

LDS431LP 1.24V Shunt Ref/Amplifier TO-92 and SOT23 Package

Product Specification

Revision 1.6

February 01, 2008

General Description

The LDS431L is a low voltage reference/ amplifier suited for the control loop of low voltage power supplies. Functionally similar to the ubiquitous TL431, the LDS431L has a lower 1.24V reference and a much wider range of operating currents. Particular care was taken in the design to minimize overshoot at startup and to allow wide AC bandwidth. The LDS431LP is a **drop-in replacement** for any 1.24V shunt reference.

Applications

- Power supply control loop
- Low TC low voltage reference
- Power management applications

Features

- Low voltage reference: 1.24V
- 40 uA to 100 mA operation
- Drop-in replaces any 1.24V shunt reference
- Low TC voltage reference
- Improved AC, DC performance compared to TLV431, 432 part types
- RoHS compliant

Pin Configuration

Pin Descriptions

Pin Name	Function
CATH	Output and supply terminal, must be greater than 1.2V for normal operation
REF	Input, nominally 1.24V in normal operation.
ANODE	Ground and Substrate

Absolute Maximum Ratings

Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These stress ratings only, and functional operation of the device at these or any conditions beyond those indicated under recommended Operating Conditions is not implied. Exposure to "Absolute Maximum Rating" for extended periods may affect device reliability. Use of standard ESD handling precautions is required.

Parameter	Value	Units
CATH Voltage	18	V
REF Current	3	mA
CATH, ANODE Currents	150	mA
Operating Junction Temperature	150	°C
Lead Temperature (soldering 10 seconds)	260	°C
Storage Temperature Range	-65 to +150	°C

Electrical Specifications

Electrical characteristics are guaranteed over the full temperature range –40°C <Tj<105°C unless otherwise stated. Ambient temperature must be de-rated based upon power dissipation and package thermal characteristics.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V	Reference Voltage	25°C;	0.5% option	1.234	1.240	1.246	V
V REF	Nelefence voltage	I _{CATH} =10mA	1.0% option	1.228	1.240	1.252	V
ΔV_{REF}	V _{REF} Temperature deviation	–40°C <tj<105°c.< td=""><td></td><td></td><td>4</td><td>12</td><td>mV</td></tj<105°c.<>			4	12	mV
$\frac{\Delta V_{\text{REF}}}{\Delta V}$	Ratio of V _{REF} Change to V _{CATH} Change (Line Reg; 1/gain)	I _{CATH} =10mA, V _{CATH} = V _{RFF} to 6V			0.3	1	mV/V
	Reference input current	I _{CATH} =10mA			0.2	0.4	μA
ΔI_{REF}	IREF Temperature Deviation				0.04	0.2	μA
I _{CATH(min)}	Minimum Cathode Current				18	40	μA
I _{CATH(OFF)}	Off-State Cathode Current	V _{REF} =0V; V _{CATH} =16V				100	nA
r _{CATH}	Dynamic Output Impedance	I _{CATH} =0.1 to 100mAf ≤ 1.0 kHz			0.3	0.4	Ω

Typical Performance Characteristics

Reference voltage

Cathode current vs Cathode voltage

Cathode current (mA)

Typical Performance Characteristics (contd.)

Delta Reference voltage per delta cathode voltage vs junction temperature

Open lop voltage gain vs frequency

Dynamic impedance vs frequency

Package Dimensions

SOT23-3, SOT23-4, SOT23-5, SOT23-6

ş	COMMON						
B	DIMENSIONS MILLIMETER			DIMENSIONS INCH			
Ľ	MIN.	NDM. MAX.		MIN.	NDM.	MAX.	
Α	1.20	1.30	1.40	0.047	0.051	0.055	
A1	0.05	-	0.15	0.002	-	0.006	
A2	0.90	1.15	1.30	0.035	0.045	0.051	
b	0.35	-	0.50	0.013	-	0.020	
b1	0.35	0.40 0.4		0.013	0.015	0.017	
с	0.08	-	0.22	0.003	-	0.008	
c1	0.08	0.13	0.20	0.003	0.005	0.007	
D	2.90 BSC			0.114 BSC			
Ε	2.80 BSC			0.110 BSC			
E1	1.60 BSC			0.062 BSC			
6	0.95 BSC			0.037 BSC			
e1	1.90 BSC			C 0.074 BSC			
L	0.35	0.45	0.55	0.013	0.017	0.021	
L1	0.60 REF.			0.023 REF.			
θ	0*	4*	8*	0*	4•	8•	
0 1		10° TYP	>	10* TYP			

NDTE :

- 1. 2.
- Dimensioning and tolerancing per ASME Y 14.5 M 1994. Dimensions are in millimeters.Converted inch dimension are not necessarily exact. Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 0.15 mm per side. Dimension E1 does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.15 mm per side. Top package may be smaller than the bottom package Dimension D and E1 are determine at the outermost extremes of the plastic body exclusive of mold flash gate burrs and interlead flash. A
- <u>A</u>
- gate burrs and interlead flash. Terminal numbers are shown for reference only. Die is facing up for molding. Die is facing down for 5. trim/form.

Package Dimensions

ş	COMMON						
B	DIMENSIONS MILLIMETER			DIMENSIONS INCH			
Ľ	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	
Α	4.472	4,572	4.672	0.176	0.180	0.184	
b	0.381	0.406	0.431	0.015	0.016	0.017	
с	0.356	0.406	0.456	0.014	0.016	0.018	
D	4.472	4.572	4.672	0.176	0.180	0.184	
Ε	3.456	3.556	3.656	0.136	0.140	0.144	
e	2.413	2.540	2.667	0.095	0.100	0.105	
e1	1.143	1.270	1.397	0.045	0.050	0.055	
L	13.87	13.97	14.07	0.546	0.550	0.554	

NDTES :

CONTROLLING DIMENSION | MILLIMETER. CONVERTED INCH DIMENSION ARE NOT NECESSARILY EXACT.
DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

3. FOR 2 LEAD PACKAGE CENTER LEAD IS CLIPPED

Ordering Information

Device	Operating Tj	%Tol	PKG Type	νουτ	Wrap	Ordering Number
LDS431LP	-40C° ≤ 105C°	1.0	TO-92-3	1.24V	T&R	LDS431LBY-N3-12-TL
LDS431LP	-40C° ≤ 105C°	0.5	TO-92-3	1.24V	T&R	LDS431LBZ-N3-12-TL
LDS431LP	-40C° ≤ 105C°	1.0	SOT-23-3	1.24V	T&R	LDS431LBY-M3-12-TL
LDS431LP	-40C° ≤ 105C°	0.5	SOT-23-3	1.24V	T&R	LDS431LBZ-M3-12-TL

Note: Lead Free and RoHS compliant.

Warranty and Use

LEADIS TECHNOLOGY MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Leadis Technology products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Leadis Technology product could create a situation where personal injury or death may occur.

Leadis Technology reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Leadis Technology advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Warranty and Use

LEADIS TECHNOLOGY MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Leadis Technology products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Leadis Technology product could create a situation where personal injury or death may occur.

Leadis Technology reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Leadis Technology advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Leadis Technology 800 W. California Ave, Suite 200 Sunnyvale, CA 94086 Phone: 408.331.8600 Fax: 408.331.8601 http://www.leadis.com

Document No:431LDSRevision:1.6Issue date:2/01/08