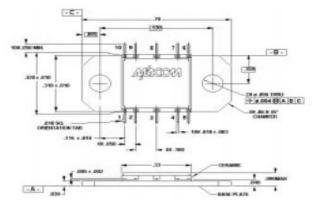


AM42-0041

GaAs MMIC VSAT Power Amplifier, 0.5W 14.0 - 14.5 GHz


Features

- High Linear Gain: 28 dB Typ.
- High Saturated Output Power: +28 dBm Typ.
- High Power Added Efficiency: 22% Typ.
- 50W Input/Output Broadband Matched
- High Performance Ceramic Bolt Down Package

Description

M/A-COM's AM42-0041 is a four-stage MMIC linear power amplifier in a ceramic bolt down style hermetic package. The AM42-0041 employs a fully matched chip with internally decoupled Gate and Drain bias networks. The AM42-0041 is designed to be operated from a constant current Drain supply. By varying the Gate bias voltage, the saturated output power performance of this device can be tailored for various applications. The AM42-0041 is ideally suited for use as an output stage or a driver, in applications for VSAT systems. This design is fully monolithic and requires a minimum of external components. M/A-COM's AM42-0041 is fabricated using a mature 0.5 micron MBE based GaAs MESFET process. The process features full passivation for increased performance and reliability. This product is 100% RF tested to ensure compliance to performance specifications.

CR-15

Notes: (unless otherwise specified)

- 1. Dimensions are in inches.
- 2. Tolerance: .XXX = ± 0.005 .XX = ± 0.010

Ordering Information

Part Number	Package		
AM42-0041	Ceramic Bolt Down Package		

Electrical Specifications: $T_A = +25^{\circ}C$, $V_{DD} = +8V$, V_{GG} adjusted for Ids = 500 mA, $Z_0 = 50\Omega$, F = 14.0 - 14.5 GHz

Parameter	Abbv.	Test Conditions	Units	Min.	Тур.	Max.
Linear Gain	G _L	P _{IN} ≤ -10 dBm	dB	27	28	_
Input VSWR	VSWR _{IN}	P _{IN} ≤ -10 dBm	_	_	2.5:1	2.7:1
Output VSWR	VSWR _{OUT}	P _{IN} ≤ -10 dBm	_	_	2.5:1	_
Saturated Output Power	P _{SAT}	P_{IN} = +3 dBm, I_{DD} = 500 mA Typ.	dBm	27.0	28.0	29.0
Output Power Flatness vs. Frequency	P _{SAT}	P_{IN} = +3 dBm, I_{DD} = 500 mA Typ.	dB	_	1.0	1.5
Output Power vs. Temperature (with respect to T _A = +25°C)	P _{SAT}	P_{IN} = +3 dBm, I_{DD} = 500 mA Typ. T_A = -40°C to 70°C	dB	_	±0.4	_
Noise Figure	NF	P _{IN} ≤ -10 dBm, I _{DD} = 500 mA Typ.	dB	_	7	_
Drain Bias Current	I _{DD}	P _{IN} = +3 dBm	mA	400	500	600
Gate Bias Voltage	V_{GG}	P_{IN} = +3 dBm, I_{DD} = 500 mA Typ.	V	-2.4	-1.0	-0.4
Gate Bias Current	I _{GG}	P_{IN} = +3 dBm, I_{DD} = 500 mA Typ.	mA	_	5	15
Thermal Resistance	θις	25°C Heat Sink	°C/W	_	9.5	_
Power Added Efficiency	PAE	P_{IN} = +3 dBm, I_{DD} = 500 mA Typ.	%	_	22	_

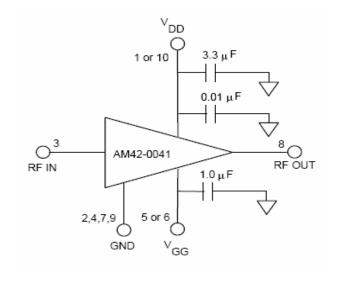
- M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

information.

AM42-0041 V2

GaAs MMIC VSAT Power Amplifier, 0.5W 14.0 - 14.5 GHz

Absolute Maximum Ratings 1,2,3,4


Parameter	Absolute Maximum
Input Power	+ 23 dBm
V_{DD}	+ 12 Volts
V_{GG}	-3 Volts
$V_{DD}\!\!-\!\!V_{GG}$	12 Volts
I _{ds}	1000 mA
Channel Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C

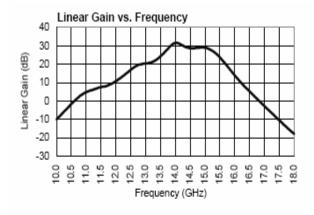
- 1. Operation of this device outside any of these limits may cause permanent damage.
- 2. Case Temperature (Tc) = +85°C.
- 3. Nominal bias is obtained by first connecting -2.4 volts to pin 5 or pin 6 ($V_{\rm GG}$), followed by connecting +8 volts to pin 1 or pin 10 ($V_{\rm DD}$). Note sequence. Adjust $V_{\rm GG}$ for a drain current of 500 mA typical.
- 4. RF ground and thermal interface is the flange (case bottom). Adequate heat sinking is required.
- 5. No dc bias voltage appears at the RF ports.
- 6. The dc resistance at the input and output ports is a short circuit. No voltage is allowed on these ports.
- 7. For optimum IP_3 performance, the V_{DD} bypass capacitors should be placed within 0.5 inches of the V_{DD} leads.

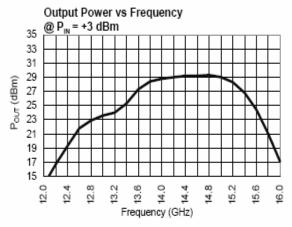
Pin Configuration

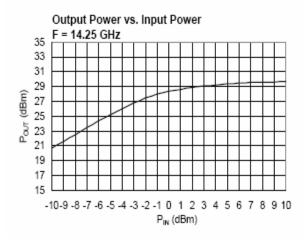
Pin No.	Pin Name	Description	
1	V_{DD}	Drain Supply	
2	GND	RF and DC Ground	
3	RF IN	RF Input	
4	GND	RF and DC Ground	
5	V_{GG}	Gate Supply	
6	V_{GG}	Gate Supply	
7	GND	RF and DC Ground	
8	RF OUT	RF Output	
9	GND	RF and DC Ground	
10	V_{DD}	Drain Supply	

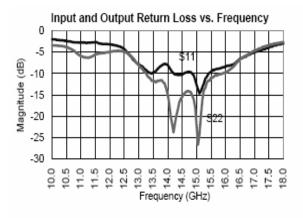
Typical Bias Configuration 3,4,7

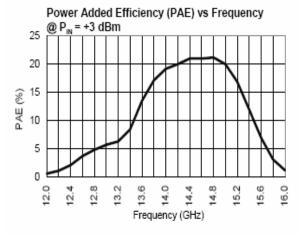
• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

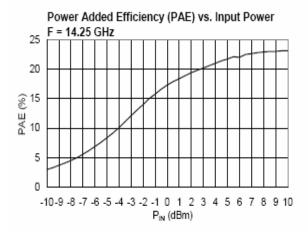

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298




GaAs MMIC VSAT Power Amplifier, 0.5W 14.0 - 14.5 GHz


AM42-0041 V2


Typical Performance @ +25°C



- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298