 13. Reel Dimensions ### **REEL DIMENSIONS** | Tape Size | T and R Suffix | A Max | G | t Max | |-----------|----------------|------------------|---|----------------------| | 8 mm | T1, T2 | 178 mm
(7 in) | 8.4 mm, + 1.5 mm, -0.0
(0.33 in + 0.059 in, -0.00) | 14.4 mm
(0.56 in) | Figure 14. Reel Winding Direction ### **PACKAGE DIMENSIONS** ### SC70-5/SC-88A/SOT-353 **DF SUFFIX** 5-LEAD PACKAGE CASE 419A-02 **ISSUE G** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD - 419A-02. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | INC | HES | MILLIN | IETERS | |-----|-----------|-------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.071 | 0.087 | 1.80 | 2.20 | | В | 0.045 | 0.053 | 1.15 | 1.35 | | С | 0.031 | 0.043 | 0.80 | 1.10 | | D | 0.004 | 0.012 | 0.10 | 0.30 | | G | 0.026 | BSC | 0.65 | BSC | | Н | | 0.004 | | 0.10 | | J | 0.004 | 0.010 | 0.10 | 0.25 | | K | 0.004 | 0.012 | 0.10 | 0.30 | | N | 0.008 REF | | 0.20 | REF | | S | 0.079 | 0.087 | 2.00 | 2.20 | ### **SOLDERING FOOTPRINT*** Figure 15. SC-88A/SC70-5/SOT-353 ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### PACKAGE DIMENSIONS ### SOT23-5/TSOP-5/SC59-5 **DT SUFFIX** 5-LEAD PACKAGE CASE 483-01 ISSUE C #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - ANSI 114-3M, 1992. CONTROLLING DIMENSION: MILLIMETER. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. - A AND B DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | MILLIN | ILLIMETERS INCHES | | | |-----|--------|-------------------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 2.90 | 3.10 | 0.1142 | 0.1220 | | В | 1.30 | 1.70 | 0.0512 | 0.0669 | | С | 0.90 | 1.10 | 0.0354 | 0.0433 | | D | 0.25 | 0.50 | 0.0098 | 0.0197 | | G | 0.85 | 1.05 | 0.0335 | 0.0413 | | Н | 0.013 | 0.100 | 0.0005 | 0.0040 | | J | 0.10 | 0.26 | 0.0040 | 0.0102 | | K | 0.20 | 0.60 | 0.0079 | 0.0236 | | L | 1.25 | 1.55 | 0.0493 | 0.0610 | | М | 0 | 10 | 0 | 10 | | S | 2.50 | 3.00 | 0.0985 | 0.1181 | ### **SOLDERING FOOTPRINT*** Figure 16. THIN SOT23-5/TSOP-5/SC59-5 *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its partnif rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** ### LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.