STM6513 ### Smart reset #### **Features** - Operating voltage 1.0 V (active-low output valid) to 5.5 V - Low supply current 3 µA (typ.) - Factory-programmable thresholds to monitor V_{CC} in the range of 1.575 to 4.625 V typ. - Dual reset output - RST1 active-high, push-pull - RST2 active-low, open-drain - Two smart reset push-button inputs with userprogrammable extended reset set up delay (by three-state input logic) - User-programmable output reset pulse duration (t_{REC1}) by external capacitor C_{tREC} - Power-on reset - Operating temperature: industrial grade –40 °C to +85 °C - Package: TDFN-8L 2 x 2 x 0.75 mm, 0.5 mm pitch - RoHS compliant #### **Applications** - MP3 players - Portable navigation devices - Mobile phones - Any application that requires delayed reset push-button(s) response for improved system stability. Contents STM6513 # **Contents** | 1 | Description | | | | | | | | |--------------------|---|--|--|--|--|--|--|--| | | 1.1 Smart reset devices 5 | | | | | | | | | | 1.2 STM6513 5 | | | | | | | | | 2 | Device overview | | | | | | | | | 3 | Pin descriptions | | | | | | | | | | 3.1 Power supply (V _{CC}) | | | | | | | | | | 3.2 Ground (V _{SS}) | | | | | | | | | | 3.3 Smart reset inputs (SR0, SR1) | | | | | | | | | | 3.4 User-programmable smart reset delay (TSR pin) | | | | | | | | | | 3.5 Reset outputs (RST1, RST2) | | | | | | | | | | 3.6 Adjustable output reset timeout period input pin (TREC _{ADJ}) | | | | | | | | | 4 | Block diagram 10 | | | | | | | | | 5 | Typical operating characteristics | | | | | | | | | 6 | Maximum rating | | | | | | | | | 7 | DC and AC parameters | | | | | | | | | ww.DataSheet4U.com | Package mechanical data 20 | | | | | | | | | 9 | Package footprint | | | | | | | | | 10 | Tape and reel information | | | | | | | | | 11 | Part numbering | | | | | | | | | 12 | Package marking information | | | | | | | | | 13 | Revision history | | | | | | | | STM6513 List of tables # List of tables | Table 1. | Signal names | 7 | |-----------|--|----| | Table 2. | t _{REC1} vs. C _{tREC} relation | 9 | | Table 3. | Absolute maximum ratings | 16 | | Table 4. | Operating and measurement conditions | 17 | | Table 5. | DC and AC characteristics | 18 | | Table 6. | Possible V _{CC} voltage thresholds | 19 | | Table 7. | TDFN – 8-lead 2 x 2 x 0.75 mm, 0.5 mm package mechanical data | 21 | | Table 8. | Parameter for landing pattern - TDFN - 8-lead 2 x 2 mm package | 22 | | Table 9. | Carrier tape dimensions | 23 | | Table 10. | Reel dimensions | | | Table 11. | Ordering information scheme | 26 | | Table 12. | Package marking | | | Table 13. | Document revision history | 28 | | | | | List of figures STM6513 # **List of figures** | Figure 1. | Logic diagram | 6 | |------------|--|------| | Figure 2. | Pin connections | | | Figure 3. | Block diagram | . 10 | | Figure 4. | Typical application diagram | | | Figure 5. | Timing waveforms | . 11 | | Figure 6. | Smart reset delay t_{SRC} vs. temperature and supply voltage V_{CC} , | | | | TSR = V _{SS} | . 12 | | Figure 7. | Output reset timeout period t _{REC2} vs. temperature and supply voltage V _{CC} | | | | (t _{REC} option E) | . 13 | | Figure 8. | Supply current I _{CC} vs. temperature and supply voltage V _{CC} | . 13 | | Figure 9. | Reset voltage V _{RST} (falling) vs. temperature | | | | (threshold option S, 2.925 V typ.) | . 14 | | Figure 10. | Input leakage current, TSR pin, logic low vs. temperature and supply voltage V _{CC} | . 14 | | Figure 11. | Input leakage current, TSR pin, logic high vs. temperature and supply voltage V _{CC} | . 15 | | Figure 12. | AC testing input/output waveforms | . 17 | | Figure 13. | TDFN - 8-lead, 2 x 2 x 0.75 mm, 0.5 mm pitch | . 20 | | Figure 14. | Landing pattern - TDFN – 8-lead 2 x 2 mm without thermal pad | . 22 | | Figure 15. | Carrier tape | . 23 | | Figure 16. | Reel dimensions | . 24 | | Figure 17. | Tape trailer/leader | . 25 | | Figure 18. | Pin 1 orientation | | | Figure 19 | Package marking area, top view | 27 | STM6513 Description ### 1 Description #### 1.1 Smart reset devices The smart reset device family STM65xx provides a useful feature that ensures inadvertent short reset push-button closures do not cause system resets. This is done by implementing extended smart reset input delay periods (t_{SRC}). Hence, when valid smart reset input conditions and set up periods are met, the reset outputs will generate a pulse with user-programmable timeout period (t_{REC}). The typical application hookup shows that the dual smart reset inputs can be also connected to the applications interrupt to allow the control of both the interrupt pin and the hard reset functions. If the push-buttons are closed for a short time, the processor is only interrupted. If the system still does not respond properly, holding the push-buttons for the extended set up time (t_{SRC}) causes hard reset of the processor through the reset outputs. The smart reset feature helps significantly increase system stability. The STM65xx family of smart reset devices consists of low current microprocessor reset circuits targeted e.g. at MP3 players, portable navigation or mobile phones; generally any application that requires delayed reset push-button(s) response for improved system stability. The STM65xx devices feature single or dual smart reset inputs (SRx). The delayed smart reset set up time (t_{SRC}) options of 0 s, 2 s, 6 s and 10 s (all min.) are adjustable by an external capacitor or resistor on the SRC pin or selectable by three-state logic. The delayed set up period ignores switch closures shorter than t_{SRC} , thus preventing unwanted resets. The STM65xx devices have active-low (optionally active-high) open-drain reset (RST) output(s) with or without internal pull-up resistor or push-pull as output options, with power-on reset function. The reset output is also asserted when the monitored supply voltage V_{CC} drops below the specified threshold. The reset output remains asserted for the reset timeout period (t_{REC}) after the monitored supply voltage goes above the specified threshold. #### 1.2 STM6513 www.DataSheet4U.com The STM6513 has two separate delayed smart reset inputs ($\overline{SR0}$, $\overline{SR1}$) which when taken low simultaneously provide three user-selectable delayed smart reset set up time (t_{SRC}) options of 2 s, 6 s and 10 s. These are selected through a three-state TSR input pin: when connected to ground, $t_{SRC}=2$ s; when left open, $t_{SRC}=6$ s; when connected to V_{CC} , $t_{SRC}=10$ s (all the times are minimum). There are two reset outputs, both going active simultaneously after both the smart reset inputs were held active for the selected t_{SRC} delay time. The first reset output, RST1, is active-high, push-pull; the second reset output, $\overline{RST2}$, is active-low, open-drain requiring an external pull-up resistor to V_{CC} . The duration of the output reset pulses is independently programmable: t_{REC1} is user-programmable (by external capacitor C_{tREC}), t_{REC2} is factory-programmed to 210 ms (typ.), with the option of 360 ms typ. Additionally, the V_{CC} is monitored and if it drops below the selected V_{RST} threshold, both the reset outputs go active and remain so while V_{CC} is below the V_{RST} threshold, plus the defined duration of the reset pulse t_{REC} on each output. Description STM6513 Figure 1. Logic diagram Figure 2. Pin connections STM6513 Device overview # 2 Device overview Table 1. Signal names | Symbol | Input/output | Description | |---------------------|-------------------|--| | RST1 | Output | First reset output, active-high, push-pull. | | RST2 | Output | Second reset output, active-low, open-drain. | | SR0 | Input | Primary push-button smart reset input. Active-low. | | SR1 | Input | Secondary push-button smart reset input. Active-low. | | TSR | Input | A Three-state smart reset input delay set up control. When connected to ground, $t_{SRC}=2$ s; when left open, $t_{SRC}=6$ s; when connected to V_{CC} , $t_{SRC}=10$ s (all times are minimum). TSR is a DC-type input, intended to be either permanently grounded, permanently connected to V_{CC} or permanently left open. | | TREC _{ADJ} | Input | Input pin for t_{REC1} reset pulse duration adjustment. Connect an external capacitor C_{tREC} to this pin to determine t_{REC1} ; t_{REC2} is factory-programmed. | | V _{CC} | Supply
voltage | Positive supply voltage input. Power supply for the device and an input for the monitored supply voltage. A 0.1 μF decoupling ceramic capacitor is recommended to be connected between V_{CC} and V_{SS} pins. | | V _{SS} | Supply
ground | Ground | Pin descriptions STM6513 ### 3 Pin descriptions ### 3.1 Power supply (V_{CC}) This pin is used to provide the power to the smart reset device and to monitor the power supply. A 0.1 μ F decoupling ceramic capacitor is recommended to be connected between V_{CC} and V_{SS} pins. ### 3.2 Ground (V_{SS}) This is the ground for the device and all supplies. ### 3.3 Smart reset inputs ($\overline{SR0}$, $\overline{SR1}$) Push-button smart reset inputs. Both inputs need to be held active at the same time for at least t_{SRC} to activate the reset outputs. ### 3.4 User-programmable smart reset delay (TSR pin) Used to allow the user to program the set up time before the push-buttons action is validated by reset output. Controlled by different voltage levels on the TSR pin: when connected to ground, $t_{SRC} = 2$ s; when left open, $t_{SRC} = 6$ s; when connected to V_{CC} , $t_{SRC} = 10$ s (all times are minimum). TSR is a DC-type input, intended to be either permanently grounded, permanently connected to V_{CC} or permanently left open. ### 3.5 Reset outputs (RST1, RST2) Reset outputs, RST1 active-high, push-pull type, RST2 active-low, open-drain. www.DataSheet4U.com ### 3.6 Adjustable output reset timeout period input pin (TREC_{ADJ}) The output reset timeout period (t_{REC1}) on RST1 is adjustable by connecting an external capacitor C_{tREC} to this pin. The relation between t_{REC1} and C_{tREC} is the following: STM6513 Pin descriptions Device option with $t_{\mbox{\scriptsize REC1}}$ programmed by external capacitor, most common $t_{\mbox{\scriptsize REC}}$ values selected: Table 2. t_{REC1} vs. C_{tREC} relation | C _{tREC} value (μF) | | Closest common | | | |------------------------------|------|----------------|------|------------------------------| | OtREC Value (pi) | Min. | Тур. | Max. | C _{tREC} value (µF) | | 0 | 0.1 | 0.15 | 0.2 | _ | | 0.002 | 20 | 30 | 40 | 0.0022 | | 0.01 | 100 | 150 | 200 | 0.01 | | 0.014 | 140 | 210 | 280 | 0.015 | | 0.028 | 280 | 420 | 560 | 0.027 | | 0.056 | 560 | 840 | 1120 | 0.056 | | 0.112 | 1120 | 1680 | 2240 | 0.12 | $t_{REC1~min.} \approx~10~000~x~C_{tREC}~(ms,~\mu\text{F}).$ - Note: 1 In case of quickly repeated activations of the internal t_{REC} counter, an interval of 10 ms min. is needed between t_{REC} intervals to fully discharge C_{tREC} , so that the next t_{REC1} is as specified. - 2 It should be considered during application design and component selection that the current flowing into the external t_{REC} programming component (C_{tREC}) is in the order of 100 nA, therefore a low-leakage capacitor and PCB environment should be used to prevent t_{REC} accuracy from being affected. Block diagram STM6513 # 4 Block diagram STM6513 Block diagram STM6513 hookup with RST1 and $\overline{RST2}$, bridging the PS_hold reset pulse during the microprocessor reset initiated by the STM6513 smart reset device: Figure 4. Typical application diagram Figure 5. Timing waveforms # 5 Typical operating characteristics Figure 6. Smart reset delay t_{SRC} vs. temperature and supply voltage V_{CC} , $TSR = V_{SS}$ Figure 7. Output reset timeout period t_{REC2} vs. temperature and supply voltage V_{CC} (t_{REC} option E) Figure 9. Reset voltage V_{RST} (falling) vs. temperature (threshold option S, 2.925 V typ.) Figure 10. Input leakage current, TSR pin, logic low vs. temperature and supply voltage V_{CC} Figure 11. Input leakage current, TSR pin, logic high vs. temperature and supply voltage V_{CC} Maximum rating STM6513 # 6 Maximum rating Stressing the device above the rating listed in the *Table 3: Absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 3. Absolute maximum ratings | Symbol | Parameter | | Value | Unit | |---------------------------------|---|-------------|------------------------------|------| | T _{STG} | Storage temperature (V _{CC} off) | -55 to +150 | °C | | | T _{SLD} ⁽¹⁾ | Lead solder temperature for 10 seconds | 260 | °C | | | θ_{JA} | Thermal resistance (junction to ambient) | 149.0 | °C/W | | | V _{IO} | Input or output voltage | | -0.3 to V _{CC} +0.3 | ٧ | | V _{CC} | Supply voltage | | –0.3 to 7 | V | ^{1.} Reflow at peak temperature of 260 °C. The time above 255 °C must not exceed 30 s. # 7 DC and AC parameters This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the *Table 5: DC and AC characteristics* that follow, are derived from tests performed under the Measurement Conditions summarized in *Table 4.: Operating and measurement conditions*. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters. Table 4. Operating and measurement conditions | Parameter | Value | Unit | |---|----------------------------|------| | V _{CC} supply voltage | 1.0 to 5.5 | V | | Ambient operating temperature (T _A) | -40 to +85 | °C | | Input rise and fall times | ≤ 5 | ns | | Input pulse voltages | 0.2 to 0.8 V _{CC} | V | | Input and output timing ref. voltages | 0.3 to 0.7 V _{CC} | V | Figure 12. AC testing input/output waveforms Table 5. DC and AC characteristics | Symbol | Parameter | Test conditions ⁽¹⁾ | Min. | Тур. | Max. | Units | |----------------------|---|---|---------------------------|------------------|---------------------------|-------| | M | O | Reset output valid - active-low | 1.0 | | 5.5 | V | | V _{CC} | Supply voltage range | Reset output valid - active-high | 1.2 | | 5.5 | V | | | Cumply ourrent ()/ | V _{CC} = 3.0 V | | 3 | 5 | μΑ | | I _{CC} | Supply current (V _{CC}) | V _{CC} = 5.0 V | | 4 | 6 | μΑ | | | | V _{CC} ≥ 4.5 V, sinking 3.2 mA | | | 0.3 | V | | V _{OL} | Reset output voltage low | V _{CC} ≥ 3.3 V, sinking 2.5 mA | | | 0.3 | V | | | | V _{CC} ≥ 1.0 V, sinking 0.1 mA | | | 0.3 | V | | | | $V_{CC} \ge 4.5 \text{ V}, I_{SOURCE} = 0.8 \text{ mA}$ | 0.8 V _{CC} | | | V | | V _{OH} | Reset output voltage high, RST1 | $V_{CC} \ge 2.7 \text{ V, I}_{SOURCE} = 0.5 \text{ mA}$ | 0.8 V _{CC} | | | V | | | | $V_{CC} \ge 1.2 \text{ V}, I_{SOURCE} = 0.05 \text{ mA}$ | 0.8 V _{CC} | | | V | | V | Fixed voltage trip point for V _{CC} | -40 to +85 °C | V _{RST}
-2.5% | V _{RST} | V _{RST}
+2.5% | V | | V _{RST} | (refer Table 6) | 25 °C | V _{RST}
-2.0% | V _{RST} | V _{RST}
+2.0% | V | | V | Hyptoropia of V | L, M | | 0.5% | | | | V _{HYST} | Hysteresis of V _{RST} | T, S, R, Z, Y, W, V | | 1% | | | | | V _{CC} to reset delay | V _{CC} falling from (V _{RST} + 100 mV) to (V _{RST} - 100 mV) at 10 mV/μs | | 20 | | μs | | + | Output reset timeout period on | Option E | 140 | 210 | 280 | ms | | t _{REC2} | RST2, factory-programmed | Option F | 240 | 360 | 480 | ms | | t _{REC1} | User-programmable output reset timeout period on RST1 | | | See
Table 2 | | ms | | Smart re | eset inputs (SRx) | | | | | | | Sheet4U.co | m | TSR = V _{SS} | 2 | 2.5 | 3 | s | | t _{SRC} | Smart reset delay | TSR = floating | 6 | 7.5 | 9 | s | | | | TSR = V _{CC} | 10 | 12.5 | 15 | s | | V _{IL} | SR0, SR1 input voltage low | | | | 0.3
V _{CC} | ٧ | | V _{IH} | SR0, SR1 input voltage high | | 0.7 V _{CC} | | | V | | | Input glitch immunity | Corresponds to the actual t _{SRC} | | t _{SRC} | | s | | I _{LI(SR)} | Input leakage current (SR0, SR1 pins) | | -1 | | 1 | μA | | I _{LI(TSR)} | Input leakage current (TSR pin) | | -5 | | 7 | μA | ^{1.} Valid for ambient operating temperature: $T_A = -40$ to +85 °C; $V_{CC} = 1.0$ V to 5.5 V (except where noted). | V _{CC} voltage | Tun | ±2.5% (–40 ° | C to +85 °C) | ±2.0% (| Unit | | |----------------------------|-------|--------------|--------------|---------|-------|-------| | threshold V _{RST} | Тур. | Min. | Max. | Min. | Max. | Offic | | L (falling) | 4.625 | 4.509 | 4.741 | 4.533 | 4.718 | V | | M (falling) | 4.375 | 4.266 | 4.484 | 4.288 | 4.463 | V | | T (falling) | 3.075 | 2.998 | 3.152 | 3.014 | 3.137 | V | | S (falling) | 2.925 | 2.852 | 2.998 | 2.867 | 2.984 | V | | R (falling) | 2.625 | 2.559 | 2.691 | 2.573 | 2.678 | V | | Z (falling) | 2.313 | 2.255 | 2.371 | 2.267 | 2.359 | V | | Y (falling) | 2.188 | 2.133 | 2.243 | 2.144 | 2.232 | V | | W (falling) | 1.665 | 1.623 | 1.707 | 1.632 | 1.698 | V | | V (falling) | 1.575 | 1.536 | 1.614 | 1.544 | 1.607 | V | # 8 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark. www.DataSheet4U.com **577** Table 7. TDFN – 8-lead 2 x 2 x 0.75 mm, 0.5 mm package mechanical data | Symbol | D | imension (mn | n) | Dimension (inches) | | | | |----------|------|--------------|------|--------------------|-------|-------|--| | | Min. | Nom. | Max. | Min. | Nom. | Max. | | | А | 0.70 | 0.75 | 0.80 | 0.028 | 0.030 | 0.031 | | | A1 | 0.00 | 0.02 | 0.05 | 0.000 | 0.001 | 0.002 | | | b | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.010 | | | D
BSC | | 2.00 | | | 0.079 | | | | E
BSC | | 2.00 | | | 0.079 | | | | е | | 0.50 | | | 0.020 | | | | L | 0.45 | 0.55 | 0.65 | 0.018 | 0.022 | 0.026 | | Package footprint STM6513 # 9 Package footprint Figure 14. Landing pattern - TDFN - 8-lead 2 x 2 mm without thermal pad Table 8. Parameter for landing pattern - TDFN - 8-lead 2 x 2 mm package | Parameter | Description | Dimension (mm) | | | | | |-----------|-------------------------------|----------------|------|------|--|--| | Farameter | Description | Min. | Nom. | Max. | | | | L | Contact length | 1.05 | _ | 1.15 | | | | b | Contact width | 0.25 | _ | 0.30 | | | | Е | Max. land pattern Y-direction | _ | 2.75 | _ | | | | E1 | Contact gap spacing | _ | 0.65 | _ | | | | D | Max. land pattern X-direction | 1 | 1.75 | - | | | | Р | Contact pitch | _ | 0.5 | _ | | | # 10 Tape and reel information Figure 15. Carrier tape Table 9. Carrier tape dimensions | Package | W | D | E | P ₀ | P ₂ | F | A ₀ | B ₀ | K ₀ | P ₁ | Т | Unit | Bulk
Qty. | |---------|------------------------|-------------------------|---------------|----------------|----------------|---------------|-----------------------|----------------|----------------|----------------|----------------|------|--------------| | TDFN8 | 8.00
-0.30
-0.10 | 1.50
+0.10/
-0.00 | 1.75
±0.10 | 4.00
±0.10 | 2.00
±0.10 | 3.50
±0.05 | 2.30
±0.05 | 2.30
±0.05 | 1.00
±0.05 | 4.00
±0.10 | 0.250
±0.05 | mm | 3000 | Figure 16. Reel dimensions Table 10. Reel dimensions | Tape sizes | A max. | B min. | С | D min. | N min. | G | T max. | |------------|----------------|--------|---------------|--------|--------|-----------|--------| | 8 mm | 180 (7 inches) | 1.50 | 13.0 +/- 0.20 | 20.20 | 60 | 8.4 +2/-0 | 14.40 | Figure 17. Tape trailer/leader Figure 18. Pin 1 orientation Drawings are not to scale. 2 All dimensions are in mm, unless otherwise noted. Part numbering STM6513 ### 11 Part numbering Table 11. Ordering information scheme F = ECOPACK® package, tape and reel For other options, voltage threshold values etc. or for more information on any aspect of this device, please contact the ST sales office nearest you. #### 12 Package marking information Package marking⁽¹⁾ Table 12. | Full part number | t _{SRC}
delay
control | Smart reset inputs type | V _{RST} | RST1
output
type | t _{REC1} programming | RST2
output
type | t _{REC2} | Topmark | |------------------|--------------------------------------|-------------------------|------------------|------------------------|-------------------------------|------------------------|-------------------|---------| | STM6513VEIEDG6F | TSR | AL | V | AH, PP | C _{tREC} | AL, OD | E | 9AH | | STM6513SEIEDG6F | TSR | AL | S | AH, PP | C _{tREC} | AL, OD | E | 9SH | | STM6513REIEDG6F | TSR | AL | R | AH, PP | C _{tREC} | AL, OD | Е | 9RH | ^{1.} AL = active-low, AH = active-high; PP = push-pull, OD = open-drain. Figure 19. Package marking area, top view Revision history STM6513 # 13 Revision history Table 13. Document revision history | Date | Revision | Changes | | |-------------|----------|------------------|--| | 22-Oct-2009 | 1 | Initial release. | | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. www.DataSheet4U.com Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com