FEATURES - 8K x 8 Static RAM with Chip Select Powerdown, Output Enable - Auto-PowerdownTM Design - Advanced CMOS Technology - ☐ High Speed to 12 ns maximum - ☐ Low Power Operation Active: 425 mW typical at 25 ns Standby (typical): 400μW (L7C185) 200 μW (L7C185-L) - ☐ Data Retention at 2 V for Battery Backup Operation - ☐ DESC SMD No. 5962-38294 - Available 100% Screened to MIL-STD-883, Class B - ☐ Plug Compatible with IDT7164, Cypress CY7C185/186 - ☐ Package Styles Available: - 28-pin Plastic DIP - 28-pin Ceramic DIP - 28-pin Plastic SOJ - 28-pin Ceramic Flatpack - 28-pin Ceramic LCC - 32-pin Ceramic LCC #### DESCRIPTION The L7C185 is a high-performance, low-power CMOS static RAM. The storage circuitry is organized as 8,192 words by 8 bits per word. The 8 Data In and Data Out signals share I/O pins. These devices are available in four speeds with maximum access times from 12 ns to 25 ns. Inputs and outputs are TTL compatible. Operation is from a single +5 V power supply. Power consumption for the L7C185 is 425 mW (typical) at 25 ns. Dissipation drops to 60 mW/(typical) for the L7C185 and 50 mW/(typical) for the L7C185-L when the memory is deselected. Two standby modes are available. Proprietary Auto-PowerdownTM circuitry reduces gower consumption automatically during read or write accesses which are longer than the minimum access time, or when the memory is deselected. In addition data may be retained in mactive storage with a supply voltage as low as 2 V. The L7C185 and L7CL185-L consume only 30 μ W and 15 μ W (typical) respectively at 3 V, allowing effective battery backup operation. The L7C185 provides asynchronous (unclocked) operation with matching access and cycle times. Two Chip Enables (one active low) and a three-state I/O bus with a separate Output Enable control simplify the connection of several chips for increased storage capacity. Memory locations are specified on address pins 10 through A12. Reading from a designated location is accomplished by presenting an address and driving $\overline{CE1}$ and \overline{OE} LOW and CE2 and \overline{WE} HIGH. The data in the addressed memory location will then appear on the Data Out pins within one access time. The output pins stay in a high-impedance state when $\overline{CE1}$ or \overline{OE} is HIGH, or CE2 or \overline{WE} is LOW. Writing to an addressed location is accomplished when the active-low $\overline{\text{CE}_1}$ and $\overline{\text{WE}}$ inputs are both LOW, and CE2 is HIGH. Any of these signals may be used to terminate the write operation. Data In and Data Out signals have the same polarity. Latchup and static discharge protection are provided on-chip. The L7C185 can withstand an injection current of up to 200 mA on any pin without damage. | XIMUM RATINGS Above which useful life may be impaired (Notes 1 | 1, 2) | |--|-----------------| | Storage temperature | –65°C to +150°C | | Operating ambient temperature | –55°Cto +125°C | | Vcc supply voltage with respect to ground | 0.5 V to +7.0 V | | Input signal with respect to ground | 3.0 V to +7.0 V | | Signal applied to high impedance output | 3.0 V to +7.0 V | | Output current into low outputs | 25 mA | | Latchup current | > > 200 mA | | • | /_/ | | | haia | ratur | ire Ra | ange | (Ambi | ent) | | Su | pply | Volta | ge/ | | |---|------|-------|--------|-------|-------|------|--|--------------|---------------|-----------------|---------|--| | | | 0°0 | °C to | +70° | С | | | 4.5 | √ ≤ V | cc ≤ 🖔 | 5 K | and the state of t | | | _ | -40° |)°C to | o +85 | °C | | and the same of th | <u>/</u> 4,5 | VĶV | cc ≤ 5 | 5.5 X | | | - | _! | –55° | °C to | o +12 | 5°C | | | 4.5 | V≷W | ÇC ≤ 5 | 5.5 V ື | Market . | | | | 0°(| °C to | +70° | С | | > | 2.0 | V≤W | ç ∂ \≤ 5 | 5.5 V | | | | _ | -40° |)°C to | 0 +85 | °C / | | | 2.0 | V≤ V (| c∂ <i>\</i> ≤} | 5.5 V | | | | _ | -40° | o°C to | | °C _/ | | | 2.0 | V≤ V | , | 'cò⟨≤); | /co ≤ 5.5 V
/cc ≤ 5.5 V | | ELECTR | ICAL CHARACTERISTICS Ove | r Operating Conditions (Note 5) | | | | | |--------------|-----------------------------|--|------|--------|---------------------|------| | | | | | L7C185 | 5 | | | Symbol | Parameter | Test Condition | Min | Тур | Max | Unit | | V OH | Output High Voltage | Vcc = 4.5 V, 10H = -4.0 mA | 2.4 | | | V | | V OL | Output Low Voltage | IOL = 80 mA | | | 0.4 | V | | V iH | Input High Voltage | | 2.2 | | V CC
+0.5 | V | | V IL | Input Low Voltage | (Nete 3) | -0.5 | | 0.8 | V | | lix | Input Leakage Current | Ground ≤ V in ≤ V cc | -5 | | +5 | μА | | loz | Output Leakage Current | (Note 4) | -5 | | +5 | μΑ | | ICC2 | Vcc Current, TTL Inactive | (Note 7) | | 12 | 40 | mA | | Іссз | Noc-Gurrent, CMOS Standby | (Note 8) | | 80 | 2000 | μΑ | | ICC4 | Vcc Current, Data Retention | V CC = 3.0 V (Note 9) | | 10 | 150 | μΑ | | CIN | nput Capacitance | Ambient Temp = 25°C, V cc = 5.0 V | | | 7 | pF | | C OUT | Output Capacitance | Test Frequency = 1 MHz (Note 10) | | | 8 | pF | | | | | | L | 7 C 185- | | | |--------|---------------------|----------------|-----|-----|-----------------|-----|------| | Symbol | Parameter | Test Condition | 20 | 15 | 12 | 10 | Unit | | ICC1 | Vcc Current, Active | (Note 6) | 125 | 130 | 140 | 150 | mA | ## 8K x 8 Static RAM (Low Power) #### SWITCHING CHARACTERISTICS Over Operating Range | | | | | | L7C | 185– | | | | |---------------|--|-------------|--|-----|-----|------|----------|-----|-----| | | | 20 |) | 1: | 5 | 1 | 2 | 1 | 0 | | Symbol | Parameter | Min | Max | Min | Max | Min | Max | Min | Max | | t avav | Read Cycle Time | 20 | | 15 | | 12 | | 10 | | | t AVQV | Address Valid to Output Valid (Notes 13, 14) | | 20 | | 15 | | 12 | | 10 | | t axqx | Address Change to Output Change | 3 | | 3 | rr | 3 | | 3 | | | t CLQV | Chip Enable Low to Output Valid (Notes 13, 15) | | 20 | | 15 | | 12 | | 10 | | t CLQZ | Chip Enable Low to Output Low Z (Notes 20, 21) | 3 | | 3 * | | 3 / | | 3 | | | t CHQZ | Chip Enable High to Output High Z (Notes 20, 21) | | 8 | | 4 | | 3 | | 3 | | t OLQV | Output Enable Low to Output Valid | | 1,0 | | 7 | | 6 | | 5 | | t olqz | Output Enable Low to Output Low Z (Notes 20, 21) | 0 / | | 8 | | 0 | | 0 | | | t ohqz | Output Enable High to Output High Z (Notes 20, 21) | $^{\prime}$ | 8 | 1 | 4 | | 3 | | 3 | | t PU | Input Transition to Power Up (Notes 10, 19) | 0 | | 0 | | 0 | | 0 | | | t PD | Power Up to Power Down (Notes 10, 19) | | /2g | | 15 | | 12 | | 10 | | t CHVL | Chip Enable High to Data Retention (Note 10) | Q. | ale de la constante cons | 0 | | 0 | | 0 | | ## 8K x 8 Static RAM (Low Power) ### SWITCHING CHARACTERISTICS Over Operating Range | WRITE | Write Cycle Notes 5, 11, 12, 22, 23, 24 (ns) | | | | | | | | | |---------------|--|-----|---|-----|-----|--|-----|-----|-----| | | | | | | L7C | 185– | | | | | | | | 20 | 1 | 5 | 1 | 12 | 1 | 0 | | Symbol | Parameter | Min | Max | Min | Max | Min | Max | Min | Max | | t avav | Write Cycle Time | 20 | | 15 | | 12 | | 10 | | | t CLEW | Chip Enable Low to End of Write Cycle | 15 | | 12 | | 12 | | 9 | | | t avbw | Address Valid to Beginning of Write Cycle | 0 | | 0 | | 2 | | 0 | | | t avew | Address Valid to End of Write Cycle | 15 | | 12 | | 10 | | 9 | | | t EWAX | End of Write Cycle to Address Change | 0 | | 0 | | 0 / | | 0 | | | twlew | Write Enable Low to End of Write Cycle | 15 | | 41 | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | 8" | > | | t DVEW | Data Valid to End of Write Cycle | 10 | J. A. | 8 | 1 | 6 | | B | | | t EWDX | End of Write Cycle to Data Change | 0 | | 10 | | 0 | | 0 | | | t whqz | Write Enable High to Output Low Z (Notes 20, 21) | | V. | 13/ | | 3 | No. | 3 | | | t wLQZ | Write Enable Low to Output High Z (Notes 20, 21) | | 7 | | 5 | | 5 | | 5 | ### 8K x 8 Static RAM (Low Power) #### NOTES - 1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device. - 2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values. - 3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at $-0.6~\rm V$. A current in excess of $100~\rm mA$ is required to reach $-2.0~\rm V$. The device can withstand indefinite operation with inputs as low as $-3~\rm V$ subject only to power dissipation and bond wire fusing constraints. - 4. Tested with GND \leq **V**OUT \leq **V**CC. The device is disabled, i.e., $\overline{CE1} = VCC$, CE2 = GND. - 5. A series of normalized curves is available to supply the designer with typical DC and AC parametric information for Logic Devices Static RAMs. These curves may be used to determine device characteristics at various temperatures and voltage levels. - 6. Tested with all address and data inputs changing at the maximum cycle rate. The device is continuously enabled for writing, i.e., $\overline{\text{CE1}} \leq \text{VIL}$, $\text{CE2} \geq \text{VIH}$, $\overline{\text{WE}} \leq \text{VIL}$. Input pulse levels are 0 to 3.0 V. - 7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\text{CE}}_1 \geq \text{Vii}_{\text{A}} \subset \text{Vii}_{\text{A}}$ - 8. Tested with outputs open and all address and data inputs stable. The device is continuously disabled, i.e., E1 = VCC, CE2 = GND, input levels are within 0.2 V of VCC or GND. - 9. Data etention operation equires that VCC never drop below 2.0 V. $\overline{CE1}$ must be $\geq VCC 0.2$ or CE2 must be ≤ 0.2 V. All other inputs must meet $VIN \geq VCC 0.2$ V or $VIN \leq 0.2$ V to ensure first powerdown. For low power version (if applicable), this requirement applies only to $\overline{CE1}$, CE2, and \overline{WE} ; there are no restrictions on data and address. - 10. These parameters are guaranteed but not 100% tested. - 11. Test conditions assume input transition times of less than 3 ns, reference levels of 1.5 V, output loading for specified IOL and IOH plus 30 pF (Fig. 1a), and input pulse levels of 0 to 3.0 V (Fig. 2). - 12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. For example, tavew is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time. - 13. $\overline{\text{WE}}$ is high for the read cycle. - 14. The chip is continuously selected (CE1 low, CE2 high). - 15. All address lines are valid prior to or coincident-with the CE1 and CE2 transition to active. - 16. The internal write cycle of the memory is defined by the overlap of CE1 and CE2 active and WE low. All three signals must be active to initiate a write. Any signal can terminate a write by soing inactive. The address data, and control input setup and hold times should be referenced to the signal that becomes active last or becomes inactive first. - The first specific of the second of the latter of CE1 and CE2 going active, the output remains in a high impedance state. - 18. If CE1 and CE2 goes inactive before or concurrent with WE going high, the output remains in a high impedance state. - 19:--Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions: - a. Rising edge of $\overline{CE2}$ ($\overline{CE1}$ active) or the falling edge of $\overline{CE1}$ ($\overline{CE2}$ active). - b. Falling edge of \overline{WE} ($\overline{CE1}$, CE2 active). - c. Transition on any address line $(\overline{CE_1}, CE_2)$ active). - d. Transition on any data line ($\overline{\text{CE}}_1$, CE₂, and $\overline{\text{WE}}$ active). The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width. - 20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device. - 21. Transition is measured ±200 mV from steady state voltage with specified loading in Fig. 1b. This parameter is sampled and not 100% tested. - 22. All address timings are referenced from the last valid address line to the first transitioning address line. - 23. CE1, CE2, or WE must be inactive during address transitions. - 24. This product is a very high speed elevice and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A 0.01 µF high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used. | | ORDERING INFORMA | ATION | | | |---|--|--|--|--| | | 28-pin — 0.3" wide | | 28-pin — 0.6" wide | | | | NC | 28 | NC | 28 | | | | | | | | Sneed | Plastic DIP | Ceramic DIP | Plastic DIP | Ceramic DIP | | Speed | (P10) | (C5) | Plastic DIP (P9) | Ceramic DIP
(C6) | | | (Р10)
0°C to +70°C — @ммелс | (C5) | (P9) | (C6) | | 15 ns | (P10) 0°C to +70°C — @MMERC L7C185PC15* | (C5)
A SCREENING
£7C185\$C15* | (P9) L7C185NC15* | (C6)
L7C185lC15* | | 15 ns
12 ns | (Р10)
0°C to +70°C — @ммелс | (C5)
AL SCREENING
L7C185&C15* | (P9) | (C6) | | 15 ns
12 ns | (P10) 0°C to +70°C — @mmercy L7C185PC15* L7C185PC18* | (C5) AL SCREENING L7C1850C15* L7C1850C12* L7C1850C10* | (P9) L7C185NC15* L7C185NC12* | (C6) L7C185IC15* L7C185IC12* | | 15 ns
12 ns
10 ns | (P10) 0°C to +70°C — @mmerca L7C185PC15* L7C185PC12* L7C185PC10* -40°C to +85°C — @mmer | (C5)
AL SCREENING
L7C1850C15*
L7C1850G12* | (P9) L7C185NC15* L7C185NC12* L7C185NC10* | (C6) L7C185IC15* L7C185IC12* | | 15 ns
12 ns
10 ns | (P10) 0°C to +70°C — @MMERCA L7C185PC15* L7C185PC10* -40°C to +85°C — @MMEE L7C185P155* | (C5) AL SCREENING L7C1850C15* L7C1850C12* L7C1850C10* | (P9) L7C185NC15* L7C185NC12* L7C185NC10* L7C185NI15* | (C6) L7C185IC15* L7C185IC12* | | 15 ns
12 ns
10 ns
15 ns
12 ns | (P10) 0°C to +70°C — @MMERCA L7C185PC15* L7C185PC10* -40°C to +85°C — @MMEER L7C185PN5* L7C185PN5* | (C5) AL SCREENING L7C1850C15* L7C1850C12* L7C1850C10* | (P9) L7C185NC15* L7C185NC12* L7C185NC10* L7C185NI15* L7C185NI12* | (C6) L7C185IC15* L7C185IC12* | | 15 ns
12 ns
10 ns
15 ns
12 ns
12 ns
10 ns | (P10) 0°C to +70°C — @MMERCA L7C185PC15* L7C185PC16* -40°C to +85°C — @MMERCA L7C185PN5* L7C185PN5* L7C185PN12* L7C185PN12* | (C5) AL SCREENING L7C185CC15* L7C185CC10* COA: SCREENING | (P9) L7C185NC15* L7C185NC12* L7C185NC10* L7C185NI15* | (C6) L7C185IC15* L7C185IC12* | | 15 ns
12 ns
10 ns
15 ns
12 ns
10 ns | (P10) 0°C to +70°C — @MMERCA L7C185PC15* L7C185PC10* -40°C to +85°C — @MMERCA L7C185PN5* L7C185PN5* L7C185PN12* L7C185PN12* | (C5) AL SCREENING L7C185CC15* L7C185CC10* ICIA: SCREENING ERCIAL SCREENING | (P9) L7C185NC15* L7C185NC12* L7C185NC10* L7C185NI15* L7C185NI12* | (C6) L7C185IC15* L7C185IC12* L7C185IC10* | | 15 ns
12 ns
10 ns
15 ns
12 ns
10 ns | (P10) 0°C to +70°C — @MMERCA L7C185PC15* L7C185PC16* -40°C to +85°C — @MMERCA L7C185PN5* L7C185PN5* L7C185PN12* L7C185PN12* | (C5) AL SCREENING L7C185CC15* L7C185CC10* RCIA: SCREENING ERCIAL SCREENING L7C185CM20* | (P9) L7C185NC15* L7C185NC12* L7C185NC10* L7C185NI15* L7C185NI12* | (C6) L7C185IC15* L7C185IC12* L7C185IC10* | | 15 ns
12 ns
10 ns
15 ns
12 ns
10 ns
20 ns
15 ns | (P10) 0°C to +70°C — @MMERCA L7C185PC15* L7C185PC16* -40°C to +85°C — @MMERCA L7C185PN5* L7C185PN5* L7C185PN12* L7C185PN12* | (C5) AL SCREENING L7C185CC15* L7C185CC10* ACIA: SCREENING ERCIAL SCREENING L7C185CM20* L7C185CM15* | (P9) L7C185NC15* L7C185NC12* L7C185NC10* L7C185NI15* L7C185NI12* | L7C185IC15* L7C185IC12* L7C185IC10* L7C185IM20* L7C185IM15* | | 15 ns
12 ns
10 ns
15 ns
12 ns
10 ns | (P10) 0°C to +70°C — @MMERCA L7C185PC15* L7C185PC16* -40°C to +85°C — @MMERCA L7C185PN5* L7C185PN5* L7C185PN12* L7C185PN12* | (C5) AL SCREENING L7C185CC15* L7C185CC10* RCIA: SCREENING ERCIAL SCREENING L7C185CM20* | (P9) L7C185NC15* L7C185NC12* L7C185NC10* L7C185NI15* L7C185NI12* | (C6) L7C185IC15* L7C185IC12* L7C185IC10* | | 15 ns
12 ns
10 ns
15 ns
12 ns
10 ns
20 ns
15 ns | (P10) 0°C to +70°C — @MMERCA L7C185PC15* L7C185PC15* L7C185PC15* L7C185PN5* L7C185PN5* L7C185PN12* L7C185PN13* -55°C to +125°C — @MMERCA @MMERCA @MMERCA ### Commence of the comme | (C5) AL SCREENING L7C185CC15* L7C185CC10* ACIA: SCREENING ERCIAL SCREENING L7C185CM20* L7C185CM15* | (P9) L7C185NC15* L7C185NC12* L7C185NC10* L7C185NI15* L7C185NI12* | L7C185IC15* L7C185IC12* L7C185IC10* L7C185IM20* L7C185IM15* | | 15 ns
12 ns
10 ns
15 ns
12 ns
10 ns
20 ns
15 ns | (P10) 0°C to +70°C — @MMERCA L7C185PC15* L7C185PC15* L7C185PC15* L7C185PN5* L7C185PN5* L7C185PN12* L7C185PN12* L7C185PN12* C7C185PN12* C7C185PN13* | (C5) AL SCREENING L7C185CC12* L7C185CC10* RCIA: SCREENING L7C185CM20* L7C185CM15* L7C185CM15* L7C185CM12* | (P9) L7C185NC15* L7C185NC12* L7C185NC10* L7C185NI15* L7C185NI12* | L7C185IC15* L7C185IC12* L7C185IC10* L7C185IM20* L7C185IM15* | | 15 ns
12 ns
10 ns
15 ns
12 ns
10 ns
20 ns
15 ns
15 ns | (P10) 0°C to +70°C — @MMERCA L7C185PC15* L7C185PC15* L7C185PC15* L7C185PN5* L7C185PN5* L7C185PN12* L7C185PN12* L7C185PN12* C7C185PN12* C7C185PN13* | (C5) A SCREENING L7C185CC15* L7C185CC10* RCIA: SCREENING L7C185CM20* L7C185CM15* L7C185CM12* STD-883 @mpliant | (P9) L7C185NC15* L7C185NC12* L7C185NC10* L7C185NI15* L7C185NI12* | L7C185IC15* L7C185IC12* L7C185IC10* L7C185IM20* L7C185IM15* L7C185IM12* | | 15 ns
12 ns
10 ns
15 ns
12 ns
10 ns
20 ns
15 ns
12 ns | (P10) 0°C to +70°C — @MMERCA L7C185PC15* L7C185PC15* L7C185PC15* L7C185PN5* L7C185PN5* L7C185PN12* L7C185PN12* L7C185PN12* C7C185PN12* C7C185PN13* | (C5) AL SCREENING L7C185CC15* L7C185CC10* RCIAL SCREENING L7C185CM20* L7C185CM15* L7C185CM12* STD-883 @MPLIANT L7C185CMB20* | (P9) L7C185NC15* L7C185NC12* L7C185NC10* L7C185NI15* L7C185NI12* | L7C185IC15* L7C185IC12* L7C185IC10* L7C185IM20* L7C185IM15* L7C185IM12* | ^{*}The Low Power version is specified by adding the "L" suffix after the speed grade (e.g., L7C185CMB15L) ^{*}The Low Power version is specified by adding the "L" suffix after the speed grade (e.g., L7C185MMB15L) | | ORDERING INFORMATION | | |--|---|---| | | 28-pin | 32-pin | | | | | | | o. Q.IIII | N. 45. 45. 9 HIL. 9 | | | A6
A7
VCC
WE | A7
NC VCC
VCC
CE2 | | | NC \(\begin{pmatrix} 3 & 2 & 11 & 28 & 27 \\ 26 & CE2 \end{pmatrix} \) | A6 5 4 3 2 11 32 31 30 29 A8 | | | A5 5 25 A8 | A5 5 6 288 A9 | | | A4 6 24 A9
A3 7 Tan 23 A11 | A4) 7 | | | $ \begin{array}{c} A_3 \\ A_2 \\ A_1 \end{array} $ $ \begin{array}{c} A_3 \\ 8 \end{array} $ $ \begin{array}{c} Y \\ \\$ | $ \begin{array}{c c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \end{array} \end{array} \end{array} $ $ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \end{array} \end{array} $ $ \begin{array}{c} & \begin{array}{c} & \\ & \end{array} \end{array} $ $ \begin{array}{c} & \begin{array}{c} & \\ & \end{array} $ $ \begin{array}{c} & \\ & \end{array} $ | | | A1 9 VIEW 21 A10
A0 10 20 CE1 | A1 310 Mew 24 A10
A0 311 22 CE1 | | | I/O₀ > 11 19 ८ I/O ₇ | NC 12/ < \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | I/O1 212 18 I/O6 | 1/00 2/3 4 15 16 17 18 19 20 1/06 | | | /O2
 /O3
 /O3
 /O5 | GND SOND | | | _ g | // " \>- | | | | << // | | | | | | | | | | | | | | | | \ | | | | | | | | | | | | | | | | | | eed | Ceramic Leadless Chip Carries (K5) | Ceramic Leadless Chip Carrier
(K7) | | | Ceramic Leadless Chip Carrier (K5) 0°C to +70°C — @MMERCIAL SCREENING | (K7) | | i ns | 0°C to +70°C — @MMERCIAL SCREENING | (K7)
L7C185TC15* | | | Ceramic Leadless Chip Carrier (K5) 0°C to +70°C — Commercial Screening L7C185KC15* L7C185KC12* L7C185KC10* | (K7) | | ns
ns | 0°C to +70°C — @mmercial Screening
L7C185KC15*
L7C185KC12*
L7C185KC10* | (K7)
L7C185TC15*
L7C185TC12* | | ns
ns | 0°C to +70°C — @mmercial Screening
L7C185KC15*
L7C485KC12* | (K7)
L7C185TC15*
L7C185TC12* | | ins
ns
ns
ns | 0°C to +70°C — @mmercial Screening
L7C185KC15*
L7C185KC12*
L7C185KC10* | (K7)
L7C185TC15*
L7C185TC12* | | ns
ns
ns | 0°C to +70°C — @mmercial Screening
L7C185KC15*
L7C185KC12*
L7C185KC10* | (K7)
L7C185TC15*
L7C185TC12* | | ins
ins
ins
ins
ins | 0°C to +70°C — @MMERCIAL SCREENING L7C18\$KC15* L7C485KC12* L7C185KC10* -40°C to +85°C — @MMERCIAL SCREENING | (K7) L7C185TC15* L7C185TC12* L7C185TC10* | | ins
ins
ins
ins | 0°C to +70°C — @MMERCIAL SCREENING L7C185KC15* L7C185KC12* L7C185KC10* -40°C to +85°C — @MMERCIAL SCREENING 55°C to +125°C — @MMERCIAL SCREENING L7C185KM20* | (K7) L7C185TC15* L7C185TC12* L7C185TC10* L7C185TM20* | | ins
ins
ins
ins
ins | 0°C to +70°C — @MMERCIAL SCREENING L7C18\$KC15* L7C485KC12* L7C185KC10* -40°C to +85°C — @MMERCIAL SCREENING | (K7) L7C185TC15* L7C185TC12* L7C185TC10* | | ins
ins
ins
ins | 0°C to +70°C — @MMERCIAL SCREENING L7C185KC12* L7C185KC10* -40°C to +85°C — @MMERCIAL SCREENING 55°C to +125°C — @MMERCIAL SCREENING L7C185KM20* L7C185KM15* L7C185KM12* | L7C185TC15* L7C185TC12* L7C185TC10* L7C185TM20* L7C185TM15* | | ins
ins
ins
ins | 0°C to +70°C — @MMERCIAL SCREENING L7C185KC12* L7C185KC10* -40°C to +85°C — @MMERCIAL SCREENING 55°C to +125°C — @MMERCIAL SCREENING L7C185KM20* L7C185KM15* | L7C185TC15* L7C185TC12* L7C185TC10* L7C185TM20* L7C185TM15* | | ins
ins
ins
ins
ins
ins | 0°C to +70°C — @MMERCIAL SCREENING L7C185KC12* L7C185KC12* L7C185KC10* -40°C to +85°C — @MMERCIAL SCREENING -55°C to +125°C — @MMERCIAL SCREENING L7C185KM20* L7C185KM15* L7C185KM12* -55°C to +125°C — MIL-STD-883 @MPLIANT | L7C185TC15* L7C185TC12* L7C185TC10* L7C185TM20* L7C185TM15* L7C185TM12* | ^{*}The Low Power version is specified by adding the "L" suffix after the speed grade (e.g., L7C185KMB15L)