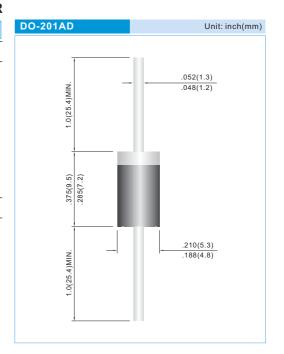


BY296 ~ BY299

SOFT RECOVERY, FAST SWITCHING PLASTIC RECTIFIER


VOLTAGE 50 to 1000 Volts CURRENT 2.0 Amperes

FEATURES

- High current capability.
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Void-free molded plastic package
- Exceeds environmental standards of MIL-S-19500/228
- Fast switching for high efficiency.
- In compliance with EU RoHS 2002/95/EC directives

MECHANICALDATA

- Case: Molded plastic, DO-201AD
- Terminals: Axial leads, solderable to MIL-STD-750, Method 2026
- · Polarity: Color Band denotes cathode end
- Mounting Position: Any
- Weight: 0.0395 ounce, 1.122 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load, 60Hz.

SYMBOL	BY296	BY297	BY298	BY299	UNITS
V _{RRM}	100	200	400	800	V
V _{RMS}	70	140	280	560	V
V _{DC}	100	200	400	800	V
I _{F(AV)}	2.0				А
I _{FSM}	70			А	
I _{FRM}	10			А	
V _F	1.3			V	
I _R	10 500			μА	
t _{rr}	150			ns	
C _J	60			pF	
$R_{_{\theta JA}}$	22			°C / W	
T _J ,T _{STG}	-55 to +150				°C
	V _{RRM} V _{RMS} V _{DC} I _{F(AV)} I _{FSM} V _F I _R C _J R _{0JA}	V _{RRM} 100 V _{RMS} 70 V _{DC} 100 I _{F(AV)} I _{FSM} I _{FRM} V _F I _R t _{rr} C _J R _{8JA}	V _{RRM} 100 200 V _{RMS} 70 140 V _{DC} 100 200 I _{F(AV)} 2. I _{FSM} 70 I _{FRM} 10 V _F 1. I _R 50 t _{rr} 15 C _J 60 R _{θJA} 22	V _{RRM} 100 200 400 V _{RMS} 70 140 280 V _{DC} 100 200 400 I _{F(AV)} 2.0 I _{FSM} 70 I _{FRM} 10 V _F 1.3 I _R 500 t _{rr} 150 C _J 60 R _{θJA} 22	V _{RRM} 100 200 400 800 V _{RMS} 70 140 280 560 V _{DC} 100 200 400 800 I _{F(AV)} 2.0 I _{FSM} 70 I _{FRM} 10 V _F 1.3 I _R 10 500 t _{rr} 150 C _J 60 R _{θJA} 22

NOTES: 1. Repetitive Peak Forward Surge Current at f<15KHz.

- 2. Reverse Recovery Test Conditions: I_F=.5A, I_R=1A, I_{rr}=.25A.
- 3. Measured at 1 MHz and applied reverse voltage of 4.0 VDC.
- 4. Thermal resistance from junction to ambient and from junction to lead length 0.375"(9.5mm) P.C.B. mounted.

BY296 ~ BY299

RATING AND CHARACTERISTIC CURVES

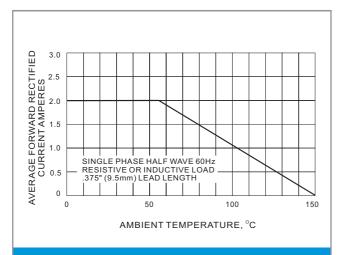


FIG.1 FORWARD CURRENT DERATING CURVE

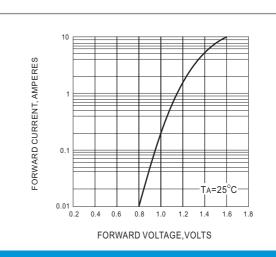


FIG.2 TYPICAL FORWARD CHARACTERISTICS

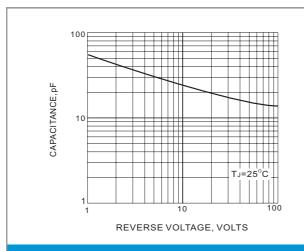


FIG.3 TYPICAL JUNCTION CAPACITANCE

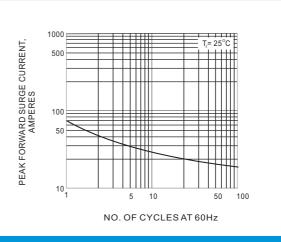


FIG.4 PEAK FORWARD SURGE CURRENT

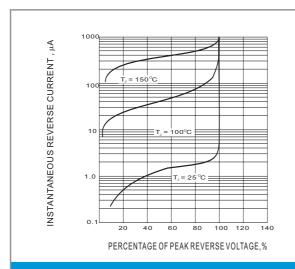


Fig.5-TYPICAL REVERSE CHARACTERISTIC