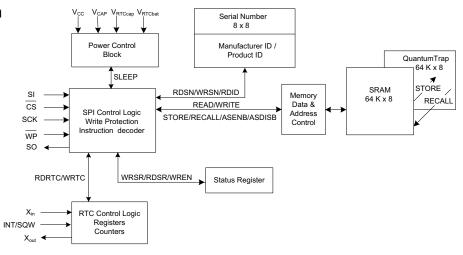


512-Kbit (64 K × 8) SPI nvSRAM with Real Time Clock

Features


- 512-Kbit nonvolatile static random access memory (nvSRAM)
 - □ Internally organized as 64 K × 8
 - □ STORE to QuantumTrap nonvolatile elements initiated automatically on power-down (AutoStore) or by using SPI instruction (Software STORE) or HSB pin (Hardware STORE)
 - □ RECALL to SRAM initiated on power-up (Power-Up RECALL) or by SPI instruction (Software RECALL)
 - □ Automatic STORE on power-down with a small capacitor
- High reliability
 - □ Infinite read, write, and RECALL cycles
 - □ 1 million STORE cycles to QuantumTrap
 - Data retention: 20 years at 85 °C
- Real time clock (RTC)
 - □ Full-featured RTC
 - Watchdog timer
 - Clock alarm with programmable interrupts
 - ☐ Backup power fail indication
 - □ Square wave output with programmable frequency (1 Hz, 512 Hz, 4096 Hz, 32.768 kHz)
 - Capacitor or battery backup for RTC
 - □ Backup current of 0.45 µA (typical)
- 40 MHz, and 104 MHz High-speed serial peripheral interface (SPI)
 - □ 40 MHz clock rate SPI write and read with zero cycle delay
 - □ 104 MHz clock rate SPI write and read (with special fast read instructions)
 - □ Supports SPI mode 0 (0,0) and mode 3 (1,1)
- SPI access to special functions
 - □ Nonvolatile STORE/RECALL
 - □ 8-byte serial number
 - □ Manufacturer ID and Product ID
 - □ Sleep mode

- Write protection
 - □ Hardware protection using Write Protect (WP) pin
 - □ Software protection using Write Disable instruction
 - □ Software block protection for 1/4, 1/2, or entire array
- Low power consumption
 - Average active current of 3 mA at 40 MHz operation
 - □ Average standby mode current of 250 µA
 - □ Sleep mode current of 8 µA
- Industry standard configurations
 - □ Operating voltages:
 - CY14C512PA: V_{CC} = 2.4 V to 2.6 V
 - CY14B512PA: V_{CC} = 2.7 V to 3.6 V
 - CY14E512PA: V_{CC} = 4.5 V to 5.5 V
 - Industrial temperature
 - □ 16-pin small outline integrated circuit (SOIC) package
 - □ Restriction of hazardous substances (RoHS) compliant

Overview

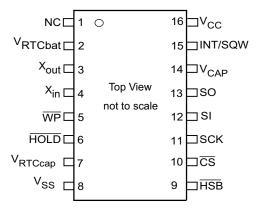
The Cypress CY14X512PA combines a 512-Kbit nvSRAM^[1] with a full-featured RTC in a monolithic integrated circuit with serial SPI interface. The memory is organized as 64 K words of 8 bits each. The embedded nonvolatile elements incorporate the QuantumTrap technology, creating the world's most reliable nonvolatile memory. The SRAM provides infinite read and write cycles, while the QuantumTrap cells provide highly reliable nonvolatile storage of data. Data transfers from SRAM to the nonvolatile elements (STORE operation) takes place automatically at power-down. On power-up, data is restored to the SRAM from the nonvolatile memory (RECALL operation). You can also initiate the STORE and RECALL operations through SPI instruction.

Logic Block Diagram

Note

This device will be referred to as nvSRAM throughout the document.

Contents


Pinout	
Pin Definitions	3
Device Operation	4
SRAM Write	
SRAM Read	
STORE Operation	
AutoStore Operation	
Software STORE Operation	
Hardware STORE and HSB pin Operation	
RECALL Operation	
Hardware RECALL (Power-Up)	
Software RECALL	
Disabling and Enabling AutoStore	
Serial Peripheral Interface	
SPI Overview	
SPI Modes	
SPI Operating Features	8
Power-Up	
Power Down	
Active Power and Standby Power Modes	
SPI Functional Description	
Status Register	
Read Status Register (RDSR) Instruction	10
Fast Read Status Register	40
(FAST_RDSR) Instruction	
Write Status Register (WRSR) Instruction	
Write Protection and Block Protection	
Write Enable (WREN) Instruction	
Write Disable (WRDI) Instruction	
Hardware Write Protection (WP Pin)	
Memory Access	
Read Sequence (READ) Instruction	
Fast Read Sequence (FAST_READ) Instruction	
Write Sequence (WRITE) Instruction	12
RTC Access	15
READ RTC (RDRTC) Instruction	
Fast Read Sequence (FAST_RDRTC) Instruction	
WRITE RTC (WRTC) Instruction	
nvSRAM Special Instructions	
Software STORE (STORE) Instruction	
Software RECALL (RECALL) Instruction	
AutoStore Enable (ASENB) Instruction	
AutoStore Disable (ASDISB) Instruction	
Special Instructions	
SLEEP Instruction	
Serial Number	
WRSN (Serial Number Write) Instruction	17
RDSN (Serial Number Read) Instruction	
FAST_RDSN	
(Fast Serial Number Read) Instruction	18

Device ID	. 19
RDID (Device ID Read) Instruction	
FAST_RDID (Fast Device ID Read) Instruction	
HOLD Pin Operation	
Real Time Clock Operation	. 21
nvTIME Operation	.21
Clock Operations	.21
Reading the Clock	21
Setting the Clock	21
Backup Power	21
Stopping and Starting the Oscillator	21
Calibrating the Clock	22
Alarm	22
Watchdog Timer	22
Programmable Square Wave Generator	23
Power Monitor	23
Backup Power Monitor	23
Interrupts	23
Interrupt Register	
Flags Register	.24
Maximum Ratings	
Operating Range	
DC Electrical Characteristics	. 30
Data Retention and Endurance	. 31
Capacitance	
Thermal Resistance	. 31
AC Test Loads and Waveforms	
AC Test Conditions	. 32
RTC Characteristics	
AC Switching Characteristics	. 33
Switching Waveforms	
AutoStore or Power-Up RECALL	. 35
Switching Waveforms	. 35
Software Controlled STORE/RECALL Cycles	36
Switching Waveforms	
Hardware STORE Cycle	. 37
Switching Waveforms	
Ordering Information	
Ordering Code Definitions	
Package Diagram	
Acronyms	
Document Conventions	
Units of Measure	
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC Solutions	.42

Pinout

Figure 1. 16-pin SOIC pinout

Pin Definitions

Pin Name	I/O Type	Description
CS	Input	Chip select: Activates the device when pulled LOW. Driving this pin HIGH puts the device in low power standby mode.
SCK	Input	Serial clock: Runs at speeds up to a maximum of f _{SCK} . Serial input is latched at the rising edge of this clock. Serial output is driven at the falling edge of the clock.
SI	Input	Serial input: Pin for input of all SPI instructions and data.
SO	Output	Serial output: Pin for output of data through SPI.
WP	Input	Write Protect: Implements hardware write protection in SPI.
HOLD	Input	HOLD pin: Suspends Serial Operation.
HSB	Input/Output	Hardware STORE Busy: Output: Indicates busy status of nvSRAM when LOW. After each Hardware and Software STORE operation HSB is driven HIGH for a short time (t _{HHHD}) with standard output high current and then a weak internal pull-up resistor keeps this pin HIGH (external pull-up resistor connection optional). Input: Hardware STORE implemented by pulling this pin LOW externally.
V _{CAP}	Power supply	AutoStore capacitor. Supplies power to the nvSRAM during power loss to STORE data from the SRAM to nonvolatile elements. If AutoStore is not needed, this pin must be left as No Connect. It must never be connected to ground.
V _{RTCcap} ^[2]	Power supply	Capacitor backup for RTC: Left unconnected if V _{RTCbat} is used.
V _{RTCbat} ^[2]	Power supply	Battery backup for RTC: Left unconnected if V _{RTCcap} is used.
X _{out} ^[2]	Output	Crystal output connection
X _{in} [2]	Input	Crystal input connection
INT/SQW ^[2]	Output	Interrupt output/calibration/square wave. Programmable to respond to the clock alarm, the watchdog timer, and the power monitor. Also programmable to either active HIGH (push or pull) or LOW (open drain). In calibration mode, a 512 Hz square wave is driven out. In the square wave mode, you may select a frequency of 1 Hz, 512 Hz, 4,096 Hz, or 32,768 Hz to be used as a continuous output.
NC	No connect	No connect. This pin is not connected to the die.
V _{SS}	Power supply	Ground
V _{CC}	Power supply	Power Supply

Note
2. Left unconnected if RTC feature is not used.

Device Operation

CY14X512PA is a 512-Kbit serial (SPI) nvSRAM memory with integrated RTC and SPI interface. All the reads and writes to nvSRAM happen to the SRAM, which gives nvSRAM the unique capability to handle infinite writes to the memory. The data in SRAM is secured by a STORE sequence that transfers the data in parallel to the nonvolatile QuantumTrap cells. A small capacitor (V_{CAP}) is used to AutoStore the SRAM data in nonvolatile cells when power goes down providing power-down data security. The QuantumTrap nonvolatile elements built in the reliable SONOS technology make nvSRAM the ideal choice for secure data storage.

In CY14X512PA, the 512-Kbit memory array is organized as 64 K words × 8 bits. The memory can be accessed through a standard SPI interface that enables very high clock speeds up to 40 MHz with zero cycle delay read and write cycles. This nvSRAM chip also supports 104 MHz SPI access speed with a special instruction for read operation. CY14X512PA supports SPI modes 0 and 3 (CPOL, CPHA = 0, 0 and 1, 1) and operates as SPI slave. The device is enabled using the Chip Select (CS) pin and accessed through Serial Input (SI), Serial Output (SO), and Serial Clock (SCK) pins.

CY14X512PA provides the feature for hardware and software write protection through the WP pin and WRDI instruction. CY14X512PA also provides mechanisms for block write protection (1/4, 1/2, or full array) using BPO and BP1 pins in the Status Register. Further, the HOLD pin is used to suspend any serial communication without resetting the serial sequence.

CY14X512PA uses the standard SPI opcodes for memory access. In addition to the general SPI instructions for read and write, CY14X512PA provides four special instructions that allow access to four nvSRAM specific functions: STORE, RECALL, AutoStore Disable (ASDISB), and AutoStore Enable (ASENB).

The major benefit of nvSRAM over serial EEPROMs is that all reads and writes to nvSRAM are performed at the speed of SPI bus with zero cycle delay. Therefore, no wait time is required after any of the memory accesses. The STORE and RECALL operations need finite time to complete and all memory accesses are inhibited during this time. While a STORE or RECALL operation is in progress, the busy status of the device is indicated by the Hardware STORE Busy (HSB) pin and also reflected on the RDY bit of the Status Register.

SRAM Write

All writes to nvSRAM are carried out on the SRAM and do not use up any endurance cycles of the nonvolatile memory. This allows you to perform infinite write operations. A write cycle is performed through the WRITE instruction. The WRITE instruction is issued through the SI pin of the nvSRAM and consists of the WRITE opcode, two bytes of address, and one byte of data. Write to nvSRAM is done at SPI bus speed with zero cycle delay.

CY14X512PA allows burst mode writes to be performed through SPI. This enables write operations on consecutive addresses without issuing a new WRITE instruction. When the last address in memory is reached in burst mode, the address rolls over to 0x0000 and the device continues to write.

The SPI write cycle sequence is defined in the Memory Access section of SPI Protocol Description.

SRAM Read

A read cycle is performed at the SPI bus speed. The data is read out with zero cycle delay after the READ instruction is executed. READ instruction can be used upto 40 MHz clock speed. The READ instruction is issued through the SI pin of the nvSRAM and consists of the READ opcode and two bytes of address. The data is read out on the SO pin.

Speed higher than 40 MHz (up to 104 MHz) requires FAST_READ instruction. The FAST_READ instruction is issued through the SI pin of the nvSRAM and consists of the FAST_READ opcode, two bytes of address, and one dummy byte. The data is read out on the SO pin.

CY14X512PA enables burst mode reads to be performed through SPI. This enables reads on consecutive addresses without issuing a new READ instruction. When the last address in memory is reached in burst mode read, the address rolls over to 0x0000 and the device continues to read.

The SPI read cycle sequence is defined in the Memory Access section of SPI Protocol Description

STORE Operation

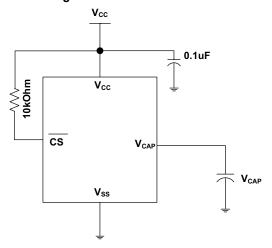
STORE operation transfers the data from the SRAM to the nonvolatile QuantumTrap cells. The CY14X512PA STOREs data to the nonvolatile cells using one of the three STORE operations: AutoStore, activated on device power-down; Software STORE, activated by a STORE instruction; and Hardware STORE, activated by the HSB. During the STORE cycle, an erase of the previous nonvolatile data is first performed, followed by a program of the nonvolatile elements. After a STORE cycle is initiated, read/write to CY14X512PA is inhibited until the cycle is completed.

The $\overline{\text{HSB}}$ signal or the $\overline{\text{RDY}}$ bit in the Status Register can be monitored by the system to detect if a STORE or Software RECALL cycle is in progress. The busy status of nvSRAM is indicated by $\overline{\text{HSB}}$ being pulled LOW or $\overline{\text{RDY}}$ bit being set to '1'. To avoid unnecessary nonvolatile STOREs, AutoStore and Hardware STORE operations are ignored unless at least one write operation has taken place since the most recent STORE or RECALL cycle. However, software initiated STORE cycles are performed regardless of whether a write operation has taken place.

AutoStore Operation

The AutoStore operation is a unique feature of nvSRAM which automatically stores the SRAM data to QuantumTrap cells during power-down. This STORE makes use of an external capacitor (V_{CAP}) and enables the device to safely STORE the data in the nonvolatile memory when power goes down.

During normal operation, the device draws current from V_{CC} to charge the capacitor connected to the V_{CAP} pin. When the voltage on the V_{CC} pin drops below V_{SWITCH} during power-down, the device inhibits all memory accesses to nvSRAM and automatically performs a conditional STORE operation using the charge from the V_{CAP} capacitor. The AutoStore operation is not initiated if no write cycle has been performed since last RECALL.


Note If a capacitor is not connected to V_{CAP} pin, AutoStore must be disabled by issuing the AutoStore Disable instruction (AutoStore Disable (ASDISB) Instruction on page 17). If AutoStore is enabled without a capacitor on the V_{CAP} pin, the device attempts an AutoStore operation without sufficient charge

to complete the Store. This will corrupt the data stored in nvSRAM, Status Register as well as the serial number and it will unlock the SNL bit. To resume normal functionality, the WRSR instruction must be issued to update the nonvolatile bits BP0, BP1, and WPEN in the Status Register.

Figure 2 shows the proper connection of the storage capacitor (V_{CAP}) for AutoStore operation. Refer to DC Electrical Characteristics on page 30 for the size of the V_{CAP}

Figure 2. AutoStore Mode

Software STORE Operation

Software STORE allows the user to trigger a STORE operation through a special SPI instruction. STORE operation is initiated by executing STORE instruction regardless of whether or not a write has been performed since the last NV operation.

A STORE cycle takes t_{STORE} time to complete, during which all the memory accesses to nvSRAM are inhibited. The RDY bit of the Status Register or the HSB pin may be polled to find the Ready/Busy status of the nvSRAM. After the t_{STORE} cycle time is completed, the SRAM is activated again for read and write operations.

Hardware STORE and HSB pin Operation

The $\overline{\text{HSB}}$ pin in CY14X512PA is used to control and acknowledge STORE operations. If no STORE/RECALL is in progress, this pin $\underline{\text{can}}$ be used to request a Hardware STORE cycle. When the $\overline{\text{HSB}}$ pin is driven LOW, the CY14X512PA conditionally initiates a STORE operation after t_{DELAY} duration. A STORE cycle starts only if a write to the SRAM has been performed since the last STORE or RECALL cycle. Reads and Writes to the memory are inhibited for t_{STORE} duration or as long as $\overline{\text{HSB}}$ pin is LOW. The $\overline{\text{HSB}}$ pin also acts as an open drain driver (internal 100 k Ω weak pull-up resistor) that is internally driven LOW to indicate a busy condition when the STORE (initiated by any means) is in progress.

Note After each Hardware and Software STORE operation, HSB is driven HIGH for a short time (t_{HHHD}) with standard output high current and then remains HIGH by an internal 100 k Ω pull-up resistor.

Note For successful last data byte STORE, a hardware STORE should be initiated at least one clock cycle after the last data bit D0 is received.

Upon completion of the STORE operation, the nvSRAM memory access is inhibited for t_{LZHSB} time after HSB pin returns HIGH. The HSB pin must be left unconnected if not used.

RECALL Operation

A RECALL operation transfers the data stored in the nonvolatile QuantumTrap elements to the SRAM. In CY14X512PA, a RECALL may be initiated in two ways: Hardware RECALL, initiated on power-up and Software RECALL, initiated by a SPI RECALL instruction.

Internally, RECALL is a two step procedure. First, the SRAM data is cleared. Next, the nonvolatile information is transferred into the SRAM cells. All memory accesses are inhibited while a RECALL cycle is in progress. The RECALL operation does not alter the data in the nonvolatile elements.

Hardware RECALL (Power-Up)

During power-up, when V_{CC} crosses V_{SWITCH} , an automatic RECALL sequence is initiated, which transfers the content of nonvolatile memory on to the SRAM. The data would previously have been stored on the nonvolatile memory through a STORE sequence.

A Power-Up RECALL cycle takes t_{FA} time to complete and the memory access is disabled during this time. HSB pin is used to detect the Ready status of the device.

Software RECALL

Software RECALL allows you to initiate a RECALL operation to restore the content of nonvolatile memory on to the SRAM. In CY14X512PA, this can be done by issuing a RECALL instruction in SPI.

A Software RECALL takes t_{RECALL} time to complete during which all memory accesses to nvSRAM are inhibited. The controller must provide sufficient delay for the RECALL operation to complete before issuing any memory access instructions.

Disabling and Enabling AutoStore

If the application does not require the AutoStore feature, it can be disabled in CY14X512PA by using the ASDISB instruction. If this is done, the nvSRAM does not perform a STORE operation at power-down.

AutoStore can be re enabled by using the ASENB instruction. However, these operations are not nonvolatile and if you need this setting to survive the power cycle, a STORE operation must be performed following AutoStore Disable or Enable operation.

Note CY14X512PA comes from the factory with AutoStore Enabled and 0x00 written in all cells.

Note If AutoStore is disabled and V_{CAP} is not required, then the V_{CAP} pin must be left open. The V_{CAP} pin must never be connected to ground. The Power-Up RECALL operation cannot be disabled in any case.

Serial Peripheral Interface

SPI Overview

The SPI is a four-pin interface with Chip Select (\overline{CS}) , Serial Input (SI), Serial Output (SO), and Serial Clock (SCK) pins. CY14X512PA provides serial access to nvSRAM through SPI interface. The SPI bus on CY14X512PA can run at speeds up to 104 MHz except RDRTC and READ instruction.

The SPI is a synchronous serial interface which uses clock and data pins for memory access and supports multiple devices on the data bus. A device on SPI bus is activated using the CS pin.

The relationship between chip select, clock, and data is dictated by the SPI mode. CY14X512PA supports SPI modes 0 and 3. In both these modes, data is clocked into the nvSRAM on the rising edge of SCK starting from the first rising edge after CS goes active.

The SPI protocol is controlled by opcodes. These opcodes specify the commands from the bus master to the slave device. After CS is activated the first byte transferred from the bus master is the opcode. Following the opcode, any addresses and data are then transferred. The CS must go inactive after an operation is complete and before a new opcode can be issued.

The commonly used terms used in SPI protocol are given below:

SPI Master

The SPI master device controls the operations on a SPI bus. A SPI bus may have only one master with one or more slave devices. All the slaves share the same SPI bus lines and the master may select any of the slave devices using the \overline{CS} pin. All the operations must be initiated by the master activating a slave device by pulling the \overline{CS} pin of the slave LOW. The master also generates the SCK and all the data transmission on SI and SO lines are synchronized with this clock.

SPI Slave

The SPI slave device is activated by the master through the Chip Select line. A slave device gets the SCK as an input from the SPI master and all the communication is synchronized with this clock. SPI slave never initiates a communication on the SPI bus and acts on the instruction from the master.

CY14X512PA operates as a slave device and may share the SPI bus with multiple CY14X512PA devices or other SPI devices.

Chip Select (CS)

For selecting any <u>slave</u> device, the master needs to pull-down the corresponding CS pin. <u>Any</u> instruction can be issued to a slave device only while the CS pin is LOW.

The CY14X512PA is selected when the $\overline{\text{CS}}$ pin is LOW. When the device is not selected, data through the SI pin is ignored and the serial output pin (SO) remains in a high-impedance state.

Note A new instruction must begin with the falling edge of $\overline{\text{CS}}$. Therefore, only one opcode can be issued for each active Chip Select cycle.

Serial Clock (SCK)

Serial clock is generated by the SPI master \underline{and} the communication is synchronized with this clock after \overline{CS} goes LOW.

CY14X512PA allows SPI modes 0 and 3 for data communication. In both these modes, the inputs are latched by the slave device on the rising edge of SCK and outputs are issued on the falling edge. Therefore, the first rising edge of SCK signifies the arrival of the first bit (MSB) of SPI instruction on the SI pin. Further, all data inputs and outputs are synchronized with SCK.

Data Transmission SI/SO

SPI data bus consists of two lines, SI and SO, for serial data communication. The SI is also referred to as Master Out Slave In (MOSI) and SO is referred to as Master In Slave Out (MISO). The master issues instructions to the slave through the SI pin, while the slave responds through the SO pin. Multiple slave devices may share the SI and SO lines as described earlier.

CY14X512PA has two separate pins for SI and SO, which can be connected with the master as shown in Figure 3 on page 7.

Most Significant Bit (MSB)

The SPI protocol requires that the first bit to be transmitted is the Most Significant Bit (MSB). This is valid for both address and data transmission.

CY14X512PA requires a 2-byte address for any read or write operation.

Serial Opcode

After the slave device is selected with \overline{CS} going LOW, the first byte received is treated as the opcode for the intended operation.

CY14X512PA uses the standard opcodes for memory accesses. In addition to the memory accesses, CY14X512PA provides additional opcodes for the nvSRAM specific functions: STORE, RECALL, AutoStore Enable, and AutoStore Disable. Refer to Table 1 on page 9 for details on opcodes.

Invalid Opcode

If an invalid opcode is received, the opcode is ignored and the device ignores any <u>add</u>itional serial data on the SI pin until the next falling edge of CS and the SO pin remains tri-stated.

Status Register

CY14X512PA has an 8-bit Status Register. The bits in the Status Register are used to configure the SPI bus. These bits are described in the Table 3 on page 10.

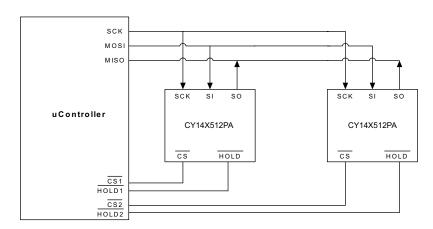


Figure 3. System Configuration Using SPI nvSRAM

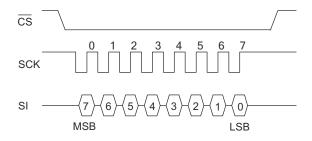
SPI Modes

CY14X512PA device may be driven by a microcontroller with its SPI peripheral running in either of these two modes:

- SPI Mode 0 (CPOL=0, CPHA=0)
- SPI Mode 3 (CPOL=1, CPHA=1)

For both these modes, the input data is latched in on the rising edge of SCK starting from the first rising edge after CS goes active. If the clock starts from a high state (in mode 3), the first rising edge after the clock toggles is considered. The output data is available on the falling edge of SCK.

Figure 4. SPI Mode 0



The two SPI modes are shown in Figure 4 and Figure 5. The status of clock when the bus master is in standby mode and not transferring data is:

- SCK remains at 0 for Mode 0
- SCK remains at 1 for Mode 3

CPOL and CPHA bits must be set in the SPI controller for the either Mode 0 or Mode 3. CY14X512PA detects the SPI mode from the status of SCK pin when device is selected by bringing the CS pin LOW. If SCK pin is LOW when the device is selected, SPI Mode 0 is assumed and if SCK pin is HIGH, CY14X512PA works in SPI Mode 3.

Figure 5. SPI Mode 3

SPI Operating Features

Power-Up

Power-up is defined as the condition when the power supply is turned on and $\rm V_{CC}$ crosses $\rm V_{switch}$ voltage.

As described earlier, at power-up nvSRAM performs a Power-Up RECALL operation for $t_{\rm FA}$ duration during which, all memory accesses are disabled. The HSB pin can be probed to check the Ready/Busy status of nvSRAM after power-up.

The following are the device status after power-up.

- Selected (Active power mode) if $\overline{\text{CS}}$ pin is LOW
- Deselected (Standby power mode) if CS pin is HIGH
- Not in the Hold condition
- Status Register state:
 - □ Write Enable (WEN) bit is reset to '0'.
 - □ WPEN, BP1, BP0 unchanged from previous STORE operation.

The WPEN, BP1, and BP0 bits of the Status Register are nonvolatile bits and remain unchanged from the previous STORE operation.

Power Down

At power-down (continuous decay of V_{CC}), when V_{CC} drops from the normal operating voltage and below the V_{SWITCH} threshold voltage, the device stops responding to any instruction sent to it. If a write cycle is in progress and the last data bit D0 has been received when the power goes down, it is allowed t_{DELAY} time to complete the write. After this, all memory accesses are inhibited and a conditional AutoStore operation is performed (AutoStore is not performed if no writes have happened since the last RECALL cycle). This feature prevents inadvertent writes to nvSRAM from happening during power-down. However, to avoid the possibility of inadvertent writes during power-down, ensure that the device is deselected and is in standby power mode and the CS follows the voltage applied on V_{CC} .

Active Power and Standby Power Modes

When $\overline{\text{CS}}$ is LOW, the device is selected and is in the active power mode. The device consumes I_{CC} current, as specified in DC Electrical Characteristics on page 30. When $\overline{\text{CS}}$ is HIGH, the device is deselected and the device goes into the standby power mode after t_{SB} time if a STORE or RECALL cycle is not in progress. If a STORE/RECALL cycle is in progress, the device goes into the standby power mode after the STORE/RECALL cycle is completed. In the standby power mode the current drawn by the device drops to I_{SB}.

SPI Functional Description

The CY14X512PA uses an 8-bit instruction register. Instructions and their operation codes are listed in Table 1. All instructions, addresses, and data are transferred with the MSB first and start

with a HIGH to LOW $\overline{\text{CS}}$ transition. There are, in all, 21 SPI instructions that provide $\underline{\text{access to}}$ most $\underline{\text{of the}}$ functions in nvSRAM. Further, the $\overline{\text{WP}}$, $\overline{\text{HOLD}}$, and $\overline{\text{HSB}}$ pins provide additional functionality driven through hardware.

Table 1. Instruction Set

Instruction Category	Instruction Name	Opcode	Operation
Status Register Control Inst	ructions		
	RDSR	0000 0101	Read Status Register
Status Register access	FAST_RDSR	0000 1001	Fast Status Register read - SPI clock > 40 MHz
	WRSR	0000 0001	Write Status Register
Write protection and block	WREN	0000 0110	Set Write Enable latch
protection	WRDI	0000 0100	Reset Write Enable latch
SRAM Read/Write Instruction	ons		
	READ	0000 0011	Read data from memory array
Memory access	FAST_READ	0000 1011	Fast read - SPI clock > 40 MHz
	WRITE	0000 0010	Write data to memory array
RTC Read/Write Instructions	S	•	
	RDRTC	0001 0011	Read RTC registers
RTC access	FAST_RDRTC	0001 1101	Fast RTC register read - SPI clock > 25 MHz
	WRTC	0001 0010	Write RTC registers
Special NV Instructions	<u> </u>		
	STORE	0011 1100	Software STORE
nvSRAM special functions	RECALL	0110 0000	Software RECALL
TIVORAIVI SPECIAI TUTICIIOTIS	ASENB	0101 1001	AutoStore enable
	ASDISB	0001 1001	AutoStore disable
Special Instructions	<u> </u>		
Sleep	SLEEP	1011 1001	Sleep mode enable
	WRSN	1100 0010	Write serial number
Serial number	RDSN	1100 0011	Read serial number
	FAST_RDSN	1100 1001	Fast serial number read - SPI clock > 40 MHz
	RDID	1001 1111	Read manufacturer JEDEC ID and product ID
Device ID read	FAST_RDID	1001 1001	Fast manufacturer JEDEC ID and product ID Read - SPI clock > 40 MHz
Reserved	- Reserved -	0001 1110	

The SPI instructions in CY14X512PA are divided based on their functionality in these types:

- □ Status Register control instructions:
 - Status Register access: RDSR, FAST_RDSR and WRSR instructions
 - Write protection and block protection: WREN and WRDI instructions along with WP pin and WEN, BP0, and BP1 bits
- □ SRAM Read/Write instructions
 - Memory access: READ, FAST_READ, and WRITE instructions

- □ RTC Read/Write instructions
 - RTC access: RDRTC, FAST_RDRTC and WRTC instructions
- □ Special NV instructions
 - nvSRAM special instructions: STORE, RECALL, ASENB, and ASDISB
- □ Special instructions: SLEEP, WRSN, RDSN, FAST_RDSN, RDID, FAST_RDID

Status Register

The Status Register bits <u>are listed</u> in Table 2. The Status Register consists of a Ready bit (RDY) and data protection bits BP1, BP0, WEN, and WPEN. The RDY bit can be polled to check the Ready/Busy status while a nvSRAM STORE or Software RECALL cycle is in progress. The Status Register can be modified by WRSR instruction and read by RDSR or FAST_RDSR instruction. However, only the WPEN, BP1, and BP0 bits of the Status Register can be modified by using the WRSR instruction. The WRSR instruction has no effect on WEN

and \overline{RDY} bits. The default value shipped from the factory for WEN, BP0, BP1, bits 4 -5, SNL and WPEN is '0'.

SNL (bit 6) of the Status Register is used to lock the serial number written using the WRSN instruction. The serial number can be written using the WRSN instruction multiple times while this bit is still '0'. When set to '1', this bit prevents any modification to the serial number. This bit is factory programmed to '0' and can only be written to once. After this bit is set to '1', it can never be cleared to '0'.

Table 2. Status Register Format

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WPEN (0)	SNL (0)	X (0)	X (0)	BP1 (0)	BP0 (0)	WEN (0)	RDY

Table 3. Status Register Bit Definition

Bit	Definition	Description
Bit 0 (RDY)	Ready	Read only bit indicates the ready status of device to perform a memory access. This bit is set to '1' by the device while a STORE or Software RECALL cycle is in progress.
Bit 1 (WEN)	Write Enable	WEN indicates if the device is write enabled. This bit defaults to 0 (disabled) on power-up. WEN = '1'> Write enabled WEN = '0'> Write disabled
Bit 2 (BP0)	Block Protect bit '0'	Used for block protection. For details see Table 4 on page 12.
Bit 3 (BP1)	Block Protect bit '1'	Used for block protection. For details see Table 4 on page 12.
Bit 4-5	Don't care	These bits are non-writable and always return '0' upon read.
Bit 6 (SNL)	Serial Number Lock	Set to '1' for locking serial number
Bit 7(WPEN)	Write Protect Enable bit	Used for enabling the function of Write Protect Pin (WP). For details see Table 5 on page 12.

Read Status Register (RDSR) Instruction

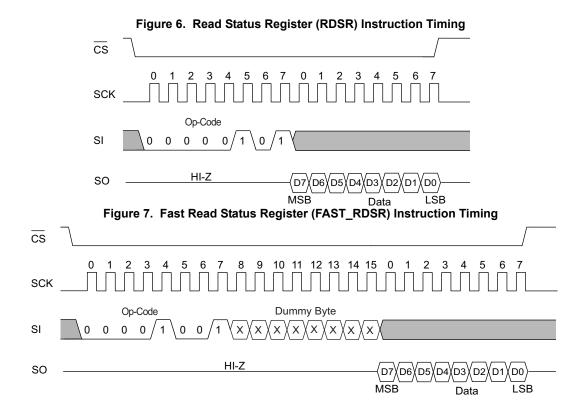
The Read Status Register instruction provides access to the Status Register at SPI frequency up to 40 MHz. This instruction is used to probe the Write Enable status of the device or the Ready status of the device. RDY bit is set by the device to '1' whenever a STORE or Software RECALL cycle is in progress. The block protection and WPEN bits indicate the extent of protection employed.

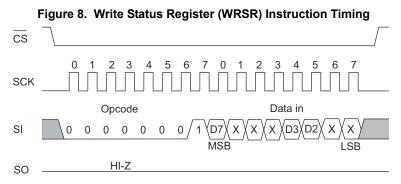
This instruction is issued after the falling edge of $\overline{\text{CS}}$ using the opcode for RDSR.

Fast Read Status Register (FAST_RDSR) Instruction

The FAST_RDSR instruction allows you to read the Status Register at SPI frequency above 40 MHz and up to 104 MHz (max). This instruction is used to probe the Write Enable status of the device or the Ready status of the device. RDY bit is set by the device to '1' whenever a STORE or Software RECALL cycle is in progress. The block protection and WPEN bits indicate the extent of protection employed.

This instruction is issued after the falling edge of \overline{CS} using the opcode for RDSR followed by a dummy byte.


Write Status Register (WRSR) Instruction

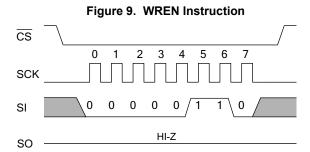

The WRSR instruction enables the user to write to the Status Register. However, this instruction cannot be used to modify bit 0 (RDY), bit 1 (WEN) and bits 4-5. The BP0 and BP1 bits can be used to select one of four levels of block protection. Further, WPEN bit must be set to '1' to enable the use of Write Protect (WP) pin.

WRSR instruction is a write instruction and needs writes to be enabled (WEN bit set to '1') using the WREN instruction before it is issued. The instruction is issued after the falling edge of CS using the opcode for WRSR followed by eight bits of data to be stored in the Status Register. WRSR instruction can be used to modify only bits 2, 3, 6 and 7 of the Status Register.

Note In CY14X512PA, the values written to Status Register are saved to nonvolatile memory only after a STORE operation. If AutoStore is disabled, any modifications to the Status Register must be secured by performing a Software STORE operation.

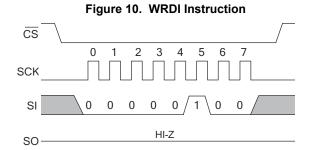
Write Protection and Block Protection

CY14X512PA provides features for both software and hardware write protection using WRDI instruction and WP. Additionally, this device also provides block protection mechanism through BP0 and BP1 pins of the Status Register.


The write enable and disable status of the device is indicated by WEN bit of the Status Register. The write instructions (WRSR, WRITE, WRTC and WRSN) and nvSRAM special instruction (STORE, RECALL, ASENB, ASDISB) need the write to be enabled (WEN bit = '1') before they can be issued.

Write Enable (WREN) Instruction

On power-up, the device is always in the write disable state. The following WRITE, WRSR, WRTC, WRSN, or nvSRAM special instruction must therefore be preceded by a Write Enable instruction. If the device is not write enabled (WEN = '0'), it ignores the write instructions and returns to the standby state when CS is brought HIGH. A new CS falling edge is required to re-initiate serial communication. The instruction is issued following the falling edge of CS. When this instruction is used, the WEN bit of Status Register is set to '1'. WEN bit defaults to '0' on power-up.


Note After completion of a write instruction (WRSR, WRITE, WRTC or WRSN) or nvSRAM special instruction (STORE, RECALL, ASENB, ASDISB) instruction, WEN bit is cleared to '0'. This is done to provide protection from any inadvertent writes. Therefore, WREN instruction needs to be used before a new write instruction is issued.

Write Disable (WRDI) Instruction

Write Disable instruction disables the write by clearing the WEN bit to '0' to protect the device against inadvertent writes. This instruction is issued following the falling edge of \overline{CS} followed by opcode for WRDI instruction. The WEN bit is cleared on the rising edge of \overline{CS} following a WRDI instruction.

Block Protection

Block protection is provided using the BP0 and BP1 pins of the Status Register. These bits can be set using WRSR instruction and probed using the RDSR instruction. The nvSRAM is divided into four array segments. One-quarter, one-half, or all of the memory segments can be protected. Any data within the protected segment is read only. Table 4 shows the function of Block Protect bits.

Table 4. Block Write Protect Bits

Level	Status Re	gister Bits	Array Addresses Protected
Level	BP1	BP0	Array Addresses Protected
0	0	0	None
1 (1/4)	0	1	0xC000-0xFFFF
2 (1/2)	1	0	0x8000–0xFFFF
3 (All)	1	1	0x0000-0xFFFF

Hardware Write Protection (WP Pin)

The write <u>protect</u> pin (\overline{WP}) is used to provide hardware write protection. WP pin enables <u>all normal read</u> and write operations when held HIGH. When the \overline{WP} pin is brought LOW and WPEN bit is '1', all write operations to the Status Register are inhibited. The hardware write protection function is blocked when the WPEN bit is '0'. This allows you to install the device in a system with the \overline{WP} pin tied to ground, and still write to the Status Register.

WP pin can be used along with WPEN and Block Protect bits (BP1 and BP0) of the Status Register to inhibit writes to memory. When WP pin is LOW and WPEN is set to '1', any modifications to Status Register are disabled. Therefore, the memory is protected by setting the BP0 and BP1 bits and the WP pin inhibits any modification of the Status Register bits, providing hardware write protection.

Note WP going LOW when \overline{CS} is still LOW has no effect on any of the ongoing write operations to the Status Register.

Table 5 summarizes all the protection features provided in the CY14X512PA.

Table 5. Write Protection Operation

WPEN	WP	WEN	Protected Blocks	Unprotected Blocks	Status Register
Х	Х	0	Protected	Protected	Protected
0	Х	1	Protected	Writable	Writable
1	LOW	1	Protected	Writable	Protected
1	HIGH	1	Protected	Writable	Writable

Memory Access

All memory accesses are done using the READ and WRITE instructions. These instructions cannot be used while a STORE or RECALL cycle is in progress. A STORE cycle in progress is indicated by the RDY bit of the Status Register and the HSB pin.

Read Sequence (READ) Instruction

The read operations on CY14X512PA are performed by giving the instruction on the SI pin and reading the output on SO pin. The following sequence needs to be followed for a read operation: After the CS line is pulled LOW to select a device, the read opcode is transmitted through the SI line followed by two bytes of address. After the last address bit is transmitted on the SI pin, the data (D7-D0) at the specific address is shifted out on the SO line on the falling edge of SCK starting with D7. Any other data on SI line after the last address bit is ignored.

CY14X512PA allows reads to be performed in bursts through SPI which can be used to read consecutive addresses without issuing a new READ instruction. If only one byte is to be read, the CS line must be driven HIGH after one byte of data comes out. However, the read sequence may be continued by holding the CS line LOW and the address is automatically incremented and data continues to shift out on SO pin. When the last data memory address (0xFFFF) is reached, the address rolls over to 0x0000 and the device continues to read.

Note READ instruction operates up to Max of 40 MHz SPI frequency.

Fast Read Sequence (FAST READ) Instruction

The FAST_READ instruction allows you to read memory at SPI frequency above 40 MHz and up to 104 MHz (Max). The host system must first select the device by driving CS LOW, the FAST_READ instruction is then written to SI, followed by 2 address byte and then a dummy byte.

From the subsequent falling edge of the SCK, the data of the specific address is shifted out serially on the SO line starting with MSB. The first byte specified can be at any location. The device

automatically increments to the next higher address after each byte of data is output. The entire memory array can therefore be read with a single FAST_READ instruction. When the highest address in the memory array is reached, address counter rolls over to start address 0x0000 and thus allowing the read sequence to continue indefinitely. The FAST_READ instruction is terminated by driving CS HIGH at any time during data output.

Note FAST_READ instruction operates up to maximum of 104 MHz SPI frequency.

Write Sequence (WRITE) Instruction

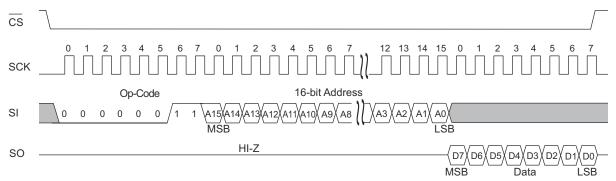
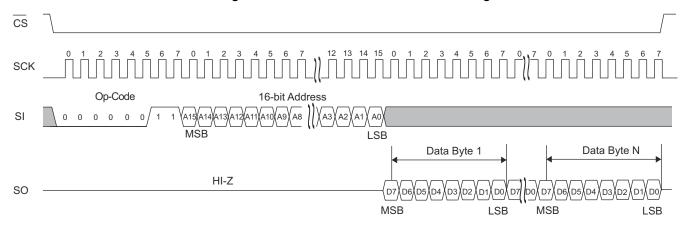
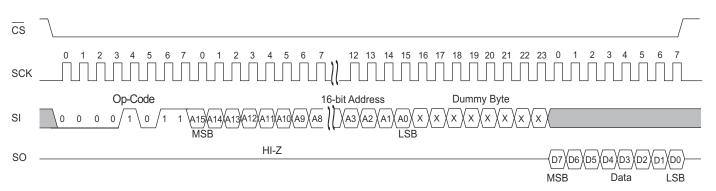
The write operations on CY14X512PA are performed through the SI pin. To perform a write operation, if the device is write disabled, then the device must first be write enabled through the WREN instruction. When the writes are enabled (WEN $\underline{=}$ '1'), WRITE instruction is issued after the falling edge of $\overline{\text{CS}}$. A WRITE instruction constitutes transmitting the WRITE opcode on SI line followed by 2-bytes of address and the data (D7-D0) which is to be written.

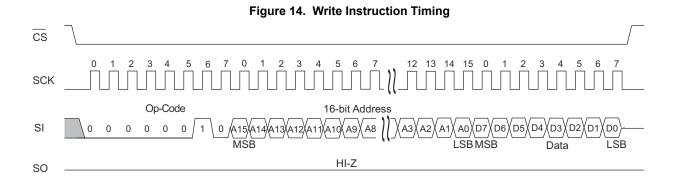
CY14X512PA allows writes to be performed in bursts through SPI which can be used to write consecutive addresses without issuing a new WRITE instruction. If only one byte is to be written, the CS line must be driven HIGH after the D0 (LSB of data) is transmitted. However, if more bytes are to be written, CS line must be held LOW and address incremented automatically. The following bytes on the SI line are treated as data bytes and written in the successive addresses. When the last data memory address (0xFFFF) is reached, the address rolls over to 0x0000 and the device continues to write.

The WEN bit is reset to '0' on completion of a WRITE sequence.

Note When a burst write reaches a protected block address, it continues the address increment into the protected space but does not write any data to the protected memory. If the address roll over takes the burst write to unprotected space, it resumes writes. The same operation is true if a burst write is initiated within a write protected block.

Figure 11. Read Instruction Timing


Figure 12. Burst Mode Read Instruction Timing

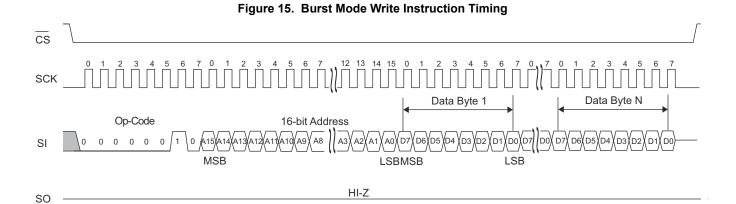


Figure 13. Fast Read Instruction Timing

RTC Access

CY14X512PA uses 16 registers for RTC. These registers can be read out or written to by accessing all 16 registers in burst mode or accessing each register, one at a time. The RDRTC, FAST_RDRTC, and WRTC instructions are used to access the RTC.

All the RTC registers can be read in burst mode by issuing the RDRTC and FAST_RDRTC instruction and reading all 16 bytes without bringing the CS pin HIGH. The 'R' bit must be set while reading the RTC timekeeping registers to ensure that transitional values of time are not read.

Writes to the RTC register are performed using the WRTC instruction. Writing RTC timekeeping registers and control registers, except for the flags register needs the 'W' bit of the flags register to be set to '1'. The internal counters are updated with the new date and time setting when the 'W' bit is cleared to '0'. All the RTC registers can also be written in burst mode using the WRTC instruction.

READ RTC (RDRTC) Instruction

Read RTC (RDRTC) instruction allows you to read the contents of RTC registers at SPI frequency upto 25 MHz. Reading the RTC registers through the SO pin requires the following sequence: After the CS line is pulled LOW to select a device, the RDRTC opcode is transmitted through the SI line followed by eight address bits for selecting the register. Any data on the SI line after the address bits is ignored. The data (D7-D0) at the specified address is then shifted out onto the SO line. RDRTC also allows burst mode read operation. When reading multiple bytes from RTC registers, the address rolls over to 0x00 after the last RTC register address (0x0F) is reached.

The 'R' bit in RTC flags register must be set to '1' before reading RTC time keeping registers to avoid reading transitional data. Modifying the RTC flag registers requires a Write RTC cycle. The R bit must be cleared to '0' after completion of the read operation.

The easiest way to read RTC registers is to perform RDRTC in burst mode. The read may start from the first RTC register (0x00) and the CS must be held LOW to allow the data from all 16 RTC registers to be transmitted through the SO pin.

Note RDRTC instruction operates at a maximum clock frequency of 25 MHz. The opcode cycles, address cycles and data out cycles need to run at 25 MHz for the instruction to work properly.

Fast Read Sequence (FAST_RDRTC) Instruction

The FAST_RDRTC instruction allows you to read memory at a SPI frequency above 25 MHz and up to 104 MHz (Max). The host system must first select the device by driving CS LOW, the FAST_READ instruction is then written to SI, followed by 8 bit address and a dummy byte.

From the subsequent falling edge of the SCK, the data of the specific address is shifted out serially on the SO line starting with MSB. The first byte specified can be at any location. The device automatically increments to the next higher address after each byte of data is output. The entire memory array can therefore be read with a single FAST_RDRTC instruction. When the highest address (0x0F) in the memory array is reached, the address counter rolls over to start address 0x00 and thus allowing the read sequence to continue indefinitely. The FAST_RDRTC instruction is terminated by driving CS HIGH at any time during data output.

Note FAST_READ instruction operates up to Max of 104 MHz SPI frequency.

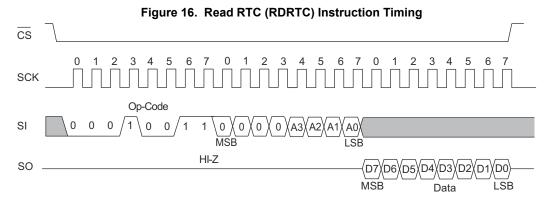


Figure 17. Fast RTC Read (FAST_RDRTC) Instruction Timing

SCK

O 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

SCK

Op-Code

Dummy Byte

SI

Op-Code

NSB

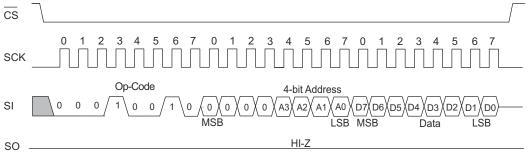
HI-Z

D7/D6/D5/D4/D3/D2/D1/D0

MSB

Data

LSB


WRITE RTC (WRTC) Instruction

WRITE RTC (WRTC) instruction allows you to modify the contents of RTC registers. The WRTC instruction requires the WEN bit to be set to '1' before it can be issued. If WEN bit is '0', a WREN instruction needs to be issued before using WRTC. Writing RTC registers requires the following sequence: After the CS line is pulled LOW to select a device, WRTC opcode is transmitted through the SI line followed by eight address bits identifying the register which is to be written to and one or more

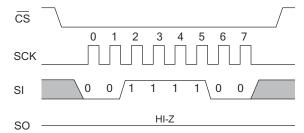
bytes of data. WRTC allows burst mode write operation. When writing more than one registers in burst mode, the address rolls over to 0x00 after the last RTC address (0x0F) is reached.

Note that writing to RTC timekeeping and control registers require the W bit to be set to '1'. The values in these RTC registers take effect only after the 'W' bit is cleared to '0'. Write Enable bit (WEN) is automatically cleared to '0' after completion of the WRTC instruction.

Figure 18. Write RTC (WRTC) Instruction Timing

nvSRAM Special Instructions

CY14X512PA provides four special instructions that allow access to the nvSRAM specific functions: STORE, RECALL, ASDISB, and ASENB. Table 6 lists these instructions.


Table 6. nvSRAM Special Instructions

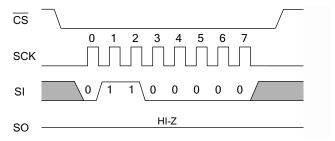
Function Name	Opcode	Operation
STORE	0011 1100	Software STORE
RECALL	0110 0000	Software RECALL
ASENB	0101 1001	AutoStore Enable
ASDISB	0001 1001	AutoStore Disable

Software STORE (STORE) Instruction

When a STORE instruction is executed, CY14X512PA performs a Software STORE operation. The STORE operation is performed regardless of whether or not a write has taken place since the last STORE or RECALL operation.

Figure 19. Software STORE Operation

To issue this instruction, the device must be write enabled (WEN bit = '1'). The instruction is performed by transmitting the STORE opcode on the SI pin following the falling edge of $\overline{\text{CS}}$.

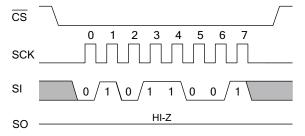

The WEN bit is cleared on the positive edge of $\overline{\text{CS}}$ following the STORE instruction.

Software RECALL (RECALL) Instruction

When a RECALL instruction is executed, CY14X512PA performs a Software RECALL operation. To issue this instruction, the device must be write enabled (WEN = '1').

The instruction is performed by transmitting the RECALL opcode on the SI pin following the falling edge of $\overline{\text{CS}}$. The WEN bit is cleared on the positive edge of $\overline{\text{CS}}$ following the RECALL instruction.

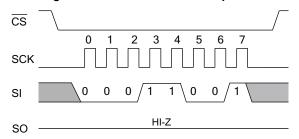
Figure 20. Software RECALL Operation


AutoStore Enable (ASENB) Instruction

The AutoStore Enable instruction enables the AutoStore on CY14X512PA. This setting is not nonvolatile and needs to be followed by a STORE sequence if this is desired to survive the power cycle.

To issue this instruction, the device must be write enabled (WEN = '1'). The instruction is performed by transmitting the ASENB opcode on the SI pin following the falling edge of \overline{CS} . The WEN bit is cleared on the positive edge of \overline{CS} following the ASENB instruction.

Figure 21. AutoStore Enable Operation



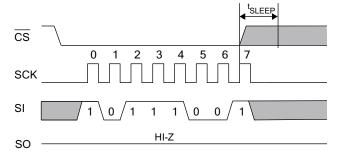
AutoStore Disable (ASDISB) Instruction

AutoStore is enabled by default in CY14X512PA. The AutoStore Disable instruction disables the AutoStore on CY14X512PA. This setting is not nonvolatile and needs to be followed by a STORE sequence if this is desired to survive the power cycle.

To issue this instruction, the device must be write enabled (WEN = '1'). The instruction is performed by transmitting the ASDISB opcode on the SI pin following the falling edge of $\overline{\text{CS}}$. The WEN bit is cleared on the positive edge of $\overline{\text{CS}}$ following the ASDISB instruction.

Figure 22. AutoStore Disable Operation

Special Instructions


SLEEP Instruction

SLEEP instruction puts the nvSRAM in sleep mode. When the SLEEP instruction is issued, the nvSRAM takes $t_{\rm SS}$ time to process the SLEEP request. Once the SLEEP command is successfully registered and processed, the nvSRAM toggles HSB LOW, performs a STORE operation to secure the data to nonvolatile memory and then enters into SLEEP mode. The device starts consuming $I_{\rm ZZ}$ current after $t_{\rm SLEEP}$ time from the instance when SLEEP instruction is registered. The device is not accessible for normal operations after SLEEP instruction is issued. Once in sleep mode, the SCK and SI pins are <u>ign</u>ored and SO will be Hi-Z but device continues to monitor the CS pin.

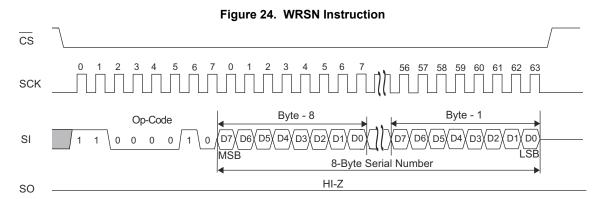
To wake the nvSRAM from the sleep mode, the device must be selected by toggling the $\overline{\text{CS}}$ pin from HIGH to LOW. The device wakes up and is accessible for normal operations after t_{WAKE} duration after a falling edge of $\overline{\text{CS}}$ pin is detected.

Note Whenever nvSRAM enters into sleep mode, it initiates nonvolatile STORE cycle which results in an endurance cycle per sleep command execution. A STORE cycle starts only if a write to the SRAM has been performed since the last STORE or RECALL cycle.

Figure 23. Sleep Mode Entry

Serial Number

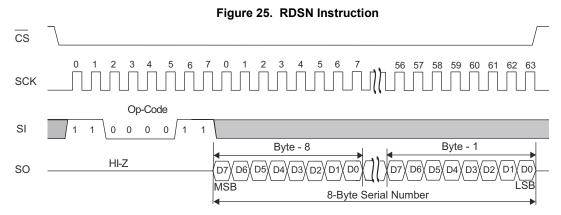
The serial number is an 8-byte programmable memory space provided to you to uniquely identify this device. It typically consists of a two byte Customer ID, followed by five bytes of unique serial number and one byte of CRC check. However, nvSRAM does not calculate the CRC and it is up to the system designer to utilize the eight byte memory space in whatever manner desired. The default value for eight byte locations are set to '0x00'.


WRSN (Serial Number Write) Instruction

The serial number can be written using the WRSN instruction. To write serial number the write must be enabled using the WREN instruction. The WRSN instruction can be used in burst mode to write all the 8 bytes of serial number.

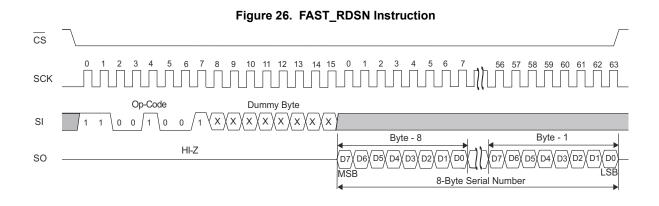
The serial number is locked using the SNL bit of the Status Register. Once this bit is set to '1', no modification to the serial number is possible. After the SNL bit is set to '1', using the WRSN instruction has no effect on the serial number.

A STORE operation (AutoStore or Software STORE) is required to store the serial number in nonvolatile memory. If AutoStore is disabled, you must perform a Software STORE operation to secure and lock the serial number. If SNL bit is set to '1' and is not stored (AutoStore disabled), the SNL bit and serial number defaults to '0' at the next power cycle. If SNL bit is set to '1' and is stored, the SNL bit can never be cleared to '0'. This instruction requires the WEN bit to be set before it can be executed. The WEN bit is reset to '0' after completion of this instruction.



RDSN (Serial Number Read) Instruction

The serial number is read using RDSN instruction at SPI frequency upto 40 MHz. A serial number read may be performed in burst mode to read all the eight bytes at once. After the last byte of serial number is read, the device does not loop back.


RDSN instruction can be issued by shifting the op-code for RDSN in through the SI pin of nvSRAM after CS goes LOW. This is followed by nvSRAM shifting out the eight bytes of serial number through the SO pin.

FAST RDSN (Fast Serial Number Read) Instruction

The FAST_RDSN instruction is used to read serial number at SPI frequency above 40 MHz and up to 104 MHz (max). A serial number read may be performed in burst mode to read all the eight bytes at once. After the last byte of serial number is read,

the device does not loop back. FAST_RDSN instruction can be issued by shifting the op-code for FAST_RDSN in through the SI pin of nvSRAM followed by dummy byte after CS goes LOW. This is followed by nvSRAM shifting out the eight bytes of serial number through the SO pin.

Device ID

Device ID is a 4-byte read only code identifying a type of product uniquely. This includes the product family code, configuration, and density of the product.

Table 7. Device ID

		Device ID Description			
Device	Device ID (4 bytes)	31–21 (11 bits)	20–7 (14 bits)	6–3 (4 bits)	2–0 (3 bits)
		Manufacturer ID	Product ID	Density ID	Die Rev
CY14C512PA	0x0681C098	00000110100	00001110000001	0011	000
CY14B512PA	0x0681C898	00000110100	00001110010001	0011	000
CY14E512PA	0x0681D098	00000110100	00001110100001	0011	000

The device ID is divided into four parts as shown in Table 7:

1. Manufacturer ID (11 bits)

This is the JEDEC assigned manufacturer ID for Cypress. JEDEC assigns the manufacturer ID in different banks. The first three bits of the manufacturer ID represent the bank in which ID is assigned. The next eight bits represent the manufacturer ID.

Cypress's manufacturer ID is 0x34 in bank 0. Therefore the manufacturer ID for all Cypress nvSRAM products is:

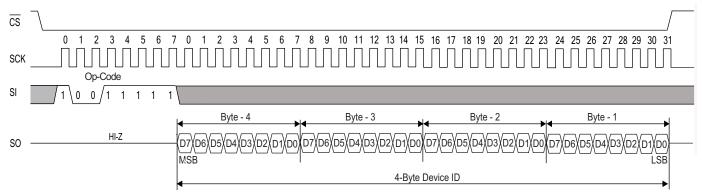
Cypress ID - 000 0011 0100

2. Product ID (14 bits)

The product ID for device is shown in the Table 7.

3. Density ID (4 bits)

The 4 bit density ID is used as shown in Table 7 for indicating the 512 Kb density of the product.

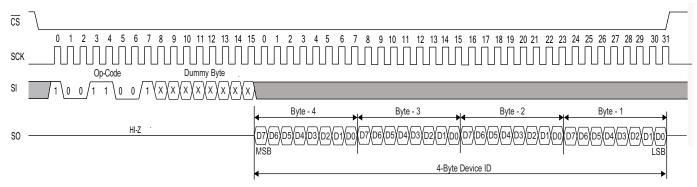

4. Die Rev (3 bits)

This is used to represent any major change in the design of the product. The initial setting of this is always 0x0.

RDID (Device ID Read) Instruction

This instruction is used to read the JEDEC assigned manufacturer ID and product ID of the device at SPI frequency upto 40 MHz. This instruction can be used to identify a device on the bus. RDID instruction can be issued by shifting the op-code for RDID in through the SI pin of nvSRAM after CS goes LOW. This is followed by nvSRAM shifting out the four bytes of device ID through the SO pin.

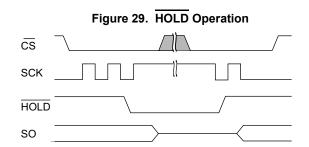
Figure 27. RDID Instruction



FAST_RDID (Fast Device ID Read) Instruction

The FAST_RDID instruction allows you to read the JEDEC assigned manufacturer ID and product ID at SPI frequency above 40 MHz and up to 104 MHz (Max). FAST_RDID instruction

can be issued by shifting the op-code for FAST_RDID in through the SI pin of nvSRAM followed by dummy byte after CS goes LOW. This is followed by nvSRAM shifting out the four bytes of device ID through the SO pin.


Figure 28. FAST_RDID Instruction

HOLD Pin Operation

The HOLD pin is used to pause the serial communication. When the device is selected and a serial sequence is underway, HOLD is used to pause the serial communication with the master device without resetting the ongoing serial sequence. To pause, the HOLD pin must be brought LOW when the SCK pin is LOW. To resume serial communication, the HOLD pin must be brought HIGH when the SCK pin is LOW (SCK may toggle during HOLD). While the device serial communication is paused, inputs to the SI pin are ignored and the SO pin is in the high-impedance state.

This pin can be used by the master with the $\overline{\text{CS}}$ pin to pause the serial communication by bringing the pin $\overline{\text{HOLD}}$ LOW and deselecting an SPI slave to establish communication with another slave device, without the serial communication being reset. The communication may be $\overline{\text{resumed}}$ at a later point by selecting the device and setting the $\overline{\text{HOLD}}$ pin HIGH.

Real Time Clock Operation

nvTIME Operation

The CY14X512PA offers internal registers that contain clock, alarm, watchdog, interrupt, and control functions. The RTC registers occupy a separate address space from nvSRAM and are accessible through the Read RTC register and Write RTC register sequence on register addresses 0x00 to 0x0F. Internal double buffering of the time keeping registers prevents accessing transitional internal clock data during a read or write operation. Double buffering also circumvents disrupting normal timing counts or the clock accuracy of the internal clock when accessing clock data. Clock and alarm registers store data in BCD format.

Clock Operations

The clock registers maintain time up to 9,999 years in one-second increments. The time can be set to any calendar time and the clock automatically keeps track of days of the week and month, leap years, and century transitions. There are eight registers dedicated to the clock functions, which are used to set time with a write cycle and to read time with a read cycle. These registers contain the time of day in BCD format. Bits defined as '0' are currently not used and are reserved for future use by Cypress.

Reading the Clock

The double buffered RTC register structure reduces the chance of reading incorrect data from the clock. Internal updates to the CY14X512PA time keeping registers are stopped when the read bit 'R' (in the flags register at 0x00) is set to '1' before reading clock data to prevent reading of data in transition. Stopping the register updates does not affect clock accuracy.

When a read sequence of RTC device is initiated, the update of the user timekeeping registers stops and does not restart until a '0' is written to the read bit 'R' (in the flags register at 0x00). After the end of read sequence, all the RTC registers are simultaneously updated within 20 ms.

Setting the Clock

A write access to the RTC device stops updates to the time keeping registers and enables the time to be set when the write bit 'W' (in the flags register at 0x00) is set to '1'. The correct day, date, and time is then written into the registers and must be in 24 hour BCD format. The time written is referred to as the "Base Time". This value is stored in nonvolatile registers and used in the calculation of the current time. When the write bit 'W' is cleared by writing '0' to it, the values of timekeeping registers are transferred to the actual clock counters after which the clock resumes normal operation. If a valid STOP or Repeated START condition is not generated by the master, the time written to the RTC registers is never transferred to the actual clock counters.

If the time written to the timekeeping registers is not in the correct BCD format, each invalid nibble of the RTC registers continue counting to 0xF before rolling over to 0x0 after which RTC resumes normal operation.

Note After 'W' bit is set to '0', values written into the timekeeping, alarm, calibration, and interrupt registers are transferred to the RTC time keeping counters in t_{RTCp} time. These counter values must be saved to nonvolatile memory either by initiating a

Software/Hardware STORE or AutoStore operation. While working in AutoStore disabled mode, perform a STORE operation after t_{RTCp} time while writing into the RTC registers for the modifications to be correctly recorded.

Backup Power

The RTC in the CY14X512PA is intended for permanently powered operation. The V_{RTCcap} or V_{RTCbat} pin is connected depending on whether a capacitor or battery is chosen for the application. When the primary power, V_{CC} , fails and drops below V_{SWITCH} the device switches to the backup power supply.

The clock oscillator uses very little current, which maximizes the backup time available from the backup source. Regardless of the clock operation with the primary source removed, the data stored in the nvSRAM is secure, having been stored in the nonvolatile elements when power was lost.

During backup operation, the CY14X512PA consumes a $0.45 \mu A$ (Typ) at room temperature. The user must choose capacitor or battery values according to the application.

Backup time values based on maximum current specifications are shown in the following Table 8. Nominal backup times are approximately two times longer.

Table 8. RTC Backup Time

Capacitor Value	Backup Time (CY14B512PA)
0.1 F	60 hours
0.47 F	12 days
1.0 F	25 days

Using a capacitor has the obvious advantage of recharging the backup source each time the system is powered up. If a battery is used, a 3-V lithium is recommended and the CY14X512PA sources current only from the battery when the primary power is removed. However, the battery is not recharged at any time by the CY14X512PA. The battery capacity must be chosen for total anticipated cumulative down time required over the life of the system.

Stopping and Starting the Oscillator

The OSCEN bit in the calibration register at 0x08 controls the enable and disable of the oscillator. This bit is nonvolatile and is shipped to customers in the "enabled" (set to '0') state. To preserve the battery life when the system is in storage, OSCEN must be set to '1'. This turns off the oscillator circuit, extending the battery life. If the OSCEN bit goes from disabled to enabled, it takes approximately one second (two seconds maximum) for the oscillator to start.

While system power is off, if the voltage on the backup supply (V_{RTCcap} or V_{RTCbat}) falls below their respective minimum level, the oscillator may fail. The CY14X512PA has the ability to detect oscillator failure when system power is restored. This is recorded in the Oscillator Fail Flag (OSCF) of the flags register at the address 0x00. When the device is powered on (V_{CC} goes above V_{SWITCH}) the OSCEN bit is checked for the 'enabled' status. If the OSCEN bit is enabled and the oscillator is not active within the first 5 ms, the OSCF bit is set to '1'. The system must check for this condition and then write '0' to clear the flag.

Note that in addition to setting the OSCF flag bit, the time registers are reset to the 'Base Time', which is the value last

written to the timekeeping registers. The control or calibration registers and the OSCEN bit are not affected by the 'oscillator failed' condition.

The value of OSCF must be reset to '0' when the time registers are written for the first time. This initializes the state of this bit which may have become set when the system was first powered on.

To reset OSCF, set the write bit 'W' (in the flags register at 0x00) to a '1' to enable writes to the flags register. Write a '0' to the OSCF bit and then reset the write bit to '0' to disable writes.

Calibrating the Clock

The RTC is driven by a quartz controlled crystal with a nominal frequency of 32.768 kHz. Clock accuracy depends on the quality of the crystal and calibration. The crystals available in market typically have an error of ± 20 ppm to ± 35 ppm. However, CY14X512PA employs a calibration circuit that improves the accuracy to $\pm 1/-2$ ppm at 25 °C. This implies an error of ± 2.5 seconds to ± 3 seconds per month.

The calibration circuit adds or subtracts counts from the oscillator divider circuit to achieve this accuracy. The number of pulses that are suppressed (subtracted, negative calibration) or split (added, positive calibration) depends upon the value loaded into the five calibration bits found in calibration register at 0x08. The calibration bits occupy the five lower order bits in the calibration register. These bits are set to represent any value between '0' and 31 in binary form. Bit D5 is a sign bit, where a '1' indicates positive calibration and a '0' indicates negative calibration. Adding counts speeds the clock up and subtracting counts slows the clock down. If a binary '1' is loaded into the register, it corresponds to an adjustment of 4.068 or –2.034 ppm offset in oscillator error, depending on the sign.

Calibration occurs within a 64-minute cycle. The first 62 minutes in the cycle may, once per minute, have one second shortened by 128 or lengthened by 256 oscillator cycles. If a binary '1' is loaded into the register, only the first two minutes of the 64-minute cycle are modified. If a binary 6 is loaded, the first 12 are affected, and so on. Therefore, each calibration step has the effect of adding 512 or subtracting 256 oscillator cycles for every 125,829,120 actual oscillator cycles, that is, 4.068 or –2.034 ppm of adjustment per calibration step in the calibration register.

To determine the required calibration, the CAL bit in the flags register (0x00) must be set to '1'. This causes the INT pin to toggle at a nominal frequency of 512 Hz. Any deviation measured from the 512 Hz indicates the degree and direction of the required correction. For example, a reading of 512.01024 Hz indicates a +20 ppm error. Hence, a decimal value of -10 (001010b) must be loaded into the calibration register to offset this error.

Note Setting or changing the calibration register does not affect the test output frequency.

To set or clear CAL, set the write bit 'W' (in the flags register at 0x00) to '1' to enable writes to the flags register. Write a value to CAL, and then reset the write bit to '0' to disable writes.

Alarm

The alarm function compares user programmed values of alarm time and date (stored in the registers 0x01–5) with the corresponding time of day and date values. When a match

occurs, the alarm internal flag (AF) is set and an interrupt is generated on INT pin if Alarm Interrupt Enable (AIE) bit is set.

There are four alarm match fields: date, hours, minutes, and seconds. Each of these fields has a match bit that is used to determine if the field is used in the alarm match logic. Setting the match bit to '0' indicates that the corresponding field is used in the match process. Depending on the match bits, the alarm occurs as specifically as once a month or as frequently as once every minute. Selecting none of the match bits (all 1s) indicates that no match is required and therefore, alarm is disabled. Selecting all match bits (all 0s) causes an exact time and date match.

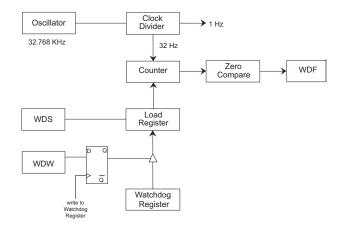
There are two ways to detect an alarm event: by reading the AF flag or monitoring the INT pin. The AF flag in the flags register at 0x00 indicates that a date or time match has occurred. The AF bit is set to '1' when a match occurs. Reading the flags register clears the alarm flag bit (and all others). A hardware interrupt pin may also be used to detect an alarm event.

To set, clear or enable an alarm, set the 'W' bit (in the flags register - 0x00) to '1' to enable writes to alarm registers. After writing the alarm value, clear the 'W' bit back to '0' for the changes to take effect.

Note CY14X512PA requires the alarm match bit for seconds (bit 'D7' in Alarm-Seconds register 0x02) to be set to '0' for proper operation of Alarm Flag and Interrupt.

Watchdog Timer

The watchdog timer is a free running down counter that uses the 32 Hz clock (31.25 ms) derived from the crystal oscillator. The oscillator must be running for the watchdog to function. It begins counting down from the value loaded in the watchdog timer register.


The timer consists of a loadable register and a free running counter. On power-up, the watchdog time out value in register 0x07 is loaded into the counter load register. Counting begins on power-up and restarts from the loadable value any time the Watchdog Strobe (WDS) bit is set to '1'. The counter is compared to the terminal value of '0'. If the counter reaches this value, it causes an internal flag and an optional interrupt output. You can prevent the time out interrupt by setting WDS bit to '1' prior to the counter reaching '0'. This causes the counter to reload with the watchdog time out value and to be restarted. As long as the user sets the WDS bit prior to the counter reaching the terminal value, the interrupt and WDT flag never occur.

New time out values are written by setting the watchdog write bit to '0'. When the WDW is '0', new writes to the watchdog time out value bits D5-D0 are enabled to modify the time out value. When WDW is '1', writes to bits D5-D0 are ignored. The WDW function enables you to set the WDS bit without concern that the watchdog timer value is modified. A logical diagram of the watchdog timer is shown in Figure 30 on page 23. Note that setting the watchdog time out value to '0' disables the watchdog function.

The output of the watchdog timer is the flag bit WDF that is set if the watchdog is allowed to time out. If the Watchdog Interrupt Enable (WIE) bit in the interrupt register is set, a hardware interrupt on INT pin is also generated on watchdog timeout. The flag and the hardware interrupt are both cleared when user reads the flag registers.

Figure 30. Watchdog Timer Block Diagram

Programmable Square Wave Generator

The square wave generator block uses the crystal output to generate a desired frequency on the INT pin of the device. The output frequency can be programmed to be one of these:

- 1. 1Hz
- 2. 512 Hz
- 3. 4096 Hz
- 4. 32768 Hz

The square wave output is not generated while the device is running on backup power.

Power Monitor

The CY14X512PA provides a power management scheme with power fail interrupt capability. It also controls the internal switch to backup power for the clock and protects the memory from low V_{CC} access. The power monitor is based on an internal band gap reference circuit that compares the V_{CC} voltage to V_{SWITCH} threshold.

As described in the section AutoStore Operation on page 4, when V_{SWITCH} is reached as V_{CC} decays from power loss, a data STORE operation is initiated from SRAM to the nonvolatile elements, securing the last SRAM data state. Power is also switched from V_{CC} to the backup supply (battery or capacitor) to operate the RTC oscillator.

When operating from the backup source, read and write operations to nvSRAM are inhibited and the RTC functions are not available to the user. The RTC clock continues to operate in the background. The updated RTC time keeping registers are available to the user after V_{CC} is restored to the device (see AutoStore or Power-Up RECALL on page 35).

Backup Power Monitor

The CY14X512PA provides a backup power monitoring system which detects the backup power (either battery or capacitor backup) failure. The backup power fail flag (BPF) is issued on the next power-up in case of backup power failure. The BPF flag is set in the event of backup voltage falling lower than $V_{BAKFAIL}$. The backup power is monitored even while the RTC is running in backup mode. Low voltage detected during backup mode is flagged through the BPF flag. BPF can hold the data only until a defined low level of the back-up voltage (V_{DR}).

Interrupts

The CY14X512PA has a flags register, interrupt register, and Interrupt logic that can signal interrupt to the microcontroller. There are three potential sources for interrupt: watchdog timer, power monitor, and alarm timer. Each of these can be individually enabled to drive the INT pin by appropriate setting in the interrupt register (0x06). In addition, each has an associated flag bit in the flags register (0x00) that the host processor uses to determine the cause of the interrupt. The INT pin driver has two bits that specify its behavior when an interrupt occurs.

An Interrupt is raised only if both a flag is raised by one of the three sources and the respective interrupt enable bit in interrupts register is enabled (set to '1'). After an interrupt source is active, two programmable bits, H/L and P/L, determine the behavior of the output pin driver on INT pin. These two bits are located in the interrupt register and can be used to drive level or pulse mode output from the INT pin. In pulse mode, the pulse width is internally fixed at approximately 200 ms. This mode is intended to reset a host microcontroller. In the level mode, the pin goes to its active polarity until the flags register is read by the user. This mode is used as an interrupt to a host microcontroller. The control bits are summarized in the section Interrupt Register.

Interrupts are only generated while working on normal power and are not triggered when system is running in backup power mode.

Note CY14X512PA generates valid interrupts only after the Power-Up RECALL sequence is completed. All events on INT pin must be ignored for t_{FA} duration after powerup.

Interrupt Register

Watchdog Interrupt Enable (WIE): When set to '1', the watchdog timer drives the INT pin and an internal flag when a watchdog time out occurs. When WIE is set to '0', the watchdog timer only affects the WDF flag in flags register.

Alarm Interrupt Enable (AIE): When set to '1', the alarm match drives the INT pin and an internal flag. When AIE is set to '0', the alarm match only affects the AF flag in flags register.

Power Fail Interrupt Enable (PFE): When set to '1', the power fail monitor drives the pin and an internal flag. When PFE is set to '0', the power fail monitor only affects the PF flag in flags register.

Square Wave Enable (SQWE): When set to '1', a square wave of programmable frequency is generated on the INT pin. The frequency is decided by the SQ1 and SQ0 bits of the interrupts register. This bit is nonvolatile and survives power cycle. The SQWE bit over rides all other interrupts. However, CAL bit will take precedence over the square wave generator. This bit defaults to '0' from factory.

High/Low (H/L): When set to a '1', the INT pin is active HIGH and the driver mode is push pull. The INT pin drives HIGH only when V_{CC} is greater than V_{SWITCH} . When set to a '0', the INT pin is active LOW and the drive mode is open drain. The INT pin must be pulled up to Vcc by a 10 k resistor while using the interrupt in active LOW mode.

Pulse/Level (P/L): When set to a '1' and an interrupt occurs, the INT pin is driven for approximately 200 ms. When P/L is set to a '0', the INT pin is driven HIGH or LOW (determined by H/L) until the flags register is read.

SQ1 and **SQ0**. These bits are used together to fix the frequency of square wave on INT pin output when SQWE bit is set to '1'. These bits are nonvolatile and survive power cycle. The output frequency is decided as per the following table.

Table 9. SQW Output Selection

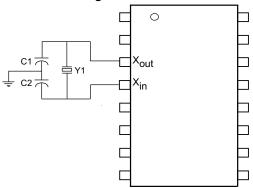
SQ1	SQ0	Frequency	Comment
0	0	1 Hz	1 Hz signal
0	1	512 Hz	Useful for calibration
1	0	4096 Hz	4 kHz clock output
1	1	32768 Hz	Oscillator output frequency

When an enabled interrupt source activates the INT pin, an external host reads the flag registers to determine the cause. Remember that all flag are cleared when the register is read. If the INT pin is programmed for Level mode, then the condition clears and the INT pin returns to its inactive state. If the pin is

programmed for pulse mode, then reading the flag also clears the flag and the pin. The pulse does not complete its specified duration if the flags register is read. If the INT pin is used as a host reset, the flags register is not read during a reset.

This summary table shows the state of the INT pin.

Table 10. State of the INT pin

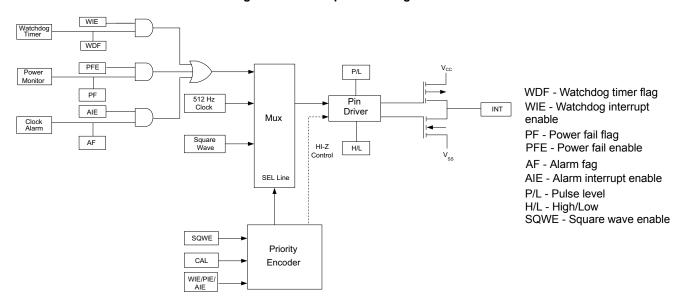

CAL	SQWE	WIE/AIE/PFE	INT Pin Output
1	Х	Х	512 Hz
0	1	Х	Square Wave Output
0	0	1	Alarm
0	0	0	HI-Z

Flags Register

The flags register has three flag bits: WDF, AF, and PF, which can be used to generate an interrupt. These flag are set by the watchdog timeout, alarm match, or power fail monitor respectively. The processor can either poll this register or enable interrupts to be informed when a flag is set. These flags are automatically reset after the register is read. The flags register is automatically loaded with the value 0x00 on power-up (except for the OSCF bit. See Stopping and Starting the Oscillator on page 21).

Figure 31. RTC Recommended Component Configuration [3]

Recommended Values


Y1 = 32.768 KHz (12.5 pF)

C₁ = 12 pF

 $C_2 = 69 \text{ pF}$

Note: The recommended values for C1 and C2 include board trace capacitance.

Figure 32. Interrupt Block Diagram

Note

^{3.} For nonvolatile static random access memory (nvSRAM) real time clock (RTC) design guidelines and best practices, refer application note AN61546.

Table 11. RTC Register Map [4, 5]

Posistor				BCD For	mat Data				Function/Bongs
Register	D7	D6	D5	D4	D3	D2	D1	D0	Function/Range
0x0F		10s y	/ears		Years		Years: 00-99		
0x0E	0	0	0	10s months		Mor	nths		Months: 01–12
0x0D	0	0	10s day	of month		Day of	month		Day of month: 01–31
0x0C	0	0	0	0	0		Day of weel	k	Day of week: 01–07
0x0B	0	0	10s l	nours		Но	urs		Hours: 00-23
0x0A	0	1	0s minute:	Os minutes Minutes			Minutes: 00-59		
0x09	0	1	0s second	onds Seconds			Seconds: 00-59		
0x08	OSCEN (0)	0	Cal sign (0)		Cali	bration (00	000)		Calibration values ^[6]
0x07	WDS (0)	WDW (0)		l	WDT (0	000000)			Watchdog ^[6]
0x06	WIE (0)	AIE (0)	PFE (0)	SQWE (0)	H/L (1)	P/L (0)	SQ1 (0)	SQ0 (0)	Interrupts ^[6]
0x05	M (1)	0	10s ala	rm date		Alarn	n day		Alarm, day of month: 01–31
0x04	M (1)	0	10s alarm hours			Alarm	hours		Alarm, hours: 00-23
0x03	M (1)	10s	alarm min	nutes Alarm minutes		Alarm, minutes: 00–59			
0x02	M (1)	10s	alarm seco	onds		Alarm s	econds		Alarm, seconds: 00-59
0x01		10s ce	nturies			Cent	uries		Centuries: 00-99
0x00	WDF	AF	PF	OSCF ^[7]	BPF ^[7]	CAL (0)	W (0)	R (0)	Flags ^[6]

Notes

- 4. () designates values shipped from the factory.
 5. The unused bits of RTC registers are reserved for future use and should be set to '0'.
 6. This is a binary value, not a BCD value.
 7. When user resets OSCF and BPF flag bits, the flags register will be updated after t_{RTCp} time.

Table 12. Register Map Detail

Register				Descri	ption			
				Time Keepi	ng - Years			
	D7	D6	D5	D4	D3	D2	D1	D0
0x0F		10s	years			Y	ears	
			digits of the yea los of years. Eac					
				Time Keepin	g - Months			
	D7	D6	D5	D4	D3	D2	D1	D0
0x0E	0	0	0	10s month		Mo	onths	
0x0D C			he month. Lower upper digit and					n 0 to 9; up
				Time Keep	ng - Date			
	D7	D6	D5	D4	D3	D2	D1	D0
0x0D	0	0	10s day	of month		Day o	of month	
	to 9; upper n	BCD digits for ibble (two bits) tomatically adju	the date of the m contains the 10susted for.	nonth. Lower nib s digit and opera	ble (four bits) ates from 0 to	contains the lo 3. The range f	ower digit and o for the register i	perates fror s 1–31. Lea
				Time Keep	ing - Day			
0x0C	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0		Day of week	
0x0B			D5 10s h	format. Lower n	D3	s) contains the		
	0 to 9; upper	nibble (two bits	s) contains the u	pper digit and o	-	0 to 2. The ran	ige for the regis	ster is 0–23
	D7	D6	D5	D4	D3	D2	D1	D0
0x0A	0	- 50	10s minutes				nutes	
	Contains the	BCD value of r bits) contains t	minutes. Lower r he upper minute	nibble (four bits) es digit and oper	contains the ates from 0 to	lower digit and	l operates from	0 to 9; upp
				Time Keeping	g - Seconds			
	D7	D6	D5	D4	D3	D2	D1	D0
0x09	0		10s seconds			Se	conds	
	Contains the nibble (three	BCD value of s bits) contains t	seconds. Lower he upper digit ar	nibble (four bits	contains the 0 to 5. The 1	lower digit and	d operates from egister is 0–59.	n 0 to 9; upp
				Calibration	n/Control			
0X08	D7	D6	D5	D4	D3	D2	D1	D0
0.00	OSCEN	0	Calibration sign			Calibration		
OSCEN			to '1', the oscillation		When set to 'C	', the oscillato	r runs. Disablin	g the oscilla
alibration Sign	Determines i	f the calibration	adjustment is a	pplied as an ad	dition (1) to or	as a subtracti	ion (0) from the	time-base.

Table 12. Register Map Detail (continued)

				Descri	otion					
Calibration	These five bi	its control the ca	alibration of the	clock.						
				Watchdo	Timer					
0x07	D7	D6	D5	D4	D3	D2	D1	D0		
	WDS									
WDS	Watchdog St	robe. Setting th	l is bit to '1' reload fter the watchdo		he watchdog t	timer. Setting t				
WDW	Watchdog W the user to so be written to	rite Enable. Set et the watchdog	ting this bit to '1' strobe bit witho egister when the	disables any Wi	RITE to the wa	tchdog timeou e. Setting this	t value (D5–D0 bit to '0' allows). This enable bits D5–D0		
WDT	multiplier of t of 3 Fh). Sett	the 32 Hz count	n. The watchdog (31.25 ms). The og timer register e.	e range of timed	ut value is 31	.25 ms (a setti	ng of 1) to 2 se	econds (settin		
				Interrupt Sta	us/Control					
0x06	D7	D6	D5	D4	D3	D2	D1	D0		
	WIE	AIE	PFE	SQWE	H/L	P/L	SQ1	SQ0		
WIE			When set to '1' a 0', the watchdog				g timer drives t	he INT pin ar		
AIE		ipt Enable. Whe	en set to '1', the a	alarm match driv	es the INT pir	n and the AF fl	ag. When set t	o '0', the alar		
PFE		nable. When se	et to '1', the alarr lag.	n match drives t	he INT pin an	d the PF flag. \	When set to '0'	, the power fa		
SQWE	and SQ0 bits	s. The square w rrupt source bed	set to '1', a squ ave output takes comes active, or	s precedence ov	er interrupt lo	gic. If the SQV	VE bit is set to	'1'. when an		
H/L	High/Low. W	hen set to '1', th	ne INT pin is driv	en active HIGH	. When set to	'0', the INT pir	n is open drain	, active LOW		
P/L	Pulse/Level.	When set to '1'	the INT pin is d INT pin is drive	riven active (de	termined by H	I/L) by an inter	rupt source for	approximate		
SQ1, SQ0	SQ1, SQ0. T	hese bits are us	sed to decide the	e frequency of t	ne Square wa	ve on the INT				
. , - = 3	(0, 0) - 1 Hz (0, 1) - 512 H (1, 0) - 4096 (1, 1) - 32768	Hz	e trequency outp	out for each con	ibination of (S	Q1, 5Q0):		en SQWE bit i		
	(0, 0) - 1 Hz (0, 1) - 512 H (1, 0) - 4096	lz Hz	e trequency out	Alarm	,	, SQU):		en SQWE bit i		
	(0, 0) - 1 Hz (0, 1) - 512 H (1, 0) - 4096	lz Hz	e trequency outp		,	D2	D1	en SQWE bit i		
0x05	(0, 0) - 1 Hz (0, 1) - 512 H (1, 0) - 4096 (1, 1) - 32768	Hz Hz 8 Hz	. ,	Alarm D4	· Day	D2	D1 m date			
	(0, 0) - 1 Hz (0, 1) - 512 H (1, 0) - 4096 (1, 1) - 32766 D7	Hz Hz 8 Hz D6	D5	Alarm D4 rm date	- Day D3	D2 Aları	m date	D0		
	(0, 0) - 1 Hz (0, 1) - 512 H (1, 0) - 4096 (1, 1) - 32766 D7 M Contains the	Hz Hz B Hz D6 0 alarm value for this bit is set to	D5 10s ala	Alarm D4 rm date month and the	Day D3 mask bit to se	D2 Alari	n date t the date valu	D0		
0x05	(0, 0) - 1 Hz (0, 1) - 512 H (1, 0) - 4096 (1, 1) - 32766 D7 M Contains the Match. Wher	Hz Hz B Hz D6 0 alarm value for this bit is set to	D5 10s alar	Alarm D4 rm date month and the	D3 mask bit to se alarm match.	D2 Alari	n date t the date valu	D0		
0x05	(0, 0) - 1 Hz (0, 1) - 512 H (1, 0) - 4096 (1, 1) - 32766 D7 M Contains the Match. Wher	Hz Hz B Hz D6 0 alarm value for this bit is set to	D5 10s alar	Alarm D4 rm date month and the rule is used in the	D3 mask bit to se alarm match.	D2 Alari	n date t the date valu	D0		
0x05	(0, 0) - 1 Hz (0, 1) - 512 H (1, 0) - 4096 (1, 1) - 32766 D7 M Contains the Match. Wher to ignore the	D6 0 alarm value for this bit is set to date value.	D5 10s alar the date of the '0', the date value	Alarm D4 rm date month and the rue is used in the Alarm - D4	Day D3 mask bit to se alarm match.	D2 Alari lect or deselect Setting this bit	m date t the date valu to '1' causes th	D0 e. ne match circu		
0x05	(0, 0) - 1 Hz (0, 1) - 512 H (1, 0) - 4096 (1, 1) - 32766 D7 M Contains the Match. Wher to ignore the	D6 O alarm value for this bit is set to date value. D6 O	D5 10s alar the date of the '0', the date value	Alarm D4 rm date month and the rule is used in the Alarm - D4 m hours	D3 mask bit to se alarm match. Hours D3	D2 Alarri lect or deselect Setting this bit D2 Alarri	m date It the date valu to '1' causes the	D0 e. ne match circ		

 Table 12. Register Map Detail (continued)

Register	-								
				Alarm -	Minutes				
002	D7	D6	D5	D4	D3	D2	D1	D0	
0x03	M	,	0s alarm minu	tes		Alarm	minutes		
	Contains the	alarm value for	the minutes a	nd the mask bit	to select or de	select the minu	ıtes value.		
М		Natch. When this bit is set to '0', the minutes value is used in the alarm match. Setting this bit to '1' causes the match ircuit to ignore the minutes value.							
				Alarm - S	Seconds				
	D7	D6	D5	D4	D3	D2	D1	D0	
0x02	M	1	0s alarm secor	nds		Alarm	seconds		
	Contains the	alarm value for	the seconds a	nd the mask bit	to select or de	select the sec	onds' value.		
M		n this bit is set to ore the seconds		ds value is used	in the alarm m	atch. Setting t	his bit to '1' cau	uses the mato	
				Time Keepin	g - Centuries				
0x01	D7	D6	D5	D4	D3	D2	D1	D0	
		10s c	enturies			Cer	nturies		
	Contains the contains the	BCD value of oupper digit and	centuries. Lowe operates from	er nibble contain 0 to 9. The rang	s the lower dig le for the regis	it and operates ter is 0-99 cen	s from 0 to 9; u turies.	pper nibble	
				Fla	gs				
0x00	D7	D6	D5	D4	D3	D2	D1	D0	
	WDF	AF	PF	OSCF	BPF	CAL	W	R	
WDF				set to '1' when the			to reach 0 with	out being res	
AF				rhen the time an lags register is r			ed in the alarm	registers with	
PF		lag. This read ogs register is re		'1' when power	falls below the	power fail thre	eshold V _{SWITCI}	_H . It is cleared	
OSCF	indicates that cleared interi	t RTČ backup p	ower failed and b. The user mu	the oscillator is d clock value is st check for this t _{RTCp} time.	no longer valid	. This bit survi	ves power cycl	e and is neve	
BPF	condition is donly until a do	letermined by th	ne voltage fallin of the back-up	r-up if the backu g below their res voltage (V _{DR}).	spective minim	um specified v	oltage. BPF ca	n hold the dat	
CAL				square wave is SQ0/SQ1 and o					
W	alarm registe the RTC regi	ers, calibration r sters to be tran	egister, interrup sferred to the ti	es updates of that register and flate me keeping cout on power-up.	ags register. Se	etting the 'W' b	it to '0' causes	the contents	
R	Read Enable the reading p	: Setting 'R' bit	to '1', stops clo- bit to '0' to resi	ck updates to us ume clock upda					

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. These user guidelines are not tested. Storage temperature-65 °C to +150 °C Maximum accumulated storage time At 150 °C ambient temperature 1000 h At 85 °C ambient temperature 20 Years Ambient temperature with Supply voltage on V_{CC} relative to V_{SS} CY14C512PA:-0.5 V to +3.1 V CY14B512PA:-0.5 V to +4.1 V CY14E512PA:-0.5 V to +7.0 V DC voltage applied to outputs in High Z state-0.5 V to V_{CC} + 0.5 V Input voltage–0.5 V to V_{CC} + 0.5 V

Transient voltage (<20 ns) on any pin to ground potential–2.0 V to V_{CC} + 2.0 V
Package power dissipation capability (T _A = 25 °C)
Surface mount lead soldering temperature (3 seconds)+260 °C
DC output current (1 output at a time, 1s duration) 15 mA
Static discharge voltage (per MIL-STD-883, Method 3015)> 2001 V
Latch-up current > 140 mA

Operating Range

Device	Range	Ambient Temperature	V _{cc}
CY14C512PA	Industrial	–40 °C to +85 °C	2.4 V to 2.6 V
CY14B512PA			2.7 V to 3.6 V
CY14E512PA			4.5 V to 5.5 V

DC Electrical Characteristics

Over the Operating Range

Parameter	Description	Test Cond	itions	Min	Typ ^[8]	Max	Unit
V_{CC}	Power supply		CY14C512PA	2.4	2.5	2.6	V
			CY14B512PA	2.7	3.0	3.6	V
			CY14E512PA	4.5	5.0	5.5	V
I _{CC1}	Average V _{CC} current	f _{SCK} = 40 MHz;	CY14C512PA	_	_	3	mA
		Values obtained	CY14B512PA	-	_		
		without output loads (I _{OUT} = 0 mA)	CY14E512PA	-	_	4	mA
		f _{SCK} = 104 MHz; Val without output loads	ues obtained (I _{OUT} = 0 mA)	-	_	10	mA
I _{CC2}	Average V _{CC} current during STORE	All inputs don't care, Average current for o	V _{CC} = max duration t _{STORE}	-	_	3	mA
I _{CC3}	Average V_{CC} current $f_{SCK} = 1$ MHz; $V_{CC} = V_{CC(Typ)}$, 25 °C		All inputs cycling at CMOS levels. Values obtained without output			1	mA
I _{CC4}	Average V _{CAP} current during AutoStore cycle	All inputs don't care. current for duration t		-	_	3	mA
I _{SB}	V _{CC} standby current	$CS \ge (V_{CC} - 0.2 \text{ V}).$ $V_{IN} \le 0.2 \text{ V}$ or $\ge (V_{CC})$ bit set to '0'. Standby after nonvolatile cycl Inputs are static. f_{SC}	current level e is complete.	-	-	250	μΑ
I _{ZZ}	Sleep mode current	t _{SLEEP} time after SLE is registered. All inpu and configured at CN	uts are static	_	-	8	μА
I _{IX} ^[9]	Input leakage current (except HSB)			-1	_	+1	μА
	Input leakage current (for HSB)			-100	_	+1	μА
I _{OZ}	Off state output Leakage current			-1	_	+1	μА

Notes

Typi<u>cal val</u>ues are at 25 °C, V_{CC} = V_{CC} (Typ). Not 100% tested.
 The HSB pin has I_{OUT} = -2 μA for V_{OH} of 2.4 V when both active HIGH and LOW drivers are disabled. When they are enabled standard V_{OH} and V_{OL} are valid. This parameter is characterized but not tested.

DC Electrical Characteristics (continued)

Over the Operating Range

Parameter	Description	Test Cond	itions	Min	Typ [8]	Max	Unit
V _{IH}	Input HIGH voltage		CY14C512PA	1.7	_	V _{CC} + 0.5	V
			CY14B512PA	2.0	_	V _{CC} + 0.5	V
			CY14E512PA				
V _{IL}	Input LOW voltage		CY14C512PA	$V_{ss} - 0.5$	-	0.7	V
			CY14B512PA	$V_{ss} - 0.5$	-	0.8	V
			CY14E512PA				
V _{OH}	Output HIGH voltage	$I_{OUT} = -1 \text{ mA}$	CY14C512PA	2.0	-	-	V
		$I_{OUT} = -2 \text{ mA}$	CY14B512PA	2.4	-	-	V
			CY14E512PA	V _{CC} – 0.4	-	_	
V _{OL}	Output LOW voltage	I _{OUT} = 2 mA	CY14C512PA	-	_	0.4	V
		I _{OUT} = 4 mA	CY14B512PA	_	-	0.4	V
			CY14E512PA				
$V_{CAP}^{[10]}$	Storage capacitor	Between V _{CAP} pin	CY14C512PA	170	220	270	μF
		and V _{SS}	CY14B512PA	42	47	180	μF
			CY14E512PA				
V _{VCAP} [11, 12]	Maximum voltage driven on V _{CAP}	V _{CC} = Max	CY14C512PA	_	_	V _{CC}	V
	pin by the device		CY14B512PA				
			CY14E512PA	_	-	V _{CC} - 0.5	V

Data Retention and Endurance

Over the Operating Range

Parameter	Description	Min	Unit
DATA _R	Data retention	20	Years
NV _C	Nonvolatile STORE operations	1,000	K

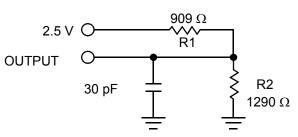
Capacitance

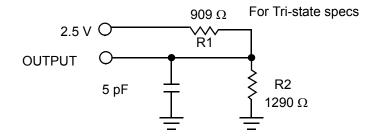
Parameter [12]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = V_{CC(Typ)}$	7	pF
C _{OUT}	Output pin capacitance		7	pF

Thermal Resistance

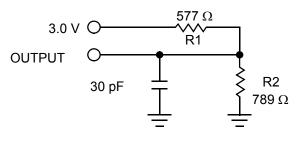
Parameter [12]	Description	Test Conditions	16-pin SOIC	Unit
- JA		Test conditions follow standard test methods and procedures for measuring thermal impedance, per	56.68	°C/W
- 30	Thermal resistance (junction to case)	EIA/JESD51.	32.11	°C/W

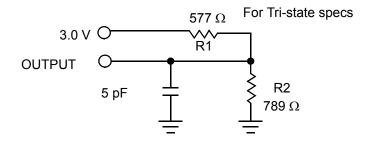
 ^{10.} Min V_{CAP} value guarantees that there is a sufficient charge available to complete a successful AutoStore operation. Max V_{CAP} value guarantees that the capacitor on V_{CAP} is charged to a minimum voltage during a Power-Up RECALL cycle so that an immediate power-down cycle can complete a successful AutoStore. Therefore it is always recommended to use a capacitor within the specified min and max limits. Refer application note AN43593 for more details on V_{CAP} options.
 11. Maximum voltage on V_{CAP} pin (V_{VCAP}) is provided for guidance when choosing the V_{CAP} capacitor. The voltage rating of the V_{CAP} capacitor across the operating temperature range should be higher than the V_{VCAP} voltage.

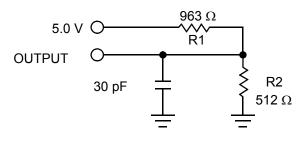

^{12.} These parameters are guaranteed by design and are not tested.

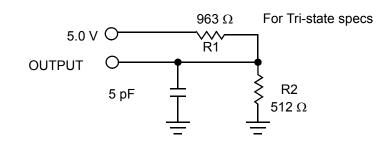


AC Test Loads and Waveforms


For 2.5 V (CY14C512PA):


Figure 33. AC Test Loads and Waveforms




For 3 V (CY14B512PA):

For 5 V (CY14E512PA):

AC Test Conditions

Description	CY14C512PA	CY14B512PA	CY14E512PA
Input pulse levels	0 V to 2.5 V	0 V to 3 V	0 V to 3 V
Input rise and fall times (10%–90%)	≤ 3 ns	<u><</u> 3 ns	<u><</u> 3 ns
Input and output timing reference levels	1.25 V	1.5 V	1.5 V

RTC Characteristics

Over the Operating Range

Parameter	Description			Typ [13]	Max	Units
V _{RTCbat}	RTC battery pin voltage		1.8	3.0	3.6	V
I _{BAK} [14]	RTC backup current	T _A (Min)	_	-	0.45	μA
		25 °C	_	0.45	_	μA
		T _A (Max)	_	_	0.60	μA
V _{RTCcap} ^[15]	RTC capacitor pin voltage	T _A (Min)	1.6	-	3.6	V
		25 °C	1.5	3.0	3.6	V
		T _A (Max)	1.4	_	3.6	V
tOCS	RTC oscillator time to start		_	1	2	sec
$V_{BAKFAIL}$	Backup failure threshold			_	2	V
V_{DR}	BPF flag retention voltage		1.6	_	_	V
t _{RTCp}	RTC processing time from end of 'W' bit set to '0'		_	_	1	ms
R _{BKCHG}	RTC backup capacitor charge current limiting resistor		350	_	850	Ω

AC Switching Characteristics

Over the Operating Range

Parame	eters [16] Description		25 (RDRTC Ins	25 MHz ORTC Instruction) [17]		40 MHz		104 MHz	
Cypress Parameter	Alt. Parameter	Description	Min	Max	Min	Max	Min	Max	Unit
f _{SCK}	f _{SCK}	Clock frequency, SCK	_	25	-	40	_	104	MHz
t _{CL} ^[18]	t_{WL}	Clock pulse width LOW	18	-	11	_	4.5	-	ns
t _{CH} ^[18]	t _{WH}	Clock pulse width HIGH	18	_	11	-	4.5	-	ns
t _{CS}	t _{CE}	CS HIGH time	20	_	20	-	20	-	ns
t _{CSS}	t _{CES}	CS setup time	10	_	10	_	5	_	ns
t _{CSH}	t _{CEH}	CS hold time	10	_	10	_	5	_	ns
t _{SD}	t _{SU}	Data in setup time	5	_	5	_	4	_	ns
t _{HD}	t _H	Data in hold time	5	_	5	_	3	_	ns
t _{HH}	t_{HD}	HOLD hold time	5	_	5	_	3	_	ns
t _{SH}	t _{CD}	HOLD setup time	5	_	5	_	3	_	ns
t _{CO}	t _V	Output valid	_	15	_	9	_	8	ns
t _{HHZ} ^[18]	t_{HZ}	HOLD to output high Z	_	15	_	15	_	8	ns
t _{HLZ} ^[18]	t_{LZ}	HOLD to output low Z	_	15	_	15	_	8	ns
t _{OH}	t _{HO}	Output hold time	0	_	0	_	0	-	ns
t _{HZCS} ^[18]	t _{DIS}	Output disable time	_	25	_	20	_	8	ns

Notes

- 13. Typical values are at 25 °C, V_{CC} = V_{CC(Typ)}. Not 100% tested.

 14. Current drawn from either V_{RTCcap} or V_{RTCbat} when V_{CC} < V_{SWITCH}.

 15. If V_{RTCcap} > 0.5 V or if no capacitor is connected to V_{RTCcap} pin, the oscillator will start in t_{OCS} time. If a backup capacitor is connected and V_{RTCcap} < 0.5 V, the capacitor must be allowed to charge to 0.5 V for oscillator to start.

 16. Test conditions assume signal transition time of 3 ns or less, timing reference levels of V_{CC}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} and load capacitance shown in Figure 33.

 17. Applicable for RTC opcode cycles, address cycles and data out cycles.
- 18. These parameters are guaranteed by design and are not tested.

Switching Waveforms

Figure 34. Synchronous Data Timing (Mode 0)

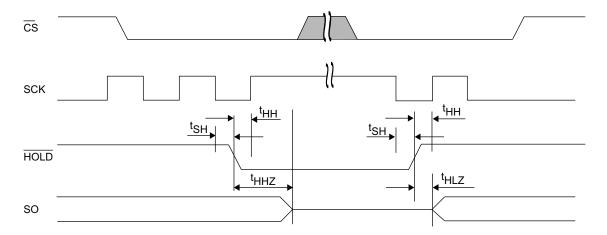



Figure 35. HOLD Timing

AutoStore or Power-Up RECALL

Over the Operating Range

Doromotor	Description	CY14X	(512PA	I Init	
Parameter	Description			Max	Unit
t _{FA} ^[19]	Power-Up RECALL duration	CY14C512PA	_	40	ms
		CY14B512PA	_	20	ms
		CY14E512PA	=	20	ms
t _{STORE} [20]	STORE cycle duration		=	8	ms
t _{DELAY} [21]	Time allowed to complete SRAM write cycle		_	25	ns
V _{SWITCH}	Low voltage trigger level	CY14C512PA	_	2.35	V
		CY14B512PA	_	2.65	V
		CY14E512PA	_	4.40	V
t _{VCCRISE} ^[22]	V _{CC} rise time		150	_	μs
V _{HDIS} ^[22]	HSB output disable voltage		_	1.9	V
t _{LZHSB} ^[22]	HSB high to nvSRAM active time		_	5	μs
t _{HHHD} ^[22]	HSB HIGH active time		_	500	ns
t _{WAKE}	Time for nvSRAM to wake up from SLEEP mode	CY14C512PA	_	40	ms
		CY14B512PA	_	20	ms
		CY14E512PA	_	20	ms
t _{SLEEP}	Time to enter into SLEEP mode after Issuing SLEEP instruction		_	8	ms
t _{SB} ^[22]	Time to enter into standby mode after CS going HIGH		-	100	μs

Switching Waveforms

Figure 36. AutoStore or Power-Up RECALL [23] V_{CC} V_{SWITCH} V_{HDIS} Note²⁰ Note 20 t_{VCCRISE} tSTORE t_{STORE} t_{HHHD} Note 23 23 t_{HHHD} Note HSB OUT t_{DELAY} t_{LZHSB} t_{LZHSB} AutoStore t_{DELAY} POWER-UP **RECALL** t_{FA} t_{FA} Read & Write Inhibited (RWI) POWER-UP POWER-UP Read & Write **BROWN** Read & Write **POWER DOWN RECALL** OUT **RECALL** AutoStore AutoStore

Notes

- 19. t_{FA} starts from the time V_{CC} rises above V_{SWITCH}.
 20. If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware STORE takes place.
 21. On a Hardware STORE and AutoStore initiation, SRAM write operation continues to be enabled for time t_{DELAY}.
 22. These parameters are guaranteed by design and are not tested.
 23. Read and Write cycles are ignored during STORE, RECALL, and while V_{CC} is below V_{SWITCH}.
 24. During power-up and power-down, HSB glitches when HSB pin is pulled up through an external resistor.

Software Controlled STORE/RECALL Cycles

Over the Operating Range

Parameter	Description	CY14X	Unit	
Parameter	Description	Min	Max	Oilit
t _{RECALL}	RECALL duration	_	600	μs
t _{SS} ^[25, 26]	Soft sequence processing time	_	500	μs

Switching Waveforms

Figure 37. Software STORE Cycle [26]

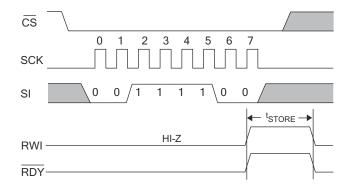


Figure 38. Software RECALL Cycle [26]

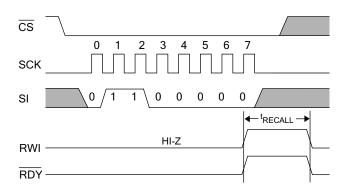


Figure 39. AutoStore Enable Cycle

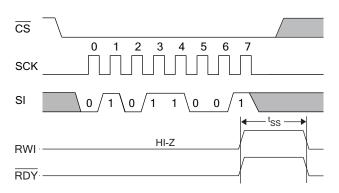
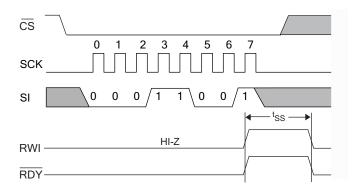



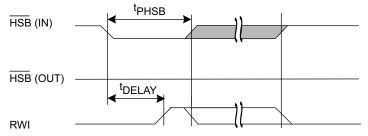
Figure 40. AutoStore Disable Cycle

Notes

25. This is the amount of time it takes to take action on a soft sequence command. Vcc power must remain HIGH to effectively register command. 26. Commands such as STORE and RECALL lock out I/O until operation is complete which further increases this time. See the specific command.

Hardware STORE Cycle

Over the Operating Range


Parameter	arameter Description		CY14X512PA		
raiametei	Description	Min	Max	Unit	
t _{PHSB}	Hardware STORE pulse width	15	-	ns	

Switching Waveforms

Figure 41. Hardware STORE Cycle [27]

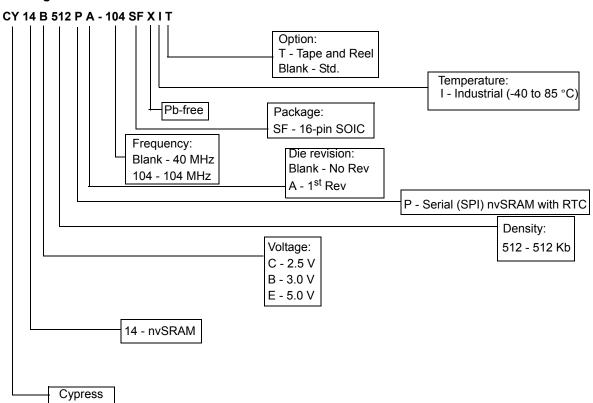
Write Latch set HSB (IN) tstore therefore therefore

Write Latch not set

 $\overline{\text{HSB}}$ pin is driven HIGH to V_{CC} only by Internal 100 K Ω resistor, HSB driver is disabled SRAM is disabled as long as HSB (IN) is driven LOW.

Note

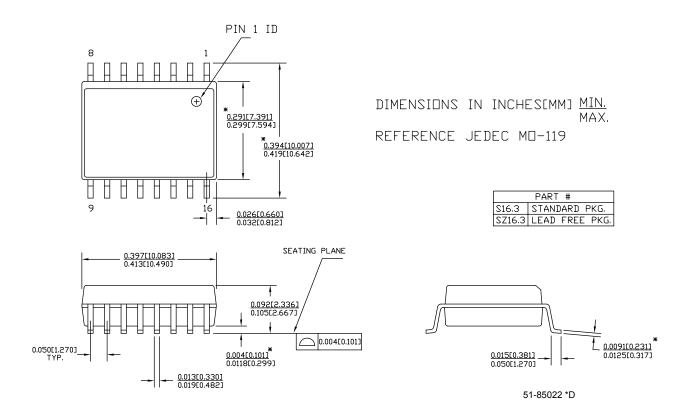
27. If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware STORE takes place.



Ordering Information

Ordering Code	Package Diagram	Package Type	Operating Range
CY14B512PA-SFXIT	51-85022	16-pin SOIC, 40 MHz	Industrial
CY14B512PA-SFXI			

All the above parts are Pb-free.


Ordering Code Definitions

Package Diagram

Figure 42. 16-pin SOIC (0.413 × 0.299 × 0.0932 Inches) Package Outline, 51-85022

Acronyms

Acronym	Description
BCD	binary coded decimal
СРНА	clock phase
CPOL	clock polarity
CMOS	complementary metal oxide semiconductor
CRC	cyclic redundancy check
EEPROM	electrically erasable programmable read-only memory
EIA	electronic industries alliance
I/O	input/output
JEDEC	joint electron devices engineering council
LSB	least significant bit
MSB	most significant bit
nvSRAM	non-volatile static random access memory
OSCF	oscillator fail flag
RWI	read and write inhibit
RTC	real time clock
RoHS	restriction of hazardous substances
SNL	serial number lock
SPI	serial peripheral interface
SONOS	silicon-oxide-nitride-oxide semiconductor
SOIC	small outline integrated circuit
SRAM	static random access memory

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
F	farad
Hz	hertz
kHz	kilohertz
kΩ	kilohm
MHz	megahertz
μΑ	microampere
mA	milliampere
μF	microfarad
μS	microsecond
ms	millisecond
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
ppm	parts per million
sec	second
V	volt
W	watt

Document History Page

REV.	ECN NO.	Submission Date	Orig. of Change	Description of Change
**	3096371	11/29/2010	GVCH	New data sheet.
*A	3217968	04/06/2011	GVCH	Updated AutoStore Operation (description). <u>Updated Hardware STORE and HSB pin Operation</u> (Added more clarity or HSB pin operation). Updated Table 3 (description of Bit 4–5). Updated Setting the Clock (description). Updated Figure 31 (changed C1, C2 values to 12 pF, 69 pF from 10 pF, 67 pF respectively). Updated Register Map Detail table ('W' bit description). Updated Maximum Ratings. Updated DC Electrical Characteristics (Added I _{CC1} parameter for 104 MHz frequency). Updated RTC Characteristics (Added t _{RTCp} parameter to the table). Updated AutoStore or Power-Up RECALL (t _{LZHSB} parameter description) Updated in new template.
*B	3249424	05/05/2011	GVCH	Changed status from Preliminary to Final.
*C	3388966	12/19/2011	GVCH	Updated Pin Definitions (Added Note 2 and referred the same note in V_{RTCcap} , V_{RTCbat} , X_{out} , X_{in} , and INT/SQW pins). Updated SPI Operating Features (Updated Power-Up (description)). Updated Special Instructions (Updated SLEEP Instruction (description), updated Figure 23). Updated Device ID (Updated Table 7 (Added Device ID (4 bytes) column)) Updated Real Time Clock Operation (No change in description, added Note 3 and referred the same note in Figure 31). Updated DC Electrical Characteristics (Changed maximum value of I_{CC2} parameter from 2 mA to 3 mA, added Note 10 and referred the same note in V_{CAP} parameter). Updated RTC Characteristics (Included three conditions in I_{BAK} parameter namely T_A (Min), 25 °C, T_A (Max) respectively and changed the values accordingly, included three conditions in V_{RTCcap} parameter namely T_A (Min), 25 °C, T_A (Max) respectively and changed the values accordingly) Updated AC Switching Characteristics (Added Note 16 and referred the same note in Parameters column). Updated Package Diagram.
*D	3691141	07/24/2012	GVCH	Updated Real Time Clock Operation (description). Updated DC Electrical Characteristics (Added V _{VCAP} parameter and its details, added Note 11 and referred the same note in V _{VCAP} parameter, also referred Note 12 in V _{VCAP} parameter).

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive cypress.com/go/clocks lnterface cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/powerpsoc cypress.com/go/memory cypress.com/go/memory

Optical & Image Sensing cypress.com/go/image
PSoC cypress.com/go/psoc
Touch Sensing cypress.com/go/touch
USB Controllers cypress.com/go/USB
Wireless/RF cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2010-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.