

Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

Part Number / Ordering Information SFF100N20 SFF100N20 Screening 2/ — = Not Screened TX = TX Level TXV = TXV Level S = S Level Lead Option — = Straight Leads Package 4/ /3T= TO-3 (Pin Diameter : 0.058"-0.063")

SFF100N20/3T

100 AMP, 200 Volts, 25 mΩ Avalanche Rated N-channel MOSFET

Features:

- Rugged poly-Si gate
- · Lowest ON-resistance in the industry
- Avalanche rated
- Hermetically Sealed, Power Package with high pin current carrying capability
- Low Total Gate Charge
- Fast Switching
- TX, TXV, S-Level screening available
- Improved (R_{DS(ON)} Q_G) figure of merit

Maximum Ratings ^{5/}		Symbol	Value	Units
Drain - Source Voltage		V _{DSS}	200	V
Gate – Source Voltage	continuous transient	V_{GS}	±20 ±30	V
Max. Continuous Drain Current (package limited)	@ T _C = 25°C	I _{D1}	55	Α
Max. Instantaneous Drain Current (Tj limited)	@ T _C = 25°C @ T _C = 125°C	I _{D2} I _{D3}	100 40	Α
Max. Avalanche current	@ L= 0.1 mH	I _{AR}	60	Α
Single and Repetitive Avalanche Energy	@ L= 0.1 mH	E _{AS} E _{AR}	1500 50	mJ
Total Power Dissipation	@ T _C = 25°C	P _D	300	W
Operating & Storage Temperature		T _{OP} & T _{STG}	-55 to +175	°C
Maximum Thermal Resistance (Junction to Case)		R _{eJC}	0.5 (typ.0.3)	°C/W

NOTES:

- *Pulse Test: Pulse Width = 300µsec, Duty Cycle = 2%.
- 1/ For ordering information, price, and availability contact factory.
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request.
- 4/ Maximum current limited by package configuration
- 5/ Unless otherwise specified, all electrical characteristics @25°C.

TO-3

NOTE: All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.

DATA SHEET #: FT0044A

DOC

Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

SFF100N20/3T

Electrical Characteristics⁵		Symbol	Min	Тур	Max	Units
Drain to Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$	BV _{DSS}	200	220		V
Drain to Source On State Resistance	$V_{GS} = 10V$, $I_D = 48A$, $Tj = 25^{\circ}C$ $V_{GS} = 10V$, $I_D = 48A$, $Tj = 125^{\circ}C$ $V_{GS} = 10V$, $I_D = 48A$, $Tj = 175^{\circ}C$	R _{DS(on)}	_ 	25 50 65	30 65 —	mΩ
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 4.0 \text{mA}, Tj = 25^{\circ}\text{C}$ $V_{DS} = V_{GS}, I_{D} = 4.0 \text{mA}, Tj = 125^{\circ}\text{C}$ $V_{DS} = V_{GS}, I_{D} = 4.0 \text{mA}, Tj = -55^{\circ}\text{C}$	$V_{\rm GS(th)}$	2.5 1.5	4.5 3.6 5	5.0 — 6	V
Gate to Source Leakage	$V_{GS} = \pm 20V$, Tj= 25°C $V_{GS} = \pm 20V$, Tj= 125°C	I _{GSS}		10 30	±100 —	nA
Zero Gate Voltage Drain Current	$V_{DS} = 200V, V_{GS} = 0V, T_j = 25^{\circ}C$ $V_{DS} = 200V, V_{GS} = 0V, T_j = 125^{\circ}C$ $V_{DS} = 200V, V_{GS} = 0V, T_j = 150^{\circ}C$	I _{DSS}		0.01 2.5 25	25 150 —	μΑ μΑ μΑ
Forward Transconductance	$V_{DS} = 10V, I_D = 48A, T_i = 25^{\circ}C$	g _{fs}	25	50		Mho
Total Gate Charge Gate to Source Charge Gate to Drain Charge	$V_{GS} = 10V$ $V_{DS} = 100V$ $I_D = 48A$	$egin{array}{c} \mathbf{Q}_{\mathbf{g}} \ \mathbf{Q}_{\mathbf{g}\mathbf{s}} \ \mathbf{Q}_{\mathbf{g}\mathbf{d}} \end{array}$		150 45 75	250 65 120	nC
Turn on Delay Time Rise Time Turn off Delay Time Fall Time	V_{GS} = 10V V_{DS} = 100V I_{D} = 48A R_{G} = 4.0 Ω , pw= 3us	$egin{aligned} \mathbf{t_{d(on)}} \ \mathbf{t_r} \ \mathbf{t_{d(off)}} \ \mathbf{t_f} \end{aligned}$		50 50 110 50	75 75 135 75	nsec
Diode Forward Voltage	I _F = 48A, V _{GS} = 0V	V _{SD}		0.90	1.5	V
Diode Reverse Recovery Time	I _F = 10A, di/dt = 100A/usec I _F = 10A, di/dt = 100A/usec I _F = 10A, di/dt = 100A/usec	t _{rr1} I _{rm1} Q _{rr1}		190 11 1	250 —	nsec A µC
Reverse Recovery Charge	$I_F = 10A$, $di/dt = 100A/dsec$ $I_F = 25A$, $di/dt = 100A/usec$ $I_F = 25A$, $di/dt = 100A/usec$ $I_F = 25A$, $di/dt = 100A/usec$	t _{rr2} I _{rm2} Q _{rr2}	_ _ _	310 17 2.5	_ _ _ _	nsec A µC
Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{GS} = 0V$ $V_{DS} = 25V$ $f = 1 MHz$	C _{iss} C _{oss} C _{rss}	 	5300 1050 175	— — —	pF

Package Outline: TO-3 Pin Out: Pin 1: GATE 2 Pin 2: SOURCE 2x Ø 165 151 .135 MAX -.525 MAX 2x R.188 MAX Pin 3: DRAIN SEATING PLANE Note 1: P/N: SFF80N20/3T: Pin Diameter: 0.063" 2 .440 .420 2x .225 .205 0.058" Ø.875 MAX Note 2: This dimension shall be measured at points .050 - .055" below the seating plane. When gage is not used, measurement will be made at seating plane. This outline does not meet the minimum criteria established by JS-10 for 2x .312 MIN registration.