Solid State Devices, Inc. 14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com # Part Number / Ordering Information SFF100N20 SFF100N20 Screening 2/ — = Not Screened TX = TX Level TXV = TXV Level S = S Level Lead Option — = Straight Leads Package 4/ /3T= TO-3 (Pin Diameter : 0.058"-0.063") ## SFF100N20/3T # 100 AMP, 200 Volts, 25 mΩ Avalanche Rated N-channel MOSFET ### Features: - Rugged poly-Si gate - · Lowest ON-resistance in the industry - Avalanche rated - Hermetically Sealed, Power Package with high pin current carrying capability - Low Total Gate Charge - Fast Switching - TX, TXV, S-Level screening available - Improved (R_{DS(ON)} Q_G) figure of merit | Maximum Ratings ^{5/} | | Symbol | Value | Units | |--|---|------------------------------------|---------------|-------| | Drain - Source Voltage | | V _{DSS} | 200 | V | | Gate – Source Voltage | continuous
transient | V_{GS} | ±20
±30 | V | | Max. Continuous Drain Current (package limited) | @ T _C = 25°C | I _{D1} | 55 | Α | | Max. Instantaneous Drain Current (Tj limited) | @ T _C = 25°C
@ T _C = 125°C | I _{D2}
I _{D3} | 100
40 | Α | | Max. Avalanche current | @ L= 0.1 mH | I _{AR} | 60 | Α | | Single and Repetitive Avalanche Energy | @ L= 0.1 mH | E _{AS}
E _{AR} | 1500
50 | mJ | | Total Power Dissipation | @ T _C = 25°C | P _D | 300 | W | | Operating & Storage Temperature | | T _{OP} & T _{STG} | -55 to +175 | °C | | Maximum Thermal Resistance
(Junction to Case) | | R _{eJC} | 0.5 (typ.0.3) | °C/W | ### NOTES: - *Pulse Test: Pulse Width = 300µsec, Duty Cycle = 2%. - 1/ For ordering information, price, and availability contact factory. - 2/ Screening based on MIL-PRF-19500. Screening flows available on request. - 4/ Maximum current limited by package configuration - 5/ Unless otherwise specified, all electrical characteristics @25°C. **TO-3** **NOTE:** All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release. DATA SHEET #: FT0044A DOC Solid State Devices, Inc. 14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com # SFF100N20/3T | Electrical Characteristics⁵ | | Symbol | Min | Тур | Max | Units | |---|---|--|-------------|-----------------------|-----------------------|-----------------| | Drain to Source Breakdown Voltage | $V_{GS} = 0V, I_{D} = 250\mu A$ | BV _{DSS} | 200 | 220 | | V | | Drain to Source On State
Resistance | $V_{GS} = 10V$, $I_D = 48A$, $Tj = 25^{\circ}C$
$V_{GS} = 10V$, $I_D = 48A$, $Tj = 125^{\circ}C$
$V_{GS} = 10V$, $I_D = 48A$, $Tj = 175^{\circ}C$ | R _{DS(on)} | _
 | 25
50
65 | 30
65
— | mΩ | | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = 4.0 \text{mA}, Tj = 25^{\circ}\text{C}$
$V_{DS} = V_{GS}, I_{D} = 4.0 \text{mA}, Tj = 125^{\circ}\text{C}$
$V_{DS} = V_{GS}, I_{D} = 4.0 \text{mA}, Tj = -55^{\circ}\text{C}$ | $V_{\rm GS(th)}$ | 2.5
1.5 | 4.5
3.6
5 | 5.0
—
6 | V | | Gate to Source Leakage | $V_{GS} = \pm 20V$, Tj= 25°C
$V_{GS} = \pm 20V$, Tj= 125°C | I _{GSS} | | 10
30 | ±100
— | nA | | Zero Gate Voltage Drain Current | $V_{DS} = 200V, V_{GS} = 0V, T_j = 25^{\circ}C$
$V_{DS} = 200V, V_{GS} = 0V, T_j = 125^{\circ}C$
$V_{DS} = 200V, V_{GS} = 0V, T_j = 150^{\circ}C$ | I _{DSS} | | 0.01
2.5
25 | 25
150
— | μΑ
μΑ
μΑ | | Forward Transconductance | $V_{DS} = 10V, I_D = 48A, T_i = 25^{\circ}C$ | g _{fs} | 25 | 50 | | Mho | | Total Gate Charge
Gate to Source Charge
Gate to Drain Charge | $V_{GS} = 10V$ $V_{DS} = 100V$ $I_D = 48A$ | $egin{array}{c} \mathbf{Q}_{\mathbf{g}} \ \mathbf{Q}_{\mathbf{g}\mathbf{s}} \ \mathbf{Q}_{\mathbf{g}\mathbf{d}} \end{array}$ | | 150
45
75 | 250
65
120 | nC | | Turn on Delay Time
Rise Time
Turn off Delay Time
Fall Time | V_{GS} = 10V
V_{DS} = 100V
I_{D} = 48A
R_{G} = 4.0 Ω , pw= 3us | $egin{aligned} \mathbf{t_{d(on)}} \ \mathbf{t_r} \ \mathbf{t_{d(off)}} \ \mathbf{t_f} \end{aligned}$ | | 50
50
110
50 | 75
75
135
75 | nsec | | Diode Forward Voltage | I _F = 48A, V _{GS} = 0V | V _{SD} | | 0.90 | 1.5 | V | | Diode Reverse Recovery Time | I _F = 10A, di/dt = 100A/usec
I _F = 10A, di/dt = 100A/usec
I _F = 10A, di/dt = 100A/usec | t _{rr1}
I _{rm1}
Q _{rr1} | | 190
11
1 | 250
— | nsec
A
µC | | Reverse Recovery Charge | $I_F = 10A$, $di/dt = 100A/dsec$
$I_F = 25A$, $di/dt = 100A/usec$
$I_F = 25A$, $di/dt = 100A/usec$
$I_F = 25A$, $di/dt = 100A/usec$ | t _{rr2}
I _{rm2}
Q _{rr2} | _
_
_ | 310
17
2.5 | _
_
_
_ | nsec
A
µC | | Input Capacitance
Output Capacitance
Reverse Transfer Capacitance | $V_{GS} = 0V$ $V_{DS} = 25V$ $f = 1 MHz$ | C _{iss}
C _{oss}
C _{rss} |

 | 5300
1050
175 | —
—
— | pF | Package Outline: TO-3 Pin Out: Pin 1: GATE 2 Pin 2: SOURCE 2x Ø 165 151 .135 MAX -.525 MAX 2x R.188 MAX Pin 3: DRAIN SEATING PLANE Note 1: P/N: SFF80N20/3T: Pin Diameter: 0.063" 2 .440 .420 2x .225 .205 0.058" Ø.875 MAX Note 2: This dimension shall be measured at points .050 - .055" below the seating plane. When gage is not used, measurement will be made at seating plane. This outline does not meet the minimum criteria established by JS-10 for 2x .312 MIN registration.