\

USER'S MANUAL NEC

/JI?D17134A SUBSERIES

4-BIT SINGLE-CHIP MICROCONTROLLER

UPD17134A
UPD17135A
LUPD17136A
UPD17137A
UPD17P136A
UPD17P137A

Document No. U11607EJ3VOUMOO (3rd edition)
Date Published December 1996 N
© NEC Corporation 1993 Printed in Japan



NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions
need to be taken for PW boards with semiconductor devices on it.

@ HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, itis possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input
levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each
unused pin should be connected to Voo or GND with a resistor, if it is considered to have a
possibility of being an output pin. All handling related to the unused pins must be judged device
by device and related specifications governing the devices.

@ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, 1/0 settings or contents of registers. Device is not initialized until
the reset signal is received. Reset operation must be executed immediately after power-on for
devices having reset function.




Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

e Device availability

* Ordering information

Product release schedule

Availability of related technical literature

« Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California

Tel: 800-366-9782

Fax: 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics ltaliana s.r.1.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office

Madrid, Spain

Tel: 01-504-2787

Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-719-2377

Fax: 02-719-5951

NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

J96. 8



SIMPLEHOST is a trademark of NEC Corp.
MS-DOS and Windows are trademarks of Microsoft Corp.
PC/AT and PC DOS are trademarks of IBM Corp.

The export of this product from Japan is prohibited without governmental license. To export or re-export this product from
a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated “quality assurance program” for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M7 96.5



Major Revisions in This Edition

Page Description

Throughout Change of name uPD1713XA to uPD17134A subseries

p.5 Correction of (2) Program memory write/verifymode  in 1.4 PIN CONFIGURATION

p. 18 Change of Figure 3-2 Value of Program Counter after Instruction
Partial correction of 3.2.2 On Execution of Branch Instruction (BR)

p. 19 Partial correction of 3.2.3 On During Execution of Subroutine Call

p. 23 Change of CHAPTER 4 PROGRAM MEMORY (ROM)

p. 31 Partial correction of Figure 5-1 Data Memory Configuration

p. 35 Change of CHAPTER 6 STACK

p. 43 Partial correction of 7.2.2 Address Register Functions

p. 47 Change of 7.5 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS
POINTER (MEMORY POINTER: MP)

p. 58 Partial change of 7.6.2 Functions of General Register Pointer

p. 59 Partial change of 7.7.1 Program Status Word Configuration

p. 61 Change of 7.7.4 Zero Flag (Z) and Compare Flag (CMP)

p. 61 Partial correction of 7.7.5 Carry Flag (CY)

p. 71 Partial correction of 9.2.3 Register File Manipulation Instructions

p. 111 Change of CHAPTER 13 PERIPHERAL HARDWARE

p. 149 Change of CHAPTER 14 INTERRUPT FUNCTIONS

p. 169 Change of CHAPTER 16 STANDBY FUNCTION

p. 179 Change of CHAPTER 17 RESET

p. 190 Partial change of Table 18-2 Differences between Mask ROM Version and One-
Time PROM Version

p. 194 Partial change of 19.3 LIST OF THE INSTRUCTION SET

p. 198 Partial change of 19.5 INSTRUCTIONS

p. 255 Change of CHAPTER 20 ASSEMBLER RESERVED WORDS

p. 257 Partial change of 20.2 RESERVED SYMBOLS

p. 261 Addition of APPENDIX A DEVELOPMENT OF uPD171xx SUBSERIES

p. 263 Addition of APPENDIX B COMPARISON OF FUNCTIONS BETWEEN pPD17135A,
17137A, AND pPD17145 SUBSERIES

p. 267 Addition of APPENDIX D NOTES ON CONFIGURATION OF SYSTEM CLOCK

OSCILLATION CIRCUIT

The mark * shows major revisions made in this edition.




Target

Purpose

Use

Legend

PREFACE

: This manual is intended for user engineers who understand the functions of each product in

the uPD17134A subseries and try to design application systems using the uPD17134A
subseries.

: The purpose of this manual is for the user to understand the hardware functions of the

UPD17134A subseries.

: The manual assumes that the reader has a general knowledge of electricity, logic circuits,

microcomputers.

e To understand the functions of the = puPD17134A subseries in a general way;
- Read the manual from CONTENTS.

e To look up instruction functions in detail when you know the mnemonic of an
instruction;
- Use APPENDIX E INSTRUCTION LIST.

e Tolook up an instruction when you do not know its mnemonic but know outlines of
the function;
- Refer to 19.3 LIST OF THE INSTRUCTION SET for search for the mnemonic of the
instruction, then see 19.5 INSTRUCTIONS for the functions.

* To learn the electrical specifications of the UPD17134A subseries
- Refer to the Data Sheet available separately.

e To learn the application examples of the functions of the UPD17134A subseries
- Refer to the Application Note available separately.

: Data representation weight : High-order and low-order digits are indicated from left to right.

Active low representation : xxx (pin or signal name is overlined)

Memory map address : Top: low-order, bottom: high-order

Note : Explanation of N° in the text

Caution : Caution to which you should pay attention

Remark : Supplementary explanation to the text

Number representation : Binary number LLXXXX OF XXXXB
Decimal number L XXXX

Hexadecimal number ...xxxxH



Related Documents

: The following documents are provided for the yPD17134A subseries.

The numbers listed in the table are the document numbers.

Product name
HPD17134A HPD17135A HPD17136A uPD17137A | uPD17P136A | uPD17P137A
Document name
Brochure IF-1166 IF-1169 IF-1166 IF-1169 IF-1168 IF-1165
Data sheet U10591E U10592E U10591E U10592E IC-2871 1IC-2872
User’s manual IEU-1369

Application note

IEA-1297 (Introduction), IEA-1293 (Rice cooker, thermos bottle)

user’'s manual

IE-17K (Ver. 1.6) EEU-1467
user’'s manual
IE-17K-ET (Ver. 1.6) EEU-1466
user's manual
SE board EEU-1379

user’'s manual

SIMPLEHOST™ EEU-1336 (Introduction), EEU-1337 (Reference)
user’'s manual

AS17K assembler EEU-1287

user's manual

Device file U1l0777E

Pin name and symbol name should be read according to the system clock type.

System clock RC oscillation Ceramic oscillation
HPD17134A HPD17135A
HPD17136A HPD17137A
Pin name, symbol name uPD17P136A UPD17P137A
Pin for system clock oscillation 0OsCa Xin
0OSCo Xout
System clock fec fx




TABLE OF CONTENTS

CHAPTER 1 GENERAL DESCRIPTION ..ottt e e e e e e e e e e e e e e e e e e eeeeeeaeseeesennnennn e eas 1
1.1 FUNCTION LEIST ittt ettt e ekt e ekt n et e ekt e et e e e s e e et e e e e e e nnnns 2

1.2 ORDERING INFORMATION ...ttt ettt e ettt et e e et e et e e e b s 3

1.3 BLOCK DIAGRAM ittt ettt ettt ettt ekt e e s bt e ettt hb e et e e et 4

1.4 PIN CONFIGURATION (TOP VIEW) ...ttt e s 5
CHAPTER 2 PIN FUNCTIONS ...ttt ae e e e e e e e e e e e e e e ettt ee e eeaetebataasss s s s s e aaaeaeaeeaeeaeaeaeeeeeeeennnes 9
2.1 PIN FUNCTIONS itttk h e o1kt e 4 b et e 1 h ke e ettt a4 bb et e ekttt e st e s bt e e annbeeeene 9

2.2 PIN INPUT/OUTPUT CIRCUIT .ottt ettt ettt ettt e e e e nbne e e 11

2.3 PROCESSING OF UNUSED PINS ...ttt ettt et e s e e s nnnee e 14

2.4 NOTES ON USING RESET PIN AND PLIB0 PIN ..ottt 15
CHAPTER 3 PROGRAM COUNTER (PC) ittt 17
3.1 PROGRAM COUNTER CONFIGURATION ..ottt ettt 17

3.2 PROGRAM COUNTER OPERATION ...ttt e e e e snnee e 17
L2201 AL RESEE it e e tae s 18

3.2.2  During Execution of the Branch INStruction (BR) .........ccoouiiiiiiiiiiiieiiieciiee e 18

3.2.3  During Execution of Subrouting Calls (CALL) ........uuiiiiiiiiiiee e 19

3.2.4  During Execution of Return Instructions (RET, RETSK, RETI) ...cccoiiiiiiiiiiiiieeiiic e 20

3.2.5 During Table ReferenCe (MOVT) ..ooiiiiiiiiieiiie ettt 20

3.2.6 During Execution of Skip Instructions (SKE, SKGE, SKLT, SKNE, SKT, SKF) .......ccccceeuveeee. 21

3.2.7  When an INterrupt IS RECEIVEA .......couviiiiiii it 21
CHAPTER 4 PROGRAM MEMORY (ROM) ..ottt e e e 23
4.1 PROGRAM MEMORY CONFIGURATION ...ttt 23

4.2 PROGRAM MEMORY USAGE ....ooiiiiiiiiiiiie ettt e st nnn e e as 24
4.2.1  FIOW OF the PrOGIAIM c...veieieieiee ettt ettt 24

4.2.2  TADIE RETEIENCE ... .ottt 27
CHAPTER 5 DATA MEMORY (RAM) oitiiiititieeeeeiiiiieeieeet e et e e e e e s assssseeeeeaaaaeeeessssnsssaeseeeaeaaeaesansnnnssnnnees 31
5.1 DATA MEMORY CONFIGURATION ....oiiiiiiiiiiiiiiiiie ettt eesannee e 31
5.1.1  System ReQiSter (SYSREG) ...coiiiiiiiiiiiiiiiii ettt 32

5.1.2  Data BUFEr (DBFF) .ottt 32

5.1.3  General REGISIEI (GR) ...eiiiiiiiiiiiii ettt ettt e e ettt e e e et e e e e e anbb et e e e e anbeeeeeeanns 33

5.1.4  POM REGISIEIS ettt ettt et e bt et n 33

5.1.5  General Data MEMOIY ......oiiiiiiiiiii ettt 34

5.1.6 UNMOoUuNted Data MEMOIY ......eeiiiiiiiiiiie ettt ettt e e e e et et e e e e e snnb e e e e e e s nbbeeeaeaannes 34



CHAPTER 6 STACK .ttt e e e e e e s s r e e e e e e s e s sanaes 35

6.1  STACK CONFIGURATION ....uiiiiiieitieiitie ittt ettt sttt ee sttt e asb e e ke e e abe et e e e nbeeabeeasbeeabeeanbeesbeeenbeenneean

6.2  FUNCTIONS OF THE STACK ...eiiitiiiiiieiiieaiee ittt ettt sttt sttt e asbe e bt e e e e abee e bt eabeeanbeesreaanbeenneean

6.3 ADDRESS STACK REGISTERS (ASRS) ..ccccvviiiiieeiiennn

6.4 INTERRUPT STACK REGISTERS (INTSKs)

6.5 STACK POINTER (SP) AND INTERRUPT STACK REGISTERS ......coiiiiiiiiiieiiiee e 37

6.6 STACK OPERATION ...ttt ettt ekttt ekt ea et bt e h e bt e e s bt e ke e ea bt e ket eab e e nbe et e enneennneen
6.6.1  On Execution of Instructions CALL, RET, RETSK
6.6.2  Table Reference (MOVT DBF, @AR INSIIUCLION) ...coiuviiiiiiiiiiiiei e
6.6.3  Operation on Execution of Interrupt Receipt and RETI INStruction..........cccoccveeeiiiiiienennnnns 39

6.7 STACK NESTING LEVELS AND THE PUSH AND POP INSTRUCTIONS ....cccociiiiiiiiiiiiieeeeeeeeeeee 39

CHAPTER 7 SYSTEM REGISTER (SYSREG) ..ccoiiiiiitiieiiit ettt 41

7.1 SYSTEM REGISTER CONFIGURATION ....uiiiiiiiiiiiieiiie ittt ettt sttt et snteesbae e e sneesnneens 41

7.2 ADDRESS REGISTER (AR) ..iiitiiiititieite ettt ettt ettt ettt ettt ae et e e aab et e et e e b e et e nneennneen
7.2.1  Address Register Configuration
7.2.2  AJAress ReQISIEr FUNCHONS .....coiiiiiiiiie ittt ettt e e

7.3 WINDOW REGISTER (WR) ...ttt stttk ettt b et a e ebe e i
7.3.1  Window Register Configuration
7.3.2  Window Register Functions ..............

7.4  BANK REGISTER (BANK) ..ttt ettt ekttt b ettt e bbb e et et e abe e i an
7.4.1  Bank Register CONfIQUIAtION .......c.oiiiiiiiiiii et
7.4.2  FUNCLIONS Of BANK REQGISTEN .. .eiiiiiiiiiiiieiieie ettt

7.5 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS POINTER
(MEMORY POINTER: IMP) .ttt ettt ettt ettt e e e e ekttt et e e e e st et e e e e et b eeeeeesasssseeaeeesnsnaeaeeennnnes 47
7.5. 1 INAEX REGISTEE (1X) 1outtiiiiiiieitiee ettt ettt et e et nbe e s 47
7.5.2  Data Memory Row Address Pointer (Memory Pointer: MP) ..........cooiiiiiiiiiiiieeeiiece e 47
7.5.3 IXE =0 and MPE =0 (No Data Memory ModifiCation) .........ccccovueeiriiiinineciiiee e 49
7.5.4 IXE =0 and MPE = 1 (Diagonal Indirect Data Transfer) ..........ccccceviiiiiiiiiiieeeie e 51
7.5.5 IXE =1 and MPE = 0 (IndexX MOdifiCatiON) ..........ocuueiiaiiiiiiiie e e e 53

7.6 GENERAL REGISTER POINTER (RP) ..uiiiiiiiiiiiiiee ittt ettt ettt e e e sttt e e e e et ea e e e s snnnaeaae s
7.6.1  General Register Pointer CONfIQUIAtioN ...........ooiiviiiiiieiiiie e
7.6.2  Functions of the General Register Pointer

7.7 PROGRAM STATUS WORD (PSWORD) ..ciiiiiiiiiiiee ettt eite e et a e e e sntbaeae e e snnnnaeeaes
7.7.1  Program Status Word CONfIQUIALION ..........cciiiiiiiiiiiiiie et
7.7.2  Functions of the Program Status WOrd ............cooiiiiiiiiiiiiiiiee e e e
7.7.3  IndexX ENADBIE Flag (IXE) .....ciuiieiiiiieiiiie ittt sttt
7.7.4  Zero Flag (Z) and Compare Flag (CMP) ....ccuuiiiiiiiiiiiiiiie et
FA R T O T s A i - To T (O 4 TP OPPPPR 61
7.7.6  Binary-Coded Decimal Flag (BCD) .......coouiiiiiiiiiiieiiieeiie et 62
7.7.7  Notes Concerning Use of Arithmetic OPerations ...........cccviieiiiiiiiiie e 62

7.8 NOTES CONCERNING USE OF THE SYSTEM REGISTER ....coooiiiiiiiiieiicnceiee e 63
7.8.1 Reserved Words for the SyStem REQISIEN .......ccciiiiiiiii i 63
7.8.2  Handling of System Register Addresses Fixed at 0 .........cccceeveiiiiieeiiiiiiee e 65



CHAPTER 8 GENERAL REGISTER (GR) .otiiiiiiiiiiiiei ettt 67

8.1 GENERAL REGISTER CONFIGURATION ....iiiiiiiiiiiieiiite ettt 67
8.2 FUNCTIONS OF THE GENERAL REGISTER ..ottt 67
CHAPTER 9 REGISTER FILE (RF) cutttitiiiiiiee ettt e e e e e e e e s et e eneaaeeeeeesnnnnssneneees 69
9.1 REGISTER FILE CONFIGURATION ....iiiiitiiiiteitie ittt ettt sttt steesnbe et e snseesbeeanbeesneesnbeeas 69
9.1.1  Configuration of the RegIStEr FIle ........ccoiiiiiiiiiii s 69

9.1.2  Relationship between the Register File and Data MemOry ..........ccoooiiiiiiieiiiiiiieie e 69

9.2 FUNCTIONS OF THE REGISTER FILE ...oiiiiiiiiiiiiiie et 70
9.2.1  FUuNnctions Of the REGISTEN FIlE ......uiiiiiiiiiie e 70

9.2.2  Functions Of CONrol REGISTEN ....ccoiiiiiiiiieii ettt et e et e e e anees 70

9.2.3  Register File Manipulation INSrUCHIONS ......cocouviiiiiiiiiiie e 71

9.3  CONTROL REGISTER ..ottt ettt e e e e e e e e e e e e e e e e s bbbttt et e et et e aeaeaeeaaeenenanannn 72
9.4 NOTES CONCERNING USE OF THE REGISTER FILE ......coiiiiiiiiiiieiiieii et 73
9.4.1  Notes Concerning Operation of the Control Register (Read-Only and Unused Registers)... 73

9.4.2  Register File Symbol Definitions and Reserved WOrds ...........ccooveeiiiiiiiieie i 73
CHAPTER 10 DATA BUFFER (DBF) oiiiiiiiiiiiieiiiiieeit ettt e e e e e e e e sttt eeeaaeaeeesenannnnsnnnees 77
10.1 DATA BUFFER CONFIGURATION ....coiiiiiiiiitiiiiieiee sttt ettt ettt nne e 77
10.2 FUNCTIONS OF THE DATA BUFFER ..ottt ettt sttt 78
10.2.1 Data Buffer and Peripheral HardWare ............cooceioiiiiiiiiiic e 79
10.2.2 Data Transfer with Peripheral HardWare ............ccoeiiiiiiiiiiiiieee e 80
10.2.3  TADIE REFEIENCE ..ottt ettt e st eesab e 81
CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU) oottt 83
11.1 ALU BLOCK CONFIGURATION ..ottt ittt ettt sttt ettt e bt e st e e st e e nbe et eenbeennee e 83
11.2 FUNCTIONS OF THE ALU BLOCK ...iiiiiiiiiitiiiiieitie sttt ettt 83
11.2.1  FUNCLONS OF tNE ALU .ttt ettt et 83
11.2.2 Functions of Temporary Registers A and B .......cccoooiiiiiiiiiiiiiieie e 88
11.2.3  Functions of the Status FIP-flOP ........eeiiiiie e 88
11.2.4  Operations iN 4-Bit BINAIY .....ccooiiiiiiieiiiee ettt e st 89
11.2.5  OPErationNS iN BCD .....cciiiiiiiiieiiiit ettt ettt et e et e et 89
11.2.6 Operations in the ALU BIOCK .......cooiuiiiiii ettt e e e 90

11.3 ARITHMETIC OPERATIONS (ADDITION AND SUBTRACTION IN 4-BIT BINARY AND BCD) ....... 91
11.3.1 Addition and Subtraction When CMP =0 and BCD = 0.....ccceiiiiiiiiiiiiiiee e 91
11.3.2 Addition and Subtraction When CMP =1 and BCD = O.....cccceoiiiiiiiiiiiiiee e 91
11.3.3 Addition and Subtraction When CMP =0 and BCD = 1 ......ccccoiiiiiiiiiiiiie e 92
11.3.4 Addition and Subtraction When CMP =1 and BCD = 1.....cccccooiiiiiiiiiiiiiie e 92
11.3.5 Notes Concerning Use of ArithmetiC OPerations ..........cc.ueeiiiiiiiiiiieeiiiiiie e 92

11.4 LOGICAL OPERATIONS ittt ettt ettt e e e e e e e e e e e e e e e s e bbb bbb bbbttt e e et eeeeaaaeeeeeeaeaesaaanannasnenrne 93
11.5 BIT JUDGEMENTS oottt ittt et e e e e e e e e e e e e e e e e e bbb bbbttt bttt ettt e e e aaaaeeeeeeesaaanansnnnnbabebenn 94
1151 TRUE (1) Bit JUOQEMENT ...ttt e et e e e e et e e e e e st b e e e e e e anbeeeeaeanns 94
11.5.2 FALSE (0) Bit JUAGEMENT ...eeiiiiiiiiiiii ettt e et e st e e e tneeeae 95



11.6 COMPARISON JUDGEMENTS ...ttt bttt b ettt b et nne e 96
11.6.1  “EqUAl t0" JUAGEMENT . .eiiiiiiieiiii ettt ettt ettt et e et e nnbe e e e breeeae 96
11.6.2  “Not EQUAI 10" JUAGEIMENT ....eiiiiiiiiiiieiiee ettt ettt et e et e et e e 97
11.6.3 “Greater Than or Equal t0” JUAQEMENT ........coiiiiiiiiiiiee ettt e e 97
11.6.4  “LeSS Than” JUAGEMIENT ...ciutiiiiiiieiiiee ettt etttk e e st e et e e nineeeanbeeena 98

10,7 ROTATIONS L.ttt ettt ettt bt e o1t e bt e e s bt ekt e e st e e b e e ea b e ekt e e skt e ebe e oAbt e ebeeanbeenbeeenbeenbeeeanbeenneean 99
11.7.1  RoOtation t0 the RIGNT .....eoii et e e et e e e e e b e e e e e anee 99
11.7.2  ROtAtioN 10 the LETt ..o 100

CHAPTER 12 P ORI S ittt e e e e e e e e ettt e ettt e e e et ee e ba bbb e e e e e e e e e e eeeeaas 101

12.1 PORT OA (POA0, POAL POA2, POAS) ..ttt ittt ettt ettt e e ninee s 101

12.2 PORT 0B (POBo0, POB1, POB2, POB3) .....uuiitieitiiiiieitie ittt sttt nnee s 102

12.3 PORT 0OC (POCo/ADCo, POC1/ADC1, POC2/ADC2, POC3/ADCS) ...cciuviiiiiiiiiiiie st 103

12.4 PORT 0D (PODo/SCK, POD1/SO, POD2/SI, PODs/TMOOUT)

12.5 PORT 1A (PLA0, PLAL PLA2, PLAB) ittt ettt et nnee s

12.6 PORT 1B (PLB0) teiiuetetetiuuiaitieaiitesteeasteesteeasteesteessteabeeasbeesteessbeeabeeaabeeabeeaste e bt e as bt e beeasbeenbeeanbeenbeeanbeeebeas

12.7 PORT CONTROL REGISTER ..ottt ittt ettt ettt sttt st et e nbe e teeanbeennee s
12.7.1 Input/Output SWitching DY Group 1O ......uueiieiiie e
12.7.2  Input/Output SWItChing DY Bit 1/O .....oiiiiiiiiiie e
12.7.3 Specifying Pull-Up Resistor Incorporation Using SOftWare ..........cccccevivieiiiieiniieeniie e 109

CHAPTER 13 PERIPHERAL HARDWARE ....coiiiiiiieiieiiitteee st e e e e e e e e e e e e eeeennnennn s 111

13.1 8-BIT TIMERS/COUNTERS (TMO @Nd TIML) ...iiiiiiiiiiieiieeii ettt 111
13.1.1  8-Bit Timers/Counters CONfIQUIALION ........coouiiiiiiiiiiiie ittt 111
13.1.2 Operation of 8-Bit TIMEIS/COUNIEIS ......cuuiiiiiiiiiiiie ittt 115
13.1.3 Selecting Count Pulse
13.1.4 Setting Count Value to MOdUIO REGISLET .......iiiiiiiiiiiieiiiie e
13.1.5 Reading Value of CoUNt REGISIET ......iiiiiiiiiiiiiiiei e
13.1.6  Setting Of INtErVAl TIME ..ooii et e e e et e e e e e e e e e e e enneeeeaeaanes
13.1.7  Error Of INEEIrVAl TIME ..ot
13.1.8  TIMEI O OULPUL ..eeiiiiie ettt ettt e et e et e et e e ss e e et e et e e nenne s

13.2 BASIC INTERVAL TIMER (BTM) oottt ettt sttt nnee s
13.2.1 Basic Interval Timer ConfigUration ...........oooiiiiiiiiiiiiiie e

13.3

13.4

13.2.2 Registers Controlling Basic Interval Timer
13.2.3 Operation of Basic Interval Timer

13.2.4  Watchdog TIimer FUNCHION .....oiiiiiiiiiiiieiiiee ettt e et e e s
A/D CONVERTER ... ittt ettt e e e ettt e e e e ettt e e e e e e s sttt e e e e e sastbeeeeesassbeeeeeesannsenaeeesnnnens
13.3.1 A/D Converter CONFIQUIALTION ........oouuiiiiiiiiiiiiie ettt e e e et e e e et e e e e e nneeaeaeaanes
13.3.2 Functions of A/D Converter

13.3.3 Setting Values in the 8-bit Data Register (ADCR) ......cccciiiiiiiiiiiieiiiie e 132
13.3.4 Reading Values from the 8-bit Data Register (ADCR) ......cccoiiiiiiiiiiiiieie e 133
13.3.5  A/D CONVEIEr OPEIALION ...c.utiieiiiie ittt ettt ettt e et e s nanes 134
SERIAL INTERFACE (S10) iiiiitiiiiiie ittt ettt e ettt e e e e sttt e e e s e bt e e e e e asstbeeaeeasntbeeeeeeansseeeeaens 141
13.4.1 Functions of the Serial INTErface ... e 141
13.4.2  3-wire Serial Interface Operation MOUES ........cocuviiiiiiiiiie e 143
13.4.3 Setting Values in the Shift REGISTEN .........coiiiiiiiii e 147
13.4.4 Reading Values from the Shift REQISTEI ........ccoiiiiiiiiiiii e 148

-V -



CHAPTER 14 INTERRUPT FUNCTIONS ..ot 149

14.1 INTERRUPT SOURCE TYPES AND VECTOR ADDRESSES ..ottt 150

14.2 HARDWARE COMPONENTS OF THE INTERRUPT CONTROL CIRCUIT ....ccccoiiiiiiiiiiiiccieeniiee 151

14.3 INTERRUPT SEQUENCE .....oiiitiiiiiiiie ittt ettt ettt ettt ettt ettt et e st e et e ane e nbe e bbeabeennee s 158
14.3.1  RECEIVING 8N INTEITUPT ..eeiiiiiie ettt ettt e et e ettt e e s 158

14.3.2 Return from the INerrupt ROULINE .......ccoiiiiiiiii et e e e e e 159

14.3.3  Interrupt ACCEPLING TIMING ..veiiiiiieiiiie e e et e e 160

14.4 MULTIFINTERRUPT Lottt ettt b ettt e bttt e e bt e st e e be e e nb e e beeanbeesbeeanbeesneeanbeeas 163

14.5 PROGRAM EXAMPLE OF INTERRUPT ..oiiiiiiiiiiiiii ettt 164
CHAPTER 15 AC ZERO CROSS DETECTION ..uitiititiiiiiaaeieiee e ee e en e e 167
CHAPTER 16 STANDBY FUNGCTION ...ttt a e e e e e e e e e e e aeaeeeeeeeeeeeeennnnes 169
16.1 OVERVIEW OF THE STANDBY FUNCTION ...ccuiiiiiiiiiiiiieitie ittt 169

16.2 HALT MODE ..ottt h et b e st b e e a ekt e a bt ek e e Rt e e bt e e s bt e bt e e st e e bt e e nb e e be e e enneenteas 170
16.2.1  Setting HALT MOGE ...ooiiiiiiiiiieitt ettt et e e 170

16.2.2 Start Address after HALT Mode IS Released ..........cccccoviiiiiiiiiiiiiceiic e 170

16.2.3 HALT Mode Setting CONAItIONS .....cc.uuiiiiiiiieiiie et 172

16.3 STOP MODE ..ottt ittt ettt b ettt b e st e bt e h bt e e bt e e st e e kb e e At e e b e e R bt ekt e e nb e e e beeenb e e tee e enbeenteas 174
16.3.1  Setting Of STOP MOUE ...ccoiiiiiiiiee ittt e e e et e e e e et e e e e ennneeeeeaanes 174

16.3.2 Start Address after STOP Mode IS Released ..........cccoviviiiiiiiiiiiciie e 174

16.3.3 STOP Mode Setting CONAItIONS ....ccouviiiiiiieiiiie et 176
CHAPTER 17 RESE T ittt e e e e e e e e e e e e et et et et et et e tebe bt e e e e e e e e e e e aeeeaeaees 179
17.1 RESET FUNGCTION ...ttt h ettt b et ekttt e ettt e et et e e ane e 180

17.2 RESETTING ..ottt ettt ettt et h bbbt ekt e e etk e e ab e e ke e e R et e bt e e bt e bt e e s bt e beeenb e e beeeenneenteas 181

17.3 POWER-ON/POWER-DOWN RESET FUNCTION ....coiiiiiiiiiiiiiieiiiee ettt 182
17.3.1 Conditions Required to Enable the Power-On Reset FUNCLION .............ooeiiiiiiiiiiniiiiiiees 182

17.3.2 Power-On Reset FUNCLiON and OPEration .........cceeoiiureeiiiiiiiiiieiiiee et 183

17.3.3 Condition Required for Use of the Power-Down Reset FUNCLION ...........cccoviiiiiiiieiiiicc e, 185

17.3.4 Power-Down Reset Function and OPeration ..........ccoeeiiiirieaiiiiiiiee e e e 185
CHAPTER 18 ONE-TIME PROM WRITING/VERIFYING ......uutiiiiiiiiieeeeieeciiieie et seinieenenee e e 189
18.1 DIFFERENCES BETWEEN MASK ROM VERSION AND ONE-TIME PROM MODEL .........ccccveenne. 189

18.2 OPERATION MODE WHEN PROGRAM MEMORY IS WRITTEN/VERIFIED ......cccoccooiiiiiiiiiiiieens 190

18.3 WRITING PROCEDURE OF PROGRAM MEMORY ....cccuitiiiiiiiiieiiiesiee sttt 191

18.4 READING PROCEDURE OF PROGRAM MEMORY ....ooiiiiiiiiiiiiiiiee ittt 192
CHAPTER 19 INSTRUCTION SET .o e e e e e e e e e e e e eeeeeeeeeennenes 193
19.1 OVERVIEW OF THE INSTRUGCTION SET ..oiiiitiiiiiiieiiiie ettt ettt nne e 193

19,2 LEGEND ..tttk R R bR b Rt b et e ettt 194

19.3 LIST OF THE INSTRUCTION SET ..oiiiitiiiitiiieiiie ettt nn e 195

19.4 ASSEMBLER (AS17K) EMBEDDED MACRO INSTRUCTIONS .....ooiiiiiiiiiiiieiiee et 197



19.5 INSTRUGCTIONS .ot e e e e e e e e e s e et e e e s et e e e e e e e nnaeeaeeeas 198

19.5.1  AdditioN INSIFUCHIONS ...uviiiieiiiiiiee ettt e ettt e e et e e e e et e e e e e s ntbeeeeesansbeeeeeesansanaeaeeanns 198

19.5.2  SUDLracCtion INSTIUCTIONS ....ciiiiiiiee ettt e e et e e e e e st e e e e e st e e e e s ennnbeaeeeeanns 209

19.5.3 Logical Operation INSIIUCHIONS .........uuiiiiiiiiiiiie ettt et e e e e e e e e e sbbeeeeeeanes 216

19.5.4  JUAGMENT INSIIUCTIONS ...eeiiiiiiiiiiiie ettt ettt e et e et e e e nnnne s 221

19.5.5 COmMPAriSON INSITUCHIONS .....itiiiiiiie ittt e et 223

19.5.6  ROtAtION INSITUCTIONS ....eiiiieiiiie ittt e e e e ettt e e e e et e e e e s enebe e e e e e sannbeeeaeaanns 226

19.5.7  TranSTer INSTIUCTIONS .....oiiiiiiiiii ettt e e e et e e e e e st e e e e s ansbeeeeeesensaeaeaeeanns 227

19.5.8  BranCh INSITUCHIONS ....uuviiiiiiiiiiii ettt e e e et e e e e e st e e e e e e s nntbeeeeesssnneaeeeeanes 243

19.5.9  SUDIrOULING INSIFUCTIONS ..ceiiiieiii ettt e e e et e e e e e nt e e e e e e enbeeaaeeenes 246

19.5.20 INLEITUPL INSIFUCTIONS ..ottt et e et e e 251

19.5.11 Other INSITUCTIONS ...uviiiiiee ittt et e e et e e e e sttt e e e et e e e e e s e saaeeaeeessntbeeeeessnsbaeaeeeanes 253
CHAPTER 20 ASSEMBLER RESERVED WORDS ...t 255
20.1 MASK OPTION DIRECTIVE ..oiiiiiieiiiieeitite e aiee et e et e ettt e e et e e anteteesmaeaeanteeeaaseeeeamneeeanaeeeaseeeeanneeeanneeas 255
20.1.1  SpecCifying MasK OPLION ......couiiiiiiieiiiie et 255

20.2 RESERVED SYMBOLS ..ottt e ettt e e e s ettt e e e e e e sat bt e e e e e atb et e e e s asbbeeeeeaansaneeaens 257
APPENDIX A DEVELOPMENT OF puPD171xx SUBSERIES .......ccooi i 261

APPENDIX B COMPARISON OF FUNCTIONS BETWEEN uPD17135A, 17137A, AND

UPDL7145 SUBSERIES .....ooiiiiiiiiiiiii ettt e e e e 263

APPENDIX C DEVELOPMENT TOOLS ...ttt ettt e e eeees 265
APPENDIX D NOTES ON CONFIGURATION OF SYSTEM CLOCK OSCILLATION CIRCUIT ...... 267
APPENDIX E INSTRUGCTION LIST ..eiiiiitiiitieiiieie ettt ettt e s 269
E.1 INSTRUCTION LIST (DY fUNCLION) oottt 269

E.2 IINSTRUCTION LIST (alphabetical Order) ...t 270
APPENDIX F ORDERING MASK ROM ...ttt ettt 271

- Vi -



Figure No.

LIST OF FIGURES (1/3)

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8

4-1
4-2
4-3

5-1
5-2
5-3
5-4
5-5

6-1

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18

8-1

Title Page
PrOGIamM COUNTET ...ttt et et oo oo e bt e ettt ettt et e e e e e e e e e ae s e e s snbnbbbbbnbnenebennnes
Value of the Program Counter after Instruction Execution
Value in the Program Counter after RESEL .........oiiiiiiiiiiieiie e
Value in the Program Counter during Execution of a BR addr INStruction ...........ccccceeeiiiiiiieeniiiinneenn,
Value in the Program Counter during Execution of an Indirect Branch Instruction
Value in the Program Counter during Execution of @ CALL addr..........ccccovveiiiiiiiniiiiiiieceie e
Value in the Program Counter during Execution of an Indirect Subroutine Call ............ccccccoeviiieen.
Value in the Program Counter during Execution of a Return INStruction .............ccccceeeeiviiieiienniiiieeeennn 20
Program Memory Map for the UPD17134A SUDSEIIES ......eiiiiiiiiiiiie e 23
(07 Y I To o | g [ 514 £ o3 1 o o PP ST P PR PPRRTPP 26
Table Reference (MOVT DBEF, @AR) .....ooiiiiiiiiiii ittt ettt 27
Data Memory CONFIQUIALTION ........coiiiiiiii ettt e e e e e bbb e e e e e et e e e e e annbr e e e e e e annnneas 31
System RegiSter CONFIGUIATION ........iiiiiieiiiie it e e s 32
Data Buffer CONFIQUIALTION ..........ooiiiiiiii ettt e e et e e e e et e e e e e e e nanes 32
General Register (GR) CONFIQUIALION .......iiiiiiiiiiie ettt e e et e e e s nneeeeeeeanes 33

Port Register Configuration

SEACK CONTIGUIALION ...ttt e e ettt e e e et e e e e e mtb et e e e e anbb et e e e aannbneeaaeaaan 35

Allocation of System Register in Data Memory

System Register CONFIGUIALION ........coiiiiii ettt e e et e e e e et e e e e e anbbeeeaeaanees
Address Register CONFIGUIALION ....c..uiiiiiieiiie ettt
Address Register Used as a Peripheral Circuit

Window Register CONfIQUIALION .........oiii et e e e e e e e e e et e e e e e enaeeeaeeas
Example of Window RegiSter OPEIatiON .........coiuiiiiiiiiiiiie ittt 45
Bank Register CONfIQUIALION ........oiiiiiiiiiieiie ettt et e 46
Index Register CONTIQUIALION .......cii ettt e e e et e e e e st e e e e e anrbe e e e e e e nnees 47
Modification of Data Memory Address by Index Register and Memory Pointer ...........ccccovvveeiinnennne. 48

Operation Example When IXE = 0 and MPE =0
Operation Example When IXE = 0 and MPE =1
Operation Example When IXE = 1 and MPE =0
Operation Example When IXE = 1 and MPE =0
Operation Example When IXE = 1 and MPE = 0 (Array Processing)

General Register Pointer CONfIQUIAtiON ........cuuiiiiiiiiiiiis ettt e e e et r e e e s eibaeeeeeanes
General Register CONfIQUIALION .. .. .ciiiiiiiiie ettt e e e e e e e e e e e e sata e e e e e sabreaeeesstbeeeeeeanes
Program Status Word CONFIQUIALION ........o.eiieii ettt e e e et e e e e e et e e e e e e e nneeas
Outline of Functions of the Program Status WOIQ ..........coociuiiiieiiiiiiiee et seiven e e

General Register CONfIQUIALION .......oi ittt e et e e e e et e e e e e st e e e e e aannaeeaaeeannes 68

- Vii -



LIST OF FIGURES (2/3)

Figure No. Title Page
9-1 Register File CONfIQUIALION .........uiiiiiiiiii ettt ete e 69
9-2 Relationship Between the Register File and Data MEMOIY ..........coiueiiiiiiiiiiie e 70
9-3 Accessing the Register File Using the PEEK and POKE INStrUCLIONS .........eeviiiiiiiiieiieeiiiieee e 72
9-4 Control Register CONFIGUIALION ........iiiiiieiiii ettt e et e e s 75
10-1  Allocation of the Data BUFTEE .........ciiiiiiiiiiee ittt e et e e e e et e e e e e et e e e e e s anaaeeeeeanes 77
10-2  Data BUffer CONFIGUIALION .....ciuiiiiiii ettt et e e as 77
10-3  Relationship Between the Data Buffer and Peripheral Hardware .............ccccooviiiiiiciiiic i 78
12-1 ALU CONFIGUIALION 1.ttt et h e et e et e e b e e st e e et e e s 84
12-1  Input/Output SWiItching DY GroUP 17O ......eeeiieiiee et e e e ns 106
12-2  Port Control REGISTEr Of Bit 1/O ..oouiiiiiiiiiiiee e 107
12-3  Specifying Pull-Up Resistor Incorporation USiNg SOftWAIe ...........cccveeiiiiiiiiiiiiiieeiiicc e 109
13-1  Configuration of the 8-Bit TIMEr COUNIETS ......c.uiiiiiiiiiiiie ettt 112
13-2  Timer 0 Mode Register
13-3  Timer 1 Mode Register
13-4  Setting Count Value to Modulo Register
13-5 Reading Count Value of Count Register
13-6  Error When Count Register Is Cleared to 0 DUring COUNtING .......c.uveiieiiiiiiiieeieiiieee e 119
13-7  Error When Counting Is Started from Count Stop Status
13-8  Timer 0 OULPUL SETING REGISTET .....viiiiiiieiiiie ittt ettt
13-9  Basic Interval Timer CONfIQUIAtION . ......uuiiiieiiiii et et e e e et e e e e anbaeeeeeas
13-10 BTM MOOE REGISTET ...ttt ettt b e e et e et e bt e e nb et e nabe e et e e e st e e s
13-11 Watchdog Timer MOAE REGISIEE ...uiiiiiiiiiiiii ettt e e e e e e e e et e e e e e ssbb et e e e s asaneeeens
13-12 Timing Chart of Watchdog Timer (with WDTRES Flag UsSed) .......ccuuiiiiiiiiiiiieiieee e
13-13 Block Diagram Of the A/D CONVEITET .......uiiiieiiiiiiiee ettt e e e e e e e e et a e e e s snsbaeaeeesesanaeeeas
13-14  A/D Converter CONIrOl REGISIET ....uiiiiiiiiiiii e ettt e e e s e e e e et e e e e s st aeeeeesasanaeaens
13-15 Setting a Value in the 8-Bit Data RegiSter (ADCR) .......oiiiiiiiiiieee et a e e e e e eeaneeee s
13-16 Reading Values from the 8-bit Data Register (ADCR) ...

13-17 Relationship between the Analog Input Voltage and Digital Conversion Result

13-18 Using the Successive Mode for the A/D CONVEITEN ........ooiiiiiiiie et e e eeeeee s
13-19 A/D Conversion Timing in the ContinUOUS MOOE ..........oeiiiiiiiiiiieei et
13-20 Using the Single Mode for the A/D Converter

13-21 Single Mode Operation (Comparison) Timing

13-22 Block Diagram of the Serial INTEIfACE ........cciiiiiiiiiie e e st
13-23 Timing of 8-Bit Transmission and Reception Mode (Simultaneous Transmission and Reception) .. 143
13-24 Timing of the Clock Synchronization 8-Bit Reception Mode (SO Pin Output High Impedance)........ 144
13-25 Serial Interface CONTrol REQISTEL ....iiiiiiiiiiie et e e e st e e e e s st a e e e e e saaaeae s 145
13-26 Setting a Value in the Shift REQISTE ........ciiiiiiiiii e e e s 147
13-27 Reading a Value from the Shift REGISIET ..o e 148

- viii -



Figure No.

LIST OF FIGURES (3/3)

Title Page

14-1
14-2
14-3
14-4
14-5

15-1
15-2

16-1
16-2

17-1
17-2
17-3
17-4
17-5

18-1
18-2

D-1
D-2

INtErTUPt CONLIOI REGISTET ...ttt e e et e s nnbee s
Interrupt Processing Procedure ..........

Return from INTErrUPt PrOCESSING ....ouveieiiiieiiiie ettt
Interrupt Accepting Timing (When INTE = 1, IPXXX = 1) ...iiiiiiiiviiieiieieeecie ettt
Example of MUILI-INTEITUPT ..ottt ettt e e ettt e e e e e e e e e e e e annbneaeeeann

Block Diagram for the AC Zero CroSS DEECION .....ciiiiiiiiiiiiiiie e 167
Zer0 CroSS DeteCtioN SIGNAI .......uueiiiiiiiiiii ettt e e e et e e e et e e e e e e nneeeae s 168

REIEASING HALT IMOGE ...ttt et e kbt e e e et e e e 171
REIEASING STOP IMOUE ...eiiiiiiiieii ettt e e e ettt e e e et bttt e e e e e abt e e e e e e annbbeeeeeaantbeeeaeeann 175

Reset BIOCK CONFIGUIALION ......viiiiiieiiie ettt ettt a e
RS TY AO 01T = Ao o TP PT PP
Example of the Power-On Reset Operation ..........

Example of the Power-Down Reset Operation
Example of Reset Operation during the Period from Power-Down Reset to Power Recovery ......... 187

Procedure of Program Memory Writing

Procedure of Program MemoOry REATING ......coueiiiiiiiiieeiiiiiee ettt e e st e e e e e eee e e annees 192
External Circuit of System Clock OSCIllation CirCUIL.........cciiiiiiiiiiiiiiie e 267
Example of Incorrect OSCIllation CIFCUILS .......oiiiiiiiiiieee et e e e e e e annaes 268

- X -



LIST OF TABLES (1/2)

Table No. Title Page
2-1 Processing Of UNUSEA PINS .....oiiiiiiiiiii ittt e e e s ettt e e e e s bbbt e e e e e ebbr e e e e e e ansneeas 14
4-1 Program Memory CONFIGUIATION ........oiiiiiiiiieieiiiee ettt e et e e 23
4-2 Vector Address for the UPDL17134A SUDSEIIES ....oouiiiiiiiiiie ittt e e 24
6-1 Operation Of STACK POINTET ......vii et e et e e s 37
6-2 Operation of the Instructions CALL, RET, and RETSK ........ouiiiiiiii e 38
6-3 Stack Operation during Table REEIrENCE ......c..eeiiiiii e 38
6-4 Operation during Interrupt Receipt and RETI INSIIUCION ......c.vviiiiiiiiiiii e 39
6-5 Stack Operation during the PUSH and POP INSTIUCLIONS .........coiiuiiiiiiiiiiiiie e 39
7-1 Specifying the Bank in Data MEMOIY .....coouiiiiiiiiiiie ettt 46
7-2 Instructions Subject to Address MOdifiICAtION ...........oiiiiiiiiiiii e 48
7-3 Zero Flag (Z) and Compare Flag (CIMP) ..ottt et e e e eeeeenee 61
O R =TT o] e =T ol o F= T AT U= SR TPPPPS 79
11-1  List of ALU Instructions
11-2  Results of Arithmetic Operations Performed in 4-Bit Binary and BCD ...........cooooiiiiiiiiiiiiieniiiieeeees 89
11-3  Types Of ArithmMetiC OPEIALIONS .....cciiiiiiiiiiie ettt e e et e e e e st a e e e e e e anbbr e e e e e aanbbeeeaeeannes
I o To [ (o= 1 I @] 1= =i o] E S PP PP PO PP PPR
11-5 Table of True Values for Logical Operations
11-6  Bit JUAGEMENT INSTIUCTIONS .ottt ettt e e oottt e e e ettt e e e e e nbe e e e e e e annbeeeeeeaanbbeeaeeaannes
11-7  Comparison Judgement INSIIUCTIONS .......ciiiiiiiiii ittt eennee s
12-1  Writing into and Reading from the Port Register (0.70H)

12-2  Writing into and Reading from the Port Register (0.71H)

12-3  Switching the Port @and A/D CONVEITET .....iiiiiiiiiiee et e ettt e e s e e e e e st e e e e e s stbaeaeessnnbaaaeaeas
12-4  Register File Contents and Pin FUNCLIONS .........oiiiiiiiiiii it e e et e e e eneaeeee s
12-5 Contents Read from the Port RegiSter (0.73H) ....cciiiiiiiiiiiiiiiiiie et
12-6  Writing into and Reading from the Port Register (1.70H)

13-1  Data Conversion Time for the A/D CONVEITET ......c.ciiiiiiiiieiii ettt 138
13-2  SErIaAl CIOCK LISt ..iuiiiiiiiiiieiiei ittt ettt ettt s e b et e bt e b e st e sbe e s e
13-3  Operating Mode of the Serial Interface

14-1  INEITUPL SOUICE TYPES ititiiitieiiiiiitiiatee e e e e e e st e e st st e ettt e ittt taaeaeaeeaaaaaasasaa s bbbbbtbtb et e e eeaeaeaaaaeeeaensnanns 150
14-2  Interrupt Request Flag and Interrupt Enable Flag ... 151
16-1  Status in StANADY MOUE ...ueiiiiiiiiiie et e e e e e e e et e e e e e e abbreaeeesstaeeeeeeasaaaeaens
16-2  HALT Mode ReleasSe CONILION ......oiiiiiiiiiiieeiiiiii ettt e e et e e e e et e e e e e e anbe e e e e e eennnneeaans
16-3  Start Address after HALT Mode Is Released

16-4  STOP Mode Release CONUITION ......cuiiiiiiiiiiiiiiie ittt
16-5  Start Address after STOP Mode Is Released




LIST OF TABLES (2/2)

Table No. Title Page
17-1  Hardware StAtUS At RESET ....ciiiiiiiiiiiiiii ettt e e st e e et e e bn e e e aineeennes 180
18-1  Pins Used for Writing/Verifying Program MEMOTY .........ccoiiiiiiiiieiiiieeiiie e 189
18-2  Differences Between Mask ROM Version and One-Time PROM VErsion .........cccccceviiveiiieenniineennnn 190
18-3  Setting OPEratioN IMOES ......ooiiiiiiiiie ettt e e e ettt e e e e e tb e et e e e e e nmbbe e e e e e anbaeeaeeaansnneeaens 190
20-1  Mask Option Definition DIFECLIVE ........oiiiiiiiiiieiiiie ettt e e 256

-Xi -



[MEMO]

- Xii -



CHAPTER 1 GENERAL DESCRIPTION

The uPD17134A subseries is a 4-bit single-chip microcontroller employing the 17K architecture and containing an
8-bit A/D converter (4 channels), atimer (3 channels), an AC zero cross detector, a power-on reset circuit, and a serial

interface.

The uPD17P136A and 17P137A are the one-time PROM version of the uPD17136A and 17137A, respectively,
and are suitable for program evaluation at system development and for small-scale production.

The following are features of the uPD17134A subseries.

e 17K architecture: general-purpose register mode, instruction length: fixed to 16 bits

e Instruction execution time: 2 us (fx = 8 MHz, ceramic oscillation)
8 us (fcc = 2 MHz, RC oscillation)

e Program memory: pPD17134A
uUPD17135A
uPD17136A
uPD17137A
UPD17P136A :
UPD17P137A :

e Data memory (RAM): 112 x 4 bits

2K bytes (1024 x 16 bits)

: 2K bytes (1024 x 16 bits)
. 4K bytes (2048 x 16 bits)
. 4K bytes (2048 x 16 bits)

4K bytes (2048 x 16 bits, one-time PROM)
4K bytes (2048 x 16 bits, one-time PROM)

e A/D converter: 4 channels (8-bit resolution, successive approximation type)

e Timer: 3 channels (8-bit timer/counter x 2 channels, basic interval timerNot)

e Serial interface: 1 channel (clocked 3-wire mode)
e Supply voltage: Vop = 4.5t0 5.5 V (fx = 400 kHz to 8 MHz)
Vop = 2.7 t0 5.5 V (fx = 400 kHz to 4 MHz)
Vop = 2.7 t0 5.5 V (fcc = 400 kHz to 2 MHz) for uPD17134A and 17136A

Note An internal reset signal can be generated by using the basic interval timer (watchdog timer function).

These features of the uPD17134A subseries are suitable for use as a controller or a slave device in the following

application fields;

e Electronic thermos bottle
e Rice cooker

e Audio equipment

e Battery charger

e Printer

e Plain Paper Copier



CHAPTER 1 GENERAL DESCRIPTION

* 1.1 FUNCTION LIST

Item

HUPD17134A HuPD17135A | HUPD17136A puPD17137A | uPD17P136A | uPD17P137A

ROM configuration

Mask ROM One-time PROM

ROM capacity

2KB (1024 O 16 bits) | 4KB (2048 [ 16 bits)

RAM capacity

112 0O 4 bits

Stack

Address stack x 5, interrupt stack x 3

Number of 1/O port

* /0 120
22 * Input only 01

* Sensor inputNo© : 1

A/D converter

8-bit resolution x 4 channels (shared with port pin), absolute precision + 1.5 LSB or less

Timer

« 8-bit timer counter : 2 channels (16-bit timer 1 channel applicable)

3 channels { ) o . - .
 7-bit basic interval timer : 1 channel (watchdog timer applicable)

Serial interface

1 channel (3 wires)

AC zero cross detection
function

Provided (can be used in application circuit at Voo = 5 V + 10%)

Interrupt

* Nesting by hardware (up to 3 levels)
Rising edge detection

» External interrupts (INT) : 1 { Falling edge detection } Selectable
Both rising and falling edges detection

* Timer 0 (TMO)

e Timer 1 (TM1)

power-down reset

* Internal interrupts 01 o .

« Basic interval timer (BTM)

« Serial interface (SI10)
System clock RC Ceramic RC Ceramic RC Ceramic

oscillation oscillation oscillation oscillation oscillation oscillation

Instruction 8 us 2 us 8 us 2 us 8 us 2 us
execution time atfx=2MHz | atfx=8MHz | atfx=2MHz | atfx=8 MHz | atfx=2 MHz | at fx =8 MHz
Standby HALT, STOP
Power-on/ Available (effective only for application circuit with Voo =5 V + 10 %, 400 kHz to 4 MHz)

Supply voltage

Vop =2.7t0 5.5V (5V £10 % when using A/D converter)

Package

28-pin plastic shrink DIP, 28-pin plastic SOP

Note The INT pin can be used as an input pin (sense input) when the external interrupt function is not used. The
sense input function is to read the status of the pin by using the INT flag of a control register, instead of a port

register.

Caution The PROM modelis highly compatible with the mask ROM model in terms of functions butits internal
ROM circuit and electrical characteristics are partially different from those of the mask ROM model.
Toreplace the PROM model with the mask ROM model, thoroughly evaluate the application by using
a sample of the mask ROM model.



CHAPTER 1 GENERAL DESCRIPTION

1.2 ORDERING INFORMATION

Part number Package Internal ROM
UPD17134ACT-xxx 28-pin plastic shrink DIP (400 mil) Mask ROM
HUPD17135ACT-xxx 28-pin plastic shrink DIP (400 mil) Mask ROM
HUPD17136ACT-xxx 28-pin plastic shrink DIP (400 mil) Mask ROM
UPD17137ACT-xxx 28-pin plastic shrink DIP (400 mil) Mask ROM

UPD17P136ACT
HuPD17P137ACT
UPD17134AGT-xxx
UPD17135AGT-xxx
UPD17136AGT-xxx
UPD17137AGT-xxx
UPD17P136AGT
HUPD17P137AGT

28-pin plastic shrink DIP (400 mil)
28-pin plastic shrink DIP (400 mil)
28-pin plastic SOP (375 mil)
28-pin plastic SOP (375 mil)
28-pin plastic SOP (375 mil)
28-pin plastic SOP (375 mil)
28-pin plastic SOP (375 mil)
28-pin plastic SOP (375 mil)

Remark xxx: ROM code number

One-time PROM
One-time PROM
Mask ROM
Mask ROM
Mask ROM
Mask ROM
One-time PROM
One-time PROM



CHAPTER 1 GENERAL DESCRIPTION

1.3 BLOCK DIAGRAM

Voo OT
POWER-ON/ Clock System clock X (o etz
uT

POWER-DOWN i
RESET lel;ier ijenerator * Xo
¢ fx/2  CPU CLOCK CLK STOP
POAs O » RE - OINT
POA1  O-—»| POA RAM Interrupt |«— IrRQTMO [AS
POA2 Q> (CMOS)<:> <:> 112 x 4 bits @controuer«mqrm ZEROCROSS
POAs Ot— |=— |IRQBTM
Igzg EEZ EEZ; [~=— |RQSIO
IRQBTM
POBo Q= Hirg - /2N
POB: O-——»| POB Basic interval timer
POB: O-——»|(CMOS)
POB: O=—» —— T 1
IROTM1
POCJ/ADCo O ALU ) !
POCYADC: O POC Timer 1 = t/2"
POC/ADC. O (CMOS)
POC:/ADCs O ﬁ
IRQOTMO f/on
~— Tx)
Timer 0
1 AD
e
»|CoOn- <:>
= |Verter
|——»-O P1Ao
PODJ/SCK O PIA [+«—0O PlA:
POD:/SO Ot =| POD ROM/ Notel (N-ch) ft————— = P1A2
POD/SI O =|(N-ch) i l« =0  PIA
PODY/TMOOUT ~ O=-el = One-Time j/ insuuetion :> ’
- PROM
L=| Serial
—Inter- ( PIB [«—O P1Bo
—»| face (V)
T™O ¢

IRQSIO

GND Oﬂ

-0 RESET

Remarks 1. The terms CMOS and N-ch in square brackets indicate the output form of the port.
CMOS : CMOS push-pull output
N-ch : N-channel open-drain output (Each pin can contain pull-up resistor bit-wise as specified
using a mask option.)
2. The devices in parentheses are effective only in the case of program memory write/verify mode of
the yPD17P136A and uPD17P137A.

Notes 1. The ROM (or PROM) capacity of each product is as follows:
1024 x 16 bits : puPD17134A, 17135A
2048 x 16 bits : puPD17136A, 17137A, 17P136A, 17P137A
2. The stack capacity of each product is as follows:
5 x 10 bits : uPD17134A, 17135A
5 x 11 bits : UPD17136A, 17137A



CHAPTER 1 GENERAL DESCRIPTION

1.4 PIN CONFIGURATION (TOP VIEW)

(1) Normal operating mode
28-pin plastic shrink DIP (400 mil)
UPD17134ACT-xxx, uyPD17135ACT-xxx, UPD17136ACT-xxx, uPD17137ACT-xxx
UPD17P136ACT-xxx, uPD17P137ACT-xxx
28-pin plastic SOP (375 mil)
UPD17134AGT-xxx, yPD17135AGT-xxx, uPD17136AGT-xxx, uPD17137AGT-xxx
UPD17P136AGT-xxx, uPD17P137AGT-xxx

Vaoe O—— 1 28 F—O Vop
POCs/ADCs  O=—n] 2 27 —O X (OSCu)
POC2/ADC2  O=—» 3 26 —O Xout (OSCo)
POCJ/ADC: O=—»1 4 25 [0  PODJ/SCK
POCo/ADCo O+ 5 24 [«—=0O  PO0D:/SO
POBs O=—= 6 23 =0  POD2/SI
POB2 O=—» 7 22 [+=—0O  PODs/TMOOUT
POB: O=—= 8 21 [«—=0O P1lAo
POBo O=—= 9 20 [«—>=0O P1A:
POAs; O=—= 10 19 [=—0O PlA2
POA2 O=—{11 18 [«—=0O P1As
POA1 O=—= 12 17 («=—0O P1Bo
POAc O=—={13 16 («=—O RESET
GND O—14 15 [«—0O INT
ADCo to ADCs3 . Analog input for the A/D P1Bo . Port 1B
converter RESET : Reset input
GND : Ground SCK . Serial clock input/output
INT . External interrupt input Sl . Serial data input
0OSCo, OSC1 1 System clock oscillation SO . Serial data output
POAo to POA3 . Port OA TMOOUT : Timer O carry output
POBo to POB3 : Port OB Vabc : Analog power supply
POCo to POCs : Port 0OC Vop . Power supply
P0ODo to PODs . Port OD Xin, Xout . System clock oscillation

P1Ao to P1As3 . Port 1A



CHAPTER 1 GENERAL DESCRIPTION

(2) Program memory write/verify mode
28-pin plastic shrink DIP (400 mil)
UPD17P136ACT, 17P137ACT
28-pin plastic SOP (375 mil)
UPD17P136AGT, 17P137AGT

(Voo) o—1 28 —O Vop
MD: O—= 2 27 l=—0O cCLK
MD2 O—= 3 26 —O (Open)
MD: O—=f 4 25 —O
MDo O—= 5 24 —O

D7 O=—{6 23 —o0

De O=—nf 7 22 —oO

Ds O=—s38 21 (—O ®

Di O=—l9 20 —O

Ds O=—=10 19 (—O

D: O=—s{11 18 (—O

D1 O=—e{12 17 —O Ve

Do O=—={13 16 f[«—O RESET
GND O—14 15—0 (U

Caution ( ) represents processing of the pins which are not used in program memory write/verify

mode.
L
RESET

Open
Vbbp

: Connect to GND via pull-down resistor one by one.
: Set the same electric potential as V  pp in program memory write/verify mode.

RESET pin is also used for system reset input before setting program memory
write/verify mode. Therefore, RESET pin should be set to the same electric
potential as V op 10 us or later than that of V oo pin (For details, refer to CHAPTER
18 ONE-TIME PROM WRITING/VERIFYING).

: Do not connect anything.
: Connect to V oo directly.



CHAPTER 1 GENERAL DESCRIPTION

CLK : Clock input for address updating
Do-D7 : Data input/output
GND : Ground

MDo-MDs : Operation mode select
RESET : Reset input

VoD : Power supply

Vep : Program voltage application



[MEMO]



2.1 PIN FUNCTIONS

CHAPTER 2 PIN FUNCTIONS

Pin No. Pin name Function Output At reset
1 Vabc Supplies power and reference voltage for the A/D converter — —
2 POCs/ADC3/MDs Notel | Constitute port OC, serve as analog input pins of A/D CMOS Input
| | converter, or select operating mode when program memory push-pull (POC)
5 POCo/ADCo/MDo Notel | js written or verified.

e POCs to POCo
e 4-bit input/output port
* Input/output setting in 1-bit unit
e ADCs to ADCo
* Analog input for the A/D converter
e MDs to MDo
* Available for the uPD17P136A and uPD17P137A only
» Selects operating mode at program memory writing/
verification
6 POB3/D7 Notel Used as port 0B, or data input/output pins in program CMOS Input
| | memory write/verify mode. push-pull (POB)
9 POBo/D4 Notel e POBs to POBo
e 4-bit input/output port
* Input/output setting in 4-bit unit
» Software-selectable pull-up resistor
e D7toDas
» Available for the uPD17P136A and uPD17P137A only
» 8-bit data input/output at program memory writing/
verification
10 POAs/D3 Notel Used as port OA, or data input/output pin in program memory CMOS Input
| | write/verify mode. push-pull (POA)
13 POAo/Do Notel e POAs to POAo
e 4-bit input/output port
* Input/output setting in 4-bit unit
» Software-selectable pull-up resistor
e Dsto Do
* Available for the uPD17P136A and uPD17P137A only
» 8-bit data input/output at program memory writing/
verification
14 GND Ground — —
15 INT External interrupt request input or sensor signal input — Input
16 RESET System reset input pin — Input
A pull-up resistor can be internally connected by mask
option Note2
Notes 1. The MDo-MDs and Do-D7 pins are valid with the pPD17P136A and 17P137A only.
2. The yPD17P136A and 17P137A do not have a pull-up resistor connected by mask option.




CHAPTER 2 PIN FUNCTIONS

Pin No. Pin name Function Output At reset
17 P1Bo/Vpp Notel Used as port 1B, or programming voltage supply pin in Input Input
program memory write/verify mode.
e P1Bo
e 1-bit input port
* A pull-up resistor can be internally connected by mask
option Note2
e Vep
» Available for the uPD17P136A and uPD17P137A only
» Applies programming voltage (+12.5 V) at program
memory writing/verification
18 P1As Port 1A N-ch open Input
| | e 4-bit input/output port drain
21 P1Ao e Input/output setting in 4-bit unit
* A pull-up resistor can be internally connected by mask
option Note2
22 PODs/TMOOUT Used as port OD, or timer O carry output, serial data input, N-ch open Input
serial data output, and serial clock input/output pins drain
A pull-up resistor can be internally connected by mask
option Note2
e PODs to PODo
e 4-bit input/output port
e Input/output setting in 1 bit unit
e TMOOUT
e Timer O carry output
23 POD2/SI e Si
e Serial data input
24 POD1/SO e SO
* Serial data output
25 POD0SCK e SCK
e Serial clock input/output
26 Xout In the case of the uPD17135A/17137A/17P137A — —
27 Xin/CLK Notes e XN, Xout
« Connected to a resonator for system clock oscillation
» The ceramic resonator is connected.
e CLK
» Available for the uPD17P137A only
» Clock input pin for address updating at program
memory writing/verification
26 0SCo In the case of the uPD17134A/17136A/17P136A
27 OSC1/CLK Notes e OSCo, OSC:
» Connected to a resonator for system clock oscillation
» Resistor is connected between OSCo and OSCa.
e CLK
* Available for the uPD17P136A only
* Clock input pin for address updating at program
memory writing/verification
28 Vop Power supply — —
In the program memory write/verify mode of the
UPD17P136A/17P137A, +6 V is applied.
Notes 1. The Vprp pin is valid only with the yPD17P136A and 17P137A.
2. The yPD17P136A and 17P137A do not have a pull-up resistor connected by mask option.
3. The CLK pin is valid only with the uPD17P136A and 17P137A.

10




CHAPTER 2 PIN FUNCTIONS

2.2 PIN INPUT/OUTPUT CIRCUIT

Below are simplified diagrams of the input/output circuits for each pin.

(1) POAo-POA3, POBo-POBs Vob
Vob
P-ch Pull-up
flag
Data Output
latch } = P-ch
¥ ©
disable
-« Selector
Input buffer
(2) POCo/ADCo - POC3/ADC3 Voo
Data Output
latch } L =~ P-ch
K ©
Output Dﬁ ~— N-ch
disable
Input
disable s
-« Selector
Input buffer
A/ID
- |
converter




CHAPTER 2 PIN FUNCTIONS

12

(3) PODo-PODs3, P1A0-P1As

Output

latch )
% Mask optionN°te

©

Data — ]

Output N-ch
disable

-« Selector

Input buffer
Note The puPD17P136A and 17P137A do not have a pull-up resistor as mask option.

(4) P1Bo

{ Mask optionNete
- I - ®

Input buffer

Note The yPD17P136A and 17P137A do not have a pull-up resistor as mask option.



CHAPTER 2 PIN FUNCTIONS

(5) INT

- JI ©

Input buffer

(6) RESET

Mask optionN°te
- I/ I - ©

Input buffer

Note The yPD17P136A and 17P137A do not have a pull-up resistor as mask option.

13



CHAPTER 2 PIN FUNCTIONS

2.3 PROCESSING OF UNUSED PINS

The unused pins should be handled as follows:

Table 2-1. Processing of Unused Pins

Pin Name Recommended Processing
Internal External
Port Input mode POA, POB Connect pull-up resistor by software Open
POC — Connect each pin to Voo or GND via
resistorhote 1
POD, P1A Pull-up resistor not connected by mask | Directly connect to GND
option
Pull-up resistor connected by mask Open
option
P1BoNote? Pull-up resistor not connected by mask | Directly connect to GND

option

Output mode | POA, POB, POC

(CMOS port)

POD, P1A
(N-ch open-

drain ports)

Outputs low level without pull-up
resistor connected by mask option

Outputs high level without pull-up

Open

resistor connected by mask option

External interrupt (INT) Pull-up resistor not connected by mask

option

Directly connect to Voo or GND

Pull-up resistor connected by mask
option

Open

RESETNotes

when only internal power—ON/power—]

Pull-up resistor not connected by mask
option

Directly connect to Voo

down reset function is used Pull-up resistor connected by mask

option

Vapc — Directly connect to Voo

Notes 1. When connecting an external pull-up resistor (to Voo via resistor) or pull-down resistor (to GND via
resistor), make sure that the driving voltage and current consumption of the port are not exceeded. When
connecting a pull-up or pull-down resistor with a high resistance to a port pin, make sure that noise is not
superimposed on the pin. Generally, the resistance of the pull-up or pull-down resistor is about several
kQ, though it varies depending on the application circuit.

2. Because the P1Bo pin is multiplexed with a test mode setting function, do not connect a pull-up resistor
to this pin using the mask option. Directly connect it to GND.

3. Inanapplication circuitwhere highreliability is required, be sure to input the RESET signal from an external
source. Because the RESET pin is multiplexed with a mode setting function, directly connect it to Voo
if not use.

Caution Itis recommended that the I/O mode, pull-up of resistors by software, and output levels of pins be
fixed by repeatedly setting in each loop of the program.

Remark The uPD17P136A and 17P137A do not have a pull-up resistor as mask option.

14



CHAPTER 2 PIN FUNCTIONS

2.4 NOTES ON USING RESET PIN AND P1Bo PIN

The RESET and P1Bo pins have a function for setting a test mode in which the internal operations of the uPD17134A
subseries are tested (for IC test), in addition to the functions described in 2.1 PIN FUNCTIONS.

When a voltage exceeding Voo is applied to either of these pins, the test mode is set. This means that, even during
the normal operation, the test mode is set if a noise exceeding Voo is applied. As a result, the operation may not be
performed normally.

This is especially true if the wiring length of the RESET or P1Bo pin is too long in which case a noise may be
superimposed on the wiring.

Therefore, perform wiring so that noise may not be superimposed, by keeping the wiring length as short as possible.
If noise is inevitable, take noise preventive measures by using an external component as illustrated below.

* Connect a diode with low V r between » Connect a capacitor between
Vop and RESET/P1Bo Vop and RESET/P1Bo
—— Vop —— VoD
Vop Vop
Diode with =
low VF
RESET, P1Bo RESET, P1Bo

15



[MEMO]

16



The program counter is used to specify an address in program memory.

3.1 PROGRAM COUNTER CONFIGURATION

Figure 3-1 shows the configuration of the program counter.
The program counters of the uPD17134A and uPD17135A are 10-bit binary counters.

CHAPTER 3 PROGRAM COUNTER (PC)

The program counters of the uPD17136A, uPD17137A, uPD17P136A, and uPD17P137A are 11-bit binary

counters.

This program counter is incremented whenever an instruction is executed.

MSB

Figure 3-1. Program Counter

LSB

PC10

PC9

PC8

PC7

PC6

PC5

PC4

PC3

PC2

PC1

PCO

Remark The shaded part is effective only in the case of uPD17136A/17137A/17P136A/17P137A.

3.2 PROGRAM COUNTER OPERATION

PC

Normally, the program counter is automatically incremented each time a command is executed. The memory

address at which the next instruction to be executed is stored is assigned to the program counter under the following

conditions: At reset; when a branch, subroutine call, return, or table reference instruction is executed; or when an

interrupt is received.

3.2.1 to 3.2.7 explain program counter operation during execution of each instruction.

17



CHAPTER 3 PROGRAM COUNTER (PC)

Figure 3-2. Value of the Program Counter after Instruction Execution

Program counter Program counter value
bit
Instruction PC10| PC9 | PC8 | PC7 | PC6 | PC5 | PC4 | PC3 | PC2 | PC1 | PCO
At reset 0 0 0 0 0 0 0 0 0 0 0
BR addr
* Value set by the addr
CALL addr
BR @AR
* CALL @AR Value in the address register (AR)
(MOVT DBF, @AR)
RET . . . . .
Value in the address stack register location pointed to by the stack pointer
RETSK
(return address)
RETI
During interrupt Vector address for the interrupt

Remark The shaded part is effective only in the case of uPD17136A/17137A/17P136A/17P137A.

3.2.1 At Reset
By setting the RESET pin to low, the program counter is set to 0000H.

Figure 3-3. Value in the Program Counter after Reset

MSB LSB

}‘ All bits are set to 0 ;}

Remark The shaded part is effective only in the case of uPD17136A/17137A/17P136A/17P137A.

* 3.2.2 During Execution of the Branch Instruction (BR)

There are two ways to specify branching using the branch instruction. One is to specify the branch address in the
operand using the direct branch instruction (BR addr). The other is branch to the address specified by the address
register using the indirect branch instruction (BR @AR).

The address specified by a BR addr instruction is placed in the program counter.

Figure 3-4. Value in the Program Counter during Execution of a BR addr Instruction

MSB LSB

PC10 | PC9 | PC8 | PC7 | PC6 | PC5 | PC4 | PC3 | PC2 | PC1 | PCO

Value specified in the direct branch instruction

Remark The shaded part is effective only in the case of uPD17136A/17137A/17P136A/17P137A.

18



CHAPTER 3 PROGRAM COUNTER (PC)

An indirect branch instruction causes the address in the address counter to be placed in the program counter.

Figure 3-5. Value in the Program Counter during Execution of a BR @AR Instruction

MSB LSB

PC10| PC9 | PC8 | PC7 | PC6 | PC5 | PC4 | PC3 | PC2 | PC1 | PCO

AR10 | AR9 | AR8 | AR7 | AR6 | AR5 | AR4 | AR3 | AR2 | AR1 | ARO

Remark The shaded part is effective only in the case of uPD17136A/17137A/17P136A/17P137A.

3.2.3 During Execution of Subroutine Calls (CALL)

There are two ways to specify branching using subroutine calls. One is to specify the branch address in the operand
using the direct subroutine call (CALL addr). The other is branch to the address specified by the address register
using the indirect subroutine call (CALL @AR).

A CALL addr causes the value in the program counter to be saved in the stack and then the address specified in
the operand to be placed in the program counter. CALL addr can specify 000H-03FFH inthe uPD17134A and 17135A,
and 0000H-07FFH in the pPD17136A, 17137A, 17P136A, and 17P137A.

Figure 3-6. Value in the Program Counter during Execution of a CALL addr

MSB LSB

PC10 | PC9 | PC8 | PC7 | PC6 | PC5 | PC4 | PC3 | PC2 | PC1 | PCO

Address specified in the addr

Remark The shaded part is effective only in the case of uPD17136A/17137A/17P136A/17P137A.

A CALL @AR causes the value in the program counter to be saved in the stack and then the value in the address
register to be placed in the program counter.

19



CHAPTER 3 PROGRAM COUNTER (PC)

Figure 3-7. Value in the Program Counter during Execution of an Indirect Subroutine Call

Address stack register n

(n=0to 4)

MSB T LSB

PC10| PC9 | PC8 | PC7 | PC6 | PC5 | PC4 | PC3 | PC2 | PC1 | PCO

AR10| AR9 | AR8 | AR7 | AR6 | AR5 | AR4 | AR3 | AR2 | ARl | ARO

Remark The shaded part is effective only in the case of yPD17136A/17137A/17P136A/17P137A.
3.2.4 During Execution of Return Instructions (RET, RETSK, RETI)
During execution of a return instruction (RET, RETSK, RETI), the program counter is restored to the value saved

in the address stack register.

Figure 3-8. Value in the Program Counter during Execution of a Return Instruction

MSB LSB

PC10| PC9 | PC8 | PC7 | PC6 | PC5 | PC4 | PC3 | PC2 | PC1 | PCO

Address stack register n

(n=0to4)

Remark The shaded part is effective only in the case of uPD17136A/17137A/17P136A/17P137A.

3.2.5 During Table Reference (MOVT)

During execution of table reference (MOVT DBF, @AR), the value in the program counter is saved in the stack,
the address register is set by the program counter, then the contents stored at that program memory location is read
into the data buffer (DBF). After that, the program counter is restored to the value saved in the address stack register.

One level of the address stack is temporarily used during execution of table reference. Be careful of the stack level.

20



CHAPTER 3 PROGRAM COUNTER (PC)

3.2.6 During Execution of Skip Instructions (SKE, SKGE, SKLT, SKNE, SKT, SKF)

When skip conditions are met and a skip instruction (SKE, SKGE, SKLT, SKNE, SKT, SKF) is executed, the
instruction immediately following the skip instruction is treated as a no operation instruction (NOP). Therefore, whether
skip conditions are met or not, the number of instructions executed and instruction execution time remain the same.

3.2.7 When an Interrupt Is Received

When an interrupt is received, the value in the program counter is saved in the address stack. Next, the vector
address for the interrupt received is placed in the program counter.

21



[MEMO]

22



CHAPTER 4 PROGRAM MEMORY (ROM)

The program organization of the uPD17134A subseries is shown in Table 4-1.

Table 4-1. Program Memory Configuration

Product name

Program memory capacity

Program memory address

UPD17134A

uPD17135A

2K bytes (1024 x 16 bits)

0000H-03FFH

UPD17136A

uPD17137A

uPD17P136A

UPD17P137A

4K bytes (2048 x 16 bits)

0000H-07FFH

Program memory stores the program and the constant data table. The first area of the program memory is assigned

to reset start and interrupt vector addresses.

The program memory address is specified by the program counter.

4.1 PROGRAM MEMORY CONFIGURATION

Figure 4-1 shows the program memory map. Branch instructions, subroutine calls, and table references can specify

any address in program memory.

Figure 4-1. Program Memory Map for the

UPD17134A Subseries

Address =——— 16 bits

0000H Reset start address
0001H Serial interface interrupt vector
0002H Basic interval timer interrupt vector
0003H Timer 1 interrupt vector
0004H Timer 0O interrupt vector
0005H External (INT) interrupt vector

L (mPD17134A/17135A) |
03FFH

(rrPD17136A/17137A/17P136AIl7P137A)f

O7FFHT

i

Subroutine entry
address for the CALL
addr instruction

Branch address for
the BR addr instruction

Branch address for
the BR @AR instruction

Subroutine entry
address for the CALL
@AR instruction

Table reference address
for the MOVT DBF, @AR
instruction

23



CHAPTER 4 PROGRAM MEMORY (ROM)

4.2 PROGRAM MEMORY USAGE

Program memory has the following two main functions:

(1) Storage of the program
(2) Storage of constant data

The program is made up of the instructions which operate the CPU (Central Processing Unit). The CPU executes
sequential processing according to the instructions stored in the program. In other words, the CPU reads each
instruction in the order stored by the program in program memory and executes it.

Since all instructions are 16-bit long words, each instruction is stored in a single address in program memory.

Constant data, such as display patterns, are set beforehand. The MOVT is used for reading constant data in
program memory to transfer data from program memory to the data buffer (DBF) in data memory. Reading the constant
data in program memory is called table reference.

Program memory is read-only (ROM: Read Only Memory) and therefore cannot be changed by any instructions.

4.2.1 Flow of the Program

The program is usually stored in program memory starting from address 0000H and executed sequentially one
address at a time. However, if for some reason a different kind of program is to be executed, it will be necessary to
change the flow of the program. In this case, the branch instruction (BR instruction) is used.

If the same program code is going to appear in a number of places, reproducing the code each time it needs to
be used will decrease the efficiency of the program. In this case, the program should be stored in only one place in
memory. Then, by using the CALL instruction, call the same program. Such a program is called a subroutine. As
opposed to a subroutine, code used during normal operation is called the main routine.

For cases completely unrelated to the flow of the program (in which a section of code is to be executed when a
certain condition arises), the interrupt function is used. Whenever a condition arises that is unrelated to the flow of
the program, the interrupt function can be used to branch the program to a prechosen memory location (called a vector
address).

Items (1) to (5) explain branching of the program using the interrupt function and instructions.

(1) Vector address
Table 4-2 shows the address to which the program is branched (vector address) when a reset or interrupt

occurs.

Table 4-2. Vector Address for the uPD17134A Subseries

Vector address Cause of the interrupt
0000H Reset
0001H Serial interface interrupt
0002H Basic interval timer interrupt
0003H Timer 1 interrupt
0004H Timer O interrupt
0005H External (INT) interrupt

24



CHAPTER 4 PROGRAM MEMORY (ROM)

&)

©)

4

Direct branch

A direct branch (BR addr) instruction branches a value of operand (addr) as an address. (In the case of the
uPD17134Aand uPD17135A, the most significant bitmustbe 0. If an address is specified outside of this range,
an error will occur in the assembler.) A BR addr instruction can be used to branch to any address in program
memory.

Indirect branch

When executing an indirect branch (BR @AR), the program branches to the address specified by the value
stored in the address register (AR). A BR @AR can be used to branch to any address in program memory.
Also see 7.2 ADDRESS REGISTER (AR).

Subroutine

To branch execution to a subroutine, the subroutine call (CALL) instruction is used.

The CALL instruction can be used in two ways: as a direct subroutine call instruction (CALL addr) that causes
execution to branch using the value of the operand (addr) as an address, and as an indirect subroutine call
instruction (CALL @AR) that causes execution to branch using the contents of an address register as an
address.

Toreturnfrom asubroutine, the RET or RETSK instruction is used. By executing the RET or RETSK instruction,
execution is returned to the program memory address next to the one at which the CALL instruction was
executed.

When the RETSK instruction is used, the first instruction after execution has returned from the subroutine is
executed as a NOP instruction.

25



CHAPTER 4 PROGRAM MEMORY (ROM)

26

<1>

<2>

Direct subroutine call

When using a direct subroutine call (CALL addr), the 11-bit instruction operand is used to specify a
program memory address of the branched subroutine. (Inthe case of the uPD17134A and uPD17135A,
the most significant bit must be 0. If an address is specified outside of this range, an error will occur

in the assembler.)

Example

Figure 4-2. CALL addr Instruction

Address Program memory
0000H
CALL SuB1
SUB1,
RET

O7FFHNete

Note The program memory of the uPD17134A and uPD17135A is address 0000H to 03FFH.

Indirect subroutine call
When using an indirect subroutine call (CALL @AR), the value in the address register (AR) should be

an address of the called subroutine. This instruction can be used to branch any address in program

memory.
Also see 7.2 ADDRESS REGISTER (AR).



CHAPTER 4 PROGRAM MEMORY (ROM)

4.2.2 Table Reference

Table reference is used to reference constant data in program memory.

The table reference instruction (MOVT DBF, @AR) is used to store the contents of the program memory address
specified by the address register in the data buffer.

in program memory.

Since each location in program memory contains 16 bits of information, the MOVT instruction causes
16 bits of data to be stored in the data buffer. The address register can be used to table reference any location

Caution Note that one level of the address stack is temporarily used when performing table reference.

Be sure not to exceed the stack level that can be used. Also see 7.2 ADDRESS REGISTER (AR)
and CHAPTER 10 DATA BUFFER (DBF).
Remark Two instruction cycles are required to execute the table reference instruction, but this is an exception.

Figure 4-3. Table Reference (MOVT DBF, @AR)

Data buffer
Program memory
DBF3 DBF2 DBF1 DBFO
bs | b2 | b1 |bo| bs| bz| bi| bo| bs| bz| b1| bo| bs| bz| b1| bo bis|b14|b13|bi2|b11|b1o| be | bs | b7 | be | bs | ba | bs| b2| b1| bo
16-bit data read
Address register
AR3 AR2 AR1 ARO
bs| b2| b1| bo| bs| b2| b1| bo| bs| b2| b1| bo| bz | bz | b1 |bo
0:10:0:0:10Moter 1 1 b Constant data
Table address specification

Note This bit is fixed to O in the case of the yPD17134A and uPD17135A.

27



CHAPTER 4 PROGRAM MEMORY (ROM)

28

(1) Constant data table

Example 1 shows an example of code used to reference a constant data table.

Example 1. Program to read data in a constant data table.

OFFSET
ROMREF:

TABLE:

MEM 0.00H ;. Area to store the offset address.

BANKO
;. Stores the start address of the constant data
; table in the AR register.

MOV AR3, #.DL.TABLE SHR 12 AND OFH

MOV AR2, #.DL.TABLE SHR 8 AND OFH

MOV AR1, #.DL.TABLE SHR 4 AND OFH

MOV ARO, #.DL.TABLE AND OFH

MOV RPH, #0 ; Sets the register pointer to row address 7.
MOV RPL, #7 SHL 1 ;

ADD ARO, OFFSET ;. Adds the offset address.
ADDC AR1, #0

ADDC AR2, #0

ADDC AR3, #0

MOVT DBF, @AR ; Reads the constant data.
DW 0001H ; When OFFSET = OH
DW 0002H

DW 0004H

DW 0008H

DW 0010H

DW 0020H

DW 0040H

DW 0080H

DW 0100H

DW 0200H

DW 0400H

DW 0800H

DW 1000H

DW 2000H

DW 4000H

DW 8000H ; When OFFSET = OFH
END



CHAPTER 4 PROGRAM MEMORY (ROM)

(2) Branch address table
Example 2 shows an example of code used to reference a branch address table.

Example 2. Program to branch to the address of the branch address table.

OFFSET MEM 0.00H ; Area to store the offset address.
ROMREF:
BANKO ; Stores the start address of the constant data
; table in the AR register.

MOV AR3, #.DL.TABLE SHR 12 AND OFH
MOV AR2, #.DL.TABLE SHR 8 AND OFH
MOV AR1, #.DL.TABLE SHR 4 AND OFH
MOV ARO, #.DL.TABLE AND OFH
MOV RPH, #0 ; Sets the register pointer to row address 7.
MOV RPL, #7 SHL 1
ADD ARO, OFFSET ; Adds the offset address.
ADDC AR1, #0
MOVT DBF, @AR ; Reads the branch address
PUT AR, DBF ; AR ~ Branch address
BR @AR
TABLE:
DW 0001H ; When OFFSET = OH
DW 0002H
DW 0004H
DW 0008H
DW 0010H
DW 0020H
DW 0040H
DW 0080H
DW 0100H
DW 0200H ; When OFFSET = 9H

END



[MEMO]

30



CHAPTER 5 DATA MEMORY (RAM)

Data memory stores data such as operation and control data. Data can be read from or written to data memory
with an instruction during normal operation.

5.1 DATA MEMORY CONFIGURATION

Figure 5-1 shows the configuration of data memory.

Data memory is divided into two areas called banks: BANKO and BANK1.

An address is allocated to the data memory for each bank. An address consists of 4 bits of memory called “a nibble”.

The address of data memory consists of 7 bits. The high-order 3 bits are called “the row address”, and the low-
order 4 bits are called “the column address”. For example, when the address of data memory is 1AH (0011010B),
the row address is 1H (001B), and the column address is AH (1010B).

5.1.1 to 5.1.6 describe functions of data memory other than its use as address space.

Figure 5-1. Data Memory Configuration

BANKO Column address
0 1 2 3 4 5 6 7 8 9 A B C D E F
0 DBF3|DBF2|DBF1|DBFO
1 ? Example
g 2 | > Address 1AH
g 5 of BANKO
o
S
> 4
[e]
x 5
6
POA | POB | POC | POD : : :
7 (4 bits) |(4 bits) | (4 bits) |(4 bits) | ‘ ‘ ‘ ‘ System register ‘ ‘ ‘ ‘ |<—
BANK1
0 1 2 3 4 5 6 7 8 9 A B C D E F 2
[J]
0 D
1 = 8
E c
2 g 3
% il
3 Unmounted o -_g
E @
4 8w
o 8
Fge!
5 F ®
6
P1A | P1B |Fixed |Fixed T ! '
7 |(abits) |@bits) [t00 |to 0 | | System register |€

Caution No hardware is assigned to addresses 00H through 6FH in BANK1. Do not use this area. If the
contents of this area are read, the value is undefined. An instruction to write data to this area
is invalid.

31



CHAPTER 5 DATA MEMORY (RAM)

5.1.1 System Register (SYSREG)

The system register (SYSREG) consists of the 12 nibbles allocated at addresses 74H to 7FH in data memory. The
system register (SYSREG) is allocated independently of the banks. This means that each bank has the same system
register at addresses 74H to 7FH.

Figure 5-2 shows the configuration of the system register.

For details, refer to CHAPTER 7 SYSTEM REGISTER (SYSREG).

Figure 5-2. System Register Configuration

System register (SYSREG)

Address | 74H ‘ 75H ‘ 76H ‘ 77TH | 78H | 79H | T7AH ‘ 7BH ‘ 7CH | 7DH ‘ 7EH ‘ 7FH
Wind Bank Index register (1X) General Program
Name Address register ! . tow a. ¢ 5 register status
register | register ata memory .
(Symbol) (AR) WR) (BANK) row address pointer word
pointer (MP) (RP) (PSWORD)

5.1.2 Data Buffer (DBF)
The data buffer consists of four nibbles allocated at addresses OCH to OFH in BANKO of data memory.
Figure 5-3 shows the configuration of the data buffer.

Figure 5-3. Data Buffer Configuration

Data buffer (DBF)

Address| OCH ODH OEH OFH

Symbol | DBF3 | DBF2 | DBF1 | DBFO

32



CHAPTER 5 DATA MEMORY (RAM)

5.1.3 General Register (GR)

The general register consists of 16 nibbles specified by an arbitrary row address in an arbitrary bank in data memory.
This arbitrary row address in an arbitrary bank is specified by the register pointer (RP) in the system register

(SYSREG).

Figure 5-4 shows the configuration of the general register (GR).

Figure 5-4. General Register (GR) Configuration

BANKO Column address
01 2 3 45 6 7 8 9 A BCDEF
w O
g 1
5 2
e}
© 3
2 4
x s
6
7 | Port register || SYSREG [«
BANK1
0
1
2
3 Unmounted
4
5
6
7 | Port register || SYSREG [«

5.1.4 Port Registers

J General register

Area specifiable as general register

Pointed to by general register
pointer (RP) in system register.
Note that row addresses 0 to 6
of BANK1 are unmounted mem-
ory locations. The register
pointer (RP) should therefore
not specify a row address in this
| area.

The same register is allocated
for each bank.

‘4
“

A port register consists of eight nibbles allocated at addresses 70H to 73H in each bank of the data memory.
As shown in Figure 5-5, the high-order 3 bits of address 71H of BANK1 and all of addresses 72H and 73H of BANK1

are always set to 0.

Figure 5-5 shows the configuration of the port registers.

Figure 5-5. Port Register Configuration

Port register
Address 70H 71H 72H 73H
POA POB POC POD
P/ P|P|P|P|P|P|P|P|P|P|P|P|P|P|P
BANKO o |o0o|o0|0O|O|O|O|O|O0O|O|O|O|O|O|O|O
A|lAlA|/A| B/ B|B|B|C|C|]C|C|D|D|D|D
S 3|2(1}0|3|2|1]0|3|2|1]0|3|2|1]0
Qo
g
n P1A P1B
PIP|P|P P
BANK1 1 1 1 1 1
Fixed to “0” Fixed to “0” Fixed to “0”
A|lA|A|A B
3|/12|1]0 0

33



CHAPTER 5 DATA MEMORY (RAM)

5.1.5 General Data Memory
General data memory is all the data memory not used by the port and system registers (SYSREG). In other words,
general data memory consists of 112 nibbles in BANKO.

5.1.6 Unmounted Data Memory

Thereisno hardware mounted ataddresses 00H to 6FH of BANK1. Any attemptto read this areawill yield undefined
value. Writing data to this area is invalid and should therefore not be attempted.

34



CHAPTER 6 STACK

The stack is a register used to save information such as the program return address and the contents of the system

register during execution of subroutine calls or interrupts.

6.1 STACK CONFIGURATION
Figure 6-1 shows the stack configuration.

The stack consists of the following parts: one 3-bit binary counter stack pointer, five 10-bit (uUPD17134A, 17135A)/
11-bit (uPD17136A, 17137A, 17P136A, 17P137A) address stack registers, and three 6-bit interrupt stack registers.

Figure 6-1. Stack Configuration

Stack pointer .
Address stack register
(SP)
b2 b1 bo bwo | be | bs | b7 | be | bs | ba | bs | b2 | b1 | bo
SPb2 | SPb1 | SPbo OH Address stack register 0
| | | |
T T T T
SP is initialized to 1H Adgress §tack ‘reglst‘er 1
T T T T
SH at reset 2H Address stack register 2
| | | |
T T T T
3H Address stack register 3
| | | |
T T T T
4H Address stack register 4
Interrupt stack register
OH | BANKSKO| BCDSKO| CMPSKO | CYSKO ZSKO0 IXESKO
1H | BANKSK1| BCDSK1| CMPSK1| CYSK1 ZSK1 IXESK1
2H | BANKSK2| BCDSK2 | CMPSK2 | CYSK2 ZSK2 IXESK2

Remark The shaded part is effective only in the case of uPD17136A/17137A/17P136A/17P137A.

6.2 FUNCTIONS OF THE STACK

The stack is used to save the return address during execution of subroutine calls and table reference instructions.

When an interrupt occurs, the program return address, bank register (BANK), and the program status word (PSWORD)

are automatically saved in the stack.

35



CHAPTER 6 STACK

6.3 ADDRESS STACK REGISTERS (ASRs)

Five 11-bit address stack registers (ASRs) are provided as shown in Figure 6-1. The functions of these registers

are as follows:

Store a return address when the CALL addr or CALL @AR instruction is executed, when the first instruction
cycle of the “MOVT DBF, @AR” instruction is executed, or when an interrupt is accepted.

Store the contents of an address register (AR) when the PUSH AR instruction is executed. The ASR to which
the data is to be stored is specified by decrementing the value of the stack pointer (SP) by one when the
instruction is executed.

Restore the contents of the ASR (return address) specified by the stack pointer to the program counter and
incrementthe value of the stack pointer by one when the RET or RETSK instruction is executed, when the second
instruction cycle of the “MOVT DBF, @AR” instruction is executed, or when the RETI instruction is executed.
Transfer the value of the ASR specified by the stack pointer to an address register and decrement the value
of the stack pointer by one when the POP AR instruction is executed.

Caution Ifthe stack pointer underflows as a result of executing the CALL addr or CALL @AR instruction
or servicing an interrupt, itis assumed that a hang-up occurs. Consequently, the internal reset
signal is generated, the hardware is initialized, and the program is started from address OO00H.

Remark The size of the ASR differs depending on the model. The yPD17134A and 17135A have five 10-bit
ASRs, while the yPD17136A, 17137A, 17P136A, and 17P137A have five 11-bit ASRs.

6.4 INTERRUPT STACK REGISTERS (INTSKs)

Three 5-bitinterrupt stack registers (INTSKs) are provided as shown in Figure 6-1. The functions of these registers

are as follows:

36

Five flags (BCD, CMP, CY, Z, and IXE) in the program status word (PSWORD) in the system register (SYSREG)
to be explained shortly are saved to the INTSK when an interrupt occurs. After the flags have been saved, all
the bits of the BANK and PSWORD are cleared to 0.

The contents of INTSK are restored to the PSWORD when the RETI instruction is executed.

INTSK saves data each time an interrupt has been accepted.

Caution If interrupts are accepted exceeding 3 levels, the first data is lost.



CHAPTER 6 STACK

6.5 STACK POINTER (SP) AND INTERRUPT STACK REGISTERS

The stack pointer is a 3-bit binary counter that specifies the addresses of the five address stack registers as shown
in Figure 6-1, and is assigned to address 01H of the register file. The value of the stack pointer is initialized to 5H
at reset.

¢ The value of SP is decremented by one when the CALL addr or CALL @AR instruction is executed, when the
first instruction cycle of the “MOVT DBF, @AR” instruction is executed, or when an interrupt is accepted.

e The value of SP is incremented by one when the RET or RETSK instruction is executed, when the second
instruction cycle of the “MOVT DBF, @AR” instruction is executed, when the POP AR instruction is executed,
or when the RETI instruction is executed.

When an interrupt is accepted, the counter of the interrupt stack registers is also decremented by one in addition
tothe SP. The value of the counter of the interrupt stack registers is incremented by one only when the RETI instruction

is executed.

Table 6-1. Operation of Stack Pointer

Instruction Value of stack pointer (SP) Counter of interrupt stack registers
CALL addr
CALL @AR 1
MOVT, DBF @AR (1st instruction cycle)
PUSH AR

Not affected

RET
RETSK 41
MOVT DBF, @AR (2nd instruction cycle)
POP AR
Accepting interrupt -1 -1
RETI +1 +1

Remark Two instruction cycles are required to execute the “MOVT DBF, @AR” instruction, but this is an
exception.

Because the stack pointer (SP) is a 3-bit binary counter, it can take a value OH to 7H. If the value of the stack pointer
is 6 or more, however, an internal reset signal is generated (to prevent a hang-up). This is because only five address
stack registers are available.

Because the stack pointer is located on the register file, its value can be directly read by manipulating the register
file with the POKE instruction. The value of the stack pointer is also changed at this time, but the values of the address
stack registers are not affected. Of course, the stack pointer can also be read by using the PEEK instruction.

The value of the stack pointer is 5H at reset.

37



CHAPTER 6 STACK

6.6 STACK OPERATION
Stack operation during execution of each instruction is explained in 6.6.1 to 6.6.3.
6.6.1 On Execution of Instructions CALL, RET, RETSK
Table 6-2 shows operation of the stack pointer (SP), address stack register, and the program counter (PC) during

execution of CALL, RET, and RETSK.

Table 6-2. Operation of the Instructions CALL, RET, and RETSK

Instruction Operation
CALL addr (1) Stack pointer (SP) is decremented.
CALL @AR (2) Program counter (PC) is saved in the address stack register pointed to by the stack pointer
(SP).
(3) Value specified by the instruction operand (addr or @AR) is transferred to the program
counter.
RET (1) Value in the address stack register pointed to by the stack pointer (SP) is restored to the
RETSK program counter (PC).
(2) Stack pointer (SP) is incremented.

When the RETSK instruction is executed, the first instruction after data restoration becomes a NOP instruction.

6.6.2 Table Reference (MOVT DBF, @AR Instruction)
Table 6-3 shows the operation during table reference.

Table 6-3. Stack Operation during Table Reference

Instruction Instruction cycle Operation

MOVT DBF, @AR First (1) Stack pointer (SP) is decremented.

(2) Program counter (PC) is saved in the address stack register pointed to by
the stack pointer (SP).

(3) Valueinthe addressregister (AR) is transferred to the program counter (PC).

Second (4) Contents of the program memory (ROM) pointed to by the program counter
(PC) is transferred to the data buffer (DBF).

(5) Value in the address stack register pointed to by the stack pointer (SP) is
restored to the program counter (PC).

(6) Stack pointer (SP) is incremented.

Caution Whenthe “MOVT DBF, @AR” instruction is executed, one level of the address stack is temporarily
used. Exercise care not to exceed the usable stack level.

Remark Two instruction cycles are required to execute the “MOVT DBF, @AR” instruction. This is an exception.

38



CHAPTER 6 STACK

6.6.3 Operation on Execution of Interrupt Receipt and RETI Instruction

Table 6-4 shows stack operation during interrupt receipt and RETI instruction.

Table 6-4. Operation during Interrupt Receipt and RETI Instruction

Instruction

Operation

Receipt of interrupt

()
)

@)
(4)

Stack pointer (SP) is decremented.

Value in the program counter (PC) is saved in the address stack register pointed to by the stack
pointer (SP).

Values in the PSWORD flags (BCD, CMP, CY, Z, IXE) are saved in the interrupt stack.
Vector address is transferred to the program counter (PC)

RETI

()
)

©)

Values in the interrupt stack register are restored to the PSWORD (BCD, CMP, CY, Z, IXE).
Value in the address stack register pointed to by the stack pointer (SP) is restored to the program
counter (PC).

Stack pointer (SP) is incremented.

6.7 STACK NESTING LEVELS AND THE PUSH AND POP INSTRUCTIONS

During execution of operations such as subroutine calls and returns, the stack pointer (SP) simply functions as

a 3-bit counter which is incremented and decremented by one. When the value in the stack pointer is OH and a CALL

or MOVT instruction is executed or an interrupt is received, the stack pointer is decremented to 7H. The uPD17134A

subseries treat this condition as a fault and generates an internal reset signal.

In order to avoid this condition, when the address stack register is being used frequently, the PUSH and POP

instructions are used to save the address stack register.

Table 6-5 shows stack operation during the PUSH and POP instructions.

Table 6-5. Stack Operation during the PUSH and POP Instructions

Instruction Operation
PUSH (1) Stack pointer (SP) is decremented.
(2) Value in the address register (AR) is transferred to the address stack register pointed to by the
stack pointer (SP).
POP (1) Value in the address stack register pointed to by the stack pointer (SP) is transferred to the

)

address register (AR).
Stack pointer (SP) is incremented.

39



[MEMO]

40



CHAPTER 7 SYSTEM REGISTER (SYSREG)

The system register (SYSREG), located in data memory, is used for direct control of the CPU.
7.1 SYSTEM REGISTER CONFIGURATION

Figure 7-1 shows the allocation address of the system register in data memory. As shown in Figure 7-1, the system
register is allocated in addresses 74H to 7FH of data memory, independently of the banks. This means that each
bank has the same system register at addresses 74H to 7FH.

Since the system register is allocated in data memory, it can be manipulated using any of the data memory
manipulating instructions. Therefore, it is also possible to put the system register in the general register.

Figure 7-1. Allocation of System Register in Data Memory

Column address
01 2 3 45 6 7 8 9 A BCDEF

Data memory
BANKO

Row address

BANK1 Unmounted

Port register

System register

0123456789ABCDEF

Figure 7-2 shows the configuration of the system register. As shown in Figure 7-2, the system register consists
of the following seven registers.

e Address register (AR)

* Window register (WR)

» Bank register (BANK)

e Index register (IX)

« Data memory row address pointer (MP)

» General register pointer (RP)

e Program status word (PSWORD)

41



CHAPTER 7 SYSTEM REGISTER (SYSREG)

Figure 7-2. System Register Configuration

Address 74H ‘ 75H ‘ 76H ‘ 77H 78H 79H 7AH ‘ 7BH ‘ 7CH 7DH ‘ 7EH ‘ 7FH
i General Program
‘ Window | Bank Index register (IX) _ 9
Name Address register ist ist register status
register | register
(AR) 9 9 Data memory pointer word
(WR) (BANK) row address
pointer (MP) (RP) (PSWORD)
IXH IXM
Symbol AR3 AR2 AR1 ARO WR BANK IXL RPH RPL PSW
MPH MPL
Bit bs|bz|b1|bo| bs| bz| b1|bo|bs| b2| b1| bo| bs| b2|b1|bo| bs|b2| b1|bo|bs|b2| b1| bo| bs| bz| b1 bo| bs| b2| bi| bo|bs|bz|b1|bo| bs| bz| bi| bo| bs| b2| ba| bo| bs| bz|b1| bo
(1X)
M B|C|C |
Data 0/0[{0|0]0 pe = 0|0|0| |P|0O|0|O 0/0|0 CM|Y|Z|X
E D|P E
(AR (BANK) (MP) B RP)
Initial value
when 0/0/0|0(0|0|0|0(0|0|0[{0|0|0|0|0| Undefined|0|0|0|0|0|0O|0O|0O|O|O|O|O|O|O|O(O|O[O|O|0O|O|0O|O|0O|O|0O|0O|O
reset

Note This bit is fixed to 0 in the case of the uPD17134A and uPD17135A.

42



CHAPTER 7 SYSTEM REGISTER (SYSREG)

7.2 ADDRESS REGISTER (AR)

7.2.1 Address Register Configuration

Figure 7-3 shows the configuration of the address register.

As shown in Figure 7-3, the address register consists of the 16 bits in address 74H to 77H (AR3 to ARO) of the
system register. However, since the high-order 5 or 6 bits are always set to 0, the address register is actually 11 or
10 bits. When the system is reset, all 16 bits of the address register are reset to 0.

Figure 7-3. Address Register Configuration

Address 74H 75H 76H 77H
Name Address register (AR)
Symbol AR3 AR2 AR1 ARO
Bit bs | b2| bi| bo|bs|b2|bi|bo|lbs |b2|bi|bo|bs|b2|bi|bo
(AR)
D
ata o/ ool 0|0 [Not
Initial value when 0 0 0 0
reset

Note This bit is fixed to 0 in the case of the uPD17134A and uPD17135A.

7.2.2 Address Register Functions

The address register is used to specify an address in program memory when executing an indirect branch
instruction (BR @AR), indirect subroutine call (CALL @AR) or table reference (MOVT DBF, @AR). The address
register can also be put on and taken off the stack by using the stack manipulation instructions (PUSH AR, POP AR).

Items (1) to (4) explain address register operation during execution of each instruction.

The address register can be incremented by using the dedicated increment instruction (INC AR).

(1) Table reference (MOVT DBF, @AR)
When the “MOVT DBF, @AR” instruction is executed, the data in program memory (16-bit data) located

at the address specified by the value in the address register is read into the data buffer (addresses
OCH to OFH of BANKO).

(2) Stack manipulation instructions (PUSH AR, POP AR)
When the PUSH AR instruction is executed, the stack pointer (SP) is first decremented and then the address
register is stored in the address stack pointed to by the stack pointer.
When the POP AR instruction is executed, the contents of the address stack pointed to by the stack pointer
is transferred to the address register and then the stack pointer is incremented.
Also see CHAPTER 6 STACK.

43



CHAPTER 7 SYSTEM REGISTER (SYSREG)

44

©)

4

®)

Indirect branch instruction (BR @AR)
When the BR @AR instruction is executed, the program branches to the address in program memory specified
by the value in the address register.

Indirect subroutine call (CALL @AR)
When the CALL @AR instruction is executed, the subroutine located at the address in program memory
specified by the value in the address register is called.

Address register used as a peripheral hardware register

The address register can be manipulated 4 bits at a time by using data memory manipulation instructions. The
address register can also be used as a peripheral hardware register for transferring 16-bit data to the data
buffer. In other words, by using the PUT AR, DBF and GET DBF AR instructions, the address register can
be used to transfer 16-bit data to the data buffer.

Note that the data buffer is allocated in addresses OCH to OFH of BANKO in data memory.

Figure 7-4. Address Register Used as a Peripheral Circuit

(BANKO) Column address
123456789ABCDEF

DBF3DBF2|DBF: DBFO Data buffer

Z

|AR3\AR2\AR1\ARO\ System register
Address register

Row address

~N o o~ W N P O

16-bit data transfer available



CHAPTER 7 SYSTEM REGISTER (SYSREG)

7.3 WINDOW REGISTER (WR)

7.3.1 Window Register Configuration

Figure 7-5 shows the configuration of the window register.

As shown in Figure 7-5, the window register (WR) consists of four bits allocated at address 78H of the system
register. The contents of the window register is undefined after reset. However, when RESET is used to release the
system from HALT or STOP mode, the previous state is maintained.

Figure 7-5. Window Register Configuration

Address 78H

Name Window register

Symbol WR

Bit bs| bz | b1 | bo

Data - -
Initial value when reset Undefined

7.3.2 Window Register Functions
The window register is used to transfer data to and from the register file (RF).
Data is transferred to and from the register file using the dedicated instructions “PEEK WR, rf” and “POKE rf, WR".

(1) PEEK WR, rf
As shown in Figure 7-6, the “PEEK WR, rf” instruction is used to transfer the contents of the register file

specified by rf to the window register.
(2) POKE rf, WR
As shown in Figure 7-6, the “POKE rf, WR” instruction is used to transfer the contents of the window register

to the file specified by rf.

Figure 7-6. Example of Window Register Operation

Column address
01 2 3 45 6 7 8 9 A B CDE F

D POKE instruction Control register

*************************************************************************** ] Register file

Row address

~N o o~ WN BB O

PEEK instruction

g | ‘WR‘ System register

Data memory

45



CHAPTER 7 SYSTEM REGISTER (SYSREG)

7.4 BANK REGISTER (BANK)

7.4.1 Bank Register Configuration

Figure 7-7 shows the configuration of the bank register.

The bank register consists of four bits at address 79H (BANK) of the system register. However, since the three
high-order bits are always set to 0, only the least significant bit is actually used.

All bits are set to 0 at reset.

Figure 7-7. Bank Register Configuration

Address 79H
Name Bank register
Symbol BANK
Bit bz | b2 | bi| bo
Data 0|00
- BANK)
\
Initial value when 0
reset

7.4.2 Functions of Bank Register
The bank register is used to switch between the banks in data memory. Table 7-1 shows how the banks in data
memory are specified by the value in the bank register.

Table 7-1. Specifying the Bank in Data Memory

Bank register Bank in data
bs b2 b1 bo memory
0 0 0 0 BANKO
0 0 0 1 BANK1

Data memory is effectively divided into two banks by the bank register. When a data memory manipulation
instruction is executed, the data memory in the bank specified by the bank register is manipulated.

Therefore, if the current bank is BANKO, in order to manipulate data memory in BANK1 (port registers), the bank
register must be used to switch the current bank to BANKL.

The system register can be manipulated regardless of the state of the bank register.

For example, whether the instruction MOV 78H, #0 is executed for BANKO or BANK1, the effect is the same; 0
is written to address 78H of the system register.

In addition, BANK becomes 0 after saved to the interrupt stack register.

46



CHAPTER 7 SYSTEM REGISTER (SYSREG)

7.5 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS POINTER (MEMORY POINTER: MP)

7.5.1 Index Register (1X)

IX is used for address modification of the data memory. The difference between IX and MP is that IX modifies an
address specified by a bank and operand m.

IX is allocated to a total of 12 bits of system register addresses 7AH (IXH), 7BH (IXM), and 7CH (IXL), as shown
in Figure 7-8. Actually, however, only 11 bits, the low-order 3 bits of IXH, IXM, and IXL, function as IX. Anindexregister
enable flag (IXE) which enables address modification by IX is assigned to the least significant bit of PSW.

When IXE =1, the address of the data memory specified by operand m is not m, but the result of ORing between
m and IXM through IXL. The bank specified at this time is also indicated by ORing BANK and IXH.

Remark [IXHofthe uPD17134A subseriesis fixedto “0”, and the bank is not modified evenwhen IXE =1 (to prevent
a bank other than 0 from being used).

7.5.2 Data Memory Row Address Pointer (Memory Pointer: MP)

MP is used for address modification of the data memory. The difference between IX and MP is that MP modifies
the row address of an address indirectly specified by bank and operand @r.

MPH and IXH and MPL and IXM are assigned to the same address (addresses 7AH and 7BH of the system register)
as shown in Figure 7-8. Actually, however, the low-order 3 bits of MPH and MPL, or a total of 7 bits, function as MP.
A memory pointer enable flag (MPE) which enables address modification by MP is assigned to the most significant
bit of MPH.

When MPE = 1, the bank and row address of the data memory indirectly specified by operand @r are not BANK
and mr, but the address specified by MP (the column address is specified by the contents of rindependently of MPE).
At this time, the low-order 3 bits of MPH and the most significant bit of MPL indicate BANK, and the low-order 3 bits
of MPL indicate a row address.

Remark The low-order 3 bits of MPH and most significant bit of MPL of the yPD17134A subseries are fixed to
“0”, and bank 0 is always specified even when MPE = 1 (to prevent a bank other than 0 from being used).

Figure 7-8. Index Register Configuration

Address 7AH 7BH 7CH 7FH
Index register (IX) Low-order 4
Name | oo T T ‘ bits of program
| . w status word
! Memory pointer (MP) ! (PSWORD)
IXH IXM IXL
Symbolic hame oo PSW
MPH MPL
Bit bs | bz | b1 | bo| bs| b2| bi|bo|bs| b2|bi]|bo bs | b2 | b1 | bo
M |
Flag name P X
E E
(1X)
Data (MP)
0|l0|0]O
Initial value whenreset | 0 | 0| O | O | O O] OO0 O0|0]O0|O 0|0| 0| O

47



CHAPTER 7 SYSTEM REGISTER (SYSREG)

48

Figure 7-9. Modification of Data Memory Address by Index Register and Memory Pointer

Data memory address specified by m Indirect transfer address specified by @r
IXE MPE Bank Row address | Column address Bank Row address | Column address
bs | b2 | b1 | bo|bz|bi|bo|bs|bz|bi|bo|bs|bz|bi|bo|b2|bi|bo]|bs|b|bi]|bo
! ! ! !
0 0 BANK | l m BANK l mR l ©
| | | |
| | | |
| | | |
| | L |
| | | |
0 1 BANK ! ''m MPH | | MPL ! )
| | §3 |
BANK 'm BANK | me |
|
|
IXH XM IXL IXH XM
1 1 Setting prohibited
BANK Bank register MP Memory pointer
IX Index register MPE : Memory pointer enable flag
IXE Index enable flag MPH : High-order 3 bits of memory pointer
IXH Bits 10 through 8 of index register MPL : Low-order 4 bits of memory pointer
IXM Bits 7 through 4 of index register r . General register column address
IXL Bits 3 through 0 of index register RP : General register pointer
m Data memory indicated by mr and mc (x) : Contents addressed by x
mRr Data memory row address x: Direct address such as r
mc Data memory column address

Table 7-2. Instructions Subject to Address Modification

Arithmetic | ADD fm
operation ADDC |
SUB m, #n4
SUBC
Logical AND
operation OR r,m
XoR | ]
m, #n4
Judgment | SKT m, #n
SKF
Compare SKE
SKGE m, #n4
SKLT
SKNE
Transfer LD r,m
ST m, r
MOV m, #n4
e m
m, @r




CHAPTER 7 SYSTEM REGISTER (SYSREG)

7.5.3 IXE = 0 and MPE = 0 (No Data Memory Modification)
As shown in Table 7-9, data memory addresses are not affected by the index register and the data memory row

address pointer.

(1) Data memory manipulation instructions

Example 1.

Execution of “ADD r, m” when general register is in row address 0

R003 MEM 0.03H
M061 MEM 0.61H
ADD R0O03, MO61  ; Addition in memories (0.03H) ~ (0.03H) + (0.61H)

As shown in Figure 7-10, when the above instructions are executed, the data in general register
address R003 and data memory address M061 are added together and the result is stored in
general register address R003.

(2) Indirect transfer of data in the general register (horizontal indirect transfer)

Example 2.

Execution of “MOV @r, m” when general register is in row address 0

R0O05 MEM 0.05H
M034 MEM 0.34H
MOV  RO0O05, #8 ; RO0O5 — 8 (Setting of column address of @r)
MOV  @RO005, M034 ; Indirect transfer of data in the register (0.38H) — (0.34H)

As shown in Figure 7-10, when the above instructions are executed, the data stored in data
memory address M034 is transferred to data memory location 38H.

The “MOV @r, m” instruction transfers the contents of the data memory specified by m to a data
memory address with the row address same as m and column address specified by @r.

In the above example, therefore, data at M034 is transferred to 38H whose row address is the
same as that of M034 (= 3) and column address is specified by the contents of RO05 (= 8).

49



CHAPTER 7 SYSTEM REGISTER (SYSREG)

Example 3. Execution of “MOV m, @r” when general register is in row address 0

ROOB
MO034

MEM
MEM
MOV
MOV

0.0BH

0.34H

ROOB, #0EH ; ROOB ~ OEH (Setting column address of @r)

MO034, @R0O0OB ; Indirect transfer of data in the register (0.34H) — (0.3EH)

As shown in Figure 7-10, when the above instructions are executed, the contents of data

memory stored at address 3EH is transferred to data memory location M034.

The “MOV m, @r” instruction transfers the contents of the data memory of the address which

the column address is specified by @r to a data memory address specified by m.

In the above example, therefore, data at 3EH is transferred to M034 whose row address is the

same as that of M034 (= 3) and column address is specified by the contents of ROOB (= OEH).

Figure 7-10. Operation Example When IXE = 0 and MPE = 0

Column address

System register

0 1 2 3 4 5 6 7 8 9 A B C D E F
General
0 ‘ ‘ 8 ‘ ‘ E ‘ ™ register
1 . Column address specified . Column address specified
 as transfer destination  as transfer source
o 2 Example 2. MOV @R005, M034 | |
g Y Y
o
®
z 4 ] Example 3. MOV M034, @RO0B
DC:’ 5
Example 1. ADD R003, M061
6
7 | |

Addresses in Example 1
ADD R003, M061

Addresses in Example 2
MOV @R005, M034

50

Row Column Row Column
Bank Bank
address | address address | address
Data memory address M 0000 110 0001 Data memory address M 0000 011 0100
General register address R 0000 000 0011 General register address R 0000 000 0101
Indirect transfer address @R 0000 011 1000

Same as M Contents
| of R




CHAPTER 7 SYSTEM REGISTER (SYSREG)

7.5.4 IXE = 0 and MPE = 1 (Diagonal Indirect Data Transfer)
As shown in Figure 7-9, the indirect data transfer bank and row address specified by @r become the data memory
row address pointer value only when general register indirect data transfer instructions (MOV @r, m and MOV m, @r)

are used.

Example 1.

Execution of “MOV @r, m” when the general register is in row address 0

R0O05 MEM 0.05H
M034 MEM 0.34H

MOV MPL, #0110B ; MP — 6 (Setting row address of @r)

MOV MPH, #1000B ;: MPE ~ 1, bank « 0

MOV R0OO05, #8 ; RO0O5 — 8 (Setting column address of @r)

MOV @RO005, M034 ; Indirect transfer of data in the register (0.68H) — (0.34H)

As shown in Figure 7-11, when the above instructions are executed, the contents of data memory
address M034 is transferred to data memory location 68H.

When the MOV @r, m instruction is executed when MPE = 1, the contents of the data memory
address specified by mis transferred to the column address pointed to by the row address @r being
pointed to by the memory pointer.

In this case, the indirect address specified by @r becomes the value used for the bank and row
address data memory pointer (above example uses row address 6). The column addressisthe value
in the general register address specified by r (above example uses column address 8).
Therefore the address in the above example is 68H.

This example is different from Example 2 in 7.5.3 when MPE = 0 for the following reasons: In this
example, the data memory row address pointer is used to point to the indirect address bank and
row address specified by @r. (In Example 2 in 7.5.3, the indirect address bank and row address
are the same as m.)

By setting MPE = 1, diagonal indirect data transfer can be performed using the general register.

51



CHAPTER 7 SYSTEM REGISTER (SYSREG)

2. Execution of “MOV m, @r” when general register is in row address 0

R0O0OB MEM 0.0BH
M034 MEM 0.34H
MOV MPL, #0110B ; MP — 6 (Setting row address of @r)
MOV MPH, #1000B ; MPE « 1, bank « 0
MOV ROOB, #0EH ; ROOB —~ OEH (Setting column address of @r)
MOV MO034, @R0O0OB ; Indirect transfer of data in the register (0.34H) —~ (0.6EH)

As shown in Figure 7-11, when the above instructions are executed, the data stored in address 6EH
is transferred to data memory location M034.

Figure 7-11. Operation Example When IXE = 0 and MPE = 1

Column address

0 1 2 3 4 5 6 7 8 9 A B C D E F
General
0 8 E register
1 i Column address specified iCqumn address specified
1as transfer destination ias transfer source _
n 2 | |
%] | |
&) | |
S 3 1 1
g 4 | Example 2. MOV M034, @RO0B
] | |
@ ! !
5 | Example 1. MOV @R005, M034 ; ;
Memory
6 ~— pointer
=00110B
7
System register
Addresses in Example 1 Addresses in Example 2
MOV @RO005, M034 MOV M034, @R00B
Bank Row Column Bank Row Column
address | address address | address
Data memory address M 0000 011 0100 Data memory address M 0000 011 0100
General register address R 0000 000 0101 General register address R 0000 000 1011
Indirect transfer address @R 0000 110 1000 Indirect transfer address @R 0000 110 1110
Contents of MP gﬂgte”ts Contents of MP gfothents

52



CHAPTER 7 SYSTEM REGISTER (SYSREG)

7.5.5 IXE =1 and MPE = 0 (Index Modification)

As shown in Figure 7-9, when a data memory manipulation instruction is executed, any bank or address in data
memory specified by m can be modified using the index register.

When indirect data transfer using the general register (MOV @r, m or MOV m, @r) is executed, the indirect transfer
bank and address specified by @r can be modified using the index register.

Address modification is done by performing an OR operation on the data memory address and the index register.
The data memory manipulation instruction being executed manipulates data in the memory location pointed to by the
result of the operation (called the real address).

An example is shown below.

Example 1. Execution of “ADD r, m” when the general register is in row address 0

R003 MEM 0.03H
M061 MEM 0.61H

MOV  IXL, #0010B ;1X < 000000100108

MOV  IXM, #0001B :

MOV  IXH, #0000B MPE — 0

OR PSW, #.DF.IXE AND OFH ; IXE < 1

ADD R003, M061 : (0.03H) « (0.03H) + (0.73H)

As shown in Figure 7-12, when the instructions of example 1 are executed, the value in data memory
address 73H (real address) and the value in general register address RO03 (address 03H) are added
together and the result is stored in general register address R003.

When the ADD r, m instruction is executed, the data memory address specified by m (address 61H
in above example) is index modified.

Modification is done by performing an OR operation on data memory location M061 (address 61H,
binary 00001100001B) and the index register (00000010010B in the above example). The result
of the operation (00001110011B) is used as a real address (address 73H) by the instruction being
executed.

As compared to when IXE = 0 (Examples in 7.5.3), in this example the data memory address being
directly specified by m is modified by performing an OR operation on m and the index register.

53



CHAPTER 7 SYSTEM REGISTER (SYSREG)

54

Figure 7-12. Operation Example When IXE =1 and MPE =0

Column address

0 1 2 3 4 5 6 7 8 9 A B C D E F
General
0 R003 register
1 Example 1. ADD R003, MO61
n 2 e
@ (mmmmos = Index modification
c% 3 | MO061 : 00001100001B
z 4 w OR) IX : 00000010010B
& 1 Real address 00001110011B
} WW/W/\
S moer :
el | | @ |
Y
7

System register

Addresses in Example 1
ADD R003, M061

Bank Row Column
address | address

Data memory address M 0000 110 0001
General register address R 0000 000 0011
Index modification MO061 B 0000 110 0001

i BANK m

x| oooo | oor | o010

i IXH IXM IXL

Realaddress | | | |

'(OR operation) 0000 111 0011

Instruction is executed using this address.



CHAPTER 7 SYSTEM REGISTER (SYSREG)

Example 2.

Row address

Indirect data transfer using the general register (Execution of “MOV @r, m”)

R0O05 MEM 0.05H
M034 MEM 0.34H

MOV IXL, #0001B ; Column address — 5 (OR of 4 and 1)
MOV IXM, #0000B ; Row address — 3 (OR of 3 and 0)

MOV IXH, #0000B ; MPE ~ 0, bank ~ 0 (OR of 0 and 0)

OR PSW, #.DF.IXE AND OFH ;IXE ~ 1

MOV R0OO05, #8 ; RO05 — 8 (Setting column address of @r)
MOV @RO005, M034 ; Indirect data transfer using the register

: (0.38H) « (0.35H)

As shown in Figure 7-13, when the above instructions are executed, the contents of data memory
address 35H is transferred to data memory location 38H.

When the MOV @r, m instruction is executed when IXE = 1, the data memory address specified
by m (direct address) is modified using the contents of the index register. The bank and row address
of the indirect address specified by @r are also modified using the index register.

The bank, row address, and column address specified by m (direct address) are all modified, and
the bank and row address specified by @r (indirect address) are modified.

Therefore, in the above example the direct address is 35H and the indirect address is 38H.

This example is different from Example 3 in 7.5.3 when IXE = 0 for the following reasons: In this
example, the bank, row address and column address of the direct address specified by m are
modified using the index register. The general register is transferred to the address specified by
the column address of the modified data memory address and the same row address. (In Example
3in 7.5.3, the direct address is not modified.)

Figure 7-13. Operation Example When IXE =1 and MPE =0

Column address
o 1 2 3 4 5 6 7 8 9 A B C D E F

General
0 5 register
ol I Column address specified
2 . as transfer destination
M034 Y
3 Example 2.
Dl ; MOV @R005, M034
: Direct : i
4 | Index modification ¥ address Indirect address
5 M034 : 00000110100B
OR) IX : 00000000001B
6 | Real address 00000110101B ------- 1
i)V Va Ve VW Ve Ve Ve VA Ve Ve Va Ve Va N
7

System register

55



CHAPTER 7 SYSTEM REGISTER (SYSREG)

Example 3. Clearing data memory of 00H-OFH to 0

M000 MEM  0.00H

MOV  IXL, #0 ;IX <« 0
MOV XM, #0 ;
MOV  IXH, #0 ; MPE < 0
LOOP:
OR PSW, #.DF.IXE AND OFH ; IXE « 1
MOV  MO0O0O, #0 ; Set data memory specified by IX to 0
INC IX X < IX+1
AND PSW, #1110B ; IXE ~ 0, Remains address 7FH even if modified
; by IX because IXE is address 7FH.
SKE IXM, #7 : Row address 7 ?
BR LOOP ; If not 7 then LOOP (row address is not cleared)

4. Processing an array

As shown in Figure 7-14, when an operation

A(N) « A(N) +4 (0<N<15)
is executed to element A (N) of a one-dimensional array with each element 8 bits long, the following
instructions are executed.

M000 MEM 0.00H
M001 MEM 0.01H
MOV IXH, #0

MOV IXM, #N SHR 3 : Sets offset of row address
MOV IXL, #N SHL 1 AND OFH ; Sets offset of column address
OR PSW, #.DF.IXE AND OFH ; IXE ~ 1

ADD MO000, #4

ADDC  MO0O01, #0 s A(N) — A(N) +4

In the above example, the value of N shifted 1 bit to the left (i.e., the value of N multiplied by 2) is
set to the index register because one element is 8 bits long.

Figure 7-14. Operation Example When IXE = 1 and MPE = 0 (Array Processing)

Column address

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 A(O)iA(l)iA(Z)iA(3)§A(4)§A(5)§A(6)§A(7)
1 A (8) ji A (9) Ti A (10) ir A (11) ir A (12) i A (13) i A (14) ji A (15)
0w 2
3 A (0)
gS
IS4 OO0OH 0O1H
g 4 e AU A
x bs i b2 bi:bo:b7: bs: bs: ba
5
6
7

System register




CHAPTER 7 SYSTEM REGISTER (SYSREG)

7.6 GENERAL REGISTER POINTER (RP)

7.6.1 General Register Pointer Configuration
Figure 7-15 shows the configuration of the general register pointer.

Figure 7-15. General Register Pointer Configuration

Address 7DH 7EH
General register
Name pointer (RP)
Symbol RPH RPL
Bit bz | b2| bi| bo| bs | b2 | b1 | bo
REEEEREL
Flag 1 1 | | 1 e
SR N R
0,00 o
oae LR
Initial value when
reset 0 0

As shown in Figure 7-15, the general register pointer consists of seven bits; four bits in system register address
7DH (RPH) and the high-order 3 bits of system register address 7EH (RPL). However, since the high-order 3 bits
of address 7DH are always set to 0, the register effectively consists of four bits; the least significant bit of address
7DH and the high-order 3 bits of address 7EH.

All register bits are cleared to 0 at reset.

57



CHAPTER 7 SYSTEM REGISTER (SYSREG)

* 7.6.2 Functions of the General Register Pointer

The general register pointer is used to specify the location of the general register in data memory. For the general
register, see CHAPTER 8 GENERAL REGISTER (GR).

The general register consists of 16 nibbles in any single row of data memory. As shown in Figure 7-16, the general
register pointer is used to indicate which row address is being used as the general register.

Since the general register pointer effectively consists of four bits, the data memory row addresses in which the
general register can be placed are address OH to 7H of BANKO and BANKL1. In other words, any row in data memory
can be specified as the general register.

With the general register allocated in data memory, data can be transferred to and from, and arithmetic operations
can be performed on the general register and data memory.

Note thatrow addressed OH to 6H of BANK1 are unmounted memory locations and should therefore not be specified
as locations for the general register.

For example, when instructions such as

ADD r,m and LD r,m
are executed, instruction operand r can specify an address in the general register and m specifies an address in data
memory. In this way, operations like addition and data transfer can be performed on and between data memory and
the general register.

Figure 7-16. General Register Configuration

General register pointer b
(RP)
RPH RPL BANKO Column address
bS‘bZ‘bl‘bO b3‘b2‘bl‘b0 01 2 3 45 6 7 8 9 A B C D E|F
ol o 0]010 0 [0 t
o, 0, O —— T T i
2, 2:,2,0(0:0: 1, 1
T T T | | 1
g gr0f(01:0: 2 General register (16 nibbles) - Example
- : - : - 00111 -3 General register
1 | A S B R with RP =
b 10 1:0:010*4 00000108
B -1 B
o 101108216 Area in which
oo P A | register
Lo o l1i1i1 e 7 general regist
o T £ I | System register \ RP \ |« can be specified
A 12 BANK1
| | | ! ! O |,
| SR O
| | )10 0;12F1
N S e e e Both bank
This area | L+ | Y 1 Y 2 - hgvetr?: )
shouldnot< 1 1 [ 0 ; 1 | 1} ~3 Unmounted same system
be L‘Jsed.‘ 111 0 0 . 4 register.
o ltafatolal s
o litl1i1:00 6
3 | 10101010 -7 | Portregister | r====mm e e e e e e '
: : : : : , System register e Y

58



CHAPTER 7 SYSTEM REGISTER (SYSREG)

7.7 PROGRAM STATUS WORD (PSWORD)

7.7.1 Program Status Word Configuration

Figure 7-17 shows the configuration of the program status word.

Figure 7-17. Program Status Word Configuration

Address 7EH 7FH
N Program status
ame (RP) word (PSWORD)
Symbol RPL PSW
Bit bs | b2 | bi| bo| bs | b2 | b1 bo
o oiBjcicizi
EEERECILUER SIS
IR LIRS
Data o o
Initial value when
reset 0 0

As shown in Figure 7-17, the program status word consists of five bits; the least significant bit of system register
address 7EH (RPL) and all four bits of system register address 7FH (PSW).

The program status word is divided into the following 1-bit flags: Binary coded decimal flag (BCD), compare flag
(CMP), carry flag (CY), zero flag (Z), and the index enable flag (IXE).

All register bits are cleared to 0 at reset and after the contents of the interrupt stack register have been saved.

59



CHAPTER 7 SYSTEM REGISTER (SYSREG)

7.7.2 Functions of the Program Status Word

The flags of the program status word are used for setting conditions for arithmetic operations and data transfer
instructions and for reflecting the status of operation results. Figure 7-18 shows an outline of the functions of the
program status word.

Figure 7-18. Outline of Functions of the Program Status Word

Address 7EH 7FH
Bit bs bz | b1|bo| bs|b2| b1|bo
Symbol RPL PSW
B|C|C|Z]|I
Flag CM|Y X
D|P E

Flag Function

Used to specify that index modification be performed on the data
memory address used when a data memory manipulation instruction
IXE is executed.

0: Index modification disabled.

1: Index modification enabled.

Set when the result of an arithmetic operation is 0.
0: Indicates that the result of the arithmetic operation is a value other

- Z
than 0.
1: Indicates that the result of the arithmetic operation is 0.
Set when there is a carry in the result of an addition operation or
cy a borrow in the result of a subtraction operation.

0: Indicates there was no carry or borrow.
1: Indicates there was a carry or borrow.

Used to specify that the result of an arithmetic operation not be
stored in data memory or the general register but just be reflected
= CMP in the CY and Z flags.

0: Results of arithmetic operations are stored.

1: Results of arithmetic operations are not stored.

Used to specify how arithmetic operations are performed.
= BCD 0: Arithmetic operations are performed in 4-bit binary.
1: Arithmetic operations are performed in BCD.

60



*

CHAPTER 7 SYSTEM REGISTER (SYSREG)

7.7.3 Index Enable Flag (IXE)

The IXE flag is used to specify index modification on the data memory address when a data memory manipulation
instruction is executed.

When the IXE flag is set to 1, an OR operation is performed on the data memory address and the index register
(IX), and executes an instruction to the data memory with the result of the OR operation as the real address.

Foramore detailed explanation, see 7.5 INDEX REGISTER (1X) AND DATAMEMORY ROW ADDRESS POINTER
(MEMORY POINTER: MP).

7.7.4 Zero Flag (Z) and Compare Flag (CMP)

The Z flag indicates that the result of an arithmetic operation is 0. The CMP flag is used to specify that the result
of an arithmetic operation not be stored in data memory or the general register.

Table 7-3 shows how the CMP flag affects the setting and resetting of the Z flag.

Table 7-3. Zero Flag (Z) and Compare Flag (CMP)

Conditions When CMP flag When CMP flag is 1
When the result of an arithmetic operation is a value 0 Z -1 Z flag remains unchanged
When the result of an arithmetic operation is other than 0 Z-0 Z-0

The Z flag and the CMP flag are used for comparing values in the general register and data memory. The Z flag
is only affected by arithmetic operations. The CMP flag is only affected by bit evaluation.

Example of comparing 12-bit data
; Are 12-bit data stored in M001, M002, and M003 equal to 456H?

CMP456:
SET2 CMP, Z
SuUB MO001, #4 : Data stored to M001, M002, and M003 are not lost
SUB M002, #5
SUB MO0O03, #6
; CLR1 CMP ; CMP is automatically cleared by bit judgement instruction
SKT1 Z
BR DIFFER ; 456 H
BR AGREE ;=456 H

7.7.5 Carry Flag (CY)

The CY flag shows that there is a carry in the result of an addition operation or a borrow in the result of a subtraction
operation.

The CY flag is set (CY = 1) when there is a carry or borrow in the result and reset (CY = 0) when there is no carry
or borrow in the result.

When the RORC r instruction (contents in the general register specified to by r is shifted right one bit) is executed,
the following occurs: the value in the CY flag just before execution of the instruction is shifted to the most significant
bit of the general register and the least significant bit is shifted to the CY flag.

The CY flag is also useful for when the user wants to skip the next instruction when there is a carry or borrow in
the result of an operation.

The CY flag is only affected by arithmetic operations and rotations and not affected by the CMP flag.

61



CHAPTER 7 SYSTEM REGISTER (SYSREG)

7.7.6 Binary-Coded Decimal Flag (BCD)

The BCD flag is used for BCD operations.

When the BCD flag is set (BCD = 1), all arithmetic operations will be performed in BCD. When the BCD flag is
reset (BCD = 0), arithmetic operations are performed in 4-bit binary.

The BCD flag does not affect logical operations, bit judgement, comparison judgement or rotations.

7.7.7 Notes Concerning Use of Arithmetic Operations

When performing arithmetic operations (addition and subtraction) on the program status word (PSWORD), the
following point should be kept in mind.

When an arithmetic operation is performed on the program status word, the result is stored in the program status
word.

Below is an example.

Example MOV PSW, #0001B
ADD PSW, #1111B

When the above instructions are executed, a carry is generated which should cause bit 2 (CY flag) of

PSW to be set. However, the result of the operation (0000B) is stored in PSW, meaning that CY does
not get set.

62



CHAPTER 7 SYSTEM REGISTER (SYSREG)

7.8 NOTES CONCERNING USE OF THE SYSTEM REGISTER

7.8.1 Reserved Words for the System Register

Because the system register is allocated in data memory, it can be used in any of the data memory manipulation
instructions. As shown in Example 1 (using a 17K Series Assembler AS17K), because a data memory address can
not be directly coded in an instruction operand, it needs to be defined as a symbol beforehand.

The system register is data memory, but has specialized functions which make it different from general-purpose
data memory. Therefore, the system register is used by defining it beforehand with symbols (used as reserved words)
in the assembler (AS17K).

Reserved words for the system register are allocated in address 74H to 7FH. They are defined by the symbols
(AR3, AR2, ..., PSW) shown in Figure 7-2.

As shown in Example 2, if these reserved words are used, it is not necessary to define symbols.

For information concerning reserved words, see CHAPTER 20 ASSEMBLER RESERVED WORDS.

Example 1. MOV 34H, #0101B ; Using a data memory address like 34H or 76H will cause an
MOV 76H, #1010B ; error in the assembler.
M037 MEM 0.37H ; Addresses in general data memory need to be defined as

MOV M037, #0101B ; symbols using the MEM directive.

2. MOV AR1, #1010B ; By usingthe reserved word AR1 (address 6H), there is no need
; to define the address as a symbol.
: Reserved word ARL1 is defined in a device file with the directive
; “AR1 MEM 0.76H".

Assembler AS17K has the below flag symbol manipulation instructions defined internally as macros.

SETn :Setaflagtol

CLRn : Resetaflagto O

SKTn : Skip when all flags are 1
SKFn . Skip when all flags are 0
NOTn : Invert a flag

INITFLG . Initialize a flag

By using these embedded macro instructions, data memory can be handled as flags as shown below in Example
The functions of the program status word and the memory pointer enable flag are defined in bit units (flag units)

and each bit has a reserved word defined for it. These reserved words are MPE, BCD, CMP, CY, Z and IXE.
If these flag reserved words are used, the embedded macro instructions can be used as shown in Example

63



CHAPTER 7 SYSTEM REGISTER (SYSREG)

64

Example 3.

FO003 FLG 0.00.3 ; Flag symbol definition
SET1 FO003 ; Embedded macro

Expanded macro

OR .MF.FO003 SHR 4, #.DF.FO003 AND OFH
; Set bit 3 of address 00H of BANKO

SET1 BCD ; Embedded macro

Expanded macro
OR .MF.BCD SHR 4, #.DF.BCD AND OFH

; Set the BCD flag

; BCD is defined as “BCD FLG 0.7EH.0”

CLR2 Z, CY ; Identical address flag

Expanded macro
AND .MF.Z SHR 4, #.DF. (NOT (Z OR CY) AND OFH)

CLR2 Z, BCD ; Different address flag

Expanded macro
AND .MF.Z SHR 4, #.DF. (NOT Z AND OFH)
AND .MF.BCD SHR 4, #.DF. (NOT BCD AND OFH)




CHAPTER 7 SYSTEM REGISTER (SYSREG)

7.8.2 Handling of System Register Addresses Fixed at 0
In dealing with system register area fixed at O (see Figure 7-2), there are a few points for which caution should
be taken with regard to device, emulator and assembler operation.
Iltems (1), (2) and (3) explain these points.

(1) Concerning device operation
Trying to write data to an address fixed at O will not change the value (0) at that address. Any attempt to read
an address fixed at O will result in the value O being read.

(2) When using a 17K series in-circuit emulator (IE-17K or IE-17K-ET)
An error will be generated if a write instruction attempts to write 1 to an address fixed at 0.
Below is an example of the type of instructions that will cause the in-circuit emulator to generate an error.

Example 1. MOV BANK, #0100B ; Attempts to write 1 to bit 3 (an address fixed at 0).

2. MOV IXL, #1111B ;
MOV IXM, #1111B ;

MOV IXH, #0001B ; Attempts to write 1 to bit 0 (an address fixed at 0).

ADD IXL, #1 ;

ADDC IXM, #0 ;

ADDC IXH, #0 ; Attempts to write 1 to bit O (an address fixed at 0) as a result of
operation.

However, when all valid bits are set to 1 as shown in Example 2, executing the instructions INC AR or INC
IX will not cause an error to be generated by the in-circuit emulator. This is because when all valid bits of the
address register and index register are set to 1, executing the INC instruction causes all bits to be set to 0.
The only time the in-circuit emulator will not generate an error when an attempt is made to write the value 1
to an address fixed at 0 is when the address being written to is in the address register.

(3) When using a 17K series assembler (AS17K)
No error is output when an attempt is made to write 1 to an address fixed at 0. The instruction shown in
Example 1
MOV  BANK, #0100B
will not cause an assembler error. However, when the instruction is executed in the in-circuit emulator, an
error is generated.
The following is the reason why an error is not generated in the assembler: the assembler does not know what
data memory address is the object of the data memory manipulation instruction being executed.
The assembler generates an error only when the value n in the embedded macro BANKn is a value greater
than 2:
This is because the assembler judges that embedded macros other than BANKO and 1 cannot be used in the
UPD17134A subseries.

65



[MEMO]

66



CHAPTER 8 GENERAL REGISTER (GR)

The general register (GR) is allocated in data memory. It can therefore be used directly for arithmetic operations
and transferring data.

8.1 GENERAL REGISTER CONFIGURATION

Figure 8-1 shows the configuration of the general register.

As shown in Figure 8-1, 16 nibbles in a single row address in data memory (16 x 4 bits) are used as the general
register.

The register pointer (RP) in the system register is used to indicate which row address is to be used as the general
register. Since the general register pointer effectively has four valid bits, the data memory row addresses in which
the general register can be allocated are addresses OH to 7H of BANKO and BANK1. However, note that row addresses
OH to 6H of BANK1 are unmounted area and should therefore not be specified as locations for the general register.

8.2 FUNCTIONS OF THE GENERAL REGISTER

The general register can be used in transferring data to and from data memory and in performing arithmetic
operations with data memory within an instruction. In effect, since the general register is data memory, this just means
that operations such as arithmetic operations and data transfer can be performed on and between locations in data
memory. In addition, because the general register is allocated in data memory, it can be controlled in the same manner
as other areas in data memory through the use of data memory manipulation instructions.

67



CHAPTER 8 GENERAL REGISTER (GR)

Figure 8-1. General Register Configuration

BANKO Column address
01 2 3 45 6 7 8 9 A B CD E F
— 0
1
Th | reai . 0 2 General Register (16 nibbles) «— General register
e general register pointer o when RP = 00010B
(RP) can be used to specify 5 3
any row address in address K
locations OH to 7H of BANKO 24
and BANK1. However, note 14
that row addresses OH to 6H 5
of BANK1 are unmounted
memory locations and should 6
therefore not be specified. System register RP -«
7
BANK1
0
1
2
— Both banks have
3 Unmounted the same system
/////// register.
4 (Row addresses OH to 6H of BANK1
are unmounted memory locations.
5 RP should therefore not specify a
row address in this area).
6
L ; ‘ System register -
/
Address 7DH 7EH
General register pointer
Name (RP)
Symbol RPH RPL
Bits bs | b2|b1i|bo|bs|bz|bi|bo
B
C
Data 0/0]|0 D
Reset ojojojojo0o|j0|O

68



CHAPTER 9 REGISTER FILE (RF)

The register file is a register used mainly for specifying conditions for peripheral hardware.
9.1 REGISTER FILE CONFIGURATION

9.1.1 Configuration of the Register File

Figure 9-1 shows the configuration of the register file.

As shown in Figure 9-1, the register file is a register consisting of 128 nibbles (128 words x 4 bits).

In the same way as with data memory, the register file is divided into addresses in 4-bit units. It has a total of 128
nibbles specified in row addresses from OH to 7H and column addresses from OH to OFH.

Address 00H to 3FH define an area called the control register.

9.1.2 Relationship between the Register File and Data Memory

Figure 9-2 shows the relationship between the register file and data memory.

As shown in Figure 9-2, the register file overlaps with data memory in addresses 40H to 7FH.

This means that the same memory exists in register file addresses 40H to 7FH and in data memory bank addresses
40H to 7FH.

Assuming that the current bank is BANKO, register file addresses 40H to 7FH are equivalent to addresses 40H
to 7FH of BANKO in data memory. When the current bank is BANK1, register file addresses 40H to 7FH are equivalent
to address 40H to 7FH of BANK1 in data memory.

Figure 9-1. Register File Configuration

Column address
012 3 4567 89 ABCDEF

Control register

Row address

~N o o~ W N P O

69



CHAPTER 9 REGISTER FILE (RF)

Figure 9-2. Relationship Between the Register File and Data Memory

Column address
012 3 456 78 9ABCDEF

0
1 Data memory
2 2
Q
=} 3
S~ s
oz 4
& 5
! -Unmounted-f-------
| 6 BANKO |
! 7] Port register‘ !
; BANK1 |
! Port register :
| ‘ System register ‘
I s
i 1 1
| ) Control register |
: 3 |

9.2 FUNCTIONS OF THE REGISTER FILE

9.2.1 Functions of the Register File

The register file is mainly used as a control register for specifying conditions for peripheral hardware.

This control register is allocated within the register file at addresses 00H to 3FH.

The rest of the register file (40H to 7FH) overlaps with data memory. As shown in 9.2.3, because of this overlap,
this area of the register file is the same as normal memory with one exception: The register file manipulation
instructions PEEK and POKE can be used with this area of memory but not with normal data memory.

9.2.2 Functions of Control Register
The peripheral hardware whose conditions can be controlled by control registers is listed below.
For details concerning peripheral hardware and the control register, see the section for the peripheral hardware

concerned.
e Stack pointer (SP) e Basic interval timer (BTM)
* Power-down reset e Ports
e 8-bit timer counter (TMO, TM1) e Interrupt functions
* AC zero cross detector (ZCROSS) « Serial interface (SIO)

¢ A/D converter

70



CHAPTER 9 REGISTER FILE (RF)

9.2.3 Register File Manipulation Instructions

Reading and writing data from and to the register file is done using the window register (WR: address 78H) located

in the system register.

Reading and writing of data is performed using the following dedicated instructions:

PEEK WR, rf: Read the data in the address specified by rf and put it into WR.
POKE rf, WR: Write the data in WR into the address specified by rf.

Below is an example using the PEEK and POKE instructions.

Example RF02
RF1F
RF53
RF6D
RF70
RF71
BANKO
PEEK
POKE
PEEK
POKE
BANK1
PEEK
POKE
PEEK
POKE

CISICICANCICISIC)

MEMO0.82H
MEMO.9FH
MEMO.53H
MEMO.6DH
MEM1.70H
MEM1.71H

WR, RF02
RF1F, WR
WR, RF53
RF6D, WR

WR, RF02
RF1F, WR
WR, RF70
RF72, WR

; Symbol definition

; Register file addresses 00H to 3FH must be defined with

; symbols as BANKO addresses 80H to BFH.

; See 9.4 NOTES CONCERNING USE OF THE REGISTER FILE
; for details.

Figure 9-3 shows an example of register file operation.

As shown in Figure 9-3, reading and writing of data to and from the control register (addresses O0OH to 3FH) is
performed using the “PEEK WR, rf” and “POKE rf, WR” instructions. Data within the control register specified using
rf can be read from and written to the control register, only by using these instructions with the window register.

The fact that the register file overlaps with data memory in addresses 40H to 7FH has the following effect: When
a “PEEK WR, rf” or “POKE rf, WR” instruction is executed, the effect is the same as if they were being executed on
the data memory address (in the current bank) specified by rf.

Addresses 40H to 7FH of the register file can be operated by normal memory manipulation instructions.

71



CHAPTER 9 REGISTER FILE (RF)

Figure 9-3. Accessing the Register File Using the PEEK and POKE Instructions

Column address
01 2 3 45 6 7 8 9 ABTCDE F

0 Data memory
1
@
£ 2 BANKO
E |_ --= '3 ____________________________________________ 1
é ! 4 |
X 5 D (3PEEK WR, RF53 (@POKE RF6D, WR !
! 1
| 6 ] |
! 1
| 7 | BANK1 !
: 3 Unmounted |
1
PoorTomoos ¥ it I ettt Il ettt
- (7) PEEK WR, RF70 ! !
ro 5 (8POKE RF72, WR | |
1
X : 6 ] I |
v 7 . | !
. | ‘WR‘ System register ! !
! : A I |
Lo ! !
1 ! !
A o
1
o 1 DG PEEKWR,RF02 L \ !
| ! !
! : 2 (2(® POKE RF1F, WR \ |
: el Contolregister ________ | :
b Register file for BANKO- = = = = = = = = == = = = = - : !
1
1
1
1
1

9.3 CONTROL REGISTER

Figure 9-4 shows the configuration of the control register.

As shown in Figure 9-4, the control register consists of 64 nibbles (64 0 4 bits) allocated in register file addresses
OOH to 3FH.

However, only 26 nibbles are actually used. The remaining 38 nibbles are allocated for registers which have not
yet been implemented. Data should not be read from or written to this area.

There are two types of registers, both of which occupy one nibble of memory. One type is read/write
(R/W), and the other is read-only (R).

Note that within the read/write (R/W) flags, there exists a flag that will always be read as 0.

The following read/write (R/W) flags are those flags which will always be read as 0:

72



CHAPTER 9 REGISTER FILE (RF)

WDTRES (RF: O3H, bit 3)
WDTEN  (RF: O3H, bit 0)
TMORES (RF: 11H, bit 2)
TMIRES (RF: 12H, bit 2)
BTMRES (RE: 13H, bit 2)
ADCSTRT (RF: 20H, bit 0)

Within the four bits of data in a nibble, there are bits which are fixed at 0 and will therefore always be read as 0.
These bits remain fixed at 0 even when an attempt is made to write to them.
Attempting to read data in the unused register address area (38 nibbles) will yield unpredictable values. In addition,

attem

pting to write to this area has no effect.

9.4 NOTES CONCERNING USE OF THE REGISTER FILE

9.4.1

Notes Concerning Operation of the Control Register (Read-Only and Unused Registers)

Itis necessary to take note of the following notes concerning device operation and use of the 17K Series assembler

(AS17K) and in-circuit emulator (IE-17K or IE-17K-ET) with regard to the read-only (R) and unused registers in the

control register (register file addresses 00H to 3FH).

)

)

©)

9.4.2

Device operation

Writing to a read-only register has no effect.

Attempting to read data from an address in the unused data area will yield an undefined value. Attempting
to write to an address in the unused data area has no effect.

During use of the assembler (AS17K)

An error will be generated if an attempt is made to write to a read-only register.

An error will also be generated if an attempt is made to read from or write to an address in the unused data
area.

During use of the in-circuit emulator (IE-17K or IE-17K-ET) (operation during patch processing and
similar operations)

Attempting to write to a read-only register has no effect. No error is generated.

Attempting to read data from an address in the unused data area will yield an undefined value. Attempting
to write to an address in the unused data area has no effect. No errors are generated.

Register File Symbol Definitions and Reserved Words

Attempting to use a numerical value in a 17K Series assembler (AS17K) to specify a register file address in the
rf operand of the “PEEK WR, rf” or “POKE rf, WR” instructions will cause an error to be generated.
Therefore, as shown in Example 1, register file addresses need to be defined beforehand as symbols.

Example 1. Case which causes an error to be generated

PEEK WR, 02H ;
POKE 21H, WR ;

Case in which no error is generated

RF71 MEMO.71H ; Symbol definition
PEEK WR, RF71 ;

73



CHAPTER 9 REGISTER FILE (RF)

Caution should especially be taken with regard to the following point:

* When using a symbol to define the control register as an address in data memory, it needs to be defined
as addresses 80H to BFH of BANKO.

Since the control register is manipulated using the window register, any attempt to manipulate the control register
other than by using the “PEEK” and “POKE” instructions needs to cause an error in the assembler.

However, note that any address in the area of the register file overlapping with data memory (addresses 40H to
7FH) can be defined as a symbol in the same manner as with normal data memory.
An example is given below.

Example 2. RF71 MEM 1.71H ; Register file overlapping with data memory
RF02 MEM 0.82H ; Control register

BANKO

PEEK WR, RF71 : RF71 becomes address 71H in BANKO.

PEEK WR, RF02 ; RFO2 becomes address 02H in the control register.
BANK1

PEEK WR, RF71 : RF71 becomes address 71H in BANK1.

PEEK WR, RF02 ; RFO2 becomes address 02H in the control register.

The assembler (AS17K) has the below flag symbol manipulation instructions defined internally as macros.

SETn : Setaflagto 1

CLRn . Resetaflagto 0

SKTn . Skip when all flags are 1
SKFn . Skip when all flags are 0
NOTn . Invert a flag

INITFLG : Initialize a flag

By using these embedded macro instructions, the contents of the register file can be manipulated in 1-bit unit.

Due to the fact that most of control register consists of 1-bit flags, the assembler (AS17K) has reserved words for
use with these flags.

However, note that there is no reserved word for the stack pointer for its use as a flag. The only reserved word
used for the stack pointer is the reserved word “SP”, for its use as data memory. For this reason, none of the above
flag manipulation instructions can be used with the stack pointer.

74



CHAPTER 9 REGISTER FILE (RF)

Figure 9-4. Control Register Configuration (1/2)

S I O It Y [ AUt I [ IS
B I I IO Y [ AUl I [ IS
17 T e N
4 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
SAarwz o MmMS0Oxo o
o o MFFS0OXY- o
1 IR R - St B S e S A
o o o MFFSxwoun o o
SOoFxXxWn o M-S—0VWa| ©
Nn—-—00xo o FS<0Oxo o <00O0IOo o
N—-—00x o 2 FSHOX - o 2 <O00IT o 2
oo T s |\ IET ST T s SRR D) s
Nn—-—0I—-N o 214 FSHxwon o o <O00IN o 14
N—-—0F® o FSHwz - <O0OOI®™ o
— FSoOxo o «noowzn (=) .
0no o = F=>o00x o = <no0oo=0n o
A  b---— I e S e e e e it R
— o FSoxuww o o o o =
o o FSowz o <OONOWLE| © o
ocAorwnw=z| o <O0ONFXHF| ©
o o o o
o e S M s |2 1= S PR
o o o o o 24
o o o o
g ¢ - g - 3 - 3 - 3
g Q = =~ - —
s = 3 S| B8 3 = 3 | g8 3 S| g8
8 £ 5| &3 £ 5| &= £ 5 &3 £ 5| &3
c % (%] < n < 4] < 4] <
£ 8 2 B 2 =
m MM o® - N mo
O 8 e e < o

Remark The address in parentheses apply when the AS17K assembler is used.

The names of all the flags in the control registers are assembler reserved words saved in the device

file.

(See CHAPTER 20 ASSEMBLER

Using these reserved words is useful in programming.

RESERVED WORDS.)

75



CHAPTER 9 REGISTER FILE (RF)

Figure 9-4. Control Register Configuration (2/2)

Note|

0

0

Note The value of the INT flag changes every moment according to the status of the INT pin.

76



CHAPTER 10 DATA BUFFER (DBF)

The data buffer consists of four nibbles allocated in addresses OCH to OFH in BANKO.
The data buffer acts as a data storage area for the CPU peripheral circuit (address register, serial interface, timer
0, timerl, basic internal timer, and A/D converter) through use of the GET and PUT instructions. It also acts as data
storage used for receiving and transferring data. By using the MOVT, DBF, and @AR instructions, fixed data in
program memory can be read into the data buffer.

10.1 DATA BUFFER CONFIGURATION

Figure 10-1 shows the allocation of the data buffer in data memory.
As shown in Figure 10-1, the data buffer is allocated in address locations OCH to OFH in BANKO and consists of

a total of 16 bits (4 x 4 bits).

Figure 10-1.

Allocation of the Data Buffer

Column address

Row address
(o)) (6] B w N

6 7 8 9 A B C D E F
Data buffer
(DBF)
Data memory
BANKO

System register (SYSREG)

Figure 10-2 shows the configuration of the data buffer. As shown in Figure 10-2, the data buffer is made up of
16 bits with its LSB in bit 0 of address OFH and its MSB in bit 3 of address OCH.

Figure 10-2. Data Buffer Configuration

Data memory Address OCH ODH OEH OFH
BANKO Bit bs | bz | bi| bo|bs|b2|bi|bo|bs| b2| bi| bofbs|bz|bi]|bo
Bit bis| bia| bis| biz| bi1| bio| be | bs | b7 | be | bs| ba| bs | b2 | b1 | bo
Data buffer
Symbol DBF3 DBF2 DBF1 DBFO

N N

M L

Data S g

v Data v

Because the data buffer is allocated in data memory, it can be used in any of the data memory manipulation

instructions.

77



CHAPTER 10 DATA BUFFER (DBF)

10.2 FUNCTIONS OF THE DATA BUFFER

The data buffer has two separate functions.
The data buffer is used for data transfer with peripheral hardware. The data buffer is also used for reading constant

data (table reference) in program memory. Figure 10-3 shows the relationship between the data buffer and peripheral

hardware.

Figure 10-3. Relationship Between the Data Buffer and Peripheral Hardware

Data buffer
(DBF)

Peripheral
address Peripheral hardware
Internal bus 01H Shift register (SIOSFR)
oo Timer O modulo register
_02H (TMOM)
T rd Timer 1 modulo register
O3H (TMIM)
Program memory (ROM) -
04H A/D converter data register
(ADCR)
Constant data
40H Address register (AR)
C 45H Timer O/timer 1 count
register (TMOTM1C)

78



CHAPTER 10 DATA BUFFER (DBF)

10.2.1 Data Buffer and Peripheral Hardware

Table 10-1 shows data transfer with peripheral hardware using the data buffer.

Each unit of peripheral hardware has an individual address (called its peripheral address). By using this peripheral
address and the dedicated instructions GET and PUT, data can be transferred between each unit of peripheral
hardware and the data buffer.

GET DBF, p: Read the data in the peripheral hardware address specified by p into the data buffer (DBF).

PUT p, DBF: Write the data in the data buffer to the peripheral hardware address specified by p.

There are three types of peripheral hardware units: read/write (PUT/GET), write-only (PUT) and read-only (GET).

The following describes what happens when a GET instruction is used with write-only hardware (PUT only) and
when a PUT instruction is used with read-only hardware (GET only).

* Reading (GET) from write-only (PUT only) peripheral hardware will yield an undefined value.

e Writing (PUT) to read-only (GET only) peripheral hardware has no effect (same as a NOP instruction).

Table 10-1. Peripheral Hardware

(1) Peripheral hardware with input/output in 8-bit units

Peripheral Name Peripheral hardware Direction of data Actual
address PUT GET bit length
01H SIOSFR Serial interface O O 8 bits
02H TMOM Timer O O x 8 bits
03H TM1M Timer 1 O X 8 bits

04H ADCR A/D converter O O 8 bits

(2) Peripheral hardware with input/output in 16-bit units

Peripheral Name Peripheral hardware Direction of data Actual
address PUT GET bit length
40H AR Address register O O 10/11 bitgNote
45H TMOTM1C Timer O/timer 1 count register X O 16 bits

Note 10 bits for the uPD17134A and 17135A, and 11 bits for the uPD17136A and 17137A.

79




CHAPTER 10 DATA BUFFER (DBF)

10.2.2 Data Transfer with Peripheral Hardware

Data can be transferred between the data buffer and peripheral hardware in 8- or 16-bit units. Instruction execution

time for a single PUT or GET instruction is the same regardless of whether 8 or 16 bits are being transferred.

Example 1.

80

PUT instruction (when the actual bits in peripheral hardware are the 8 bits from 0 to 7)

Data buff DBF3 DBF2 DBF1 DBFO
ata butter Don't care Don't care by‘ bs ‘ bs ‘ bs | bs ‘ b2 ‘ b1 ‘ bo
L |
PUT
Data in peripheral Y
hardware B Actual bits a
br] | | | | | b

When only 8 bits of data are being written from the data buffer, the high-order 8 bits (DBF3, DBF2)

are “don’t care” (any value can be written).

GET instruction (when the actual bits in peripheral hardware are the 8 bits from 0 to 7)

" DBF3 DBF2 DBF1 DBFO
Data buffer Retained Retained b7 ‘ ‘ ‘ ‘ ‘ ‘ bo
i
GET
Data in peripheral
hardware Actual bits
o] | [ | [ | b

When 8 bits of data are being read into the data buffer, the values in the high-order 8 bits (DBF3,

DBF2) remain unchanged.



CHAPTER 10 DATA BUFFER (DBF)

10.2.3 Table Reference

By using the MOVT instruction, constant data in program memory (ROM) can be read into the data buffer.

The MOVT instruction is explained below.

MOVT DBF, @AR: The contents of the program memory being specified by the address register (AR) is read into
the data buffer (DBF).

Data buffer

DBF3

DBF2

DBF1

DBFO

MOVT

DBF, @AR

Program memory (ROM)

16 bits

bis

bo

81



[MEMO]

82



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

The ALU is used for performing arithmetic operations, logical operations, bit judgements, comparison judgements,
and rotations on 4-bit data.

11.1 ALU BLOCK CONFIGURATION

Figure 11-1 shows the configuration of the ALU block.

As shown in Figure 11-1, the ALU block consists of the main 4-bit data processor, temporary registers A and B
which are peripheral circuit of the ALU, the status flip-flop for controlling the status of the ALU, and the decimal
correction circuit for use during arithmetic operations in BCD.

As shown in Figure 11-1, the status flip-flop consists of the following flags: Zero flag FF, carry flag FF, compare
flag FF, and the BCD flag FF.

Each flag in the status flip-flop corresponds directly to a flag in the program status word (PSWORD: addresses
7EH, 7FH) in the system register. The flags in the program status word are the following: Zero flag (Z), carry flag
(CY), compare flag (CMP), and the BCD flag (BCD).

11.2 FUNCTIONS OF THE ALU BLOCK

Arithmetic operations, logical operations, bit judgements, comparison judgements, and rotations are performed
using the instructions in the ALU block. Table 11-1 lists each arithmetic/logical instruction, judgement instruction, and
rotation instruction.

By using the instructions listed in Table 11-1, 4-bit arithmetic/logical operations, judgements and rotations can be
performed in a single instruction. Arithmetic operations in decimal can also be performed in a single instruction.

11.2.1 Functions of the ALU

The arithmetic operations consist of addition and subtraction. Arithmetic operations can be performed on the
contents of the general register and data memory or on immediate data and the contents of data memory. Operations
in binary are performed on 4 bits of data and operations in decimal are performed on one place (BCD operation).

Logical operations include ANDing, ORing, and XORing. Their operands can be general register contents and data
memory contents, or data memory contents and immediate data.

Bit judgement is used to determine whether bits in 4-bit data in data memory are 0 or 1.

Comparison judgement is used to compare contents of data memory with immediate data. Itis used to determine
whether one value is equal to or greater than the other, less than the other, or if both values are equal or not equal.

Rotation is used to shift 4-bit data in the general register one bit in the direction of its least significant bit (rotation
to the right).

83



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

84

Figure 11-1. ALU Configuration

Data bus

1L

1L

1L

Temporary
register A

Temporary
register B

Status
flip-flop

ALU

* Arithmetic operations

« Logical operations

* Bit judgement

» Comparison
judgement

* Rotations

Decimal
correction circuit

Address| 7EH

7FH

Program status word

Name (PSWORD)
Bit bo bs b2 b1 bo
Flag BCD CMP CY Zz IXE
Status flip-flop
BCD CMP CcYy z
flag flag flag flag
FF FF FF FF

Function outline

Indicates when the result of an arithmetic
operation is 0.

Stores the borrow or carry from an
arithmetic operation.

Used to indicate whether to store the result
of an arithmetic operation.

Used to indicate whether to perform
decimal correction for arithmetic operations.




CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

[MEMO]

85



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

Table 11-1. List of ALU Instructions (1/2)

ALU function Instruction Operation Explanation
Arithmetic | Addition ADD r, m (r) < (r)+(m) Adds contents of general register and data memory.
operations Result is stored in general register.

ADD m, #n4 | (m) « (m) + n4 Adds immediate data to contents of data memory.
Result is stored in data memory.

ADDCr,m | (r) « (r) +(m) + CY Adds contents of general register, data memory and carry
flag. Result is stored in general register.

ADDC m, (m) « (m) +n4 +CY Adds immediate data, contents of data memory and carry

#n4 flag. Result is stored in data memory.

Subtraction| SUBr, m r) « (n—=(m) Subtracts contents of data memory from contents of general
register. Result is stored in general register.

SUB m, #n4 | (m) —~ (m)—n4 Subtracts immediate data from data memory.

Result is stored in data memory.

SUBCr, m (r) « ()= (m)-CY Subtracts contents of data memory and carry flag from
contents of general register. Result is stored in general
register.

SUBC m, (m) « (m)—n4 - CY Subtractsimmediate data and carry flag from data memory.

#n4 Result is stored in data memory.

Logical Logical ORr,m (r) < (r)v(m) OR operation is performed on contents of general register
operations | OR and data memory. Result is stored in general register.

ORm, #n4 | (m) « (M) v n4 OR operation is performed onimmediate data and contents
of data memory. Result is stored in data memory.

Logical AND r, m ) « (N a@m) AND operation is performed on contents of general register
AND and data memory. Result is stored in general register.

AND m, #n4 | (m) —~ (m) A n4 AND operationis performed onimmediate data and contents

of data memory. Result is stored in data memory.
Logical XOR T, m (r) « (r) % (m) XOR operationis performed on contents of general register
XOR and data memory. Result is stored in general register.

XOR m, #n4| (m) « (m) ¥ n4 XOR operationis performed onimmediate data and contents

of data memory. Result is stored in data memory.
Bit True SKT m, #n CMP ~ 0, if (m)A n=n, Skips next instruction if all bits in data memory specified by
Judgement then skip n are TRUE (1). Result is not stored.
False SKF m, #n CMP ~ 0, if (m)An=0, Skips next instruction if all bits in data memory specified by
then skip n are FALSE (0). Result is not stored.
Comparison Equal SKE m, #n4 | (m) — n4, skip if zero Skips next instruction ifimmediate data equals contents of
judgement data memory. Result is not stored.
Not equal | SKNE m, (m) — n4, skip if not Skips next instruction if inmediate data is not equal to
#n4 zero contents of data memory. Result is not stored.
> SKGE m, (m) — n4, skip if not Skips next instruction if contents of data memory is greater
#n4 borrow than or equal to immediate data. Result is not stored.
< SKLT m, (m) — n4, skip if Skips next instruction if contents of data memory is less

#n4 borrow than immediate data. Result is not stored.

Rotation Rotate to | RORCr rCY_.(r)ha_.(r)bz_.(r)m_.(r)bo-l Rotate contents of the general register along with the CY
the right flag to the right. Result is stored in general register.

86




CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

Table 11-1. List of ALU Instructions (2/2)

ALU Function

Difference in operation because of program status word (PSWORD)

Arithmetic
operation
Value of Value of Operation CY flag Z flag Modification
BCD flag CMP flag when IXE = 1
0 0 Binary operation. Set when Set if operation result is 0000B; Executed
Result is stored. carry or otherwise, reset
0 1 Binary operation. borrow Retains status if operation result
Result is not stored. occurs; is 0000B; otherwise, reset
1 0 BCD operation. otherwise, Set if operation result is 0000B;
Result is stored. reset otherwise, reset
1 1 BCD operation. Retains status if operation result
Result is not stored. is 0000B; otherwise, reset
| | | I | | |
| | | | | | |
| | | I | | I
| | I | | | |
| I | I | | |
| I | I | | |
| | | | | | |
| | I | | | |
| I | I | | |
| | | I | | |
| | | | | | |
L L 1 L 1 L 1
. | | | I | | |
Logical
operation Dont'care Don't care Not affected Don’t care Don't care Executed
(retained) (retained) (retained) (retained)
! I | | | | |
I | | | I | |
! I | | | | |
I | | | I | I
! I | | | | |
| | | | | | |
! I | | | | |
| | | | | | |
! I | | | | |
! | | | | | |
| | | | | | |
! I | | | | |
| | | | | | |
! | | | | | |
| | | | | | |
! I | | | | |
| | | | | | |
! | | | | | |
I | | | I | I
! I | | | | |
| | | | | | |
! I | | | | |
| | | | | | |
! I | | | | |
l | | | | | |
L | | | | | | |
Bit judgement
Dont'care Reset Not affected Don't care Don’t care Executed
(retained) (retained) (retained)
| | I | | | I
| | | | | | I
L Il Il Il | | Il
3 | | | | | | |
Comparison
Dont'care Don't care Not affected Don't care Don't care Executed
(retained) (retained) (retained) (retained)
| | | I | | :
I I | | | | i
| | 1 1 | | 1
I I | | | I |
| I 1 | | | 1
I I | | | I |
| | 1 | | | |
I I | | | I |
| I I | | 1 |
I I | | | I |
| I | | | 1 :
| | | | | | |
| I I [ | [} 1
Rotation
Dont'care Don't care Not affected Value of bo of Don’t care Executed
(retained) (retained) general register (retained)

87



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

11.2.2 Functions of Temporary Registers A and B

Temporary registers A and B are needed for processing of 4-bit data at a time. These registers are used for

temporary storage of the first and second data operands of an instruction.

11.2.3 Functions of the Status Flip-flop

The status flip-flop is used for controlling operation of the ALU and for storing data which has been processed. Each

flag in the status flip-flop corresponds directly to a flag in the program status word (PSWORD) located in the system

register. This means that when a flag in the system register is manipulated it is the same as manipulating a flag in

the status flip-flop. Each flag in the program status word is described below.

)

)

©)

4

Z flag
Thisflag is set (1) when the result of an arithmetic operation is 0000B, otherwise itis reset (0). However, depending
on the status of the CMP flag, the conditions which cause this flag to be set (1) can be changed.

(i) When CMP =0
Z flag is set (1) when the result of an arithmetic operation is 0000B, otherwise it is reset (0).

(i) When CMP =1
The previous state is maintained when the result of an arithmetic operation is 0000B, otherwise it is reset
(0). Only affected by arithmetic operations.

CY flag

This flag is set (1) when a carry or borrow is generated as a result of an arithmetic operation, otherwise it is reset
(0).

When an arithmetic operation is being performed using a carry or borrow, the operation is performed using the
CY flag as the least significant bit.

When a rotation (RORC instruction) is performed, the contents of the CY flag becomes the most significant bit
(b3) of the general register and the least significant bit of the general register is stored in the CY flag.

Only affected by arithmetic operations and rotations.

CMP flag

When the CMP flag is set (1), the result of an arithmetic operation is not stored in either the general register or
data memory.

When the bit evaluation instruction is performed, the CMP flag is reset (0).

The CMP flag does not affect comparison judgements, logical operations, or rotations.

BCD flag

When the BCD flag is set (1), decimal correction is performed for all arithmetic operations. When the flag is reset
(0), 4-bit binary operation is performed.

The BCD flag does not affect logical operations, bit judgements, comparison judgements, or rotations.

These flags can also be set through direct manipulation of the values in the program status word. At this time,

the corresponding flag in the status flip-flop is also manipulated.

88



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

11.2.4 Operations in 4-Bit Binary
When the BCD flag is set to 0, arithmetic operations are performed in 4-bit binary.

11.2.5 Operations in BCD
When the BCD flag is set to 1, decimal correction is performed for arithmetic operations performed in 4-bit binary.

Table 11-2 shows the differences in the results of operations performed in 4-bit binary and in BCD. When the result

of an addition after decimal correction is equal to or greater than 20, or the result of a subtraction after decimal

correction is outside of the range —10 to +9, a value of 1010B (0OAH) or higher is stored as the result (shaded area

in Table 11-2).

Table 11-2. Results of Arithmetic Operations Performed in 4-Bit Binary and BCD

Addition in 4- Addition in Subtraction in Subtraction in
Operation | bit binary BCD Operation | 4-bit binary BCD
e [ov | Qepeen | cy | gpetaton v | Qeraten | oy | Opeation

0 0 0000 0 0000 0 0 0000 0 0000
1 0 0001 0 0001 1 0 0001 0 0001
2 0 0010 0 0010 2 0 0010 0 0010
3 0 0011 0 0011 3 0 0011 0 0011
4 0 0100 0 0100 4 0 0100 0 0100
5 0 0101 0 0101 5 0 0101 0 0101
6 0 0110 0 0110 6 0 0110 0 0110
7 0 0111 0 0111 7 0 0111 0 0111
8 0 1000 0 1000 8 0 1000 0 1000
9 0 1001 0 1001 9 0 1001 0 1001
10 0 1010 1 0000 10 0 1010 1 1100
11 0 1011 1 0001 11 0 1011 1 1101
12 0 1100 1 0010 12 0 1100 1 1110
13 0 1101 1 0011 13 0 1101 1 1111
14 0 1110 1 0100 14 0 1110 1 1100
15 0 1111 1 0101 15 0 1111 1 1101
16 1 0000 1 0110 -16 1 0000 1 1110
17 1 0001 1 0111 -15 1 0001 1 1111
18 1 0010 1 1000 -14 1 0010 1 1100
19 1 0011 1 1001 -13 1 0011 1 1101
20 1 0100 1 1110 -12 1 0100 1 1110
21 1 0101 1 1111 -11 1 0101 1 1111
22 1 0110 1 1100 -10 1 0110 1 0000
23 1 0111 1 1101 -9 1 0111 1 0001
24 1 1000 1 1110 -8 1 1000 1 0010
25 1 1001 1 1111 —7 1 1001 1 0011
26 1 1010 1 1100 —6 1 1010 1 0100
27 1 1011 1 1101 -5 1 1011 1 0101
28 1 1100 1 1010 —4 1 1100 1 0110
29 1 1101 1 1011 -3 1 1101 1 0111
30 1 1110 1 1100 -2 1 1110 1 1000
31 1 1111 1 1101 -1 1 1111 1 1001

89



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

11.2.6 Operations in the ALU Block

When arithmetic operations, logical operations, bit judgements, comparison judgements or rotations in a program
are executed, the first data operand is stored in temporary register A and the second data operand is stored in
temporary register B.

The first data operand is 4-bit data used to specify the contents of an address in the general register or data memory.
The second data operand is 4-bit data used to either specify the contents of an address in data memory or to be used
as an immediate value. For example, in the instruction

ADD I, m
L Second operand
First operand

the first operand, r, is used to specify the contents of an address in the general register. The second operand, m,
is used to specify the contents of an address in data memory. In the instruction

ADD m, #n4

the first operand, m, is used to specify an address in data memory. The second operand, #n4, is immediate data.
In the rotation instruction

RORC r

only the first operand, r (used to specify the contents of an address in the general register) is used.

Next, using the data stored in temporary registers A and B, the ALU executes the operation specified by the
instruction (arithmetic operation, logical operation, bit judgement, comparison judgement, or rotation). When the
instruction being executed is an arithmetic operation, logical operation, or rotation, the data processed by the ALU
is stored in the location specified by the first operand (general register address or data memory address) and the
operation terminates. When the instruction being executed is a bit judgement or comparison judgement, the result
processed by the ALU is used to determine whether or not to skip the next instruction (whether to treat next instruction
as a NOP instruction) and the operation terminates.

Caution should be taken with regard to the following points:

(1) Arithmetic operations are affected by the CMP and BCD flags in the program status word.

(2) Logical operations are not affected by the CMP or BCD flag in the program status word. Logical operations
do not affect the Z or CY flags.

(3) Bit judgement causes the CMP flag in the program status word to be reset.

(4) When an arithmetic operation, logical operation, bit judgement, comparison judgement, or rotation is being
executed and the IXE flag in the program status word is set (1), address modification is performed using the
index register.

90



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

11.3 ARITHMETIC OPERATIONS (ADDITION AND SUBTRACTION IN 4-BIT BINARY AND BCD)

As shown in Table 11-3, arithmetic operations consist of addition, subtraction, addition with carry, and subtraction
with borrow. These instructions are ADD, ADDC, SUB, and SUBC.

The ADD, ADDC, SUB, and SUBC instructions are further divided into addition and subtraction of the general
register and data memory and addition and subtraction of data memory and immediate data. When the operands
rand m are used, addition or subtraction is performed using the general register and data memory. When the operands
m and #n4 are used, addition or subtraction is performed using data memory and immediate data.

Arithmetic operations are affected by the status flip-flop and the program status word (PSWORD) in the system
register. The BCD flag in the program status word is used to specify whether arithmetic operations are to be performed
in 4-bit binary or in BCD. The CMP flag is used to specify whether or not the results of arithmetic operations are to
be stored.

11.3.1 to 11.3.4 explain the relationship between each command and the program status word.

Table 11-3. Types of Arithmetic Operations

Arithmetic Addition Without carry ADD General register and data memory ADD r, m
operation Data memory and immediate data ADD m, #n4
With carry ADDC General register and data memory ADDC r, m
Data memory and immediate data ADDC m, #n4
Subtraction Without borrow SUB General register and data memory SUB T, m
Data memory and immediate data SUB m, #n4
With borrow SUBC General register and data memory SUBCr, m
Data memory and immediate data SUBC m, #n4

11.3.1 Addition and Subtraction When CMP = 0 and BCD =0

Addition and subtraction are performed in 4-bit binary and the resultis stored in the general register or data memory.

When the result of the operation is greater than 1111B (carry generated) or less than 0000B (borrow generated),
the CY flag is set (1); otherwise it is reset (0).

When the result of the operation is 0000B, the Z flag is set (1) regardless of whether there is carry or borrow;
otherwise it is reset (0).

11.3.2 Addition and Subtraction When CMP =1 and BCD =0
Addition and subtraction are performed in 4-bit binary.
However, because the CMP flag is set (1), the result of the operation is not stored in either the general register
or data memory.
When there is a carry or borrow in the result of the operation, the CY flag is set (1); otherwise it is reset (0).
When the result of the operation is 0000B, the previous state of the Z flag is retained; otherwise it is reset (0).

91



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

11.3.3 Addition and Subtraction When CMP =0 and BCD =1

BCD operations are performed.

The result of the operation is stored in the general register or data memory. When the result of the operation is
greater than 1001B (9D) or less than 0000B (0D), the carry flag is set (1), otherwise it is reset (0).

When the result of the operation is 0000B (0D), the Z flag is set (1), otherwise it is reset (0).

Operations in BCD are performed by first computing the result in binary and then by using the decimal correction
circuit to convert the result to decimal. For information concerning the binary to decimal conversion, see Table
11-2.

In order for operations in BCD to be performed properly, note the following:

(1) Result of an addition must be in the range 0D to 19D.

(2) Result of a subtraction must be in the range 0D to 9D, or in the range —10D to —1D.
The following shows which value is considered the CY flag in the range 0D to 19D (shown in 4-bit binary):
0, 0000B to /1\),\00118
AC?Y CY
The following shows which value is considered the CY flag in the range —10D to —1D (shown in 4-bit binary):
A1A,OllOB to /1\/,\11118
CY CY

When operations in BCD are performed outside of the limits of (1) and (2) stated above, the CY flag is set (1) and
the result of operation is output as a value greater than or equal to 1010B (0AH).

11.3.4 Addition and Subtraction When CMP =1 and BCD =1
BCD operations are performed.
The result is not stored in either the general register or data memory.
In other words, the operations specified by CMP = 1 and BCD = 1 are both performed at the same time.

Example MOV RPL, #0001B ; Setsthe BCD flag (BCD = 1).
MOV  PSW, #1010B ; Setsthe CMP and Z flag (CMP = 1, Z = 1) and resets the CY flag
; (CY =0).
SUB M1, #0001B ; (1)
SUBC M2, #0010B ; (2)
SUBC M3, #0011B ; (3)

By executing the instructions in steps numbered (1), (2), and (3), the 12 bits in memory locations M1,
M2, and M3 and the immediate data (321) can be compared in decimal.

11.3.5 Notes Concerning Use of Arithmetic Operations

When performing arithmetic operations with the program status word (PSWORD), caution should be taken with
regard to the result of the operation being stored in the program status word.

Normally, the CY and Z flags in the program status word are set (1) or reset (0) according to the result of the
arithmetic operation being executed. However, when an arithmetic operation is performed on the program status word
itself, the result is stored in the program status word. This means that there is no way to determine if there is a carry
or borrow in the result of the operation nor if the result of the operation is zero.

However, when the CMP flag is set (1), results of arithmetic operations are not stored. Therefore, eveninthe above
case, the CY and Z flags will be properly set (1) or reset (0) according to the result of the operation.

92



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

11.4 LOGICAL OPERATIONS

As shown in Table 11-4, logical operations consist of logical OR, logical AND, and logical XOR. Accordingly, the
logical operation instructions are OR, AND, and XOR.

The OR, AND, and XOR instructions can be performed on either the general register and data memory, or on data
memory and immediate data. The operands of these instructions are specified in the same way as for arithmetic
operations (“r, m” or “m, #n4”).

Logical operations are not affected by the BCD or CMP flags in the program status word (PSWORD). Logical
operations do not cause either the CY or Z flag in the program status word (PSWORD) to be set. However, when
the index enable flag (IXE) is set (1), index modification is performed using the index register.

Table 11-4. Logical Operations

Logical Logical OR General register and data memory ORr,m
operation Data memory and immediate data OR m, #n4
Logical AND General register and data memory AND r, m
Data memory and immediate data AND m, #n4
Logical XOR General register and data memory XOR 1, m
Data memory and immediate data XOR m, #n4

Table 11-5. Table of True Values for Logical Operations

Logical AND Logical OR Logical XOR
C=AANDB C=AO0ORB C=AXOR B
A B C A B C A B Cc
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

93



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

11.5 BIT JUDGEMENTS

As shown in Table 11-6, there are both TRUE (1) and FALSE (0) bit judgement instructions.

The TRUE (1) and FALSE (0) bit judgements use SKT and SKF instruction, respectively

The SKT and SKF instructions can only be used with data memory.

Bit judgements are not affected by the BCD flag in the program status word (PSWORD) and bit judgements do
not cause either the CY or Z flag in the program status word (PSWORD) to be set. However, when an SKT or SKF
instruction is executed, the CMP flag is reset (0). When the index enable flag (IXE) is set (1), index modification is
performed using the index register. For information concerning index modification using the index register, see
CHAPTER 7 SYSTEM REGISTER (SYSREG).

11.5.1 and 11.5.2 explain TRUE (1) and FALSE (0) bit judgements.

Table 11-6. Bit Judgement Instructions

Bit judgement TRUE (1) bit judgement
SKT m, #n

FALSE (0) bit judgement
SKF m, #n

11.5.1 TRUE (1) Bit Judgement

The TRUE (1) bit judgement instruction (SKT m, #n) is used to determine whether or not the bits specified by n
in the 4 bits of data memory m are TRUE (1). When all bits specified by n are TRUE (1), this instruction causes the
next instruction to be skipped.

Example MOV M1, #1011B
SKT M1, #1011B i (1)

BR A
BR B
SKT M1,  #1101B ; (2
BR C
BR D

In this example, bits 3, 1, and 0 of data memory M1 are judged in step number (1). Because all the
bits are TRUE (1), the program branches to B. In step number (2), bits 3, 2, and 0 of data memory
M1 are judged. Since bit 2 of data memory M1 is FALSE (0), the program branches to C.

94



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

11.5.2 FALSE (0) Bit Judgement

The FALSE (0) bit judgement instruction (SKF m, #n) is used to determine whether or not the bits specified by n
in the 4 bits of data memory m are FALSE (0). When all bits specified by n are FALSE (0), this instruction causes
the next instruction to be skipped.

Example

MOV M1,
SKF M1,
BR A
BR B
SKF M1,
BR C
BR D

#1001B
#0110B

#1110B

s (@)

)

In this example, bits 2 and 1 of data memory M1 are judged in step number (1). Because both bits
are FALSE (0), the program branches to B. In step number (2), bits 3, 2, and 1 of data memory M1
are judged. Since bit 3 of data memory M1 is TRUE (1), the program branches to C.

95



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

11.6 COMPARISON JUDGEMENTS

As shown in Table 11-7, there are comparison judgement instructions for determining if one value is “equal to”,
“not equal to”, “greater than or equal to”, or “less than” another.

The SKE instruction is used to determine if two values are equal. The SKNE instruction is used to determine two
values are not equal. The SKGE instruction is used to determine if one value is greater than or equal to another and
the SKLT instruction is used to determine if one value is less than another.

The SKE, SKNE, SKGE, and SKLT instructions perform comparisons between a value in data memory and
immediate data. In order to compare values in the general register and data memory, a subtraction instruction is
performed according to the values in the CMP and Z flags in the program status word (PSWORD). For more
information concerning comparison of the general register and data memory, see 11.3 ARITHMETIC OPERATIONS.

Comparison judgements are not affected by the BCD or CMP flags in the program status word (PSWORD) and
comparison judgements do not cause either the CY or Z flags in the program status word (PSWORD) to be set.

11.6.1 to 11.6.4 explain the “equal to”, “not equal to”, “greater than or equal to”, and “less than” comparison
evaluations.

Table 11-7. Comparison Judgement Instructions

Comparison Equal to
judgement SKE m, #n4

Not equal to
SKNE m, #n4

Greater than or equal to
SKGE m, #n4

Less than
SKLT m, #n4

11.6.1 “Equal to” Judgement

The "equal to" judgement instruction (SKE m, #n4) is used to determine if immediate data and the contents of a
location in data memory are equal.

This instruction causes the nextinstruction to be skipped when the immediate data and the contents of data memory
are equal.

Example MOV M1, #1010B
SKE M1, #1010B ; (1)
BR A
BR B

SKE M1,  #1000B ; (2)
BR C
BR D

In this example, because the contents of data memory M1 and immediate data 1010B in step number

(1) are equal, the program branches to B. In step number (2), because the contents of data memory
M1 and immediate data 1000B are not equal, the program branches to C.

96



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

11.6.2 “Not Equal to” Judgement

The “not equal to” judgement instruction (SKNE m, #n4) is used to determine if immediate data and the contents
of a location in data memory are not equal.

This instruction causes the nextinstruction to be skipped when the immediate data and the contents of data memory
are not equal.

Example MOV M1, #1010B
SKNE M1, #1000B (1)
BR A
BR B
SKNE M1, #1010B  ; (2)
BR C
BR D

In this example, because the contents of data memory M1 and immediate data 1000B in step number
(1) are notequal, the program branchesto B. In step number (2), because the contents of data memory
M1 and immediate data 1010B are equal, the program branches to C.

11.6.3 “Greater Than or Equal to” Judgement

The “greater than or equal to” judgement instruction (SKGE m, #n4) is used to determine if the contents of alocation
in data memory is a value greater than or equal to the value of the immediate data operand. Ifthe value in data memory
is greater than or equal to that of the immediate data, this instruction causes the next instruction to be skipped.

Example MOV M1, #1000B
SKGE M1, #0111B  ; (1)
BR A
BR B
SKGE M1, #1000B ; (2)
BR C
BR D
SKGE M1, #1001B ; (3)
BR E
BR F

In this example, the program will first branch to B since the value in data memory is larger than that
of the immediate data. Next it will branch to D since the value in data memory is equal to that of the
immediate data. Lastitwill branchto E since the value in data memory is less than that of the immediate
data.

97



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

11.6.4 “Less Than” Judgement

The “less than” judementinstruction (SKLT m, #n4) is used to determine if the contents of a location in data memory
is a value less than that of the immediate data operand. If the value in data memory is less than that of the immediate
data, this instruction causes the next instruction to be skipped.

Example MOV M1, #1000B
SKLT M1, #1001B ; (1)
BR A
BR B
SKLT M1, #1000B  ; (2)
BR C
BR D
SKLT M1, #0111B  ; ()
BR E
BR F

In this example, the program will first branch to B since the value in data memory is less than that of
the immediate data. Next it will branch to C since the value in data memory is equal to that of the
immediate data. Last it will branch to E since the value in data memory is greater than that of the
immediate data.

98



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

11.7 ROTATIONS

There are rotation instructions for rotation to the right and for rotation to the left.

The RORC instruction is used for rotation to the right.

The RORC instruction can only be used with the general register.

Rotation using the RORC instruction is not affected by the BCD or CMP flags in the program status word (PSWORD)
and does not affect the Z flag in the program status word (PSWORD).

Rotation to the left is performed by using the addition instruction ADDC.

11.7.1 and 11.7.2 explain rotation.

11.7.1 Rotation to the Right
The instruction used for rotation to the right (RORC r) rotates the contents of the general register in the direction

of its least significant bit.
When this instruction is executed, the contents of the CY flag becomes the most significant bit of the general register
(bit 3) and the least significant bit of the general register is placed in the CY flag.

Example 1.

MOV  PSW, #0100B ; Sets CY flag to 1.
MOV R1, #1001B
RORC R1

When these instructions are executed, the following operation is performed.

CY flag bs bz b1 bo
r14>14> 1—»>0—>» OT

Basically, when rotation to the right is performed, the following operation is executed:

CY flag — bs, bs - b2, b2 = b1, b1 - bo, b - CY flag.

MOV PSwW, #0000B ; Resets CY flag to 0.
MOV  R1, #1000B ; MSB

MOV  R2, #0100B

MOV  R3, #0010B ; LSB

RORC R1

RORC R2

RORC R3

The program code above rotates the 13 bits in R1, R2, and R3 to the right.

99



CHAPTER 11 ARITHMETIC AND LOGIC UNIT (ALU)

11.7.2 Rotation to the Left
Rotation to the left is performed by using the addition instruction, “ADDC r, m”.

Example MOV  PSW, #0000B ; Resets CY flag to 0.
MOV  R1, #1000B ; MSB
MOV  R2, #0100B
MOV  R3, #0010B ; LSB
ADDC R3, R3
ADDC R2, R2
ADDC R1,R1
SKF CY
OR R3, #0001B

The program code above rotates the 13 bits in R1, R2, and R3 to the left.

100



CHAPTER 12 PORTS

12.1 PORT OA (POAo, POAL, POA2, POA3)

Port OA is a 4-bit input/output port with an output latch. It is mapped into address 70H of BANKO in data memory.
The output format is CMOS push-pull output.

Input or output can be specified in 4-bit units. Input/output is specified by POAGIO (bit O at address 2CH) in the
register file.

When POAGIO is 0, all pins of port OA are used as input port. If a read instruction is executed for the port register,
pin statuses are read.

When POAGIO is 1, all pins of port OA are used as output port and the contents written in the output latch are output
to pins. If aread instruction is executed when pins are output ports, the contents of the output latch, rather than pin
statuses, are fetched.

Port OA contains a software-controlled pull-up resistor. POAGPU (bit 0 at address OCH) of the register file is used
to determine whether port OA contains the pull-up resistor. When POAGPU is 1, all 4-bit pins are pulled up. If POAGPU
is 0, the pull-up resistor is not contained.

At reset, POAGIO and POAGPU are set to 0 and all POA pins become input ports without a pull-up resistor. The
contents of the port output latch are 0.

Table 12-1. Writing into and Reading from the Port Register (0.70H)

BANKO 70H
POAGIO Pin input/output
RF: 2CH, bit 0 Write Read
0 Input Possible POA pin status
1 Output Write to the POA latch POA latch contents

101



CHAPTER 12 PORTS

12.2 PORT 0B (POBo, POB1, POB2, POB3)

Port OB is a 4-bit input/output port with an output latch. Itis mapped into address 71H of BANKO in data memory.
The output format is CMOS push-pull output.

Input or output can be specified in 4-bit units. Input/ output is specified by POBGIO (bit 1 at address 2CH) in the
register file.

When POBGIO is 0, all pins of port OB are used as input ports. If aread instruction is executed for the port register,
pin statuses are read.

When POBGIO is 1, all pins of port OB are used as output ports. The contents written in the output latch are output
to pins. If a read instruction is executed when pins are used as output ports, the contents of the output latch, rather
than pin statuses, are fetched.

Port OB contains a software-controlled pull-up resistor. POBGPU (bit 1 at address OCH) is used to determine
whether or not port OB contains a pull-up resistor. When POBGPU is 1, all 4-bit pins are pulled up. When POBGPU
is 0, a pull-up resistor is not contained.

At reset, POBGIO and POBGPU are 0 and all POB pins are input ports without a pull-up resistor. The value of the
port OB output latch is 0.

Table 12-2. Writing into and Reading from the Port Register (0.71H)

BANKO 71H
POBGIO Pin input/output
RF: 2CH, bit 1 Write Read
0 Input Possible POB pin status
1 Output Write to the POB latch POB latch contents

102



CHAPTER 12 PORTS

12.3 PORT 0C (POCo/ADCo, POC1/ADC1, POC2/ADC2, POC3/ADC3)

Port OC is a 4-bit input/output port with an output latch. Itis mapped into address 72H of BANKO in data memory.
The output format is CMOS push-pull output.

Input or output can be specified in 1-bit unit. Input/output can be specified by POCBIO0 to POCBIO3 (address 1CH)
in the register file.

If POCBIOnNn is 0 (n = 0 to 3), the POCn pins are used as input port. If a data read instruction is executed for the
port register, the pin statuses are read. If POCBIOnis 1 (n =0 to 3), the POCn pins are used as output port and the
contents written in the output latch are output to pins. If a read instruction is executed when pins are used as output
ports, the contents of the latch, rather than pin statuses, are fetched.

At reset, POCBIOO to POCBIO3 are 0 and all POC pins are input ports. The contents of the port output latch are

Port 0C can also be used as an analog input to the A/D converter. POCOIDI to POC3IDI (1BH address) in the register
file are used to switch the port and analog input pin.

If POCnIDI is 0 (n = 0 to 3), the POCn/ADCn pin functions as a port. If POCnIDl is 1 (n = 0 to 3), the POCn/ADCn
pin functions as the analog input pin of the A/D converter.

ADCCHO and ADCCH1 (bits 1 and 0 at address 22H) in the register file are used to select the input pin for A/D
conversion.

To use POC pins as A/D converter input pins, set POCBIOn = 0 so that they are set as input ports. (See 13.3
A/D CONVERTER.)

At reset, POCBIOO to POCBIO3, POCOIDI to POC3IDI, ADCCHO, and ADCCH1 are set to 0 and the POC pins are
used as input ports.

Table 12-3. Switching the Port and A/D Converter

(n=0to3)
POCNIDI POCBIOnNn . BANKO 72H
. Function
RF: 1BH RF: 1CH Write Read
0 0 Input port Possible Pin status
POC latch
1 Port output Possible POC latch contents
POC latch
1 0 A/D converter analog Possible POC latch contents
inputhoet POC latch
1 Output port and A/D Possible POC latch contents
converter analog inputhoe? POC latch

Notes 1. Normal setting when the pins are used as A/D converter analog input pins.
2. Functions as an output port. At thistime, the analog input voltage changes affected by the port output.
When using this pin as an analog input pin, be sure to set POCBIOn to 0.

103



CHAPTER 12 PORTS

12.4 PORT 0D (PODo/SCK, POD1/SO, POD2/SI, POD3/TMOOUT)

Port OD is a 4-bit input/output port with an output latch. Itis mapped into address 73H of BANKO in data memory.
The output format is N-ch open-drain output. The mask option can be used to specify that a pin contain a pull-up
resistor in 1-bit unit.

Input or output can be specified in 1-bit unit. Input/output is specified with PODBIOO to PODBIO3 (address 2BH)
in the register file.

If PODBION is 0 (n = 0 to 3), the PODn pins are used as input port. Pin statuses are read if a data read instruction
is executed for the port register. If PODBIOn is 1, the PODn pins are used as output port and the value written in the
output latch are output to pins. If a data read instruction is executed when pins are used as output ports, the output
latch value, rather than pin statuses, is fetched.

At reset, PODBIOnN is set to 0 and all POD pins become input ports. The contents of the port output latch become
0. The output latch contents remain unchanged even if PODBIOn changes from 1 to O.

Port OD can also be used for serial interface input/output or timer 0 output. SIOEN (0BH bit 0) in the register file
is used to switch ports (PODo to POD2) to serial interface input/output (ﬁ, SO, Sl) and vice versa. TMOOSEL (bit
3 at address OBH) in the register file is used to switch a port (PODs3) to timer O output (W) and vice versa. If
TMOOSEL = 1is selected, 1 is output at timer O reset. This outputis inverted every time a timer 0 count value matches
the modulo register contents.

Table 12-4. Register File Contents and Pin Functions

(n=0to 3)
Register file value Pin function
TMOOSEL SIOEN PODBION
RF: OBH RF:0BH | RF:2BH POD0/SCK POD1/SO POD2/SI POD3/TMOOUT
Bit 3 Bit 0 Bit n
0 Input port
0
1 Output port
0
0 Input port
1 SCK o) Sl
1 Output port
0 Input port
0
Output port P ——
1 L putp TMOOUT
0 _
1 SCK SO Sl
1

104



CHAPTER 12 PORTS

Table 12-5. Contents Read from the Port Register (0.73H)

Port mode Contents read from the port register (0.73H)

Input port Pin status

Output port Output latch contents

__ | Aninternal clock is selected as a shift clock. Output latch contents

Sek An external clock is selected as a shift clock. Pin status

Sl Pin status

SO Not defined

TMOOUT Output latch contents

Caution Using the serial interface causes the output latch for the POD 1/SO pin to be affected by the

contents of the SIOSFR (shift register). So, reset the output latch before using the pin as output
port.

12.5 PORT 1A (P1Ao, P1A1, P1A2, P1A3)

Port 1A is a 4-bit input/output port with an output latch. It is mapped into address 70H of BANKL1 in data memory.
The output format is N-ch open-drain output. The mask option can be used to specify that a pin contain a pull-up
resistor in 1-bit unit.

Input or output can be specified in 4-bit units. Input/output is specified by P1LAGIO (bit 2 at address 2CH) in the
register file.

When P1AGIO is 0, each pin of port 1A is used as input port. If a read instruction is executed for the port register,
pin statuses are read. When P1AGIO is 1, each pin of port 1A is used as output port and the contents written in the
output latch are output to pins. If a read instruction is executed when pins are output ports, the contents of the output
latch, rather than pin statuses, are fetched.

Atreset, P1AGIO is set to 0 and all P1A pins become input ports. The contents of the port output latch are

Table 12-6. Writing into and Reading from the Port Register (1.70H)

(n=0to 3)
P1AGION o BANK1 70H
i . Pin input/output
RF: 2CH, bit 2 Write Read
0 Input Possible P1A pin status
1 Output Write to the P1A latch P1A latch contents

12.6 PORT 1B (P1Bo)

Port 1B is a 1-bit input-dedicated port. Itis mapped into address 71H of BANK1 in data memory. The mask option
can be used to specify that pull-up resistors be contained in P1Bo pins.

Port 1B is the input-dedicated port. At reading, only the least significant bit is valid and a value is read into it. At
writing, no value changes. Value 0 is always read into the high-order 3 bits of the port register.

105



CHAPTER 12 PORTS

12.7 PORT CONTROL REGISTER
12.7.1 Input/Output Switching by Group I/O

Ports which switch input/output in 4-bit unit are called group I/O. Port OA, port 0B, and port 1A are used as group
I/0. The register shown in the figure below is used for input/output switching.

Figure 12-1. Input/Output Switching by Group 1/0

RF: 2CH
Bit 3 Bit 2 Bit 1 Bit 0
0 P1AGIO POBGIO POAGIO
Read/write RIW Read = R, write = W
Initial value when reset 0 0 0 0
POAGIO Function
0 Sets port OA to input mode.
1 Sets port OA to output mode.
POBGIO Function
0 Sets port OB to input mode.
1 Sets port 0B to output mode.
P1AGIO Function
0 Sets port 1A to input mode.
1 Sets port 1A to output mode.

106



CHAPTER 12 PORTS

12.7.2 Input/Output Switching by Bit I/O
Ports which switch input/output in 1-bit unit are called bit I/0. Port 0C and port 0D are used as bit /0. The register

shown in the figure below is used for input/output switching.

Figure 12-2. Port Control Register of Bit 1/0 (1/2)

RF: 1CH
Bit 3 Bit 2 Bit 1 Bit 0
POCBIO3 POCBIO2 POCBIO1 POCBIOO0
Read/write R/W
Initial value when reset 0 0 0 0

Read = R, write = W

POCBIO0 Function
0 Sets POCo to input mode.
1 Sets POCo to output mode.
POCBIO1 Function
0 Sets POCx to input mode.
1 Sets POCx to output mode.
POCBIO2 Function
0 Sets POC: to input mode.
1 Sets POC:2 to output mode
POCBIO3 Function
0 Sets POCs to input mode.
1 Sets POCs to output mode.

107




CHAPTER 12 PORTS

Figure 12-2. Port Control Register of Bit /0O (2/2)

RF: 2BH
Bit 3 Bit 2 Bit 1 Bit 0
PODBIO3 PODBIO2 PODBIO1 PODBIOO
Read/write R/W
Initial value when reset 0 0 0 0

108

Read = R, write = W

PODBIOO Function
0 Sets PODo to input mode.
1 Sets PODo to output mode.
PODBIO1 Function
0 Sets POD: to input mode.
1 Sets POD: to output mode.
PODBIO2 Function
0 Sets POD:2 to input mode.
1 Sets POD:2 to output mode.
PODBIO3 Function
0 Sets PODs to input mode.
1 Sets PODs to output mode.




CHAPTER 12 PORTS

12.7.3 Specifying Pull-Up Resistor Incorporation Using Software
Pull-up resistor incorporation can be specified in 4-bit units using POAGPU and POBGPU (address OCH) in the

Read = R, write = W

register file.
Figure 12-3. Specifying Pull-Up Resistor Incorporation Using Software
RF: OCH
Bit 3 Bit 2 Bit 1 Bit 0
0 0 POBGPU POAGPU
Read/write R/W
Initial value when reset 0 0 0 0

POAGPU Function
0 Does not contain pull-up
resistor in port OA.
1 Contains pull-up resistor in
port OA.
POBGPU Function
0 Does not contain pull-up
resistor in port 0B.
1 Contains pull-up resistor in

port OB.

109




[MEMO]

110



CHAPTER 13 PERIPHERAL HARDWARE

13.1 8-BIT TIMERS/COUNTERS (TMO AND TM1)

The uPD17134A subseries has two channels of 8-bit timers/counters: timer 0 (TMO) and timer 1 (TM1).

These two timers can be used in combination as a 16-bit timer by using the count up signal of timer 0 as the count
pulse for timer 1.

These timers are controlled by manipulating the hardware with the PUT/GET instruction and registers in the register
file with the PEEK/POKE instruction.

13.1.1 8-Bit Timers/Counters Configuration

Figure 13-1 shows the configuration of the 8-bit timers/counters. An 8-bit timer/counter consists of an 8-bit count
register, 8-bit modulo register, a comparator that compares the value of the count register and the value of the modulo
register, and a selector that selects a count pulse.

Cautions 1. The modulo register is a write-only register.
2. The count register is a read-only register.

111



CHAPTER 13 PERIPHERAL HARDWARE

Figure 13-1. Configuration of the 8-Bit Timer Counters

Data buffer
(DBF)
S Internal bus S
AC zero cross Interrupt Serial inter- Bit I/0 port
detection circuit control Timer 0 mode face control control
control register register register register register
(RF : 1DH) (RF : OFH) (RF : 11H) (RF : OBH) (RF : 2BH)
[zcrossl | INT | [mwoen [Twores|tiockt [ruockol [rwoose [poosios|
Timer 0 modulo
register (8)
(TMOM) o _POD:/
) 53 Match TMOOUT
Timer 0
comparator (8)f—
|
Latch —
o Timer O count IRQTMO
h/256 D Q register (8) set signal
fx/64 —={Selec-| Le| CLK (TMOC)
_w]tor
x/16 R Clear - '
/d\% zet_ro Cross ' Reset Timer O count up signal
INT ©—O ctection arew _ (To timer 1 and basic
e L?ek:szll(iimer interval timer)
Internal reset Q IRQTMO
clear signal
Data buffer
(DBF)

U

Internal bus

Timer 1 mode register
(RF : 12H)

[rm1En]Tmires|Tmicka [ TMickol

Timer 1

modulo register (8)
(TM1M)

iI Match

2 Timer 1

comparator (8)

Latch ‘ —

/512 —= D _—— Timer 1

x/1024 —»= | Q count register (8)
. CLK (TMIC)

Timer O count up —= R Clear
Reset

Internal reset

IRQTML1 set signal

112

IRQTML1 clear signal



CHAPTER 13 PERIPHERAL HARDWARE

Figure 13-2. Timer O Mode Register

RE : 11H Bit 3 Bit 2 Bit 1 Bit 0
TMOEN | TMORES | TMOCK1 | TMOCKO
Read/write R/W
Read = R, Write = W
Initial value when reset 0 0 0 0
\—|——‘ TMOCK1 | TMOCKO | Selects count pulse of timer 0
0 0 fx/256
0 1 fx/64
1 0 fx/16
1 1 External clock from INT pin

TMORES Resets timer 0

0 Does not affect timer O

Resets timer 0 count register and

IRQTMO

Remark TMORES is automatically cleared to O after it
has been set to 1.
This bit is always 0 when it is read.

TMOEN Starts timer 0
0 Stops counting by timer 0
1 Starts counting by timer O

Remark TMOEN can be used as a status flag that
detects the counting status of timer 0

(1: counting in progress, 0: counting is stopped).

113



CHAPTER 13 PERIPHERAL HARDWARE

Figure 13-3. Timer 1 Mode Register

RF : 12H Bit 3 Bit 2 Bit 1 Bit 0
TM1EN | TM1RES | TM1CK1 | TM1CKO
Read/write R/W
Initial value when reset 1 ‘ 0 ‘ 0 ‘ 0
\—|——‘ TM1CK1 | TM1CKO | Selects count pulse of timer 1
0 0 fx/512
x/1024
1 0 x/256
1 1 Count up signal from timer O
TM1RES Resets timer 1
0 Does not affect timer 1
1 Resets timer 1 count register and IRQTM
1

Remark TM1RES is automatically cleared to O after it
has been set to 1. This bit is always 0 when

it is read.
TM1EN Starts timer 1
0 Stops counting by timer 1
1 Starts counting by timer 1

Remark TM1EN can be used as a status flag that
detects the counting status of timer 0
(1: counting in progress, 0: counting is stopped).

114



CHAPTER 13 PERIPHERAL HARDWARE

13.1.2 Operation of 8-Bit Timers/Counters

(1) Count register

The count register of timers 0 and 1 is an 8-bit up counter whose initial value is O0OH, and is incremented each

time a count pulse has been input.

The count register is initialized to 00H in the following cases.

(1) When this product is reset (refer to CHAPTER 17 RESET).

(2) When the contents of the 8-bit modulo register and the value of the count register coincide, and the
comparator generates a coincidence signal.

(3) In the case of timer 0, when “1” is written to TMORES of the register file.
In the case of timer 1, when “1” is written to TM1RES of the register file.

(2) Modulo register
The modulo register of timers 0 and 1 determines the count value of the count register and its initial value is
set to FFH.
A value is set to the modulo register by using the PUT instruction via DBF (data buffer).

(3) Comparator

The comparator of timers 0 and 1 outputs a coincidence signal when the value of the count register and the
value of the modulo register coincide. If the value of the modulo register is the initial value FFH, for example,
the comparator outputs the coincidence signal when the count register counts 256.

The coincidence signal output from the comparator clears the contents of the count register to 0, and
automatically sets interrupt request flags (IRQTMO and IRQTM1) to “1”. If the El instruction (that enables
accepting interrupts) is executed, and if the interrupt enable flags (IPTMO and IPTM1) are set at this time,
interrupts are accepted. When an interrupt has been accepted, the interrupt request flag (IRQTMO or IRQTM1)
is cleared to “0”, and program execution branches to a specified interrupt routine.

13.1.3 Selecting Count Pulse

The count pulse for timer 0 is selected by TMOCKO and TMOCK1.

As the count pulse, a pulse resulting from dividing the system clock (fx) by 256, 64, or 16, or an external count pulse
input from the INT pin can be selected.

At reset, fx/256 is selected as a count pulse because TMOCKO = 0 and TMOCK1 = 0.

The count pulse for timer 1 is selected by TM1CKO and TM1CK1.

As the count pulse, a pulse resulting from dividing fx by 1024, 512, or 256, or the count up signal from timer O can
be selected.

Timer 1 is also used to generate oscillation stabilization time on power application or at reset. Therefore, the initial
values are TM1CKO = 0 and TM1CK1 = 0, and fx/512 is selected as the count pulse.

Because TM1EN = 1 as the initial condition, the uPD17134A subseries starts program execution from address
000O0H after it has been reset at fx = 8 MHz and after about 16.4 ms (about 65.5 ms at 2 MHz) (refer to CHAPTER
17 RESET).

115



CHAPTER 13 PERIPHERAL HARDWARE

13.1.4 Setting Count Value to Modulo Register

A value is set to the modulo register by using the PUT instruction via DBF (data buffer). The peripheral address
of the modulo register of timer 0 is assigned to 02H, and that of timer 1 is assigned to 03H.

To transfer a value by using the PUT instruction, the data of the low-order 8 bits of DBF (DBF1 and DBFO) are
transferred to the modulo register. Figure 13-4 shows an example of the modulo register of timer 0.

Figure 13-4. Setting Count Value to Modulo Register

Example of setting count value 64H to modulo register of timer 0

CONTDATL DAT 4H ; Assigns CONTDATL to 4H by using symbol definition instruction
CONTDATH DAT 6H ; Assigns CONTDATH to 6H by using symbol definition instruction
MOV DBFO, #CONTDATL ;
MOV DBF1, #CONTDATH ;
PUT TMOM, DBF ; Transfers data by using reserved word “TMOM”

Data buffer

DBF3 DBF2 DBF1 DBFO

bs | bz | b1 | bo|bs | bz|bi|bo|bs|bz2|bi|bo|bs|bz]|bi]|bo

Don't care Don't care o:1:1:;0}]0:1:0:0

‘ 8-bit data |

{} PUT TMOM, DBF

TMOM (peripheral address 02H)

b7 | be | bs | ba | bz | b2 | b1 | bo

0:;12:1:0(0:1:0:0

Caution The range of the value to that can be set to the modulo register is 01H to FFH. If O0OH is set, the
normal count operation is not performed.

The modulo register is a write-only register. Therefore, the set value of the modulo register cannot be read. Even
if the “PUT TMOM, DBF” or “PUT TM1M, DBF” instruction is executed while the 8-bit timer/counter is operating, the
count is operating is not stopped.

116



CHAPTER 13 PERIPHERAL HARDWARE

13.1.5 Reading Value of Count Register

The values of the count registers of timers 0 and 1 are read simultaneously by using the GET instruction via DBF

(data buffer).

The values of the count registers of timers 0 and 1 are assigned to peripheral address 45H. The high-order 8 bits

of this address are assigned to the count value of timer 1, and the low-order 8 bits are assigned to the count value

of timer 0.

The values of the count registers can be read to DBF by using the GET instruction. While the GET instruction is

being executed, the count registers stop counting and hold the current count value. If a count pulse is input to the

timer while the timer is operating and the GET instruction is being executed, the count value is held, the value of the

count register is incremented by one after the GET instruction has been executed, and the timer continues counting.

Therefore, the timer does not count erroneously even if the GET instruction is executed while the timer is operating,

unless two or more count pulses are input to the timer in one instruction cycle.

Example of using GET DBF, TMOTM1C; reserved word DBF and TMOTM1C
when count value of timer 0 is FOH and count value of timer 1 is A4H

Figure 13-5. Reading Count Value of Count Register

Data buffer
DBF3 DBF2 DBF1 DBFO
bs | b2 | b1 | bo| bs|bz2| bi|bo|bs|b2|bi|bo|bs]|b2|bi]|ho
1:0:2:0|]0;1:0;0}2:2:1:1|0;0:0:0
ﬁET DBF, TMOTM1C
16-bit data
TMOTM1C (peripheral address)

bis | bia | b1z | b1z | b1r | bio | be | bs | b7 | be | bs | ba | bs | bz | b1 | bo
1:0:2:0|]0:1:0:0}2:2:1:12]0:0:0:0

-——— Timer 1 count value ——»{«——— Timer 0 count value 44

117



CHAPTER 13 PERIPHERAL HARDWARE

13.1.6 Setting of Interval Time
The time interval at which the comparator outputs the coincidence signal is determined by the value set to the
modulo register. The set value N of the modulo register is calculated from interval time T [sec] as follows:

N+1
T= =(N+1)xTcp
fcp

T
N=Txfcp—10orN= —— —1 (where, N =1 to 255)
TCP

fce  : Frequency of count pulse [Hz]
Tcp : Cycle of count pulse [sec] (1/fce = resolution)

e Example of calculating count value from interval time and program

« Example of setting 7 ms to timer 1 as interval time (system clock: f x = 8 MHz)
Suppose one wanted to set the interval timer to 7 ms. Itis impossible to set an interval time of exactly 7 ms
from an 8-MHz system clock. To set an interval time closest to 7 ms, therefore, calculate the count value
by selecting a count pulse (fx/256, resolution: 32 us) at which the resolution is maximum.

Example of calculation T =7 ms, Resolution = 32 us

T
N= — —1
(Resolution)

7 x 103
32 x 10°°

= 217.75 = 218 (= DAH)

The value of the modulo register at which the interval time is closest to 7 ms is DAH, and the interval time
at that time is 7.008 ms.

Program example

MOV  DBFO, #0AH ; Stores DAH to DBF by using reserved words “DBF0” and “DBF1”
MOV  DBF1, #ODH ; Storage

PUT T™MM, DBF ; Transfers contents of DBF by using reserved word “TMM”

INITFLG TM1EN, TM1RES, TM1CK1, NOT TM1CKO

; Sets TM1EN and TM1RES, sets count pulse of timer 1 to “fx/256”, and starts
; counting, by using embedded macroinstruction “INITFLG”

118



CHAPTER 13 PERIPHERAL HARDWARE

13.1.7 Error of Interval Time
The interval time may include an error of up to —1.5 count, especially if the value set value of the modulo register
is low.

(1) Error when count register is cleared to 0 during counting (maximum error: —1 count)
The count register of the 8-bit timer/counter is cleared to 0 when the TMnRES flag is setto 1. However, the
divider circuit that generates a count pulse from the system clock is not reset.
Therefore, an error of 1 cycle of the count pulse may be generated at the first count if the TMnRES flag is set
to 1 and the count value is cleared to 0 during counting. An example of counting where 2 is set to the modulo
register is shown below.

Figure 13-6. Error When Count Register Is Cleared to 0 During Counting

Count cleared (TMnRES ~ 0)

2 to 3 counts |
1
|

|
I
1
|
Count pulse | !

Count register 1 2 0 1 2

Output of coincidence signal

In this example, the coincidence signal must be output each time the count value has reached 3. However,
the coincidence signal is output when the count value reaches 2 for the first time after the count has been
cleared.

The above error also occurs when TMNnRES ~ 1 at the same time as TMNEN =1 ~ 0.

119



CHAPTER 13 PERIPHERAL HARDWARE

(2) Error when counting is started from count stop status (maximum error: —1.5 count)
The count register of the 8-bit timer is cleared to 0 by setting the TMnRES flag to 1. However, the divider circuit
that generates a count pulse from the system clock is not reset.
If the TMnEN flag is set to 1 and counting is started from the count stop status, the timing of the first counting
differs as follows depending on whether the count pulse starts with a low level or a high level.

If count pulse starts with high level: First count at the next rising
If count pulse starts with low level: First count on starting of counting

Therefore, an error of —0.5 to 1.5 count occurs until the coincidence signal is output for the first time after
counting has been started. An example of counting where the modulo register is set to 1 is shown below.

Figure 13-7. Error When Counting Is Started from Count Stop Status

(a) If counting is started when count pulse is high (error: —0.5 to —1 count)

Count starts (TMNEN =1 — 0)

‘ 1 to 1.5 count | 2 counts |
I 1 1
| | |
|

Count pulse !
| —
|
! ! !

Count register 0 1 0 1
Coincidence signal output Coincidence signal output

(b) If counting is started when count pulse is low (error: -1 to —1.5 count)

Count starts (TMNEN =1 — 0)

. 0.5tolcount | 2 counts |
| [ [
: | |
|

Count pulse !
| | |
! ! !

Count register 0 1 0 1 0
Coincidence signal output Coincidence signal output

In this example, the coincidence signal must be output each time the count value has reached 2. However,
the first coincidence signal is output when the count value is 1.5 at maximum or 0.5 at minimum (error: —0.5

to —1.5 count).
The above error also occurs during oscillation stabilization wait time because the timer is also used to generate

the oscillation stabilization wait time.

120



CHAPTER 13 PERIPHERAL HARDWARE

13.1.8 Timer 0 Output

The PODs/TMOOUT pin functions as timer 0 output pin by setting the TMOOSEL flag to “1”. At this time, the value
of PODBIOS is irrelevant.

Timer 0 has an internal flip-flop for outputting a coincidence signal. The output of this flip-flop is inverted each time
the comparator has output the coincidence signal. If the TMOOSEL flag is set to “1”, the content of this flip-flop is
output to the PODs/TMOOUT pin.

The POD3/TMOOUT pinis an N-ch open-drain output pin and can be connected to a pull-up resistor by mask option.
If the pull-up resistor is not connected, the PODs/TMOOUT pin goes into a high-impedance state as the initial status.

The internal timer O output flip-flop starts operating as soon as TMOEN has been setto 1. To make sure that timer
0 output always starts from the initial status, set TMORES to 1 and reset the flip-flop before starting counting.

Figure 13-8. Timer 0 Output Setting Register

RF: 0BH Bit 3 Bit 2 Bit 1 Bit 0

TMOOSEL 0 0 SIOEN
Read/write RIW Read = R, write = W
Initial value when reset 0 0 0 0

SIOEN Function
PODo/SCK, POD1/SO, and POD2/SI pins
0 function as port pins.
L PODo/SCK, POD1/SO, and POD2/SI pins

function as serial interface pins.

Caution This bit is not directly related to output
setting of timer 0.

TMOOSEL Function
0 PODs/TMOOUT pin functions as port pin.

PODs/TMOOUT pin outputs coincidence

signal of timer 0.

121



CHAPTER 13 PERIPHERAL HARDWARE

13.2 BASIC INTERVAL TIMER (BTM)

The uPD17134A subseries has a 7-bit basic interval timer.
This basic interval timer has the following functions.

(1) Generates reference time.
(2) Selects and counts wait time when standby mode is released.

(3) Serves as watchdog timer that detects program hang-up.

13.2.1 Basic Interval Timer Configuration
Figure 13-9 shows the configuration of the basic interval timer.

Figure 13-9. Basic Interval Timer Configuration

S Internal bus S

Watchdog timer.
BTM mode mode register
register (RF: 13H) (RF: 03H)

|BTMISEL‘ BTMRES‘ BTMCKl‘BTMCKOl |WDTRE# 0 ‘ 0 ‘WDTEN |

2
fetm
25
Reset \ IRQBTM
x/8192 —m| form Selector set signal
/4096 —w- Selector fam Basic interval timer @
Timer 0 count up—| (7-bit divider circuit)
INT pin (ACZCROSS) —»|
Watchdog
() reset signal
R T
A 1-shot pulse
circuit generation | (1))

circuit

Outputs 1 while counting 0 to 7
during count of 0 to 256

Remark (1) through (4) in the figure corresponding to the signals in the timing chart in Figure 13-12.

122



CHAPTER 13 PERIPHERAL HARDWARE

13.2.2 Registers Controlling Basic Interval Timer

The basic interval timer is controlled by the BTM mode register and watchdog timer mode register.

Figures 13-10 and 13-11 show the configuration of the respective registers.

Figure 13-10. BTM Mode Register

RF: 13H ) ; . .
Bit 3 Bit 2 Bit 1 Bit 0
BTMISEL| BTMRES | BTMCK1 | BTMCKO
Read/write R/W Read =R, write = W
Initial value when reset 0 0 0 0
[ BTMCK1 | BTMCKO | Selects count pulse of BTM
fx/8192
0 0
(execution time of 512 instructions)
fx/4096
0 1
(execution time of 256 instructions)
1 0 Count up of timer O
INT pin
1 1 (information on INT pin that
has gone through AC zero
cross detection circuit when
ZCROSS =1)
BTMRES Resets BTM
0 Does not affect basic interval timer (BTM).

1

Resets binary counter of basic interval

timer (BTM).

Remark BTMRES is automatically cleared to 0 after it

has been set to 1.
This bit is always “0” when it is read.

BTMISEL Selects interval time
Sets count pulse divided by 128 as interval
0 time.
1 Sets count pulse divided by 32 as interval

time.

123



CHAPTER 13 PERIPHERAL HARDWARE

Figure 13-11. Watchdog Timer Mode Register

RF : O3H - - - -
Bit 3 Bit 2 Bit 1 Bit 0
WDTRES 0 0 WDTEN
Read/write R/W Read = R, write =W
Initial value at reset 0 0 0 0
L WDTEN Enables watchdog timer function

0 Watchdog timer stops.
1 Watchdog timer starts operating.

Remarks 1. WDTEN cannot be cleared to 0 by program.
2. WDTEN is automatically cleared to 0 after it
has been set to 1. This bit is always 0 when

it is read.
WDTRES Resets watchdog timer
0 Does not affect watchdog timer.
1 Sets flip-flop that holds overflow carry of
BTM used by watchdog timer.

Remark WDTRES is automatically cleared to 0 after it
has been setto 1. This bit is always 0 when
it is read.

13.2.3 Operation of Basic Interval Timer

The basic interval timer is a 7-bit binary counter that always counts up by using a count pulse specified by the BTM
mode register. Counting operation cannot be stopped.

The interval time of the basic interval timer can be changed by using the BTMISEL bit of the BTM mode register.

When BTMISEL = 0, the interval time is the count pulse divided by 128 (128/fstm); when BTMISEL = 1, the interval
time is the count pulse divided by 32 (32/fstm).

The contents of the counter are not cleared to 0 even if the interval time is changed.

124



CHAPTER 13 PERIPHERAL HARDWARE

13.2.4 Watchdog Timer Function
The basic interval timer can also be used as a watchdog timer to detect a program hang-up.

)

)

Function of watchdog timer

The watchdog timer is a counter that generates a reset signal at fixed intervals. By inhibiting the generation
of this reset signal each time through program, the system can be reset (and started from address 0000H)
if it has overrun due to an external noise (i.e., if the watchdog timer is not reset within the time set by program).
This function can prevent the system from overrunning even if the program is caused to jump to an unexpected
routine by an external noise and enter an infinite loop, because a reset signal is generated at fixed intervals.

Operation of the watchdog timer

When “1” is set to WDTEN, the 1-bit divider is enabled to operate, and consequently, the basic interval timer
operates as an 8-bit watchdog timer.

Once the watchdog timer has been started, it cannot be stopped until the device is resetand WDTEN is cleared
to 0.

Generation of the reset signal by the watchdog timer can be inhibited in the following two ways:

(i) Repeat setting WDTRES in program.
(i) Repeat setting BTMRES in program.

In the case of (i), WDTRES must be set while the count value of the watchdog timer is between 8 and 191
(immediately before it reaches 192). Therefore, “SET1 WDTRES” must be executed at least once at a timing
shorter than the cycle in which the count value of the watchdog timer reaches 184.

In the case of (i), BTMRES must be set until the count value of the basic interval timer (BTM) reaches 128.
Therefore, “SET BTMRES” must be executed at least once at a timing shorter than the cycle in which the count
value of BTM reaches 128. In this case, however, interrupt processing cannot be performed by BTM.

Caution BTM is not reset even if WDTEN is set. Therefore, be sure to set BTMRES and reset BTM
before setting WDTEN first.

Example

SET1 BTMRES
SET2 WDTEN, WDTRES

125



CHAPTER 13 PERIPHERAL HARDWARE

parelauab jou si reubis 19sa9y

(yB1y sAnoe)
reufis 1osa. Bopyorem

_I (€)gz/musy

(19s INLEOYI 1)
(2),2/m1ey

(v)

co:mm Bundaooe

(T) Indino unouro
loyessuab asind joys-T
E S3HLAM

uo:mm Bundaooe
1 STHLAM

N3ILAM

6T

Jawn Bopyorem
JO anjeA Juno)

(pasn Beld s3H1AM yum) Jawil Bopysrem jo weyd Bulwil "ZT-€T ainbi4

126



CHAPTER 13 PERIPHERAL HARDWARE

(3) Program example of watchdog timer

Program Example

< ) ORG OH
Start
BR INITJOB

ORG 2H
BR INTBTMJOB
INITJOB:
Initialize INITFLG  NOT BTMISEL, BTMRES, NOT BTMCKZ1, BTMCKO
SET1 BTMRES
SET2 WDTRES, WDTEN; Watchdog timer start
SET1 IPBTM
CLR1 IRQBTM
El ; BTM interrupt enable
MAIN:
Main Processing CALL JOB1
CALL JOB2
END
T
|
JOB1: JOB2: INTBTMJOB:
CLR1 IPBTM CLR2 IPBTM SET1 WDTRES
: : El
: RETI

SET1 BTMRES

SET1 BTMRES SET1 WDTRES

SET1 BTMRES SETL WDTRES

SET IPBTM SET IPETM

RET RET

Reset BTM before its Reset watchdog timer Reset watchdog timer by
count value reaches before its count value using interrupt processing
to 12gNote 1, reaches to 184. of BTMNote 2,

Notes 1. Interruptprocessing by BTM cannot be performed inthe method to reset counter before BTM overflows.
2. Although the method of resetting the watchdog timer by using the BTM interrupt processing is easier
to program than the other two methods, its program hang-up detection rate is lower than that of the

other two.

127



CHAPTER 13 PERIPHERAL HARDWARE

13.3 A/D CONVERTER

UPD17134A subseries contains an 8-bit resolution A/D converter with 4-channel analog input (POCo/ADCo - POCs/

ADC3).

The A/D converter uses the successive approximation method. The following two operation modes are available:

(1) Successive mode: 8-bit A/D conversion occurs starting at high-order bits.

(2) Single mode: Comparison occurs with an arbitrary voltage value set in the 8-bit data register.

13.3.1 A/D Converter Configuration

Figure 13-13 shows the A/D converter configuration.

Figure 13-13. Block Diagram of the A/D Converter

Remark n=0to 3

Internal bus

%

RF:22H

RF:20H

A

)

RF:21H

LoJoJabccHilabccHo] [o0]o]o JADCSTRT]

EDCSOFT] 0]JADCCMP JADCEND]

Read signal
POCnIDI
Selector | [Output

POCBIOn — latch
—

4

POCNn/ADCn (©
A/D end signal

STOP instruction signal

Selector

—O

J Comparator )

Control circuit

8-bit data register
(ADCR)

Vaoc (O) b—w—l—w—l—w—L

L» Analog power of

A/D converter

Cautions 1. The 8-bit data register (ADCR) is cleared to 0O0H when the STOP instruction has been

executed.

2. Ifthe HALT instruction is executed during A/D conversion, a current keeps flowing between

Vabc and GND.

128

D/A converter




CHAPTER 13 PERIPHERAL HARDWARE

13.3.2 Functions of A/D Converter

)

&)

ADCo — ADCs3
These pins are used to input 4-channel analog voltage to the A/D converter. The A/D converter contains a
sample hold circuit. Analog input voltage is internally retained during A/D conversion.

Vabc

This pin is used to input the power supply and the reference voltage for the A/D converter.

A signal input to ADCo to ADCs is converted to a digital signal based on voltage applied across Vaoc and GND.
To reduce the current consumption of the microcontroller, the A/D converter has a function for automatically
stopping the current which flows into the Vaoc pin when the converter is not operating. Current flows into the
Vaoc pin in the following cases.

<1> Successive mode (ADCSOFT=0)
From when the ADCSTRT flag is set (1) until the ADCEND flag is set (1).

<2> Single mode (ADCSOFT=1)
From when the ADCSTRT flag is set (1) or from when a value of the 8-bit data register is written until
the result of comparison by the comparator is written in the ADCCMP flag.

Caution If the HALT Instruction is executed while the A/D conversion is in progress, the A/D
converter stops conversion. Note that, in this case, the HALT mode is set with current
flowing to the V abc pin. When the HALT mode has been released, the A/D conversion
is resumed. At this time, however, the value of ADCR is undefined, and the correct
conversion result cannot be obtained.

Remark A/D conversion is stopped if the STOP instruction is executed while the conversion is in
progress. In this case, the A/D converter is initialized, and the current to the Vaoc pin is also
cut. The A/D converter remains stopped even if the STOP mode has been released.

(3) 8-bit data register (ADCR)

4

®)

In the successive mode, this 8-bit data register stores A/D conversion results for successive approximation.
It is read by the GET instruction. In the single mode, the data in this register is converted to analog voltage
by the internal D/A converter and the comparator compares this voltage with an analog signal input from the
ADCn pin. A value can be written in this register by using the PUT instruction.

Comparator

The comparator compares an analog input voltage from a pin with voltage output from the D/A converter. Value
1is output if analog input voltage from the pin is high. Value 0 is output if this voltage is low. The comparison
result is stored in the 8-bit data register (ADCR) in the successive mode. It is stored in the ADCCMP flag in
the single mode.

A/D converter control register
Figure 13-14 shows the A/D converter control register.

129



CHAPTER 13 PERIPHERAL HARDWARE

Figure 13-14. A/D Converter Control Register (1/2)

RF: 21H
Bit 3 Bit 2 Bit 1 Bit 0
ADCSOFT, 0 ADCCMP| ADCEND]
Read/write R/W R Read = R, write = W
Initial value when reset 0 0 0 0
ADCEND End of A/D conversion
0 Initial status or during A/D conversion.

130

Indicates the end of A/D conversion in
1 successive mode.

Cleared to 0 by setting (1) or resetting
ADCSTRT.

ADCCMP| Compare result (valid only in the single mode)

Analog input voltage is lower than output
voltage of the internal D/A converter.

Analog input voltage is higher than output
voltage of the internal D/A converter.

Remarks 1. In the single mode, the flag content is
valid for the third and subsequent in-
structions after ADCSTRT is set (1) or
data is set in ADCR until ADCSTRT or
ADCR is set again.

2. Inthesuccessive mode, avalue changes
according to an A/D conversion value.
However, the bit for this value cannot be
identified.

3. ADCCMP is automatically cleared to 0
when “PUT ADCR, DBF” instruction is
executed.

ADCSOFT A/D operation mode selection flag

0 Successive mode

1 Single mode




CHAPTER 13 PERIPHERAL HARDWARE

Figure 13-14. A/D Converter Control Register (2/2)

RF: 20 H
Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 ADCSTRT|
Read/write R/W Read = R, write = W
Initial value when reset 0 ‘ 0 ‘ 0 ‘ 0
ADCSTRT Start of A/D operation
0 Initial status or during A/D conversion.
Cleared to 0 automatically after A/D
1 conversion (successive or single
modeN°) starts.

Note Withthe pPD17134A subseries, ADCRis reset
to O if the ADCSTRT flag is set, regardless of
the A/D conversion mode. In the single mode,
start conversion by writing a value to ADCR.

RF: 22H
Bit 3 Bit 2 Bit 1 Bit 0
ADCCH3|ADCCH2| ADCCH1| ADCCHO
Read/write R/W Read = R, write = W
Initial value when reset 0 ‘ 0 ‘ 0 ‘ 0
L]

\—|—1— ADCCH1

ADCCHO Analog input channel selection
0 0 ADCo is selected.
0 1 ADC: is selected.
1 0 ADC: is selected.
1 1 ADC:s is selected.

Fixed to 0. (Dummy flag)

131



CHAPTER 13 PERIPHERAL HARDWARE

13.3.3 Setting Values in the 8-bit Data Register (ADCR)

A value is set in the 8-bit data register via the data buffer (DBF) using the PUT instruction in the same way as for
comparison voltage setting in the single mode.

The peripheral address for the 8-bit data register (ADCR) of the A/D converter is assigned to 04H. If a value is
sentto ADCR by the PUT instruction, only the low-order 8 bits (DBF1, DBFO) of DBF are valid. DBF3 and DBF2 values
do not affect ADCR.

Figure 13-15. Setting a Value in the 8-Bit Data Register (ADCR)
Example of setting 6CH in ADCR

CONTDATL DAT
CONTDATH DAT

OCH
06H

; CONTDATL is assigned to OCH by using a symbol definition instruction.
; CONTDATH is assigned to 06H by using a symbol definition instruction.

MOV DBFO, #CONTDATL;
MOV DBF1, #CONTDATH;
PUT ADCR, DBF ; Data is transferred using reserved words ADCR and DBF.
Data buffer
DBF3 DBF2 DBF1 DBFO
ba | b2| bi| bo|bs|b2|bi|bo|lbs |b2|bi|bo| bs|b2|bi| bo
Don't care Don't care 0:1:1/0]|1:1/0{0
8-bit data

PUT ADCR, DBF

ADCR (Peripheral address 04H)

b7z | be | bs | ba | bs | bz | b1 | bo

0§1§1§o 1§1§o§o

132



CHAPTER 13 PERIPHERAL HARDWARE

13.3.4 Reading Values from the 8-bit Data Register (ADCR)

A value is read from the 8-bit data register (ADCR) via the data buffer (DBF) using the GET instruction.

The 8-bit data register (ADCR) of the A/D converter has peripheral address 04H and only its low-order 8 bits (DBF1,
DBFO) are valid. Execution of the GET instruction does not affect the high-order 8 bits of DBF.

Figure 13-16. Reading Values from the 8-bit Data Register (ADCR)

The result from 8-bit A/D conversion is E2H.

GET DBF, ADCR ; Example of using reserved words DBF and ADCR

Data buffer
DBF3 DBF2 DBF1 DBFO
bs | bz | bi| bo| bz | b2| b1i| bo|bs|b2|bi|bo|bs|bz|Dbi|bo
Retained Retained 1/1/1:0[0/0/1!0
GET DBF, ADCR
8-bit data

ADCR (Peripheral address 04H)

b7 | be | bs | ba | bs | b2 | b1 | bo

1:1:1:0|0:0:1:0

133



CHAPTER 13 PERIPHERAL HARDWARE

13.3.5 A/D Converter Operation
The A/D converter operates in two modes: successive mode and single mode. The mode can be switched by setting
the ADCSOFT flag.

ADCSOFT Operation mode of A/D converter
0 Successive mode (A/D conversion)
1 Single mode (Compare operation)

Figure 13-17. Relationship between the Analog Input Voltage and Digital Conversion Result

Ideal conversion result
FRH |

FEH |

FDH [~

Digital conversion result
z
T
i
|
|
|
i
|
|
i
i
|
|
i
|
|
i
i
|
|
i
|
|
i
i

03H |-

02H |~

|
1

)).
(¢

: (e | ‘ (x Voo)
N 254 255 256
256 256 256 256 256 256

O00H

Analog input voltage (V)

134



CHAPTER 13 PERIPHERAL HARDWARE

(1) Successive mode

(a) Outline of successive mode
In the successive mode, the A/D converter performs conversion in 8-bit units by means of successive
approximation, and the result of the conversion is automatically stored to an 8-bit data register (ADCR).
An analog input voltage and the voltage output by the internal D/A converter are compared by the internal
comparator, and data for conversion is sequentially obtained from 8 bits of data, starting from the most
significant bit. A time of 25 instructions is required to complete converting the 8 bits of data. The
completion of the 8-bit A/D conversion is indicated by setting of the ADCEND flag to 1.

(b) Operation in successive mode
When ADCSOFT = 0, the A/D converter is set in the successive mode.
By setting POCnIDI to 1 before starting A/D conversion, use of a pin used as an analog input pin of the
A/D converter as a port pin is prohibited. This is to prevent an increase in the through current of the input
buffer of the port if the voltage of the pin specified as an analog input pin reaches the intermediate level.
After that, an analog input signal is selected by ADCCH1 and ADCCHO. A/D conversion is started by
setting the ADCSTRT flag to 1. The ADCSTRT flag is cleared to 0 immediately after A/D conversion has
been started.
While A/D conversion is in progress, the internal hardware performs successive approximation, starting
from the most significant bit of the 8 bits of data. The conversion result is stored to an 8-bit data register
on a bit-by-bit basis. Converting 1 bit of data requires a time of three instructions. If a resolution of 8 bits
is not required, therefore, the time required can be calculated from the number of instructions executed,
and the data being converted can be extracted before the ADCEND flag is set.
The completion of the A/D conversion is indicated by setting of the ADCEND flag which takes place as
soon as data has been stored to the least significant bit of the 8-bit data register.

135



CHAPTER 13 PERIPHERAL HARDWARE

Figure 13-18. Using the Successive Mode for the A/D Converter

Set the successive mode (ADCSOFT = 0)

Set the port input disable flag of the pin used for
analog input
(Set POCnIDIto 1. n=0to 3)

Select the analog input channel
(Set ADCCH1 or ADCCHO)

Start A/D conversion
(Set ADCSTRT to 1)

Wait for the completion of A/D conversion
(Wait for ADCEND to be set)

Read the A/D conversion results
(Execute GET for the 8-bit data register)

136



CHAPTER 13 PERIPHERAL HARDWARE

(c) Successive mode A/D conversion timing
Figure 13-16 shows the A/D conversion timing in the successive mode.

Figure 13-19. A/D Conversion Timing in the Continuous Mode

—= Number of instruction to be executed (Instruction cycle)

POKE 1 2 3 4 5 6 7 8 9 24 | GET
((
1 L L ) |
, - sampling Sampling Sampling |
| |
| |
Set ADCSTRT Read ADCR

ADCSTRT

ADCEND

((
1))
8-bit data Previous Initial value Most significant \/ High-order 2 bits All eight bits
register data 80H bit determined are determined are vaild.
((
)

Caution Sampling is executed eight times while A/D conversion is performed once. Therefore, if the

analog input voltage changes substantially during A/D conversion, conversion is not performed
accurately. To obtain the accurate conversion result, it is necessary to keep changes in the
analog input voltage as small as possible during A/D conversion.

One sampling time = 14/f x (1.75 us, 8 MHzNote)
Sampling repeat cycle = 48/f x (6 us, 8 MHzNot)

Note The guaranteed oscillation range of the uPD17134A, 17136A, and 17P136A is 400 kHz to 2.4 MHz.

137



CHAPTER 13 PERIPHERAL HARDWARE

(2) Single Mode

Table 13-1. Data Conversion Time for the A/D Converter

Number of instructions

executed after

ADCSTRT is set to 1Nt

Bits for which A/D conversion is
completed (valid bits when ADCR is read)

4 instructions

Most significant bit

7 instructions

High-order 2 bits

10 instructions

High-order 3 bits

13 instructions

High-order 4 bits

16 instructions

High-order 5 bits

19 instructions

High-order 6 bits

22 instructions

High-order 7 bits

25 instructions

All 8 bits

Note

(a) Overview of single mode

In the single mode, data in the 8-bit data register (ADCR) is compared with voltage subjected to D/A

Includes GET instruction to read data from ADCR.

conversion and with an analog input signal from a pin.

The comparison result appears in the ADCCMP flag.

(b) Explanation of single mode operation

If ADCSOFT is 1, the A/D converter function enters the single mode.

Before single mode operation starts, portinput is disabled for the pin to be used for analog input by setting

POCnIDI to 1. (This is done for the same reason as in the successive mode.)

To start single mode operation, execute a write instruction (PUT ADCR, DBF) for the 8-bit data register
(ADCR) when ADCSOFT is 1.

The comparison result in single mode appears in ADCCMP at the execution of the third instruction after
a PUT instruction is executed to write to the 8-bit data register (ADCR). At this time, the ADCEND flag

becomes undefined.

138




CHAPTER 13 PERIPHERAL HARDWARE

Figure 13-20. Using the Single Mode for the A/D Converter

Set single mode
(ADCSOFT = 1)

A

Disable port input for pin to
be used for analog input
(Set POCnIDI to 1)

A

Select analog input channel
(Set ADCCHO or ADCCH1)

Comparison data
in ADCR?

Y \
Read the contents of ADCR
into DBF Set comparison data in DBF
(GET DBF, ADCR)

Y

Execute write instruction for
8-bit data register
(PUT ADCR, DBF)

A

Read ADCCMP flag when third
instruction is executed and read
comparison result

139



CHAPTER 13 PERIPHERAL HARDWARE

(c) Single mode operation (comparison) timing

Figure 13-21. Single Mode Operation (Comparison) Timing

— Number of instruction executed (instruction cycle)
))
(«(

PUT 1 2 PEEK PUT 1 2 PEEK
))
T | (« |
Sampling : Sampling :
Set comparison Read ADCCMP. Set comparison Read ADCCMP.
data in ADCR. | data in ADCR. |
ADCEND  ----- Undefined -------------f------------------ e poomoommommssoooooooo
1 )) |
T(
ADCCMP Previous data Comparison result Comparison result

))
{8

In the single mode, comparison is started when compare data is set to ADCR (by executing the PUT
instruction), and the result of conversion can be read by using the PEEK instruction after execution of the
third instruction.

The ADCCMP flag is cleared to 0 when an instruction that writes ADCR is executed.

Caution Before setting a value to ADCR, be sure to set ADCSOFT to 1. A value cannot be set to
ADCR while ADCSOFT is 0 (the “PUT ADCR, DBF" instruction is invalidated).

One sampling time = 14/f x (1.75 ps, fx = 8 MHz)

140



CHAPTER 13 PERIPHERAL HARDWARE

13.4 SERIAL INTERFACE (SIO)

The serial interface consists of an shift register (SIOSFR, 8 bits), serial mode register, and serial clock counter.
It is used for serial data input/output.

13.4.1 Functions of the Serial Interface

This serial interface provides three signal lines: serial clock input pin (ﬁ), serial data output pin (SO), and serial
data input pin (SI). It allows 8 bits to be sent or received in synchronization with clocks. It can be connected to
peripheral input/output devices using any method with a mode compatible to that used by the uPD7500 series or 75X
series.

(1) Serial clock
Three types of internal clocks and one type of external clock are able to be selected. If an internal clock is

selected as a shift clock, it is automatically output to the PODo/SCK pin.

Table 13-2. Serial Clock List

SIOCK1 SIOCKO Serial clock to be selected
0 0 External clock from SCK pin
0 1 fx/16
1 0 fx/128
1 1 fx/1024

fx: System Clock oscillation frequency

(2) Transfer operation
Each pin of port 0D (PODo/SCK, POD1/SO, and POD2/SI) functions as a serial interface pin when SIOEN is set
to 1. If SIOTS is set to 1 at this time, the operation is started in synchronization with the falling of the external
or internal clock. If SIOTS is set, IRQSIO is automatically cleared.
Transfer is started from the most significant bit of the shift register in synchronization with the falling of the
serial clock, and the information on the Sl pin is stored to the shift register, starting from the least significant
bit, in synchronization with the rising of the serial clock.
When transfer of 8-bit data has been completed, SIOTS is automatically cleared, and IRQSIO is set.

Remark When executing serial transfer, transfer is started only from the most significant bit of the shift

register. It cannot be started from the least significant bit. The status of the Sl pin is loaded to the
shift register in synchronization with the rising of the serial clock.

141



CHAPTER 13 PERIPHERAL HARDWARE

Figure 13-22. Block Diagram of the Serial Interface

POD2/SI LSB MSB
T T 1 T T
Shift register (SIOSFR)
1 1 1 1 1 1 1
Clear
» SIOTS | SIOHIZ | SIOCK1 | SIOCKO
= IRQSIO
% clear signal
POD1/SO =
. /] O t tNote g D
] utpu ]
© N latch ~ »
Single
shot
IRQSIO
PODo/SCK Serial clock counter| c set signal
o> Do) T o >
—J L L N Clear
S
- © - C
R

Selector

Selector

fsvs/1024 —»

fsvs/128 —»
fsvs/16 —»

] - P0ODo
output
latch

SIOEN

PODBIOO

PODBIO1

Note The output latch of the shift register is shared with POD:1.
therefore, the status of the output latch of the shift register is accordingly changed.

142

If an output instruction is executed to PODz,



CHAPTER 13 PERIPHERAL HARDWARE

13.4.2 3-wire Serial Interface Operation Modes

Two modes can be used for the serial interface. If the serial interface function is selected, the POD2/SI pin always

takes in data in synchronization with the serial clock.

» 8-bit transmission reception mode (simultaneous transmission and reception)

» 8-bit reception mode (SO pin: in the high-impedance state)

Table 13-3. Operating Mode of the Serial Interface

SIOEN SIOHIZ POD2/SI pin POD1/SO pin Operating mode of the serial interface
1 0 Sl SO 8-bit transmission/reception mode
1 1 Sl POD: (input) 8-bit reception mode
0 X POD: (1/0) POD: (1/0) General-purpose port mode

x: Don't care

(1) Clock synchronization 8-bit transmission and reception mode (simultaneous transmission and

reception)

Serial data input/output is controlled by a serial clock. The MSB of the shift register is output from the SO line

at a falling edge of the serial clock (SCK pin signal). The contents of the shift register is shifted one bit at a

rising edge and at the same time, data on the Sl line is loaded into the LSB of the shift register.

Every time the serial clock counter (3-bit counter) counts eight serial clocks, the interrupt request flag
(IRQSIO 1) is set to 1.

Figure 13-23. Timing of 8-Bit Transmission and Reception Mode

(Simultaneous Transmission and Reception)

SCK pin

Sl pin

SO pin

IRQSIO

L Transmission starts in synchronization with the SCK pin falling edge. L Transmission

Remark DI: Serial data input

DO: Serial data output

completion

An instruction which writes 1 into SIOTS is executed.
(Transmission start indication)

143



CHAPTER 13 PERIPHERAL HARDWARE

(2) Clock synchronization 8-bit transmission and reception mode (SO pin output high impedance)
The POD1/SO pin goes into a high-impedance state when SIOHIZ = 1. If supply of the serial clock is started
by writing “1” to SIOTS at this time, only the reception function of the serial interface is enabled.

Because the POD1/SO pin goes into a high-impedance state, it can be used as an input port pin (PODz).

SCK pin

Sl pin

SO pin

IRQSIO

Figure 13-24. Timing of the Clock Synchronization 8-Bit Reception Mode

Transmission starts in synchronization with an SCK pin falling edge. L— Transmission
completion

An instruction which writes 1 into SIOTS is executed.

(Transmission start indication)

Remark DI: Serial data input

(3) Operation stop mode

If the value in SIOTS (RF: address 02H, bit 3) is O, the serial interface enters operation stop mode. In this

mode, no serial transfer occurs.

In this mode, the shift register does not perform shifting and can be used as an ordinary 8-bit register.

144



CHAPTER 13 PERIPHERAL HARDWARE

Figure 13-25. Serial Interface Control Register (1/2)

RF: 02H
Bit 3 Bit 2 Bit 1 Bit 0
SIOTS | SIOHIZ | SIOCK1| SIOCKO
Read/write R/W Read = R, write = W
Initial value when reset 0 ‘ 0 ‘ 0 ‘ 0
\—|—1— SIOCK1 SIOCKQO Selection of the serial clock
0 0 External clock (SCK pin)
0 1 fx/16
1 0 fx/128
1 1 fx/1024
SIOHIZ| Function selection of the POD1/SO pin
0 Serial data output (SO pin)
1 Input port output high impedance (POD: pin)
SIOTS | Start and stop of serial transmission (at writing)
0 Forced termination of the shift register (Disables
intermediate restart).
Start of serial transfer operation
¢ Atinternal clock selection
1 Starts operation specifying the internal division
signal of the system clock as a serial clock.
« At external clock selection
Starts operation in synchronization with an SCK
pin falling edge.
Remark SIOTS is automatically cleared to 0 when

serial transmission is completed.

145



CHAPTER 13 PERIPHERAL HARDWARE

Figure 13-25. Serial Interface Control Register (2/2)

RF: OBH
Bit 3 Bit 2 Bit 1 Bit 0
TMOOSEL 0 0 SIOEN
Read/write R/W
Initial value when reset 0 ‘ 0 ‘ 0 ‘ 0

146

Read = R, write = W

SIOEN SIO operation enable
o The pins POD0/SCK, POD1/SO, POD2/SI
function as ports.
1 The pins PODo/SCK, POD1/SO, POD2/SI
function as the serial interface.
Remark See also CHAPTER 12.
TMOOSEL|  Selecting function of the POD3/TMOOUT pin
0 The POD3/TMOOUT pin is used as a port.
1 The PODs/TMOOUT pin is used for timer 0 output.
Caution This is not related to the serial interface

directly.




CHAPTER 13 PERIPHERAL HARDWARE

13.4.3 Setting Values in the Shift Register
Values are set in the shift register via the data buffer (DBF) using the PUT instruction.
The peripheral address of the shift register is 01H. When sending a value to the shift register using the PUT

instruction, only the low-order 8 bits (DBF1, DBFO) of DBF are valid. The DBF3 and DBF2 values do not affect the
shift register.

Figure 13-26. Setting a Value in the Shift Register

Example of setting value 64H in the shift register

SIODATL DAT 4H ; SIODATL is assigned to 4H using symbol definition.
SIODATH DAT 6H ; SIODATH is assigned to 6H using symbol definition.
MOV DBFO, #SIODATL
MOV DBF1, #SIODATH ;

PUT SIOSFR, DBF ; Value is transmitted using reserved word SIOSFR.

1

Data buffer

DBF3 DBF2 DBF1 DBFO

bs | b2| bi| bo|bs | b2|bi|bo|bs bz |bi1]|bo|bs]|bz|bi]|bo

Don't care Don't care 0 1 1 0|0 1 O 0

8-bit data

PUT SIOSFR, DBF

SIOSFR (Peripheral address 01H)

b7

be | bs

0i1i1/0|0;1:0}0

ba | bs

bo

bz | b1

147



CHAPTER 13 PERIPHERAL HARDWARE

13.4.4 Reading Values from the Shift Register
A value is read from the shift register via the data buffer (DBF) using the GET instruction. The shift register has

peripheral address 01H and only the low-order 8 bits (DBF1, DBFO) are valid. Executing the GET instruction does

not affect the high-order 8 bits of DBF.

GET DBF, SIOSFR; Example of using reserved words DBF and SIOSFR

148

Figure 13-27. Reading a Value from the Shift Register

Data buffer
DBF3 DBF2 DBF1 DBFO
bs | b2| bi| bo|bs | b2|bi|bo|bs|b2|bi]|bo|bs]|bz|bi]|hbo
Retained Retained 0oi1/1/0/0i1i0i0
GET DBF, SIOSFR
8-bit data

SIOSFR (Peripheral address 01H)

b7

bs | bs

ba

bs

b2 bo

b1

0

11

)

0!

100




CHAPTER 14 INTERRUPT FUNCTIONS

The uPD17134A subseries has four internal interrupt functions and one external interrupt function. It can be used
in various applications.

The interrupt control circuit of the uPD17134A subseries has the features listed below. This circuit enables very
high-speed interrupt processing.

(@) Used to determine whether an interrupt can be accepted with the interrupt mask enable flag (INTE) and
interrupt enable flag (IPxxx).

(b) The interrupt request flag (IRQxxx) can be tested or cleared. (Interrupt generation can be checked by
software.)
(c) Multiple interrupts are possible (up to three levels).

(d) Standby mode (STOP, HALT) can be released by an interrupt request. (Release source can be selected by
the interrupt enable flag.)

Caution In interrupt processing, the bank register and the BCD, CMP, CY, Z, and IXE flags are saved in
the stack automatically by the hardware for up to three levels of multiple interrupts. The DBF
and WR are not saved by the hardware when peripheral hardware such as the timers or A/D
converter is accessed in interrupt processing. Itis recommended that the DBF and WR be saved
in RAM by the software at the beginning of interrupt processing. Saved data can be loaded back
into the DBF and WR immediately before the end of interrupt processing.

149



CHAPTER 14 INTERRUPT FUNCTIONS

14.1 INTERRUPT SOURCE TYPES AND VECTOR ADDRESSES

For every interrupt in the uPD17134A subseries, when the interrupt is accepted, a branch occurs to the vector

address associated with the interrupt source. This method is called the vectored interrupt method. Table 14-1 lists

the interrupt source types and vector addresses.
If two or more interrupts occur simultaneously, or if two or more pending interrupts are enabled at the same time,

processing is performed according to the priorities shown in Table 14-1.

Table 14-1. Interrupt Source Types

o Vector IRQ fla P fl EG fl Internal/ R "
Interrupt source Priority address g ag ag external emarks
INT pin (RF: OFH, bit 0) 1 0005H [IRQ P IEGMDO0,1 | External Rising edge or falling edge
RF: 3FH, RF: 2FH, | RF: 1FH can be selected.
bit 0 bit 0
Timer O 2 0004H [IRQTMO IPTMO Internal
RF: 3EH, RF: 2FH, -
bit 0 bit 1
Timer 1 3 0003H [IRQTM1 IPTM1 Internal
RF: 3DH, | RF: 2FH, -
bit 0 bit 2
Basic interval timer 4 0002H [IRQBTM IPBTM _ Internal
RF: 3CH, | RF: 2FH,
bit 0 bit 3
Serial interface 5 0001H |[IRQSIO IPSIO _ Internal
RF: 3BH, RF: 2EH,
bit 0 bit 0

150




CHAPTER 14 INTERRUPT FUNCTIONS

14.2 HARDWARE COMPONENTS OF THE INTERRUPT CONTROL CIRCUIT

The flags of the interrupt control circuit are explained below.

(1) Interrupt Request Flag and the Interrupt Enable Flag

)

The interrupt request flag (IRQxxx) is set to 1 when an interrupt request occurs. When interrupt processing
is executed, the flag is automatically cleared to 0.
Aninterrupt enable flag (IPxxx) is provided for each interruptrequest flag. Ifthe flagis 1, aninterruptis enabled.

If it is O, the interrupt is disabled.

EI/DI instruction

The EI/DI instruction is used to determine whether an accepted interrupt is to be executed.

If the El instruction is executed, the interrupt enable flag (INTE) for enabling interrupt reception is set. If the

interrupt is accepted, INTE is cleared to 0. Since the INTE flag is not registered in the register file, flag status

cannot be checked by instructions.

The Dl instruction clears the INTE flag to 0 and disables all interrupts.

At reset the INTE flag is cleared to O and all interrupts are disabled.

Table 14-2. Interrupt Request Flag and Interrupt Enable Flag

Interrupt . ) . Interrupt
Signal for setting the interrupt request flag

request flag enable flag

IRQ Set by edge detection of an INT pin input signal. A IP
detection edge is selected by IEGMDO or IEGMD1.

IRQTMO Set by a match signal from timer 0. IPTMO

IRQTM1 Set by a match signal from timer 1. IPTM1

IRQBTM Set by an overflow (reference time interval signal) IPBTM
from the basic interval timer.

IRQSIO Set by a serial data transmission end signal from IPSIO
the serial interface.

151



CHAPTER 14 INTERRUPT FUNCTIONS

Figure 14-1. Interrupt Control Register (1/6)

RF: OFH
Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 INT
Read/write R Read = R, write = W
Initial value when reset 0 ‘ 0 ‘ 0 ‘ Note
INT Status of the INT pin
0 Sets logical status to 0 during PEEK instruction
execution.
1 Sets logical status to 1 during PEEK instruction
execution.

Note Valuesare notlatched and so change momentarily
according to pin logic. Once the IRQ flag is set,
however, itremains setuntil aninterruptis accepted.
The POKE instruction to address OFH is invalid.

RF: 1FH
Bit 3 Bit 2 Bit 1 Bit 0
0 0 IEGMD1| IEGMDO
Read/write R/W Read = R, write = W
Initial value when reset 0 ‘ 0 ‘ 0 ‘ 0

152

Selection of the interrupt

IEGMD1|IEGMDO : )
detection edge of the INT pin

0 0 Interrupt at the rising edge
0 1 Interrupt at the falling edge
1 0

Interrupt at both edges




CHAPTER 14 INTERRUPT FUNCTIONS

Figure 14-1. Interrupt Control Register (2/6)

RF: 3FH
Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 IRQ
Read/write R/W Read = R, write = W
Initial value when reset 0 ‘ 0 ‘ 0 ‘ 0
When read
IRQ INT pin interrupt request
0 No interrupt request has been issued from the INT
pin or an INT pin interrupt is being processed.
1 An interrupt request from the INT pin occurs or
an INT pin interrupt is being held.
When write
—1 IRQ INT pin interrupt request
0 An interrupt request from the INT pin is forcibly
released.
1 An interrupt request from the INT pin is forced to
occur.
RF: 3EH
Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 IRQTMO
Read/write R/W Read = R, write = W
Initial value when reset 0 ‘ 0 ‘ 0 ‘ 0
When read
IRQTMO TMO interrupt request
0 No interrupt request has been issued from
timer O or a timer O interrupt is being processed.
The contents of the timer O count register
1 matches that of the timer 0 modulo register and
an interrupt request occurs. Or a timer O interrupt
request is being held.
When write
IRQTMO TMO interrupt request
0 An interrupt request from timer O is forcibly
released.
1 An interrupt request from timer O is forced to
occur.
Remark If TMORES issetto 1, IRQTMO is clearedto 0.

153



CHAPTER 14 INTERRUPT FUNCTIONS

Figure 14-1. Interrupt Control Register (3/6)

RF: 3DH
Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 IRQTM1
Read/write R/W Read = R, write = W
Initial value when reset 0 ‘ 0 ‘ 0 ‘ 1
When read
IRQTM1 TM1 interrupt request
0 No interrupt request has been issued from timer
1 or atimer 1 interrupt is being processed.
The contents of the timer 1 count register
1 matches that of the timer 1 modulo register
and an interrupt request occurs. Or a timer 1
interrupt request is being held.
When write
—1IRQTM1 TM1 interrupt request
0 An interrupt request from timer 1 is forcibly
released.
1 An interrupt request from timer 1 is forced to
occur.
Remark If TM1RES issetto 1, IRQTM1 is clearedto 0.
RF: 3CH IRQTM1 is cleared to O also immediately after
Bit3 | Bit2 Bitl | Bit0 the execution of the STOP instruction.
0 0 0 IRQBTM
Read/write R/W Read = R, write = W
Initial value when reset 0 ‘ 0 ‘ 0 ‘ 0
When read
IRQBTM BTM interrupt request
No interrupt request has been issued from the
0 basic interval timer or a basic interval timer
interrupt is being processed.
The basic interval timer overflows and an
1 interrupt request occurs. Or a basic interval
timer interrupt request is being held.
When write
—1IRQBTM BTM interrupt request
0 An interrupt request from the basic interval timer
is forcibly released.
An interrupt request from the basic interval timer
L is forced to occur.
Remark IfBTMRES issetto 1, IRQBTMis clearedtoO.

154




CHAPTER 14 INTERRUPT FUNCTIONS

Figure 14-1. Interrupt Control Register (4/6)

RF: 3BH
Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 IRQSIO
Read/write R/W Read = R, write = W
Initial value when reset 0 ‘ 0 ‘ 0 ‘ 0
When read
IRQSIO SIO interrupt request
No interrupt request has been issued from the
0 serial interface or a serial interface interrupt is
being processed.
Serial interface transmission is completed and
1 an interrupt request occurs. Or, a serial
interface
When write
—1 IRQSIO SIO interrupt request
0 An interrupt request from the serial interface is
forcibly released.
1 An interrupt request from the serial interface is
forced to occur.

155



CHAPTER 14 INTERRUPT FUNCTIONS

Figure 14-1. Interrupt Control Register (5/6)

RF: 2FH
Bit 3 Bit 2 Bit 1 Bit 0
IPBTM | IPTM1 IPTMO IP
Read/write R/W Read = R, write = W
Initial value when reset 0 ‘ 0 ‘ 0 ‘ 0

156

P INT pin interrupt enable

Disables an interrupt from the INT pin.
Holds an interrupt even if the IRQ flag is set to 1.

Enables an interrupt from the INT pin.
1 Executes the El instruction. If the IRQ flag is set
to 1, executes interrupt processing.

IPTMO TMO interrupt enable
Disables an interrupt from timer O.
0 Holds an interrupt even if the IRQTMO flag is set
to 1.

Enables an interrupt from timer 0.
1 Executes the El instruction. If the IRQTMO flag is
set to 1, executes interrupt processing.

IPTM1 TM1 interrupt enable
Disables an interrupt from timer 1.
0 Holds an interrupt even if the IRQTML1 flag is set
to 1.

Enables an interrupt from timer 1.
1 Executes the El instruction. If the IRQTML flag is
set to 1, executes interrupt processing.

IPBTM BTM interrupt enable
Disables an interrupt from the basic interval timer.
0 Holds an interrupt even if the IRQBTM flag is set
to 1.

Enables an interrupt from the basic interval timer.
1 Executes the El instruction. If the IRQBTM flag is
set to 1, executes interrupt processing.




CHAPTER 14 INTERRUPT FUNCTIONS

Figure 14-1. Interrupt Control Register (6/6)

RF: 2EH
Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 IPSIO
Read/write R/W
Initial value when reset 0 ‘ 0 ‘ 0 ‘ 0

Read = R, write = W

IPSIO SIO interrupt enable
Disables an interrupt from the serial interface.
0 Holds an interrupt even if the IRQSIO flag is set
to 1.

Enables an interrupt from the serial interface.
1 Executes the El instruction. If the IRQSIO flag is
set to 1, executes interrupt processing.

157



CHAPTER 14 INTERRUPT FUNCTIONS

14.3 INTERRUPT SEQUENCE

14.3.1 Receiving an Interrupt

When an interrupt is accepted, interrupt processing starts after the instruction cycle of the instruction being
executed is completed. The program flow is transferred to a vector address. However, if an interrupt occurs during
MOVT or El instruction, or if an instruction that satisfies the skip condition is executed, the interrupt processing is
started two instruction cycles later.

When interrupt processing starts, one level of the address stack register is consumed to store the program return
address, and one level of the interrupt stack register is consumed to save BANK and PSWORD in the system register.

If two or more interrupts occur or are enabled, interrupt processing is executed in descending order of priority. A
lower-priority interrupt is held until a higher-priority interrupt is processed.

See priorities shown in Table 14-1.

Figure 14-2. Interrupt Processing Procedure

Interrupt request generation

Set IRQxxx
Y
NO
IPxxx set?
v
YES Hold interrupt until IPxxx is set
. . NO -
El instruction executed?
(INTE = 1?) Y
Hold interrupt until El instruction
YES is executed

Clear INTE flag and IRQxxx associated with
accepted interrupt to 0

Decrement stack pointer by 1 (SP — 1)

Y
Save contents of program counter in stack
pointed to by stack pointer

Load vector address into program counter

Save PSWORD content in interrupt stack

158



CHAPTER 14 INTERRUPT FUNCTIONS

14.3.2 Return from the Interrupt Routine
Execute the RETI instruction to return from the interrupt processing routine. During the RETI instruction cycle,
processing in the figure below occurs.

Figure 14-3. Return from Interrupt Processing

Execute RETI instruction

Y
Load contents of stack pointed to by stack
pointer into program counter

Y
Load contents of interrupt-dedicated stack
into PSWORD

Increment stack pointer value by one

Caution The INTE flag is not set for the RETI instruction.
Interrupt processing is completed. To handle a pending interrupt successively, execute the EIl
instruction immediately before the RETI instruction and set the INTE flag to 1.
To execute the RETI instruction following the El instruction, no interrupt is accepted between El
instruction execution and RETI instruction execution. This is because the El instruction sets the
INTE flag to 1 after the execution of the subsequent instruction is completed.

Example

El instruction execution ——» Single interrupt

Timer O interrupt processing

Timer O interrupt generation —

Timer 1 interrupt generation — (held)

El
RETI

Timer 1 interrupt processing

Timer O interrupt generation —| (held) RETI

159



CHAPTER 14 INTERRUPT FUNCTIONS

14.3.3 Interrupt Accepting Timing

Figure 14-4 shows a timing chart that illustrates how interrupts are accepted.

The uPD17134A subseries xecutes one instruction in 16 clocks or in 1 instruction cycle. One instruction cycle

consists of four states, MO to M3, with each state made up of 4 clocks.

An interrupt occurs asynchronously in respect to the program operation. The program recognizes the occurrence

of the interrupt at the leading edge of state M2.

Figure 14-4. Interrupt Accepting Timing (When INTE =1, IP

(1) If interrupt occurs before M2 of instruction other than MOVT and El

Machine cycle

Instruction

IRQxxx

xxx = 1) (1/3)

MO | M1 | M2 | M3 | MO | ML | M2 | M3 | MO | M1 | M2 | M3 | MO | M1
Instruction other than MOVT and EI INT cycle Instruction of vector address
:V Occurrence of interrupt is recognized.
(2) If skip condition of skip instruction is satisfied in (1)
MO | ML | M2 | M3 | MO i ML | M2 | M3 | MO | ML | M2 | M3 | MO | M1

Machine cycle

Instruction

IRQxxx

Skip instruction

Treated as NOP

INT cycle

Instruction of vector address

‘V Occurrence of interrupt is recognized.

(3) If interrupt occurs after M2 of instruction other than MOVT and El

Machine cycle

Instruction

IRQxxx

160

MO | ML | M2 | M3

MO | M1 | M2 | M3

MO | ML | M2 | M3

MO | M1

Instruction other than MOVT and El

Instruction other than MOVT and El

INT cycle

Instruction of vector address

‘V Occurrence of interrupt is recognized.




CHAPTER 14 INTERRUPT FUNCTIONS

Figure 14-4. Interrupt Accepting Timing (When INTE =1, IP

(4) If interrupt occurs before M2 of MOVT instruction

Machine cycle

Instruction

IRQxxx

Machine cycle

Instruction

IRQ--

Machine cycle

Instruction

IRQxxx

Machine cycle

xxx = 1) (2/3)

MO | ML | M2 | M3 | MO' | MI' | M2 | M3 | MO | M1 | M2 | M3 | MO | M1 |
MOVT instruction INT cycle Instruction of vector address
:V Occurrence of interrupt is recognized.
(5) If interrupt occurs before M2' of MOVT instruction
MO | ML | M2 | M3 | MO | MI' | M2 | M3 | MO | M1 | M2 | M3 | MO | M1 |
MOVT instruction INT cycle Instruction of vector address
:V Occurrence of interrupt is recognized.
(6) If interrupt occurs before M2 of El instruction
MO | ML | M2 | M3 | MO i ML | M2 | M3 | MO | ML | M2 | M3 | MO | M1 !
El instruction Instruction other than MOVT and El INT cycle Instruction of vector address
:V Occurrence of interrupt is recognized.
(7) If interrupt occurs after M2 of El instruction
MO | ML | M2 | M3 | MO | M1 | M2 | M3 | MO | M1 | M2 | M3 | MO | M1 |
El instruction Instruction other than MOVT and El INT cycle Instruction of vector address

Instruction

IRQxxx

‘V Occurrence of interrupt is recognized.

1

161



CHAPTER 14 INTERRUPT FUNCTIONS

Figure 14-4. Interrupt Accepting Timing (When INTE =1, IP  xxx = 1) (3/3)

(8) If interrupt occurs during skip of skip instruction (treated as NOP)

Machine cycle MO | ML | M2 | M3 | MO | ML | M2 | M3 | MO | M1 | M2 | M3 | MO | M1

Instruction Skip instruction Treated as NOP INT cycle Instruction of vector address

‘V Occurrence of interrupt is recognized.

IRQxxx

Remarks 1. The INT cycle is for preparation of an interrupt. In this cycle, the contents of PC and PSWORD are
saved, and IRQxxx is cleared.
2. The MOVT instruction exceptionally requires 2 instruction cycles.
3. The Elinstruction is designed so that multiplexed interrupt does not occur when program execution
returns from interrupt processing.

162



CHAPTER 14 INTERRUPT FUNCTIONS

14.4 MULTI-INTERRUPT

Multi-interrupt is a method that executes interrupt processing of other interrupt source B and C during the interrupt

processing for an interrupt source A as shown in Figure 14-5.

Nesting level at this time is also called interrupt level.

Pay attention to the following points when using multi-interrupt.

(1) Priority of interrupt source

(2) Limit of interrupt levels by interrupt stack (maximum 3 levels for the uPD17134A subseries)

Achievement of —

interrupt A

Figure 14-5. Example of Multi-interrupt

Main processing

Interrupt processing A

El—™

El (enables multi-interrupt)

Interrupt processing B

Interrupt disabled

Achievement of — Enables interrupt in
interrupt B interrupt processing A

Achievement of —
interrupt C

El
~— RETI

Interrupt enabled

Interrupt disabled

\EI

~— RETI

Interrupt processing C

Enables interrupt in
interrupt processing A

Interrupt enabled

Interrupt disabled

\EI

-— RETI

163



CHAPTER 14 INTERRUPT FUNCTIONS

As shown in Figure 14-5, INTE flag is cleared automatically and becomes interrupt disable state when interrupt

has been achieved. Therefore, when executing multi-interrupt processing, execute El instruction during interrupt

processing.

Caution Maximum number of interrupt levels is 3. When achieving interrupt, interrupt stack register and

address stack register are consumed by one level. Address stack register is consumed by MOVT

instruction and PUSH instruction other than CALL instruction. Pay attention to the nesting level

of address stack.

14.5 PROGRAM EXAMPLE OF INTERRUPT

164

Program example of countermeasure for noise reduction of external interrupt (INT pin)

This example assumes the case of assigning INT pin for key input, etc.

When taking into the microcomputer data in kind of switch such as key input processing, it takes some time for

the level of input voltage to be stabilized after pushing the key or switch. Accordingly, the countermeasures

for removing the noise generated by key, etc. should be executed by software.

In the following program, after generating external interrupt, the signal from INT pin becomes effective after

confirming that there is no change in the level of INT pin two times in every 100 us.

Example

WAITCNT MEM

CHKRAM MEM

KEYON FLG

CHK100U FLG
ORG
BR
ORG
BR

JOB_INIT:
MOV
MOV
INITFLG

CLR1
SET1
El

MAIN:
CALL
CALL

BR

0.00H ; Counter of wait processing

0.01H

0.01H.3 ; If key turns ON (even just once), KEYON =1

0.01H.0 ; CHK100U = 1 only when passing 100 us during WAIT loop
OH

JOB_INIT

5H

INT_JOB

WAITCNT, #0 ; Clears RAM and the flag on RAM
CHKRAM, #0 ;
NOT IEGMD1, IEGMDO
; Rising edge is effective for the interrupt from INT pin

IRQ
P

55J0B
55J0B

MAIN



CHAPTER 14 INTERRUPT FUNCTIONS

INT_JOB:

WAIT_END:

KEY_NO:

NOP
NOP

ADD
SKE
BR
SKF1
BR

SKF1
BR

SET1
BR

SET1

CLR1

El
RETI

; Loop which executes waiting for 100 us at 8 MHz
; 2 ps (1 instruction) x 5 instructions x 10 times
; (count value at WAIT)

WAITCNT, #01 ;

WAITCNT, #0A ;

INT_JOB ;

INT ; Check the level of INT pin

KEY_NO ; If INT pin is high level, interrupt is invalid, and returns
; to main processing

CHK100U ; First wait? (CHK100U = 0?)

WAIT_END ; If it is the first time, wait again after setting CHK100U.
; In the case of the second time, finish wait processing

CHK100U ;

INT_JOB

KEY_ON ; Judges that there is key input

CHK100U ; CHK100U ~ 0

165



[MEMO]

166



CHAPTER 15 AC ZERO CROSS DETECTION

The INT pinis the interrupt signal input pin and timer count clock input pin. Italso used as an AC zero cross detector
input pin. This pin can be selected by writing 1 in ZCROSS (RF: 1DH bit 0).

Figure 15-1. Block Diagram for the AC Zero Cross Detector

8 Internal bus 2

RF: 1DH
[0]0]0| zCROSS

AC zero cross detector Zero cross detection signal
INT (To INT, TMO, BTM)
AC || @

External coupling
capacitor | 7

Caution When the AC zero cross detection circuit is used, the current consumption slightly increases (to
15 uA TYP.) even in the standby mode. To prevent an increase in the current consumption, clear
ZCROSS to 0, and fix the input voltage of the INT pin to the high or low level.

The zero cross detector consists of a high gain amplifier which uses the self-bias method. It biases the input to
the switching point and causes digital displacement in response to slight displacement of INT pin input. It detects
changes of an AC signal from minus to plus and vice versa. This signal is input through the external coupling capacitor.
The signal changes 0 to 1 and vice versa at each displacement point.

167



CHAPTER 15 AC ZERO CROSS DETECTION

Figure 15-2. Zero Cross Detection Signal

VP_PNole

ov
AC input waveform

(®)

Zero cross detection
signal

(®)

Note The range of the input voltage when the INT pin is used as the input pin of the AC zero cross circuit is 1.0
Vp-p to 3.0 Vp-p.
Because the AC zero cross circuit does not have a function to reject noise, input a signal from which noise
has been eliminated in advance to this circuit.

A pulse generated in the zero cross detector can be used as a timer 0 count clock and basic interval timer count
clock in the same way as when the pulse does not go through the zero cross detector. The pulse is sentto the interrupt
control circuit. Interrupt processing starts if an INT pin interrupt is enabled. To accept an interrupt, set [IEGMDO (RF:
1FH bit 0) and IEGMD1 (RF: 1FH bit 1) to select a signal rising edge, falling edge, or both rising and falling edges.

168



CHAPTER 16 STANDBY FUNCTION

16.1 OVERVIEW OF THE STANDBY FUNCTION

The pPD17134A subseries has a standby function to reduce the current consumption. The standby function can
be used in two modes which can be selected as the application requires: STOP and HALT modes.

In the STOP mode, the system clock is stopped. Therefore, the current consumption of the CPU in this mode is
only the leakage current. This mode is effective for holding the contents of the data memory without the CPU operating.

In the HALT mode, oscillation of the system clock continues, but the CPU is stopped because supply of the clock
to the CPU is stopped. The current consumption in this mode is greater than in the STOP mode. However, operation
can be resumed immediately after the HALT mode has been released because the system clock is oscillating. In both
the STOP and HALT Modes, the contents of the data memory and registers, and the status of the output latch of the
output port immediately before the standby mode is set are retained (except STOP 0000B). Therefore, set the port
status to reduce the overall current consumption of the system before setting a standby mode.

Table 16-1. Status in Standby Mode

STOP mode HALT mode
Setting instruction STOP instruction HALT instruction
System clock oscillation circuit Oscillation stops Oscillation continues
Operating CPU » Operation stops
status RAM » Retains previous status
Port « Retains previous statusNo©
T™MO » Can operate only when INT input is » Can operate

selected as count pulse
« Stops if system clock is selected (count
value is retained)

T™M1 » Operation stops * Can operate
(count value is reset to “0”)
(count up is also disabled)

BTM » Operation stops « Can operate
(count value is retained)

SIO » Can operate only when external clock is e Can operate
selected as serial clockNo®

A/D » Operation stopsN°® (ADCR — 00H) e Can operate

INT « Can operate « Can operate

Note When STOP 0000B is executed, these pins are set in the input port mode including when the multiplexed
function of the pin is used.

Cautions 1. Be sure to place a NOP instruction immediately before the STOP or HALT instruction.

2. The standby mode is not set if both the interrupt request flag and interrupt enable flag are
set and the interrupt is specified as the condition to release the standby mode.

169



CHAPTER 16 STANDBY FUNCTION

16.2 HALT MODE

16.2.1 Setting HALT Mode
The HALT mode is set when the HALT instruction is executed.
Operand bsbzbibo of the HALT instruction specifies the condition under which the HALT mode is released.

Table 16-2. HALT Mode Release Condition

Format: HALT bsb2bibo

Bit HALT mode release conditionNote 1

bs Enables release by IRQxxxx when 1Notes 2,4

b2 Fixed to “0”

b1 Enables forced release by IRQTM1 when 1Notes 3. 4

b2 Fixed to “0”

Notes HALT 0000B enables only reset (ﬁ input, power-ON/power-down reset).

IPxxx must be 1.

The HALT mode is released regardless of the status of IPTM1.

Even if the HALT instruction is executed while IRQxxx = 1, the HALT instruction is ignored (treated

as a NOP instruction), and the HALT mode is not set.

Bwopoe

16.2.2 Start Address after HALT Mode Is Released

The address from which program execution is started after the HALT mode has been released differs depending
on the release condition and interrupt enable condition.

Table 16-3. Start Address after HALT Mode Is Released

Release condition | Start address after HALT mode is released

ResetNote 1 Address 0

IRQxxxNote 2 Address next to HALT instruction in DI status
Interrupt vector in El status (if two or more IRQxxx are set, interrupt vector with highest priority)

Notes 1. RESET input and power-ON/power-down reset are valid.
2. IPxxx must be 1 except when the HALT mode is forcibly released by IRQTM1.

170



CHAPTER 16 STANDBY FUNCTION

Figure 16-1. Releasing HALT Mode

(a) By RESET input

HALT instruction executed TM1 counts up

' '

RESET

Operation mode ~—==—HALT Mode —=~— System reset status —==— WAIT —==—Operation mode
w ‘ ‘ " (starts from address 0)

WAIT: Wait time until TM1 counts 256 clocks divided by 512
256 x 512/fcc + a (approx. 65 ms + a, fcc = 2 MHz)
a: Oscillation growth time (differs depending on resonator)

(b) By IRQ xxx (in DI status)

HALT instruction executed

IRQxxx

Operation mode — HALT mode

Operation mode

(c) By IRQ xxx (in El status)
HALT instruction executed Interrupt processing accepted

i
|

|RQxx><

Operation mode — HALT mode Operation mode

171



CHAPTER 16 STANDBY FUNCTION

16.2.3 HALT Mode Setting Conditions

(1) Forced releasing by IRQTM1

Setting conditions

Release by external clock | e Timer 0 and timer 1 are used as 16-bit timer (TMOCK1 =1, TMOCKO = 1, TM1CK1 =1,
TM1CKO = 1)

Timer 0 and timer 1 are enabled to operate (TMOEN = 1, TM1EN = 1)

Interrupt flag of timer 1 is cleared (IRQTM1 = 0)

Release by internal clock e Timer 1 is enabled to operate
e Interrupt request flag of timer 1 is cleared (IRQTM1 = 0)

(2) Release by interrupt request flag (IRQ  xxx)

e Peripheral hardware used to release HALT mode is enabled to operate in advance.

Timer O Operation enabled (TMOEN = 1)

Timer 1 Operation enabled (TM1EN = 1)

Timer O + timer 1 Timer 1 selects count up signal from timer 0 as count pulse (TM1CK1 =1, TM1CKO = 1).
Timer O and timer 1 are enabled to operate (TMOEN = 1, TM1EN = 1)

Basic interval timer Always enabled to operate

Serial interface Serial interface circuit is enabled to operate (SIOTS = 1, SIOEN = 1)

INT pin Edge selected

e Clear the interrupt request flag (IRQxxx) of the peripheral hardware used to release the HALT mode to O.
e Set the interrupt enable flag (IPxxx) of the peripheral hardware used to release the HALT mode to 1.

Caution Be sure to include a NOP instruction immediately before the HALT instruction.
By doing so, atime of one instruction is created between the IRQ xxx manipulation instruction
and HALT instruction. Consequently, clearing IRQ  xxx is correctly reflected on the HALT
instruction in the case, for example, of the CLR1 IRQ  xxx instruction (refer to Example 1
below). Unless a NOP instruction is described immediately before the HALT instruction, the
CLR1 IRQxxx instruction is not correctly reflected on the HALT instruction, and the HALT
mode is not set (Example 2).

172




CHAPTER 16 STANDBY FUNCTION

Example 1. Correct program

(Setting of IRQxxx)

CLR1 IRQxxx
NOP ; Describe NOP instruction immediately before HALT instruction.
; (Clearing of IRQxxx is correctly reflected on HALT instruction.)

HALT 1000B ; Correctly execute HALT instruction (HALT mode is set).

2. Incorrect program

(Setting o.f IRQxxx)

CLR1 IRQxxx ; Clearing of IRQxxx is not reflected on HALT instruction.
; (It is reflected on instruction next to HALT instruction.)

HALT 1000B ; HALT instruction is ignored (HALT mode is not set).

173



CHAPTER 16 STANDBY FUNCTION

16.3 STOP MODE
16.3.1 Setting of STOP Mode
The STOP mode is set by executing the STOP instruction.
The operand bsbz2bibo of the STOP instruction specifies the condition under which the STOP mode is to be released.

Table 16-4. STOP Mode Release Condition

Format: STOP bsb2bibo

Bit STOP mode release conditionNot 1

bs Enables release of STOP mode by IRQxxx when 1Not 2

b2 Fixed to “0”

b1 Fixed to “0”

bo Fixed to “0”

Notes 1. STOP 0000B enables only reset (Fm input or power-ON/power-down reset). The internal circuitry
of the microcontroller is initialized to the status immediately after reset when STOP 0000B is executed.
2. IPxxx must be 1. The STOP mode cannot be released by IRQTM1.
Even if the STOP instruction is executed when IRQxxx = 1, the STOP instruction is ignored (treated
as NOP), and the STOP mode is not set.

16.3.2 Start Address After STOP Mode Is Released
The address from which program execution is started after the STOP mode has been released differs depending

on the release condition and interrupt enable condition.

Table 16-5. Start Address after STOP Mode Is Released

Release condition Start address after STOP mode is released
ResetNote 1 Address 0
IRQxxxNote 2 Address next to that of STOP instruction in DI status

Interrupt vector in El status
(If two or more IRQxxx are set, interrupt vector with highest priority)

Notes 1. Only RESET input and power-ON/power-down reset are valid.
2. IPxxx must be 1. The STOP mode cannot be released by IRQTML1.

174



CHAPTER 16 STANDBY FUNCTION

Figure 16-2. Releasing STOP Mode

(a) Releasing STOP mode by RESET input

STOP instruction executed TM1 counts up

RESET

Operation mode —ﬁf STOP mode *% System reset status

Operation mode
(starts from address 0)

WAIT: Wait time until TM1 counts 256 clocks divided by 512
256 x 512/fcc + a (approx. 65 ms + a, fcc = 2 MHz)
a: Oscillation growth time (differs depending on resonator)

(b) Releasing STOP mode by IRQ xxx (in DI status)

STOP instruction executed TM1 counts up

IRQxxx

Operation mode ~ —= STOP mode

Operation mode

WAIT: Wait time until TM1 counts (n + 1) clocks divided by m
(n + 1) x m/fcc + a (n and m are values immediately before STOP mode is set)
a: oscillation growth time (differs depending on resonator)

(c) Releasing STOP mode by IRQ xxx (in El status)

STOP instruction executed TM1 counts up, interrupt processing accepted

IRQxxx

Operation mode ~ —

STOP mode Operation mode

WAIT: Wait time until TM1 counts (n + 1) clocks divided by m (n + 1) x m/fcc + a
(n and m are values immediately before STOP mode is set)
a: oscillation growth time (differs depending on resonator)

175



CHAPTER 16 STANDBY FUNCTION

16.3.3 STOP Mode Setting Conditions

When STOP mode is to be released by IRQ xxx

Releasing by IRQ

Selects edge of signal to be input from INT pin (IEGMD1, IEGMDO).

Sets modulo register value of timer 1 (that creates oscillation stabilization wait time).
Clears interrupt request flag (IRQ) of INT pin to 0.

Sets interrupt enable flag (IP) of INT pin to 1.

Releasing by IRQSIO

Selects external clock input from SCK pin as source clock (SIOCK1 = 0, SIOCKO = 0).
Enables serial interface to operate (SIOTS = 1).

Sets modulo register value of timer 1 (that sets oscillation stabilization time).

Clears interrupt request flag of serial interface (IRQSIO) to 0.

Sets interrupt enable flag of serial interface (IPSIO) to 1.

Releasing by IRQTMO

Selects external clock input from INT pin as source clock of timer 0 (TMOCK1 =1, TMOCKO = 1).
Sets modulo register value of timer 0.

Sets modulo register value and source clock of timer 1 (that creates oscillation stabilization time).
Enables timer O to operate (TMOEN = 1).

Clears interrupt request flag (IRQTMO) to 0

Sets interrupt enable flag of timer 0 (IPTMO) to 1.

176




CHAPTER 16 STANDBY FUNCTION

Caution Be sure to include a NOP instruction before the STOP instruction. By doing so, a time of one
instruction is created between the IRQ  xxx manipulation instruction and STOP instruction. As
a result, clearing IRQ xxx, for example, is correctly reflected on the STOP instruction when the
IRQxxx instruction is executed (refer to Example 1 below). Unless a NOP instruction is described
immediately before the STOP instruction, the CLR1 IRQ  xxx instruction is not reflected on the
STOP instruction, and the STOP mode is not set (Example 2).

Example 1. Correct program
(Setting of IRQxxx)
CLR1
NOP IRQxxx
STOP 1000B
2. Incorrect program

(Settin{; of IRQxxx)

CLR1 IRQxxx

STOP 1000B

; Describe NOP instruction immediately before the STOP instruction.
; (Clearing IRQxxx is correctly reflected on the STOP instruction.)
; STOP instruction is correctly executed (STOP mode is set).

; Clearing IRQxxx is not reflected on the STOP instruction.
; (It is reflected on the instruction next to the STOP instruction.)
; The STOP instruction is ignored (STOP mode is not set).

177



[MEMO]

178



CHAPTER 17 RESET

The uPD17134A subseries is reset in the following four ways.

(1) By RESET input

(2) Power-ON/power-down reset that resets the microcontroller on power application or when supply voltage
drops

(3) Watchdog timer that resets the microcontroller in case of a program hang-up

(4) Reset because of overflow/underflow of address stack

The power-ON/power-down reset function is effective when the supply voltage is 4.5 to 5.5 V.

179



CHAPTER 17 RESET

17.1 RESET FUNCTION

The reset function is used to initialize the device operation. How the device is initialized differs depending on the

type of reset effected.

Table 17-1. Hardware Status at Reset

Reset method | « RESET input RESET input in « Overflow of
during operation standby mode watchdog timer
e Internal power-ON/ Internal power-ON/ | , Overflow and
power-DOWN power-DOWN underflow of stack
reset during reset in standby
Hardware operation mode
Program counter 0000H 0000H 0000H
1/0 mode Input Input Input
Port
Output latch 0 0 Undefined
General-purpose Other than DBF Undefined Retains previous Undefined
status
data memory
DBF Undefined Undefined Undefined
Other than WR 0 0 0
System register : )
WR Undefined Retains previous Undefined
status

Control register

SP =5H, IRQTM1 =1, TM1EN = 1, IRQBTM =
0, and INT = status of INT pin at that time.

Others are 0.

Refer to CHAPTER 9 REGISTER FILE (RF).

SP = 5H, INT = status
of INT pin at that time.
Others retain previous
status.

. Timer 0: OOH,
Count register 00H 00H . .
Timer 0 and timer 1 timer 1: undefined
Modulo register FFH FFH FFH
Undefined
Counter of basic interval timer Undefined Undefined (40H if watchdog timer
overflows)
. . - . Retains previous .
Shift register of serial interface (SIOSFR) Undefined status Undefined
Data register of A/D converter (ADCR) 00H 00H 00H

180




CHAPTER 17 RESET

Figure 17-1. Reset Block Configuration

8 Internal bus

RF : 10H

Clear
0 0 0 PDRESEN

| Power-down reset circuit

| Power-on reset circuit

D

¥Maskoption
RESET © {>o

17.2 RESETTING

Operation when system reset is caused by the RESET pin is shown in the figure below.

:D—» Internal reset signal

If the RESET pin is set from low to high, system clock oscillation starts and an oscillation stabilization wait occurs

with the timer 1. Program execution starts from address 0000H.

If power-on reset is used, the reset signals shown in Figure 17-2 are internally generated. Operation is the same

as that when reset is caused externally by the RESET pin.

At watchdog timer overflow reset or stack overflow and underflow reset, oscillation stabilization wait time (WAIT)

does not occur. Operation starts from address 0000H after initial statuses are internally set.

Figure 17-2. Reset Operation

RESET

TM1EN

TM1RES _l

-—OQperating mode —>‘+ Reset —=|= WA|TNete *‘F Operating mode

Note This is oscillation stabilization wait time. Operating mode is set when timer 1 counts system clocks (fcc)

512 x 256 counts approx. 65 ms at fcc = 2 MHz).

181



CHAPTER 17 RESET

17.3 POWER-ON/POWER-DOWN RESET FUNCTION

The uPD17134A subseries is provided with two reset functions to prevent malfunctions from occurring in the
microcontroller. They are the power-on reset function and power-down reset function. The power-on reset function
resets the microcontroller when it detects that power was turned on. The power-down reset function resets the
microcontroller when it detects drops in the power voltage.

These functions are implemented by the power monitoring circuit whose operating voltage has a different range
than the logic circuits in the microcontroller and the oscillation circuit (which stops oscillation at reset to put the
microcontroller in a temporary stop state). Conditions required to enable these functions and their operations will be
described next.

Caution When designing an application circuit that calls for high reliability, do not depend on the internal
power-ON/power-DOWN reset function only. Make sure that an external RESET signal is input.

17.3.1 Conditions Required to Enable the Power-On Reset Function
This function is effective when used together with the power-down reset function.
The following conditions are required to validate the power-on reset function:

(1) The power voltage must be within 4.5 to 5.5 V during normal operation, including the standby state.

(2) The frequency of the system clock oscillator must be 400 kHz to 4 MHz. Note

(3) The power-down reset function must be enabled during normal operation, including the standby state.

(4) The power voltage must rise from 0 V to the specified voltage.

(5) The time it takes for the power voltage to rise from 0 to 2.7 V must be shorter than the oscillation stabilization
wait time (system clock fcc = 512 x 256 counts, about 65 ms, at fcc = 2 MHz) counted in timer 1.

Note Applies to the uPD17135A, 17137A, and 17P137A.
When the uPD17134A, 17136A, or 17P136A is used, fcc = 400 kHz to 2 MHz.

Cautions 1. If the above conditions are not satisfied, the power-on reset function will not operate
effectively. In this case, an external reset circuit needs to be added.
2. In the standby state, even if the power-down reset function operates normally, general-

purpose data memory (except DBF) retainsdatauptoV  po=2.7 V. If, however, datais changed
due to an external error, the data in memory is not guaranteed.

182



CHAPTER 17 RESET

17.3.2 Power-On Reset Function and Operation

The power-on reset function resets the microcontroller when it detects that power was turned on in the hardware,
regardless of the software state.

The power-on reset circuit operates under a lower voltage than the other internal circuits. It initializes the
microcontroller regardless whether the oscillation circuit is operating. When the reset is terminated, timer 1 counts
the number of oscillation pulses sent from the oscillator until it reaches the specified value. Within this period,
oscillation becomes stable and the power voltage applied to the microcontroller enters the range (Voo = 2.7 to 5.5
V at 400 kHz to 4 MHz) in which the microcontroller is guaranteed to operate.

When this period elapses, the microcontroller enters normal operation mode. Figure 17-3 shows an example of
the power-on reset operation.

Functions of the power-on reset

(1) This circuit always monitors the voltage applied to the Vob pin.

(2) Thiscircuitresets the internal circuit of the microcomputer, regardless of whether the oscillator circuit operates
or not, when the supply voltage rises, until the voltage reaches the power-ON reset clear voltage (Voo = 1.5
V TYP.).Note

(3) This circuit stops oscillation during the reset operation.

(4) When resetis released, timer 1 counts oscillation pulses. The microcontroller waits until oscillation becomes
stable and the power voltage becomes Voo = 2.7 V or higher.

Note The internal circuit of the microcontroller is not reset until the supply voltage reaches the level at which the
internal circuit can operate (i.e., internal reset signal can be accepted).

183



CHAPTER 17 RESET

Figure 17-3. Example of the Power-On Reset Operation

Vob
V)
B0 [ )
——
27 prm »
At Voltage at which Voo
oscillation starts
Al B : Voltage at which the
power-on reset operation
terminates
RESETote 4
o H1PD17134A subseries
GND
0 Time (t)
TTT

State of
oscillation

Period in which
the microcon-
troller is guar-

anteed to
operate

Power-on
reset signal

Operation state
of the micro-
controller

Notes 1.

184

Oscillating
Oscillation stop

Oscillation start

N

Timer 1 finishes counting

Undefined period™oe ! Guaranteed period°®2

s IWaiting until Operating mode
roscillation

tbecomes stable

™~

Operation stopN°®

Power-on reset termination

During the operation-undefined period, not all of the operations specified for the yPD17134A subseries
are guaranteed. The power-on reset operation is guaranteed in this period.

The operation-guaranteed period refers to the time in which all the operations specified for the
UPD17134A subseries are guaranteed.

An operation stop state refers to the state in which all of the functions of the microcontroller are stopped.



CHAPTER 17 RESET

17.3.3 Condition Required for Use of the Power-Down Reset Function
The power-down reset function can be enabled or disabled using software. The following condition is required to
use this function:

e The power voltage must be within 4.5 to 5.5 V during normal operation, including the standby state.
e The frequency of the system clock oscillator must be 400 kHz to 4 MHz.

Caution When the microcontroller is used with a power voltage of 2.7t0 4.5V, add an external reset circuit

instead of using the internal power-down reset circuit. If the internal power-down reset circuit
is used with a power voltage of 2.7 to 4.5 V, reset operation may not terminate.

17.3.4 Power-Down Reset Function and Operation

This function is enabled by setting the power-down reset enable flag (PDRESEN) using software.

When this function detects a power voltage drop, it issues the reset signal to the microcontroller. It then initializes
the microcontroller. Stopping oscillation during reset prevents the power voltage in the microcontroller from fluctuating
out of control. When the specified power voltage recovers and the power-down reset operation is terminated, the
microcontroller waits the time required for stable oscillation using the timer. The microcontroller then enters normal
operation (starts from address 0).

Figure 17-4 shows an example of the power-down operation. Figure 17-5 shows an example of reset operation
during the period from power-down reset to power recovery.

Functions of the power-down reset

(1) This circuit always monitors the voltage applied to the Vob pin.

(2) When this circuit detects a power voltage drop, it issues a reset signal to the other parts of the microcontroller.
It continues to send this reset signal until the power voltage recovers or all the functions in the microcontroller
stop.

(3) This circuit stops oscillation during the reset operation to prevent software crashes.

When the power voltage recovers to the low-voltage detection level (3.5V TYP., 4.5V MAX.) before the power-
down reset function stops, the microcontroller waits the time required for stable oscillation using timer 1, then
enters normal operation mode.

(4) When the power voltage recovers from 0 V, the power-on reset function has priority.

(5) After the power-down reset function stops and the power voltage recovers before it reaches 0 V, the
microcontroller waits using timer 1 until oscillation becomes stable and the power voltage (Vob) reaches 2.7
V. The microcontroller then enters normal operation mode.

185



CHAPTER 17 RESET

Figure 17-4. Example of the Power-Down Reset Operation

Oscillating

State of
oscillation | ‘ | ‘ | ‘ | |

Oscillation stop

Vop
)
5.0
. ——
45 Maximum voltage detected by the
power-down reset function: 4.5V 1
Typical voltage detected by the Voo
power-down reset function: 3.5V
3.5 e ! Voltage at which the power-down
| reset function terminates = RESET
P 2 I - power-on reset voltage (B): C [/PD17134A subseries
Cl [ GND
0 Time (t)
1 TIT

Period in which ! !
the microcon- | Gyaranteed: period
troller is guar- ‘ !
anteed to
operate

Undefined period°®®

Power-down
reset signal

Power-on
reset signal

Operation state
of the micro- ‘

controller | Operating Reéet state
mode

Power-down reset

Note In the operation-undefined period, not all the operations specified for the yPD17134A subseries are
guaranteed. The power-down reset operation, which continues to issue a reset signal until all the functions
in the microcontroller stop, is guaranteed in this period.

186



CHAPTER 17 RESET

Figure 17-5. Example of Reset Operation during the Period from

Power-Down Reset to Power Recovery

Vop
V)
i
5.0
4.5
! Maximum voltage detected by the
35 |-\ | power-down reset function: 4.5V
Typical voltage detected by the
27 | NG | power-down reset function: 3.5V
| Voltage at which the power-down
c Ll N S | reset function terminates =
! | | power-on reset voltage (B): C
0! S— | - Time () e
U : S Voo
1 Oscillating | ; ! ' Oscillating
‘ ‘ | Oscillation stop ‘
osiitl?;zoorf | : 1 RESET
3 | ! HPD17134A subseries
| 1 ! ! w : Timer 1 finishes counting
o . Guaranteed | |
Period in which period ! Undefined period™°t ‘ Guaranteed period GND
the microcon- e — !
troller is guar- | ! ! h |
anteed to 1 | ! ¥ !
operate ; ! i | T
Power-down : i |
reset signal | D |
Power-on : ‘ | |
reset signal | ! ‘ ‘
Operation state | | ! b :
of the micro-  lw— ‘ w - S
controller e ; 1 P |
Operating | i Reset state o I Operating mode
mode ‘ ‘ !
Power-down reset Waiting until oscillation
becomes stable
Note In the operation-undefined period, not all the operations specified for the uPD17134A subseries are

guaranteed. The power-down reset operation, which continues to issue the reset signal until all the
functions in the microcontroller stop, is guaranteed in this period.

187



[MEMO]

188



CHAPTER 18 ONE-TIME PROM WRITING/VERIFYING

The on-chip program memories of the uPD17P136A and 17P137A are is a 2048 x 16-bit one-time PROM.
Pins listed in Table 18-1 are used for one-time PROM writing/verifying. The address is updated by the clock signal
input from the CLK pin.

Caution PIB o/VerpinisusedasV pppininprogram writing/verifying mode. Therefore, there is a possibility
of overrunning of the microcontroller when higher voltage than V op + 0.3 Vis applied to PIB o/Vep

pin in normal operation mode. Pay careful attention to pin protection.

Table 18-1. Pins Used for Writing/Verifying Program Memory

Pin Function
Vep Applies program voltage. Apply +12.5 V to this pin.
Voo Power supply pin. Apply +6 V to this pin.
RESET System reset input pin. Used for initializing all states

before setting program memory writing/verifying mode.

CLK Clock input for updating address. Updates program
memory address by inputting four pulses.

MDo-MDs | Select operation mode.

Do-Dr 8-bit data 1/O pins.

18.1 DIFFERENCES BETWEEN MASK ROM VERSION AND ONE-TIME PROM MODEL

The yPD17P136A and 17P137A are microcontrollers replacing the program memory of the on-chip mask ROM
version yPD17136A and 17137A to one-time PROM. Table 18-2 shows the differences between mask ROM version
and one-time PROM version.

Differences between each product are only its program memory, program size, address register size, and whether
it can specify mask option or not. The CPU function and internal peripheral hardware of each product are the same.
Therefore, the uPD17P136A can be used for evaluating program of the uPD17134A/17136A in system development.
Also, the uPD17P137A can be used for evaluating the uPD17135A/17137A in the same way.

189



CHAPTER 18 ONE-TIME PROM WRITING/VERIFYING

Table 18-2. Differences Between Mask ROM Version and One-Time PROM Version

Item

uPD17134A/17135A

uPD17136A/17137A uPD17P136A/17P137A

ROM

Mask ROM One-time PROM

1024 x 16 bits

(0000H to 03FFH)

2048 x 16 bits
(O000H to 07FFH)

Program counter

Address register

Address stack register

10 bits

11 bits

POD, P1A, and P1B pins and
pull-up resistor of RESET pin

Mask option Not available

pin

Vee pin and operating mode select

Not available

Provided

* | Quality grade

Standard
Special [(A), (A1)]

Standard

* Caution The PROM model is highly compatible with the mask ROM model in terms of functions but its
internal ROM circuit and electrical characteristics are partially different from those of the mask
ROM model. To replace the PROM model with the mask ROM model, thoroughly evaluate the
application by using a sample of the mask ROM model.

18.2 OPERATION MODE WHEN PROGRAM MEMORY IS WRITTEN/VERIFIED

The yPD17P136A and 17P137A enter a program memory write/verify mode when they have been reset for a fixed
time (Voo =5V, RESET =0 V) and then +6 V is applied to the Vop pin and +12.5 V to the Vep pin. In this mdoe, the
operation modes shown in the table below can be selected depending on the setting of the MDo through MD3 pins.
Connect Vaoc directly to Vop. Connect all the other pins to GND via pull-down resistor.

Table 18-3. Setting Operation Modes

Setting operation mode

Operation mode

Vep Voo MDo MD1 MD2 MDs
H L H L Program memory address 0 clear
L H H H Wri
+125v| s6v rite mode
L L H H Verify mode
H x H H Program inhibit mode

Remark x: don't care (L or H)

190



CHAPTER 18 ONE-TIME PROM WRITING/VERIFYING

18.3 WRITING PROCEDURE OF PROGRAM MEMORY

The program memory can be written at high speeds in the following procedure.

)
)
©)
4
®)
(6)
7
8
©

Pull down the unused pins to GND. Make the CLK pin low.

Apply 5 V to the Vop pin. Make Vep pin and RESET pin low.

Wait for 10 pus. Then, apply 5 V to Fﬁpin.

Set the program memory address 0 clear mode using mode selector pins.

Apply 6 V to Voo and RESET, and 12.5 V to VPP.

Set the program inhibit mode.

Write data in mode for 1 ms writing.

Set the program inhibit mode.

Set the verify mode. If the program has been correctly written, proceed to (10). If not, repeat (7) through

(9).

(10) Additional writing of (number of times (x) the program has been written in (7) through (9)) x 1 ms.
(11) Set the program inhibit mode.

(12) Input four pulses to the CLK pin to update the program memory address by one.

(13) Repeat (7) through (12) until the last address is programmed.

(14) Set the program memory address 0 clear mode.

(15) Change the voltage of Vop and Vep pinsto 5 V.

(16) Turn off the power.

Figure 18-1 shows the procedures of (2) through (12).

RESET Vootl b
Vop 3 3
GND

Figure 18-1. Procedure of Program Memory Writing

Repeat x times

Reset

) . Additional Address
\ | | u .
‘ Write ‘ Verify ‘ writing increment

Voo+1
Vop
GND

Hi-Z Hi-Z Hi-Z
Do-D7 -=======-- Input data —----??-- Input data p=========- <
&
oo /TN N\ \__/
)
Ay
MD1 / \ /
MD2 /
MDs /

191



CHAPTER 18 ONE-TIME PROM WRITING/VERIFYING

18.4 READING PROCEDURE OF PROGRAM MEMORY

(1) Connect Vaoc directly to Vop, and all the other pins to GND via pull-down resistor. Make the CLK pin low.

(2) Apply 5V to the Voo pin. Make Vep pin and RESET pin low.

(3) Wait for 10 ps. Then, apply 5 V to RESET pin.

(4) Setthe program memory address 0 clear mode using mode selector pins.

(5) Apply 6 V to Voo and RESET and 12.5 V to Vee.

(6) Set mode selector pins to the program inhibit mode.

(7) Setthe verify mode. When clock pulses are input to the CLK pin, data for each address can be sequentially
output with four clocks as one cycle.

(8) Set the program inhibit mode.

(9) Set the program memory address 0 clear mode.

(10) Change the voltage of Vop and Vep pinsto 5 V.

(11) Turn off the power.

Figure 18-2 shows the program reading procedure (2) through (9).

Figure 18-2. Procedure of Program Memory Reading

' ))
+ | ¢
Vbp Vool _/‘_,_/
Vop !

GND
RESET Voo+l

Do-D7 "~~~ TT~- N -(Output data X Output data X (:(: >- ______
C

MD1

MD2

_/
MD3z /

192



CHAPTER 19

19.1 OVERVIEW OF THE INSTRUCTION SET

INSTRUCTION SET

bis
b1sa-b11 0 1
BIN HEX

0000 0 ADD rL,m ADD m, #n4
0001 1 SUB rnLm SUB m, #n4
0010 2 ADDC rL,m ADDC m, #n4
0011 3 SUBC rL,m SUBC m, #n4
0100 4 AND rnLm AND m, #n4
0101 5 XOR r,m XOR m, #n4
0110 6 OR rLm OR m, #n4

INC AR

INC IX

MOVT DBF, @AR

BR @AR

CALL @AR

RET

RETSK

El

DI
0111 7 RET!

PUSH AR

POP AR

GET DBF, p

PUT p, DBF

PEEK WR, rf

POKE rf, WR

RORC r

STOP s

HALT h

NOP
1000 8 LD rnLm ST m, r
1001 9 SKE m, #n4 SKGE m, #n4
1010 A MOV @r, m MOV m, @r
1011 B SKNE m, #n4 SKLT m, #n4
1100 C BR addr CALL addr
1101 D MOV m, #n4
1110 E SKT m, #n
1111 F SKF m, #n

193



CHAPTER 19 INSTRUCTION SET

19.2 LEGEND
AR . Address register
ASR : Address stack register indicated by stack pointer
addr . Program memory address (11 bits)
BANK . Bank register
CMP . Compare register
CY . Carry flag
DBF . Data buffer
h : Halt release condition
INTEF . Interrupt enable flag
INTR . Register saved automatically to interrupt stack
INTSK . Interrupt stack register
IX . Index register
MP . Data memory row address pointer
MPE : Memory pointer enable flag
m . Data memory address indicated by mr and mc
MR . Data memory row address (high-order)
mc . Data memory column address (low-order)
n . Bit position (4 bits)
n4 : Immediate data (4 bits)
PC :Program counter
p . Peripheral address
pH . Peripheral address (high-order 3 bits)
pL : Peripheral address (low-order 4 bits)
r . General register column address
rf . Register file address
rfr . Register file row address (high-order 3 bits)
rfc . Register file column address (low-order 4 bits)
SP :Stack pointer
S : Stop release condition
WR : Window register
(O) : Contents addressed by x

194



CHAPTER 19 INSTRUCTION SET

19.3 LIST OF THE INSTRUCTION SET

Machine code

Group Mnemonic | Operand Operation
OP code Operand
Add ADD r,m ) « (n+(m) 00000 mR mc r
m, #n4 (m) « (m) +n4 10000 mR mc n4
ADDC r,m (r) < (r) +(m) + CY 00010 mR mc r
m, #n4 (m) « (m) +nd4 + CY 10010 mR mc n4
INC AR AR -« AR+1 00111 000 1001 | 0000
IX IX « IX+1 00111 000 | 1000 | 0000
Subtract SUB r,m (r) < (r)—(m) 00001 mR mc r
m, #n4 (m) « (M) —n4 10001 mR mc n4
SUBC r,m ) « ()=(m)-CY 00011 mR mc r
m, #n4 (m) « (m) —n4 - CY 10011 mR mc n4
Logical OR r,m N <« MVm) 00110 mR mc r
Operation
m, #n4 (m) « (m)V n4 10110 mR mc n4
AND r,m r) « (A (m) 00100 mR mc r
m, #n4 (m) « (M)A n4d 10100 mR mc n4
XOR r,m ) < (N¥(@m) 00101 mR mc r
m, #n4 (m) « (M) ¥ n4 10101 mR mc n4
Judge SKT m, #n CMP — 0, if (m) A n =n, then skip 11110 mR mc n
SKF m, #n CMP «~ 0, if (m)A n =0, then skip 11111 mRr mc n
Compare SKE m, #n4 (m) —n4, skip if zero 01001 mR mc n4
SKNE m, #n4 (m) —n4, skip if not zero 01011 mR mc n4
SKGE m, #n4 (m) —n4, skip if not borrow 11001 mRr mc n4
SKLT m, #n4 (m) —n4, skip if borrow 11011 mR mc n4
Rotate RORC r CY - (b > (Nbz - (Nbr — (r)vo 00111 000 | 0111 r
[ ]
Transfer LD r,m r) < (m) 01000 mR mc r
ST m, r (m) < (n) 11000 mR mc r
MOV @r, m if MPE = 1. (MP, (r) — (m) 01010 mR mc r
if MPE = 0: (BANK, mR, (r)) < (m)
m, @r if MPE = 1: (m) « (MP, () 11010 mR mc r
if MPE = 0: (m) « (BANK, mr, (r))
m, #n4 (m) « n4 11101 mR mc n4
MOVT DBF, @AR | SP ~ SP -1, ASR « PC, PC ~ AR, 00111 000 0001 | 0000
DBF — (PC), PC — ASR, SP — SP +1

195



CHAPTER 19 INSTRUCTION SET

Machine code

Group Mnemonic | Operand Operation
OP code Operand
Transfer PUSH AR SP « SP -1, ASR « AR 00111 000 | 1101 | 0000
POP AR AR < ASR, SP ~ SP+1 00111 000 | 1100 | 0000
PEEK WR, rf WR « (rf) 00111 rfr 0011 rfc
POKE rf, WR (rf) « WR 00111 rfr 0010 rfc
GET DBF,p | DBF  (p) 00111 pr | 1011 | po
PUT p, DBF | (p) — DBF 00111 pi | 1010 | pc
Branch BR addr PC ~ addr 01100 addr
@AR PC « AR 00111 000 | 0100 | 0000
Sub- CALL addr SP ~ SP -1, ASR ~ PC, PC —~ addr 11100 addr
routine
@AR SP « SP -1, ASR « PC,PC « AR 00111 000 | 0101 | 0000
RET PC « ASR, SP « SP +1 00111 000 1110 | 0000
RETSK PC —~ ASR, SP ~ SP +1 and skip 00111 001 1110 | 0000
RETI PC « ASR, INTR < INTSK, SP ~ SP +1 00111 100 1110 | 0000
Interrupt El INTEF « 1 00111 000 1111 | 0000
DI INTEF ~ O 00111 001 1111 | 0000
Others STOP S STOP 00111 010 1111 S
HALT h HALT 00111 011 1111 h
NOP No operation 00111 100 1111 | 0000

196




CHAPTER 19 INSTRUCTION SET

19.4 ASSEMBLER (AS17K) EMBEDDED MACRO INSTRUCTIONS

Legend
flag n : FLG type symbol
< > : Can be omitted
Mnemonic Operand Operation n
Embedded SKTn flag 1, ...flag n if (flag 1) to (flag n) = all “1” then skip l<n<4
macro
SKFn flag 1, ...flag n if (flag 1) to (flag n) = all “0”, then skip l<n<4
SETn flag 1, ...flag n (flag 1) to (flag n) ~ 1 l<n<4
CLRn flag 1, ...flag n (flag 1) to (flag n) — O l<n<4
NOTn flag 1, ...flag n if (flag n) = “0”, then (flag n) — 1 l1<sn<4
if (flag n) = “1”, then (flag n) « O
INITFLG <NOT> flag 1, if description = NOT flag n, then (flag n) — 0 l1<n<4
...<<NOT> flag n> if description = flag n, then (flagn) — 1
BANKnN BANK < n n=0,1

197



CHAPTER 19 INSTRUCTION SET

19.5 INSTRUCTIONS
19.5.1 Addition Instructions

(1) ADDT1, m Add data memory to general register

<1> OP code

10 8 7 4 3 0

00000 mRr mc r

<2> Function
When CMP =0, (r) « (r) + (m)

Adds the data memory contents to the general register contents, and stores the resultin general register.

When CMP =1, (r) + (m)
The resultis not stored in the register. Carry flag CY and zero flag Z are changed, according to the result.

Sets carry flag CY, if a carry occurs as a result of the addition. Resets the carry flag, if no carry occurs.
If the addition result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.

Addition can be executed in binary 4 bits or BCD. The BCD flag for the PSWORD specifies what kind of addition
is to be executed.

<3> Example 1

To add the address 0.2FH contents to the address 0.03H contents, when row address 0 (0.00H—0.0FH)
in bank O is specified as the general register (RPH =0, RPL =0), and to store the resultin address 0.03H:

(0.03H) < (0.03H) + (0.2FH)
MEM003  MEM  0.03H
MEMO2F  MEM  0.2FH

MOV  BANK, #00H ; Data memory bank 0
MOV  RPH, #00H ; General register bank 0
MOV RPL, #00H ; General register row address 0

ADD MEMO003, MEMO2F

198



CHAPTER 19 INSTRUCTION SET

Example 2

To add the address 0.2FH contents to the address 0.23H contents, when row address 2 (0.20H-0.2FH)
in bank 0 is specified as the general register (RPH = 0, RPL = 4), and store the result in address 0.23H:

(0.23H) « (0.23H) + (0.2FH)
MEMO023 MEM  0.23H
MEMO2F  MEM  0.2FH

MOV  BANK, #00H ; Data memory bank 0
MOV RPH, #00H ; General register bank 0 Not
MOV  RPL, #04H ; General register row address 2

ADD MEMO023, MEMO2F

Note
RP
Register
RPH RPL

Bit bs | b2 | bi| bo| bs| b2 b1 bo
-~ | | B
. Bank | 7 T = C
Data 0.0 0! Row! | D

| Address

RP (general register pointer) is assigned in the system register, as shown above.

Therefore, to set bank 0 and row address 2 in a general register, 00H must be stored in RPH and 04H,
in RPL.

In this case, the subsequent arithmetic operation is executed in binary 4-bit operation, because the BCD
flag is reset.

Example 3

To add the address 0.6FH contents to the address 0.03H contents and store the result in address 0.3H.
At this time, data memory address 0.6FH can be specified, by selecting data memory address 2FH, if
IXE=1,IXH=0,IXM =4, and IXL =0, i.e., IX = 0.40H.
(0.03H) ~ (0.03H) + (0.6FH)
Address obtained as result of ORing index register
contents, 0.40H, and data memory address 0.2FH
MEM0O03 MEM 0.03H
MEMO2F MEM 0.2FH

MOV RPH, #00H ; General register bank 0
MOV  RPL, #00H ; General register row address 0
MOV  IXH, #00H ; IX < 00001000000B

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE i IXEflag « 1

ADD MEMOO03, MEMO2F ; IX 00001000000B (0.40H)
; Bank operand OR ) 00000101111B (0.2FH)
; Specified address 00001101111B (0.6FH)

199



CHAPTER 19 INSTRUCTION SET

200

Example 4

To add the address 0.3FH contents to the address 0.03H contents and store the resultin address 0.03H.
At this time, data memory address 2.3FH can be specified by specifying data memory address 2FH, if

IXE =1, IXH =0, IXM =1, and IXL = 0, i.e., IX = 0.10H.
(0.03H) « (0.03H) + (0.3FH)

Address obtained as result of ORing index register
contents, 0.10H, and data memory address 0.2FH

MEMO003 MEM 0.03H
MEMO2F MEM  0.2FH
MOV BANK, #00H
MOV  RPH, #00H ; General register bank 0
MOV RPL, #00H ; General register row address 0
MOV  IXH, #00H ; IX — 00000010000B (0.10H) Note
MOV  IXM, #01H
MOV  IXL, #00H
SET1 IXE i IXE flag « 1
ADD MEMO003, MEMO2F ; IX 00000010000B (0.10H)
; Bank operand OR ) 00000101111B (0.2FH)
; Specified address 00100111111B (0.3FH)
Note
IX
Register
IXH IXM IXL
Bit bz | b2 | bi| bo| bs| b2| b1 bo bz | b2 | b1 | bo
M -t . Lo
o lBank | e
Data Pi0!0!O . Row -—
| | | . Address | ! |
I o 1 Column |
ELo o . address|

IX (index register) is assigned in the system register, as shown above,

Therefore, to specify IX = 0.10H, 00H must be stored in IXH. 01H in IXM, and O0H in IXL.
In this case, MP (memory pointer) for general register indirect transfer is invalid, because the MPE flag

(memory pointer enable) is reset.



CHAPTER 19 INSTRUCTION SET

<4> Caution

The first operand for the ADD r, m instruction is a column address. Therefore, if the instruction is
described as follows, the column address for the general register is O3H:

MEM013 MEM  0.13H
MEMO2F MEM  0.2FH

MOV  RPH, #00H ; General register bank 0

MOV  RPL, #00H ; General register row address 0

ADD MEMO013, MEMO2F

. Indicates the general register column address.
The low-order 4 bits (in this case, 03H) are valid

When CMP flag = 1, the addition result is not stored.

When BCD flag

1, the decimal addition result is stored.

(2) ADD m, #n4 Add immediate data to data memory

<1>

<2>

OP code

10 8 7 4 3 0

10000 mRr mc n4

Function

When CMP =0, (m) « (m) + n4

Adds immediate data to the data memory contents, and stores the result in data memory.
When CMP =1, (m) + n4

The result is not stored in the data memory. Carry flag CY and zero flag Z are changed, according to
the result.

Sets carry flag CY, if a carry occurs as a result of the addition; resets the carry flag if no carry occurs.

If the addition result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.

Addition can be executed in binary 4 bits or BCD. The BCD flag for the PSWORD specifies which kind of
addition is to be executed.

201



CHAPTER 19 INSTRUCTION SET

<3> Example 1

To add 5 to the address 0.2FH contents, and store the result in address 0.2FH:
(0.2FH) «~ (0.2FH) + 5

MEMO2F MEM 0.2FH
ADD MEMO2F, #05H

Example 2

To add 5 to the address 0.6FH contents and store the result in address 0.6FH. At this time, data memory
address 0.6FH can be specified by selecting data memory address 2FH, if IXE = 1, IXH = 0, IXM = 4,
and IXL =0, i.e., IX = 0.40H.
(0.6FH) ~ (0.6FH) + O5H
_:Address obtained as result of ORing index register contents, 0.40H,
and data memory address 0.2FH
MEMO2F MEM  0.2FH
MOV  BANK, #00H ; Data memory bank 0
MOV  IXH, #00H ; IX < 00001000000B (0.40H)
MOV XM, #04H
MOV IXL, #00H
SET1 IXE i IXEflag « 1
ADD MEMO2F, #05H ; IX 00001000000B (0.40H)
; Bank operand OR ) 00000101111B (0.2FH)
; Specified address 00001101111B (0.6FH)

Example 3

To add 5 to the address 0.2FH contents and store the result in address 0.2FH. At this time, data memory
address 0.2FH can be specified by selecting data memory address 2FH, if IXE = 1, IXH =0, IXM = 0,
and IXL = 0, i.e., IX = 0.00H.
(0.2FH) ~ (0.2FH) + O5H
[ Address obtained as result of ORing index register contents, 0.00H,
and data memory address 0.2FH
MEMO2F MEM  0.2FH
MOV  BANK, #00H ; Data memory bank 0
MOV  IXH, #00H ; IX < 00000000000B
MOV  IXM, #00H
MOV  IXL, #00H
SET1 IXE i IXE flag « 1
ADD MEMO2F, #05H ; IX 00000000000B (0.00H)
; Bank operand OR ) 00000101111B (0.2FH)
; Specified address 00000101111B (0.2FH)

<4> Caution

When the CMP flag = 1, the addition result is not stored.
When the BCD flag = 1, the decimal addition result is stored.

202



CHAPTER 19 INSTRUCTION SET

(3) ADDCr, m

<1> OP code

10

Add data memory to general register with carry flag

00010

<2> Function

When CMP =0, (r) < (r) + (m) + CY

Adds the data memory contents to the general register contents with carry flag CY, and stores the result

in general register.

When CMP =1, (r) + (m) + CY

The resultis not stored in the register. Carry flag CY and zero flag Z are changed according to the result.

By using this ADDC instruction, one or more nibbles can be easily added.

Sets carry flag CY, if a carry occurs as a result of the addition; resets the carry flag if no carry occurs.

If the addition result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.
Addition can be executed in binary 4 bits or BCD. The BCD flag for PSWORD specifies which kind of addition
is to be executed.

<3> Example 1
To add the 12-bit contents for addresses 0.0DH through 0.0FH to the 12-bit contents for addresses 0.2DH
through 0.2FH, and store the result in the 12-bit contents for address 0.0DH to 0.0FH, when row address

0 (0.00H-0.0FH) of bank 0 is specified as a general register:

MEMOOD
MEMOOE
MEMOOF
MEMO02D
MEMO2E
MEMO2F

(0.0FH) — (0.0FH) + (0.2FH)
(0.0EH) — (0.0EH) + (0.2EH) + CY
(0.0DH) « (0.0DH) + (0.2DH) + CY
MEM  0.0DH

MEM  0.0EH

MEM  0.0FH

MEM  0.2DH

MEM  0.2EH

MEM  0.2FH

MOV BANK,  #00OH ; Data memory bank 0
MOV RPH, #00H ; General register bank 0
MOV RPL, #00H ; General register row address 0

ADD MEMOOF, MEMO2F ; Low-order nibble
ADDC MEMOOE, MEMO2E
ADDC MEMOOD, MEMO02D ; High-order nibble

203



CHAPTER 19 INSTRUCTION SET

Example 2

To shift the 12-bit contents for addresses 0.2DH through 0.2FH 1 bit to the left, when row address 2 in
bank 0 (0.20H-0.2FH) is specified as a general register:

CY Bank O Bank O Bank O CY
(carry flag) Address ODH Address OEH Address OFH (carry flag)

MEMOOD MEM 0.0DH
MEMOOE MEM 0.0EH
MEMOOF MEM 0.0FH
MEMO02D MEM 0.2DH
MEMO2E MEM 0.2EH
MEMO2F MEM 0.2FH

MOV RPH, #00H ; General register bank 0
MOV RPL, #04H ; General register row address 2
MOV BANK, #00H ; Data memory bank 0

ADDC MEMOOF, MEMO2F
ADDC MEMOOE, MEMO2E
ADDC MEMOOD, MEMO02D

Example 3

To add the address 0.0FH contents to the addresses 0.40H through 0.4FH contents, and store the result
in address 0.0FH:
(0.0FH) — (0.0FH) + (0.40H) + (0.41H) + ... + (0.4FH)
MEMOOF MEM  0.0FH
MEMOO00 MEM 0.00H

MOV  BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV  RPL, #00H ; General register row address 0
MOV  IXH, #00H ; IX — 00001000000B (0.40H)

MOV XM, #04H
MOV  IXL, #00H

LOOPL1:
SET1 IXE ; IXEflag « 1
ADD MEMOOF, MEMO0O
CLR1 IXE ; IXE flag — O
INC IX P IX < IX+ 1

SKE IXL, #0
JMP LOOP1

204



CHAPTER 19 INSTRUCTION SET

Example 4

To add the 12-bit contents for addresses 0.40H through 0.42H to the 12-bit contents for addresses 0.0DH
through 0.0FH, and store the result in 12-bit contents for addresses 0.0DH through 0.0FH:

(0.0DH) « (0.0DH) + (0.40H)

(0.0EH) < (0.0EH) + (0.41H) + CY
(0.0FH) < (0.0FH) + (0.42H) + CY

MEMO00 MEM  0.00H
MEMO001 MEM  0.01H
MEMO002 MEM  0.02H
MEMOOD MEM  0.0DH
MEMOOE MEM  0.0EH
MEMOOF MEM  0.0FH
MOV  BANK, #00H
MOV  RPH, #00H
MOV  RPL, #00H
MOV  IXH, #00H
MOV XM, #04H
MOV  IXL, #00H
SET1 IXE
ADD MEMOOD, MEMOOO
ADDC MEMOOE, MEMOO1
ADDC MEMOOF, MEM002
(4) ADDC m, #n4
<1> OP code
10 8 7 0
10010 mRr mc n4

<2> Function

When CMP =0, (m) « (m) + n4 + CY

; Data memory bank 0

; General register bank 0

; General register row address 0
; X 00001000000 (0.40H)

i IXEflag « 1

; (0.0DH) ~ (0.0DH) + (0.40H) ; Low-order nibble
; (0.0EH) ~ (0.0EH) + (0.41H)

; (0.0FH) « (0.0FH) + (0.42H) ; High-order nibble

Add immediate data to data memory with carry flag

Adds immediate data to the data memory contents with carry flag (CY), and stores the result in data

memory.

When CMP =1, (m) + n4 + CY

The result is not stored in the data memory, and carry flag CY and zero flag Z are changed, according
to the result.

Sets carry flag CY, if a carry occurs as a result of the addition. Resets the carry flag, if no carry occurs.

If the addition result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.

Addition can be executed in binary or BCD. The BCD flag for PSWORD specifies which kind of addition is

to be executed.

205



CHAPTER 19 INSTRUCTION SET

<3> Example 1

To add 5 to the 12-bit contents for addresses 0.0DH through 0.0FH, and store the result in addresses
0.0DH through 0.0FH;
(0.0FH)  (0.0FH) + 05H
(0.0EH) < (0.0EH) + CY
(0.0DH) « (0.0DH) + CY
MEMOOD MEM  0.0DH
MEMOOE MEM  0.0EH
MEMOOF MEM  0.0FH
MOV  BANK, #00H ; Data memory bank 0
ADD MEMOOF, #05H
ADDC MEMOOE, #00H
ADDC MEMOOD, #00H

Example 2

To add 5 to the 12-bit contents for addresses 0.4DH through 0.4FH and store the result in addresses
0.4DH through 0.4FH:
(0.4FH)  (0.4FH) + O5H
(0.4EH) ~ (0.4EH) + CY
(0.4DH) «~ (0.4DH) + CY
MEMOOD MEM 0.0DH
MEMOOE MEM 0.0EH
MEMOOF MEM 0.0FH
MOV  BANK, #00H ; Data memory bank 0
MOV  IXH, #00H ; IX ~ 00001000000B (0.40H)
MOV IXM, #04H
MOV IXL, #00H

SET1 IXE i IXE flag « 1
ADD MEMOOF, #5 ; (0.4FH) « (0.4FH) + 5H
ADDC MEMOOE, #0 ; (0.4EH) « (0.4EH) + CY
ADDC MEMOOD, #0 ; (0.4DH) ~ (0.4DH) + CY
(5) INC AR Increment address register
<1> OP code
10 8 7 4 3 0
00111 000 1001 0000
<2> Function
AR « AR+ 1

Increments the address register AR contents.

206



CHAPTER 19 INSTRUCTION SET

<3> Example 1

To add 1 to the 16-bit contents for AR3 through ARO (address registers) in the system register and store
the result in AR3 through ARO:

ARO ~ ARO +1

AR1 « AR1 +CY

AR2 - AR2 + CY

AR3 « AR3 +CY

INC AR

This program can be rewritten as follows, with addition instructions:

ADD ARO,
ADDC AR1,
ADDC ARZ2,
ADDC ARS3,

Example 2

#01H
#00H
#00H
#00H

To transfer table data, 16 bits (1 address) at a time, to DBF (data buffer), using the table reference

instruction (for details, refer to 10.2.3 Table Reference ):

: Address
ORG
DW
DW
DW
DW
DW

MOV

MOV

MOV

MOV
LOOP:

MOVT

INC
BR

<4> Caution

Table data
10H
OF3FFH
0A123H
OFFF1H
OFFF5H
OFF11H

AR3S, #0H : Table data address

AR2, #0H ; 0010H in address register
AR1, #1H ;

ARO, #0H

DBF, @AR : Reads table data to DBF

; Table data reference processing

AR ; Increments address register by 1
LOOP

The numbers of bits, for address registers AR3 through ARO, differ, depending on the microcontroller

model to be used.
e uPD17134A/17135A . 10 bits
e uPD17136A/17137A/17P136A/17P137A: 11 bits

207



CHAPTER 19 INSTRUCTION SET

(6) INC IX Increment index register

<1> OP code

10 8 7 4 3 0

00111 000 1000 0000

<2> Function

IX « IX+1
Increments the index register 1X contents.

<3> Example 1

To add 1 to the 12-bit contents for IXH, IXM, and IXL (index registers) in the system register and store
the result in IXH, IXM, and IXL;

IXL « IXL+1

IXM — IXM + CY

IXH « IXH + CY

INC IX
This program can be rewritten as follows, with addition instructions:
ADD IXL, #01H

ADDC IXM, #00H
ADDC IXH, #00H

Example 2

To clear all the contents for data memory addresses 0.00H through 0.73H, using the index register:
MEMOOO MEMO0.00H

MOV IXH, #00H ; Sets index register contents in O0H in bank 0
MOV IXM, #00H ;
MOV IXL, #00H

RAM clear:
SET1 IXE JIXEflag « 1
MOV MEMOO0O, #00H ; Writes 0 to data memory indicated by index register
CLR1 IXE ; IXE flag « 0
INC IX
SET2 CMP, Z ;CMP flag - 1, Z flag « 1
SUB IXL, #03H ; Checks whether index register contents
SUBC IXM, #07H ;are 73H in bank 0
SUBC IXH, #00H ;
SKT1 z ; Loops until contents of index register becomes
BR RAM clear ; 73H of bank 0

208



CHAPTER 19 INSTRUCTION SET

19.5.2 Subtraction Instructions

(1) SUBr,m Subtract data memory from general register

<1> OP code

10 8 7 4 3 0

00001 mRr mc r

<2> Function

When CMP =0, (r) < (r) — (m)

Subtracts the data memory contents from the general register contents, and stores the result in general
register.

When CMP =1, (r) — (m)

The resultis not stored in the register. Carry flag CY and zero flag Z are changed, according to the result.

Sets carry flag CY, if a borrow occurs as a result of the subtraction. Resets the carry flag, if no borrow occurs.
If the subtraction result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.

Subtraction can be executed in binary 4 bits or BCD. The BCD flag for PSWORD specifies which kind of
subtraction is to be executed.

<3> Example 1
To subtract the address 0.2FH contents from the address 0.03H contents, store the result in address
0.03H, when row address 0 (0.00H-0.0FH) in bank 0 is specified as a general register (RPH =0, RPL
=0):
(0.03H) « (0.03H) + (0.2FH)
MEM003 MEM  0.03H
MEMO2F MEM 0.2FH
SUB MEMO003, MEMO2F

Example 2

To subtract the address 0.2FH contents from the address 0.23H contents, when row address 2 (0.20H-
0.2FH) in bank 0 is specified as the general register (RPH = 0, RPL = 4), and store the result in address
0.23H:

(0.23H) « (0.23H) — (0.2FH)
MEM023 MEM  0.23H
MEMO2F MEM  0.2FH

MOV BANK, #00H ;  Data memory bank 0
MOV  RPH, #00H ;  General register bank 0
MOV  RPL, #04H ;. General register row address 2

SUB MEMO023, MEMO2F

209



CHAPTER 19 INSTRUCTION SET

Example 3

To subtract the address 0.6FH contents from the address 0.03H contents and store result in address
0.03H. At this time, data memory address 0.6FH can be specified by selecting data memory address
2FH, if IXE=1, IXH =0, IXM =4, and IXL =0, i.e., IX = 0.40H.

(0.03H) ~ (0.03H) + (0.6FH)
MEM003 MEM  0.03H
MEMO2F MEM  0.2FH

MOV  BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV  RPL, #00H ; General register row address 0
MOV  IXH, #00H ; IX < 00001000000B (0.40H)

MOV XM, #04H ;

MOV IXL, #00H ;

SET1 IXE i IXEflag « 1

SUB MEMO003, MEMO2F ; IX 00001000000B (0.40H)
; Bank operand OR ) 00000101111B (0.2FH)
; Specified address 00001101111B (0.6FH)

Example 4

To subtract the address 0.3FH contents from the address 0.03H contents and store result in address
0.03H. At this time, data memory address 0.3FH can be specified by selecting data memory address
2FH, ifIXE=1,IXH=0,IXM =1, and IXL =0, i.e., IX = 0.10H.

(0.03H) « (0.03H) + (0.3FH)
MEM003 MEM 0.03H
MEMO2F MEM  0.2FH

MOV BANK #00H ; Data memory bank 0
MOV  RPH, #00H ; General register bank 0
MOV  RPL, #00H ; General register row address 0

MOV  IXH, #00H ; IX « 00000010000B (0.10H)

MOV XM, #01H ;

MOV  IXL, #00H ;

SET1 IXE ; IXE flag « 1

SUB MEMO003, MEMO2F ; X 00000010000B (0.10H)
; Bank operand OR ) 00000101111B (0.2FH)
; Specified address 00000111111B (0.3FH)

210



CHAPTER 19 INSTRUCTION SET

<4> Caution

The first operand for the SUB r, m instruction is a general register address. Therefore, if the instruction
is described as follows, the general register address is 03H:
MEM013 MEM  0.13H
MEMO2F MEM  0.2FH
MOV RPH, #00H ; General register bank 0
MOV  RPL, #00H ; General register row address 0
SUB MEMO013, MEMO2F
Specify general register in 0OH-OFH range
(set register pointer row address other than 1).
When the CMP flag = 1, the subtraction result is not stored.
When the BCD flag = 1, the decimal subtraction result is stored.

(2) SUB m, #n4 Subtract immediate data from data memory

<1>

<2>

OP code

10 8 7 4 3 0

10001 mRr mc n4

Function

When CMP =0, (m) « (m) —n4

Subtracts immediate data from the data memory contents, and stores the result in data memory.

When CMP =1, (m) — n4

The result is not stored in data memory. Carry flag CY and zero flag Z are changed, according to the
result.

Sets carry flag CY, if a borrow occurs as a result of the subtraction. Resets the carry flag, if no borrow occurs.

If the subtraction result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.

Subtraction can be executed in binary 4 bits or BCD. The BCD flag for PSWORD specifies which kind of
subtraction is to be executed.

<3>

Example 1

To subtract 5 from the address 0.2FH contents, and store the result in address 0.2FH:
(0.2FH) ~ (0.2FH) -5

MEMO2F MEM  0.2FH
SUB MEMO2F, #05H

211



CHAPTER 19 INSTRUCTION SET

Example 2

To subtract 5 from the address 0.6FH contents and store the result in address 0.6FH. At this time, data
memory address 0.6FH can be specified by selecting data memory address 2FH, if IXE = 1, IXH =0,
IXM = 4, and IXL = 0, i.e., IX = 0.40H.
(0.6FH) ~ (0.6FH) -5
Address obtained as a result of ORing index register contents,
0.40H, and data memory address 0.2FH
MEMO2F MEM 0.2FH
MOV BANK, #00H ; Data memory bank 0
MOV  IXH, #00H ; IX ~ 00001000000B (0.40H)
MOV IXM, #04H ;
MOV IXL, #00H ;
SET1 IXE i IXEflag « 1
SUB MEMO2F, #05H ; IX 00001000000B (0.40H)
; Bank operand OR ) 00000101111B (0.2FH)
; Specified address 00001101111B (0.6FH)

Example 3

To subtract 5 from the address 0.2FH contents and store the result in address 0.2FH. At this time, data
memory address 0.2FH can be specified by selecting data memory address 2FH, if IXE = 1, IXH =0,
IXM =0, and IXL =0, i.e., IX = 0.00H.
(0.2FH) < (0.2FH) -5
Address obtained as a result of ORing index register contents,
0.00H, and data memory address 0.2FH
MEMO2F MEM  0.2FH
MOV BANKO, #00H ; Data memory bank 0
MOV IXH, #00H ; IX — 00000000000B (0.00H)
MOV  IXM, #00H ;
MOV IXL, #00H ;
SET1 IXE ; IXE flag « 1
SUB MEMO2F, #05H ; IX 00000000000B (0.00H)
; Bank operand OR ) 00000101111B (0.2FH)
; Specified address 00000101111B (0.2FH)

(3) SUBCr,m Subtract data memory from general register with carry flag
<1> OP code
10 8 7 4 3 0
00011 MR Mc r

212




CHAPTER 19 INSTRUCTION SET

<2> Function

When CMP =0, (r) < (r) — (m) - CY

Subtracts the data memory contents from the general register contents with carry flag CY. Stores the

result in general register. By using this SUBC instruction, 2 or more words can be easily subtracted.

When CMP =1, (r) — (m) — CY

The resultis not stored in the register. Carry flag CY and zero flag Z are changed, according to the result.

Sets carry flag CY, if a borrow occurs as a result of the subtraction. Resets the carry flag, if no borrow occurs.

If the subtraction result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.
Subtraction can be executed in binary 4 bits or BCD. The BCD flag for PSWORD specifies which kind of
subtraction is to be executed.

<3> Example 1

To subtract the 12-bit contents for addresses 0.2DH through 0.2FH from the 12-bit contents for
addresses 0.0DH through 0.0FH and store the resultin 12 bits for addresses 0.0DH through 0.0FH, when
row address 0 (0.00H-0.0FH) in bank 0 is specified as a general register:

(0.0FH) ~ (0.0FH) — (0.2FH)

(0.0EH) ~ (0.0EH) — (0.2EH) — CY

(0.0DH) « (0.0DH) + (0.2DH) — CY

MEMOOD
MEMOOE
MEMOOF
MEMO02D
MEMO2E
MEMO2F

MEM
MEM
MEM
MEM
MEM
MEM
SUB
SUBC
SUBC

0.0DH

0.0EH

0.0FH

0.2DH

0.2EH

0.2FH

MEMOOF, MEMO2F ; Low-order nibble
MEMOOE, MEMO2E

MEMOOD, MEMO02D ; High-order nibble

213



CHAPTER 19 INSTRUCTION SET

MEMOOO MEM  0.00H

MEM001 MEM 0.01H

MEM002 MEM  0.02H

MEMOOD MEM 0.0DH

MEMOOE MEM 0.0EH

MEMOOF MEM  0.0FH
MOV BANK, #00H
MOV RPH, #00H
MOV  RPL, #00H
MOV IXH, #00H
MOV IXM, #04H
MOV  IXL, #00H
SET1 IXE
SUB MEMOOD, MEMOOO
SUBC MEMOOE, MEM001
SUBC MEMOOF, MEM002

(4) SUBC m, #n4
<1> OP code
10 7 4
10011 mR me n4

214

Example 2

To subtractthe 12-bit contents for addresses 0.40H through 0.42H from the 12-bit contents for addresses
0.0DH through 0.0FH, and store the result in 12 bits for addresses 0.0DH through 0.0FH:

(0.0DH) < (0.0DH) — (0.40H)

(0.0EH) « (0.0EH) — (0.41H) — CY
(0.0FH) < (0.0FH) + (0.42H) — CY

Data memory bank 0
General register bank 0

; General register row address 0
; IX < 00001000000B (0.40H)

i IXE flag « 1
; (0.0DH) ~ (0.0DH) — (0.40H)

(0.0EH) < (0.0EH) — (0.41H)
(0.0FH) < (0.0FH) — (0.42H)

Subtract immediate data from data memory with carry flag

<2> Function

When CMP =0, (m) « (m)—n4 - CY

Subtracts immediate data from the data memory contents with carry flag CY, and stores the result in
data memory.

When CMP =1, (m) —n4 - CY

Theresultis not stored in the register. Carry flag CY and zero flag Z are changed, according to the result.

Sets carry flag CY, if a borrow occurs as a result of the subtraction. Resets the carry flag, if no borrow occurs.

If the subtraction result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the result is zero with the compare flag reset (CMP = 0), the zero flag Z is set.

If the result is zero with the compare flag set (CMP = 1), the zero flag Z is not changed.

Subtraction can be executed in binary or BCD. The BCD flag for PSWORD specifies which kind of subtraction
is to be executed.



CHAPTER 19 INSTRUCTION SET

<3> Example 1

To subtract 5 from the 12-bit contents for addresses 0.0DH through 0.0FH and store the result in 12 bits

for addresses 0.0DH through 0.0FH:
(0.0FH) ~ (0.0FH) — 05H
(0.0EH) ~ (0.0EH) - CY
(0.0DH) ~ (0.0DH) — CY

MEMOOD MEM 0.0DH

MEMOOE MEM 0.0EH

MEMOOF MEM 0.0FH
SUB MEMOOF, #05H
SUBC  MEMOOE, #00H
SUBC  MEMOOD, #00H

Example 2

To subtract 5 from the 12-bit contents for addresses 0.4DH through 0.4FH and store the result in
addresses 0.4DH through 0.4FH:
(0.4FH) ~ (0.4FH) — 05H
(0.4EH) — (0.4EH) — CY
(0.4DH) ~ (0.4DH) - CY
MEMOOD MEM 0.0DH
MEMOOE MEM 0.0EH
MEMOOF MEM 0.0FH
MOV BANK, #00H ; Data memory bank O
MOV IXH, #00H ; IX < 00001000000B (0.40H)
MOV IXM, #04H ;
MOV IXL, #00H ;
SET1 IXE ; IXEflag ~ 1
SUB MEMOOF, #5 ; (0.4FH) — (0.4FH) -5
SUBC  MEMOOE, #0 ; (0.4EH) —~ (0.4EH) - CY
SUBC  MEMOOD, #0 ; (0.4DH) — (0.4DH) - CY

215



CHAPTER 19 INSTRUCTION SET

19.5.3 Logical Operation Instructions

(1) ORr,m OR between general register and data memory

<1> OP code

00110 mRr me r

<2> Function

() < (1) v (m)

ORs the general register contents with data memory. Stores the result in general register.
<3> Example 1

To OR the address 0.03H contents (1010B) and the address 0.2FH contents (0111B) and store the result
(1111B) in address 0.03H:
(0.03H) « (0.03H) v (0.2FH)

1(0 1 0 Address 03H

0 1 1 1 Address 2FH

1 1 1 1 Address 03H

MEMO003 MEM 0.03H

MEMO2F MEM 0.2FH
MOV MEMOO03, #1010B
MOV MEMO2F, #0111B

OR MEMO003, MEMO2F
(2) OR m, #n4 OR between data memory and immediate data
<1> OP code
10 8 7 4 3 0
10110 mR me n4

216



CHAPTER 19 INSTRUCTION SET

<2> Function

(m) « (m)vn4

ORs the data memory contents and immediate data. Stores the result in data memory.

<3> Example 1

To set bit 3 (MSB) for address 0.03H:
(0.03H) — (0.03H) v 1000B

Address 0.03H

1] x| x| x x: don't care

MEM003 MEM  0.03H
OR MEMOO03, #1000B

Example 2

To set all the bits for address 0.03H:
MEMOO03 MEM 0.03H
OR MEMOO03, #1111B
or,
MEMOO03 MEM 0.03H
MOV MEMOO03, #0FH

(3) ANDr, m AND between general register and data memory

<1> OP code

10 8 7 4 3 0

00100 mRr Mec r

<2> Function

() « (1) A (m)

ANDs the general register contents with data memory and stores the result in general register.

217



CHAPTER 19 INSTRUCTION SET

<3> Example

To AND the address 0.03H (1010B) contents and the address 0.2FH (0110B) contents. To store the
result (0010B) in address 0.03H:
(0.03H) ~ (0.03H) A(0.2FH)

110|110 Address 03H

0 1 110 Address 2FH

o|l0f1]O0 Address 03H

MEMO003 MEM 0.03H

MEMO2F MEM 0.2FH
MOV MEMOO03, #1010B
MOV MEMO2F, #0110B
AND MEMO003, MEMO2F

(4) AND m, #n4 AND between data memory and immediate data

<1> OP code

10 8 7 4 3 0

11110 mr mc n

<2> Function

(m) « (m)an4

ANDs the data memory contents and immediate data. Stores the result in data memory.
<3> Example 1

To reset bit 3 (MSB) for address 0.03H:
(0.03H) « (0.03H) A0111B

Address 0.03H

0 X X X x: don't care

MEMO003 MEM 0.03H
AND MEMO0O03, #0111B

218



CHAPTER 19 INSTRUCTION SET

Example 2

To reset all the bits for address 0.03H:

Exclusive OR between general register and data memory

MEMO003 MEM 0.03H
AND MEMO003, #0000B
or,
MEMO003 MEM 0.03H
MOV MEMO0O03, #00H
(5) XORr, m
<1> OP code
10 8 7 4 3 0
00101 mr me r

<2> Function

(r) « (r) ¥ (m)

Exclusive-ORs the general register contents with data memory. Stores the result in general register.

<3> Example 1

To compare the address 0.03H contents and the address 0.0FH contents. If different bits are found, set
and store them in address 0.03H. If all the bits in address 0.03H are reset (i.e., the address 0.03H
contents are the same as those for address 0.0FH), jumps to LBL1; otherwise, jumps to LBL2.

This example is for processing to compare the status of an alternate switch (address 0.03H contents)
with the internal status (address 0.0FH contents) and to branch to another processing, if the switch status

changes.
110|110 Address 03H
XOR

0 1 1({0 Address OFH

1]1]1|01|0 Address 03H

f f Bits changed

MEMO003 MEM 0.03H

MEMOOF MEM 0.0FH
XOR MEMO003, MEMOOF
SKNE MEMO0O03, #00H
BR LBL1
BR LBL2

219



CHAPTER 19 INSTRUCTION SET

Example 2

To clear the address 0.03H contents:

o|1(0]1 Address 03H

o|1(0]1 Address 03H

ojo0f|O0]|O Address 03H

MEMO003 MEM 0.03H
XOR MEMO003, MEMO003

(6) XOR m, #n4 Exclusive OR between data memory and immediate data
<1> OP code
10 8 7 4 3 0
10101 mRr Mc n4

<2> Function

(m) « (m) v n4

Exclusive-ORs the data memory contents and immediate data. Stores the result in data memory.
<3> Example

To invert bits 1 and 3 in address 0.03H and store the result in address 03H:

1({1]0]|0 Address 03H

o|1(1]0 Address 03H

Inverted bits

MEMO003 MEM 0.03H
XOR MEMOO03, #1010B

220



CHAPTER 19 INSTRUCTION SET

19.5.4 Judgment Instructions

(1) SKT m, #n Skip next instruction if data memory bits are true

<1> OP code

10 8 7 4 3 0

11110 mr mec n

<2> Function
CMP ~ 0, if (m) An = n, then skip

Skips the next one instruction, if the result of ANDing the data memory contents and immediate data
is equal to n. (Executes as NOP instruction)

<3> Example 1

To jump to AAA, if bit 0 in address 03H is 1; if it is O, jumps to BBB:
SKT 03H, #0001B

BR BBB
BR AAA
Example 2

To skip the next instruction, if both bits 0 and 1 in address 03H are 1.
SKT O03H, #0011B

bs bz b1 bo

Skip condition 03H x| x| 1]1 x: don't care

Example 3

The results of executing the following two instructions are the same:
SKT 13H, #1111B
SKE 13H, #0FH

(2) SKF m, #n Skip next instruction if data memory bits are false

<1> OP code

10 8 7 4 3 0

11111 mRr me n

221



CHAPTER 19 INSTRUCTION SET

222

<2>

<3>

Function

CMP ~ 0, if (m)a n =0, then skip

Skips the next one instruction, if the result of ANDing the data memory contents and immediate data
is 0 (Executes as NOP instruction).

Example 1

To store immediate data O0H to address OFH in the data memory, if bit 2 in address 13H is O; if it is 1,

jumps to ABC:
MEMO013 MEM 0.13H
MEMOOF MEM 0.0FH
SKF MEMO013, #0100B
BR ABC
MOV MEMOOF, #00H
Example 2

To skip the next instruction, if both bits 3 and 0 in address 29H are 0.
SKF 29H, #1001B

bs bz b1 bo

Skip condition 29H 0| x| x| O x: don't care

Example 3

The results of executing the following two instructions are the same:
SKF 34H, #1111B
SKE 34H, #00H



CHAPTER 19 INSTRUCTION SET

19.5.5 Comparison Instructions

(1) SKE m, #n4

<1> OP code

10

Skip if data memory equal to immediate data

01001

Mc n4

<2> Function

(m) —n4, skip if zero

Skips the next one instruction, if the data memory contents are equal to the immediate data value

(Executes as NOP instruction).

<3> Example

To transfer OFH to address 24H, if the address 24H contents are O; if not, jumps to OPE1:

MEMO024 MEM 0.24H
SKE MEMO024, #00H
BR OPE1
MOV MEMO024, #0FH
OPE1
(2) SKNE m, #n4 Skip if data memory not equal to immediate data
<1> OP code
10 8 4 3 0
01011 mr me n4

<2> Function

(m) —n4, skip if not zero

Skips the next one instruction, if the data memory contents are not equal to the immediate data value

(Executes as NOP instruction).

223



CHAPTER 19 INSTRUCTION SET

<3> Example

To jump to XYZ, if the asddress 1FH contents are 1 and the address 1EH contents are 3; otherwise,
jump to ABC.
To compare 8-bit data, this instruction is used in the following combination:

3 1
1EH 0 0 1 1 1FH 0O 0 0 1
MEMO1E MEM 0.1EH
MEMO1F MEM 0.1FH

SKNE MEMO1F, #01H

SKE MEMOL1E, #03H

BR ABC

BR XYZ

The above program can be rewritten as follows, using compare and zero flags:

MEMO1E MEM 0.1EH

MEMO1F MEM 0.1FH
SET2 CMP, Z ; CMP flag « 1,Zflag - 1
SUB MEMO1F, #01H
SUBC MEMOL1E, #03H
SKT1 Z
BR ABC
BR XYZ

(3) SKGE m, #n4 Skip if data memory greater than or equal to immediate data
<1> OP code
10 8 7 4 3 0
11001 MR Me n4

224

<2> Function

(m) —n4, skip if not borrow

Skips the next one instruction, if the data memory contents are greater than or equal to the immediate
data value (Executes as NOP instruction).



CHAPTER 19 INSTRUCTION SET

<3> Example

To execute RET, if 8-bit data stored in addresses 1FH (high-order) and 2FH (low-order) is greater than
immediate data ‘17H’; if not, execute RETSK:

MEMO1F MEM 0.1FH

MEMO2F MEM 0.2FH
SKGE MEMO1F, #1
RETSK
SKNE MEMO1F, #1
SKLT MEMO2F, #8 (7 +1
RET
RETSK

(4) SKLT m, #n4 Skip if data memory less than immediate data
<1> OP code
10 8 7 4 3 0
11011 MR Me n4

<2> Function

(m) —n4, skip if borrow

Skips the next one instruction, if the data memory contents are less than the immediate data value
(Executes as NOP instruction).

<3> Example

To store 01H in address OFH, if the address 10H contents are greater than immediate data ‘6’; if not,
store 02H in address OFH:

MEMOOF MEM 0.0FH

MEMO010 MEM 0.10H
MOV MEMOOF, #02H
SKLT MEMO010, #06H
MOV MEMOOF, #01H

225



CHAPTER 19 INSTRUCTION SET

19.5.6 Rotation Instructions

(1) RORC Rotate right general register with carry flag

<1> OP code

00111 000 0111 r

<2> Function

I—‘ CY = (Nos = (No2 = (o2 = (r)bo—l

Rotates the contents of general register indicated by r to right by 1 bit including carry flag.

<3> Example 1

When row address 0 of bank 0 (0.00H — 0.0FH) is specified as general register (RPH =0, RPL = 0), rotate
the value of address 0.00H (1000B) to right by 1 bit to make it 0100B.
(0.00H) « (0.00H) + 2

MEMOOO MEM 0.00H
MOV RPH, #00H ; General register bank O
MOV RPL, #00H ; General register row address 0
CLR1 CY ; CY flag < O

RORC MEMO000
Example 2

When row address 0 of bank 0 (0.00H —0.0FH) is specified as general register (RPH =0, RPL = 0), rotate
the data buffer DBF contents OFA52H to right by 1 bit to make DBF contents 7D29H.

CY OCH ODH OFH CYy

[afafafa]  [afofs]o] I!lﬂl ofofa]o]

DN

Lofefafaf  [2la]o]

MEMOOC MEM 0.0CH

MEMOOD MEM 0.0DH

MEMOOE MEM 0.0EH

MEMOOF MEM 0.0FH
MOV RPH, #00H ; General register bank O
MOV RPL, #00H ; General register row address 0
CLR1 CY ; CY flag < O

RORC MEMOOC
RORC MEMOOD
RORC MEMOOE

RORC MEMOOF
226



CHAPTER 19 INSTRUCTION SET

19.5.7 Transfer Instructions

(1) LDr,m

<1> OP code

10 8 7

Load data memory to general register

01000 mR

Mec

<2> Function

(N « (m)

Stores the data memory contents to general register.

<3> Example 1

To store the address 0.2FH contents to address 0.03H:
(0.03H) < (0.2FH)

MEMO003 MEM
MEMO2F MEM

0.03H

0.2FH

RPH, #00H ; General register bank 0

RPL, #00H ; General register row address 0

MEMO003, MEMO2F

Column address

5 6 7 8 9 A B C D E

F

-— General register

MOV
MOV
LD
Bank 0
o1 2 3
0
1
g 2
5 3
B
> 4
o
xr 5
6 _
7

System register

227



CHAPTER 19 INSTRUCTION SET

Example 2

To store the address 0.6FH contents to address 0.03H. At this time, data memory address 0.6FH can
be specified by selecting data memory address 2FH, if IXE = 1, IXH =0, IXM = 4, and IXL =0, i.e., IX
= 0.40H.
IXH — O0H
IXM ~ 04H
IXL « OOH
IXE flag « 1
(0.03H) « (0.6FH)
Address obtained as result of ORing index register contents, 040H,
and data memory contents, 0.2FH

MEMO0O03 MEM 0.03H

MEMO2F MEM 0.2FH
MOV IXH, #00H ; IX — 00001000000B (0.40H)
MOV IXM, #04H
MOV IXL, #00H
SET1 IXE i IXEflag « 1
LD MEMO003, MEMO2F

Bank 0 Column address

01 2 3 45 6 7 8 9 A B C D E F

0 -— General register
1
»w 2
)
5 3
B
s 4
]
x 5
6 _
7 System register
2) STm,r Store general register to data memory
<1> OP code
10 8 7 4 3 0
11000 mr Mc r

<2> Function

(m) ()

Stores the general register contents to data memory.

228



CHAPTER 19 INSTRUCTION SET

<3> Example 1

To store the address 0.03H contents to address 0.2FH:
(0.2FH) — (0.03H)

MOV  RPH, #00H ; General register bank 0

MOV  RPL, #00H ; General register row address 0

ST 2FH, O3H ; Transfers general register contents to data memory
Bank 0 Column address

01 2 3 45 6 7 8 9 A B C D E F

=— General register

Row address

~N o o b~ W N B O

System register

Example 2

To store the address 0.00H contents to addresses 0.18H through 0.1FH. The data memory addresses
(18H — 1FH) are specified by the index register.

(0.18H) — (0.00H)

(0.19H) ~ (0.00H)

(0.1FH) — (0.00H)

MOV IXH, #00H ; IX « 00000000000B (0.00H)
MOV IXM, #00H
MOV IXL, #00H ; Specifies data memory address 0.00H
MEMO018 MEM 0.18H
MEMOO00 MEM 0.00H
LOOP1:
SET1 IXE i IXEflag « 1
ST MEMO018, MEMOOO ; (0.10H) ~ (0.00H)
CLR1 IXE i IXEflag « O
INC IX JIX < IX+ 1
SKGE IXL, #08H
BR LOOP1

229



CHAPTER 19 INSTRUCTION SET

Bank 0 Column address

0 1 2 3 45 6 7 8 9 A B CDE F

0 SN YN Y Y Y [ -— General register
1
§ 2
5 3
®
z 4
o
x 5
6
7 System register
(3) MOV @r, m Move data memory to destination indirect
<1> OP code
10 8 7 4 3 0
01010 mR me r
<2> Function
When MPE =1
((MP), (r)) < (m)
When MPE =0

(BANK, mR, (1)) < (m)

Stores the data memory contents to the data memory addressed by the general register contents. When
MPE = 0, transfer is performed in the same row address in the same bank.

<3> Example 1

To store the address 0.20H contents to address 0.2FH with the MPE flag cleared to 0. The transfer
destination data memory address is at the same row address as the transfer source, and the column
address is specified by the general register contents at address 0.00H.
(0.2FH) ~ (0.20H)
MEMO0O00 MEM  0.00H
MEMO020 MEM 0.20H

CLR1 MPE ; MPE flag —« 0
MOV MEMOO0O0, #0FH ; Sets column address in general register
MOV @MEMO000, MEMO020 ; Store

230



CHAPTER 19 INSTRUCTION SET

Bank O

0

1

Column address

2 3 45 6 7 8 9 A B C D E F

F

-— General register

Row address

N o g b~ W N P O

System register

Example 2

To store the address 0.20H contents to address 0.3FH, with the MPE flag set to 1. The row address
for the transfer destination data memory address is specified by the memory pointer MP contents. The

column address is specified by the general register contents at address 0.00H.
(0.3FH) — (0.20H)

MEMOO0O0
MEMO020

Bank 0

0

1

MEM
MEM
MOV
MOV
MOV
MOV
MOV
SET1
MOV

0.00H

0.20H

RPH, #00H ; General register bank 0

RPL, #00H ; General register row address 0
MEMOO00, #0FH ; Sets column address in general register
MPH, #00H ; Sets row address in memory pointer
MPL, #03H ;

MPE ; MPE flag « 1

@MEMO000, MEM020 ; Store

Column address

2 3 45 6 7 8 9 A B C D E F

F

<— General register

Row address

~N o o b~ W N B O

System register

(4) MOV m, @r

<1> OP code

10

Move data memory to destination indirect

11010

Mc r

231



CHAPTER 19 INSTRUCTION SET

232

<2>

<3>

Function
When MPE =1
(m) < (MP, ()
When MPE =0
(m) < (BANK, mr, (r))
Stores the data memory contents addressed by the general register contents to data memory. When
MPE = 0, transfer is performed in the same row address in the same bank.
Example 1
To store the address 0.2FH contents to address 0.20H, with the MPE flag cleared to 0. The transfer
destination data memory address is atthe same row address as the transfer source. The column address
is specified by the general register contents at address 0.00H.
(0.20H) « (0.2FH)
MEMOO0O MEM 0.00H
MEMO020 MEM 0.20H
CLR1 MPE ; MPE flag < 0
MOV  MEMO0O0O, #0FH ; Sets column address in general register
MOV MEMO020, @ MEMOOO ;. Store
Bank 0 Column address
0 1 2 3 45 6 7 8 9 A BOCDE F
o|F =— General register
1
2 2
£ a1
®
s 4
[e)
X 5
6
7 System register

Example 2

To store the address 0.3FH contents to address 0.20H, with the MPE flag set to 1. The row address
for the transfer source data memory address is specified by the memory pointer MP contents. The
column address is specified by the general register contents at address 0.00H.
(0.20H) < (0.3FH)
MEMO0OO MEM 0.00H
MEM020 MEM  0.20H

MOV  MEMO0O0O, #0FH ; Sets column address in general register
MOV  MPH, #00H ; Sets row address in memory pointer
MOV MPL, #03H ;

SET1 MPE ; MPE flag « 1

MOV MEMO020, @ MEMOOO ;. Store



CHAPTER 19 INSTRUCTION SET

Bank 0 Column address

01 2 3 45 6 7 8 9 A B C D E F

0| F =— General register
1
9 2
()
5 3 ‘\
E
2 4
[e)
x 5
6
7 System register
(5) MOV m, #n4 Move immediate data to data memory
<1> OP code
10 8 7 4 3 0
11101 mR Mc n4

<2> Function

(m) <« nd

Stores immediate data to data memory.

<3> Example 1

To store immediate data OAH to data memory address 0.50H:
(0.5H) — OAH
MEMO50 MEM 0.50H
MOV MEMO50, #0AH

Example 2

To store immediate data 07H to address 0.32H, when data memory address 0.00H is specified with IXH
=0, IXM = 3, IXL = 2, and IXE flag = 1:
(0.32H) — O7H
MEMOO00 MEM 0.00H
MOV  IXH, #00H ; IX <« 00000110010B (0.32H)
MOV IXM, #03H
MOV IXL, #02H
SET1 IXE i IXEflag « 1
MOV MEMOO0O, #07H

233



CHAPTER 19 INSTRUCTION SET

(6) MOVT DBF, @AR Move program memory data specified by AR to DBF

<1> OP code
10 8 7 4 3 0

00111 000 0001 0000

<2> Function

SP < SP-1,ASR < PC, PC — AR,
DBF « (PC), PC — ASR,SP « SP +1

Stores the program memory contents, addressed by address register AR, to data buffer DBF.
Since this instruction temporarily uses one stack level, pay attention to nesting for subroutines and
interrupts.

<3> Example

To transfer 16 bits of table data, specified by the values for address registers AR3, AR2, AR1, and ARO
in the system register, to data buffers DBF3, DBF2, DBF1, and DBFO:

-k

; ** Table data

-k

ORG  0010H
DW 0000000000000000B ; (O000H)

DwW 1010101111001101B ; (QABCDH)

-k
,

; ** Table reference program

-k
)

MOV  AR3, #00H ; AR3 — O0OH Sets 0011H in address register
MOV  AR2, #00H ; AR2 — OOH

MOV  ARI1, #01H ; AR1 « O1H

MOV  ARO, #01H ; ARO ~ O1H

MOVT DBF, @AR ; Transfers address 0011H data to DBF

In this case, the data are stored in DBF, as follows:
DBF3 = OAH
DBF2 = 0BH
DBF1 = 0CH
DBFO = ODH

234



CHAPTER 19 INSTRUCTION SET

(7) PUSH AR

<1>

<2>

<3>

OP code

00111 000 1101 0000

Function

SP ~ SP -1,
ASR - AR

Push address register

Decrements stack pointer SP and stores the address register AR value to address stack register

specified by stack pointer.

Example 1

To set 003FH in address register and store it in stack:

MOV AR3, #00H
MOV AR2, #00H
MOV AR1, #03H
MOV ARO, #0FH
PUSH AR

Bank 0 Column address

0 1 2 3 45 6 7 8 9 A B C D E F

Row address

S T A C K

~N o o~ W N P O

0|0 | 3 F

System register

235



CHAPTER 19 INSTRUCTION SET

Example 2

To setthe return address (nextaddress of the data table) for a subroutine in the address register. Returns
execution, if a data table exists after a subroutine:

ORG 10H SUBL:

CALL SUB1 ’ 

-k

;** DATA TABLE

-k

' POP AR -

DW 1A1FH VOV ]
DW 002FH AR3, #00H
DW 010AH MoV AR2, #00H
DW 0555H MOV AR1, #03H !
MOV ARO, #00H !
PUSH AR !

RET
DW OFFFH / /
ORG 30H

i
'
I
'

If POP instruction is executed at

this time, the contents of address
register is “0011H” (the next address
of CALL instruction).

236



CHAPTER 19 INSTRUCTION SET

(8) POP AR Pop address register

<1> OP code

00111 000 1100 0000

<2> Function

AR ~ ASR,
SP - SP+1

Pops the contents of address stack register indicated by stack pointer to address register AR and then
increments stack pointer SP.

<3> Example
If the PSW contents are changed, while an interrupt processing routine is being executed, the PSW
contents are transferred to the address register through WR at the beginning of the interrupt processing

and saved to address stack register by the PUSH instruction. Before the execution returns from the
interrupt routine, the address register contents are restored through WR to PSW by the POP instruction.

Interrupt processing routine

PEEK WR, PSW
: POKE ARO, WR
El PUSH AR
Generates
interrupt source
POP AR
PEEK WR, ARO
POKE PSW, WR
RET (or RETI)

237



CHAPTER 19 INSTRUCTION SET

(9) PEEK WR, rf Peek register file to window register
<1> OP code
10 8 7 4 3 0
00111 rfr 0011 rfc

238

<2> Function

WR « (rf)

Stores the register file contents to window register WR.
<3> Example 1

To store the stack pointer SP contents at address 01H in the register file to the window register:
PEEK WR, SP

Bank 0 Column address

01 2 3 45 6 7 8 9 A B C D E F

Row address

N o o~ WN B O

WR System register

Column address

0 12 3 45 6 7 8 9 A B C D E F

SP

Row address

w Nk O

Register file



CHAPTER 19 INSTRUCTION SET

(10) POKE rf, WR

<1> OP code

10

Poke window register to register file

00111

rfr

0010 rfc

<2> Function

(f) « WR

Stores the window register WR contents to register file.

<3> Example

To store immediate data OFH to PODBIO for the register file through the window register:

Row address

MOV WR, #0FH
POKE PODBIO, WR ; Sets all of PODo, POD1, POD2, and PODs in output mode
Bank 0 Column address
01 2 3 45 6 7 8 9 ABCODE F
0
1
2
3
4
5
6
7 WR System register

Row address

w N P O

Column address

01 2 3 45 6 7 8 9 A B CDE F

\

= |

R
Register file PODBIO

239



CHAPTER 19 INSTRUCTION SET

<4> Caution
It seems that the same addresses 40H through 7FH of the data memory exist at addresses 40H through
7FH of the register file as for as the program is concerned.
The PEEK and POKE instructions can access addresses 40H through 7FH in each data memory bank,
in addition to the register file. For example, these instructions can be used as follows:
MEMO5F MEM  0.5FH
PEEK WR, PSW ; Stores PSW (7FH) contents in system register to WR
POKE MEMO5F, WR ; Stores WR contents to address 5FH in data memory
Bank 0 Column address
0 1 2 3 45 6 7 8 9 A B CDE F
0
1
Register file
o 2
0
o
5 3
B
z 4 POKE 5FH, WR
£ 5
Data memory
6 |
7 WR PSW
PEEK WR, PSW
System register
(11) GET DBF, p Get peripheral data to data buffer
<1> OP code
10 8 7 4 3 0
00111 pH 1011 pL
<2> Function
DBF ~ (p)
Stores the peripheral register contents to data buffer DBF.
DBF is a 16-bit area of addresses OH through OFH of BANKO of the data memory regardless of the value
of the bank register.
<3> Example

240

To store the 8-bit contents for shift register SIOSFR in the serial interface to data buffers DBFO and DBF1:
GET DBF, SIOSFR



CHAPTER 19 INSTRUCTION SET

Bank 0 Column address

0 1 2 3 45 6 7 8 9 A B C D E F

0 1/} 2| DBF

) ———
§ 2 Peripheral
5 3 hardware
E . register
8
x5

6 “—slosFrR | 12H

7 System register

<4> Caution

The data buffer is configured in 16 bits. However, the number of bits accessed differs depending on
the peripheral hardware. For example, if the GET instruction is executed to a peripheral hardware
register with a valid bit length of 8 bits, the contents of the peripheral hardware register are stored to
the low-order 8 bits (DBF1, DBFO) of the data buffer DBF.

D buft. DBF3 DBF2 DBF1 DBFO
ata buffer Retained Retained b7 | | | | | bo
GET
Peripheral |
hardware Actual bits
register by | | | | | | | bo
(12) PUT p, DBF Put data buffer peripheral
<1> OP code
10 8 7 4 3 0
00111 pH 1010 pL

<2> Function
(p) — DBF
Stores the data buffer DBF contents to peripheral hardware register.

DBF is a 16-bit area of addresses OH through OFH of BANKO of the data memory regardless of the value
of the bank register.

241



CHAPTER 19 INSTRUCTION SET

<3> Example

To set OAH and O5H to data buffers DBF1 and DBFO, respectively, and transfer them to a peripheral
register, shift register (SIOSFR) for serial interface:

MOV BANK, #00H ; Data memory bank 0

MOV DBFO, #05H

MOV DBF1, #0AH

PUT SIOSFR, DBF

Bank 0 Column address

01 2 3 45 6 7 8 9 A B C D E F

A| 5/| DBF
—
g Peripheral
5 hardware
K register
2
o
o4

“|~siosFr |  OASH

~N o o b~ W N B O

System register

<4> Caution

The data buffer is configured in 16 bits. However, the number of bits accessed differs depending on
the peripheral hardware. For example, if the GET instruction is executed to a peripheral hardware
register with a valid bit length of 8 bits, the contents of the peripheral hardware register are stored to
the low-order 8 bits (DBF1, DBFO) of the data buffer DBF.

Data buff DBF3 DBF2 DBF1 DBFO
ata butter Don't care Don't care b7 | bs | bs | ba | bs | b2 | b1 | bo
\ |
PUT
Peripheral Actual bits
hardware
register br] | | | | | b

242



CHAPTER 19 INSTRUCTION SET

19.5.8 Branch Instructions

(1) BR addr

<1> OP code

10

Branch to the address

01100

addr

<2> Function

PC ~ addr

Branches to an address specified by addr.

<3> Example

: Defines FLY = OFH

; Jumps to address OFH

; Jumps to LOOP1

; Jumps to an address 2 addresses lower than current address

; Jumps to an address 3 addresses higher than current address

FLY LAB OFH
BR FLY
BR LOOP1
BR $+2
BF $-3

LOOP1:

(2) BR @AR
<1> OP code
00111 000 0100 0000

<2> Function

PC - AR

Branch to the address specified by address register

Branches to the program address, specified by address register AR.

243



CHAPTER 19 INSTRUCTION SET

244

<3> Example 1

To set 003FH in address register AR (ARO — AR3) and jump to address 003FH by using the BR @AR

instruction:
MOV AR3, #00H
MOV AR2, #O0OH
MOV AR1, #O03H
MOV ARO, #OFH
BR @AR
Example 2

; AR3 —~ OOH
; AR2 —~ OOH
; AR1 « O3H
; ARO — OFH
; Jumps to address 003FH

To change the branch destination according to the data memory address 0.10H contents, as follows:
0.10H contents

00H
01H
02H
03H
04H
05H
06H
07H
08H — OFH

-k

; ** Jump table

-k

ORG
BR
BR
BR
BR
BR
BR
BR
BR
BR

MEMO010 MEM

MOV
MOV
MOV
MOV
MOV
ST
SKLT
MOV
BR

0.10H
ARS3,
AR2,
AR1,
RPH,
RPL,
ARO,
ARO,
ARO,
@AR

Branch destination label

- AAA
- BBB
- CCC
- DDD
- EEE
- FFF
- GGG
- HHH
- 2727
10H
AAA
BBB
CCcC
DDD
EEE
FFF
GGG
HHH
2727
#00H ; AR3 —~ O0OH Sets AR to 0010H
#00H ; AR2 — OOH
#01H ; AR1 « O1H
#00H ; General register bank 0
#02H ; General register row address 1
MEMO010 ; ARO ~ 0.10H
#08H
#08H ; Sets 08H in ARO, if ARO contents are greater

; than 08H



CHAPTER 19 INSTRUCTION SET

<4> Caution

The number of bits, for address register AR3, AR2, AR1, and ARO, differs, depending on the
microcontroller model to be used.

e uPD17134A/17135A : 10 bits

e uPD17136A/17137A/17P136A/17P137A : 11 bits

245



CHAPTER 19 INSTRUCTION SET

19.5.9 Subroutine Instructions
(1) CALL addr Call subroutine

<1> OP code
10 0

11100 addr

<2> Function

SP - SP -1, ASR ~ PC,
PC ~ addr

Increments and stores the program counter PC value to stack, and branches to a subroutine specified
by addr.

<3> Example 1

MAIN
SUB1:
CALL  sSuBl
D RET
Example 2
MAIN
SUBL1: SuUB2: SUB3:
CALL  SuBl 5 5
CALL SUB2 CALL SUB3

>
-

N

RET RET RET

246



CHAPTER 19 INSTRUCTION SET

(2) CALL @AR

<1>

<2>

<3>

OP code

00111

000

0101

0000

Function

SP . SP-1,

ASR — PC,
PC - AR

Call subroutine specified by address register

Saves the program counter PC value to the stack, and branches the execution to a subroutine that starts

from the address specified by address register AR.

Example 1

To set0020H in address register AR (ARO—AR3) and call the subroutine at address 0020H with the CALL
@AR instruction:

MOV
MOV
MOV
MOV
CALL

Example 2

ARS3,
AR2,
AR1,
ARO,
@AR

#00H
#00H
#02H
#00H

: AR3 ~ O0OH
; AR2 — OOH
i AR1 - 02H
: ARO ~ OOH

; Calls subroutine at address 0020H

To call the following subroutine by the data memory address 0.10H contents:

Contents of 0.10H

00OH
01H
02H
03H
04H
05H
06H
07H
08H-OFH

Subroutine

SUB1
SUB2
SUB3
SUB4
SUB5
SUBG6
SUB7
SUBS8
SUB9

247



CHAPTER 19 INSTRUCTION SET

*x
)

;**Jump table for subroutine

3
’

ORG  10H
BR SuB1 ~
BR SUB2 \
BR SUB3
aR 1 Ri
SuB4 SUBL: SUB2: SUBS:
BR SUB5 -
BR SUB6 - ™~
BR SUB7
BR SUB8
BR SUB9
RET RET RET
J
N
SUB4: SUBS: SUBS6: SUBT: SUBS: SUB9:
RET RET RET RET RET RET
MOV AR3, #00H ; AR3= O0H address register 001 - H
MOV AR2, #00H ; AR2-=- 00H
MOV AR1, #01H ; AR1=- 01H
MOV RPH, #00H ; General register bank 0
MOV RPL, #02H ; General register row address 1
ST ARO, 10H ; ARO=-0.10H
SKLT  ARQ, #08H ; If ARO is larger than 08H,
MOV ARO, #08H ; set ARO to 08H
CALL To jump table

@AR

\

Returns here when executing
RET instruction in each subroutine

<4> Caution
The number of bits, in address registers AR3, AR2, AR1, and ARO, differs, depending on the
microcontroller model to be used.

e uPD17134A/17135A : 10 bits
e uPD17136A/17137A/17P136A/17P137A : 11 bits

248



CHAPTER 19 INSTRUCTION SET

(3) RET Return to the main program from subroutine

<1> OP code
10 8 7 4 3 0

00111 000 1110 0000

<2> Function

PC ~ ASR,
SP - SP +1,

Instruction to return to the main program from a subroutine.
Restores the return address, saved to the stack by the CALL instruction, to the program counter.

<3> Example

RET

(4) RETSK Return to the main program then skip next instruction

<1> OP code

00111 001 1110 0000

<2> Function
PC « ASR, SP ~ SP + 1 and skip
Instruction to return to the main program from a subroutine.
Skips the instruction next to the CALL instruction (i.e., treats that instructions as an NOP instruction).

Therefore, restores the return address, saved to the stack by the CALL instruction, to program counter
PC and then increments the program counter.

249



CHAPTER 19 INSTRUCTION SET

<3> Example

To execute the RET instruction, if the LSB (least significant bit) content for address 25H in the data
memory (RAM) is 0. The execution is returned to the instruction next to the CALL instruction. If the LSB
is 1, execute the RETSK instruction. The execution is returned to the instruction following the one next
to the CALL instruction (in this example, ADD 03H, 16H).

J SUB1:
CALL SUB1

BR LOOP

ADD 03H, 16H SKF 25H, #0001B

RETSK ; LSB of 25H is "1"
RET ; LSB of 25H is "0"
(5) RETI Return to the main program from the interrupt service routine
<1> OP code
00111 100 1110 0000

<2> Function
PC < ASR, INTR « INTSK, SP - SP +1
Instruction to return to the main program, from an interrupt service routine.
Restores the return address, saved to the stack by a vector interrupt, to the program counter.

Part of the system register (BANK, PSWORD) is also returned to the status before the occurrence of
the vector interrupt.

250



CHAPTER 19 INSTRUCTION SET

19.5.10 Interrupt Instructions
(1) El Enable Interrupt

<1> OP code

00111 000 1111 0000

<2> Function
INTEF «~ 1

Enables a vectored interrupt.
The interrupt is enabled after the instruction next to the El instruction has been executed.

<3> Example 1
As shown in the following example, the interrupt is accepted after the instruction next to that, that has

accepted the interrupt, has been completely executed (excluding an instruction that manipulates
program counter). The flow then shifts to the vector address Notel,

Note 2
Interrupt service

El
: 4 routine (vector address)
Generating —— MOV OAH, #00H
interrupt request ADD OBH #01H !
/! El
ADD OCH, #01H !
. ! RET

DI / ;

Generating —— / ,

interrupt request ; ! J
El / /

MOV 0AH, #01H / /
SUB OBH, #01H

251



CHAPTER 19 INSTRUCTION SET

Notes 1. The vector address differs, depending on the interrupt to be accepted. Refer to Table
14-1.

2. The interrupt accepted in this example (an interrupt request is generated after the El
instruction has been executed and the execution flow shifts to an interrupt service routine)
is the interrupt, whose interrupt enable flag (IPxxx) is set. The program flow is not changed,
without the interrupt enable flag set, even if an interrupt request is generated, after the El
instruction has been executed (therefore, the interrupt is not accepted). However, interrupt
request flag (IRQxxx) is set, and the interrupt is accepted, as soon as the interrupt enable
flag is set.

Example 2

An example of an interrupt, which occurs in response to an interrupt request being accepted counter
PC is being executed:

£l 5 Interrupt service
: routine (vector address)

Generating —— BR ABC
interrupt request :
El

RET
ABC: ' /

MOV O0AH,  #00H
ADD 0BH, #01H

(2) DI Disable interrupt

<1> OP code

00111 001 1111 0000

<2> Function

INTEF -~ O

Instruction to disable a vectored interrupt.

<3> Example

Refer to Example 1 in (1) EI.

252



CHAPTER 19 INSTRUCTION SET

19.5.11 Other Instructions

)

)

©)

STOP s

<1> OP code

00111

010

1111

<2> Function

Stop CPU and release by condition s

Stops the system clock and places the device in the STOP mode.

In the STOP mode, the power consumption for the device is minimized.

The condition, under which the STOP mode is to be released, is specified by operand (s).
For the stop releasing condition (s), refer to 16.3 STOP MODE.

HALT h

<1> OP code

00111

011

1111

<2> Function

Places the device in the HALT mode.

Halt CPU and release by condition h

In the HALT mode, the power consumption for the device is reduced.

The condition, under which the HALT mode is to be released, is specified by operand (h).

For HALT releasing condition (h), refer to 16.2 HALT MODE.

NOP

<1> OP code

00111

100

1111

0000

<2> Function

Performs nothing and consumes one machine cycle.

No operation

253



[MEMO]

254



CHAPTER 20 ASSEMBLER RESERVED WORDS

20.1 MASK OPTION DIRECTIVE
The uPD173134A, 17135A, 17136A, and 17137A have the following mask options.

e Internal pull-up resistor of RESET pin

e Internal pull-up resistor of POD3 through PODo pins
e Internal pull-up resistor of P1A3 through P1Ao pins
e Internal pull-up resistor of P1Bo pin

When developing a program, all the above mask options must be specified in the source program by using mask
option directives.

20.1.1 Specifying Mask Option
The mask options are described in the assembler source program by using the following directives.

e OPTION and ENDOP directives
* Mask option definition directive

(1) OPTION and ENDOP directives
These directives specify the range in which the mask option is to be described (mask option definition block).
Specify the mask option by describing the mask option directive in an area between the OPTION and ENDOP
directives.

Description format

Symbol field Mnemonic field Operand field Comment field
[label: ] OPTION [;comment]
ENDOP

255



CHAPTER 20 ASSEMBLER RESERVED WORDS

(2) Mask option definition directive

Table 20-1. Mask Option Definition Directive

Option Definition directive and format Operand Definition
Internal pull-up resistor OPTRES <operand> OPEN None
of RESET pin PULLUP Provided
Internal pull-up resistor of | OPTPOD <operand 1>, ..., <operand 4>Nce 1 OPEN None
POD3 through PODo pins PULLUP Provided
Internal pull-up resistor of | OPTP1A <operand 1>, ..., <operand 4>Note 2 OPEN None
P1As through P1Ao pins PULLUP Provided
Internal pull-up resistor of | OPTP1B <operand> OPEN Not used
P1Bo pin PULLUP Used

Notes 1. <operand 1>, <operand 2>, <operand 3>, and <operand 4> specify the mask options of the PODs3,
POD2, POD1, and PODo pins, respectively.

2. <operand 1>, <operand 2>, <operand 3>, and <operand 4> specify the mask options of the P1As,
P1Az2, P1A1, and P1Ao pins, respectively.

(3) Example of describing mask option
; Example of describing mask option of uPD17134A subseries
MASK_OPTION:

OPTION
OPTRES PULLUP Internal pull-up resistor is connected to RESET pin.
OPTPOD  PULLUP, PULLUP, OPEN, OPEN ; Internal pull-up resistor is connected to POD3 and POD2 pins.
POD1 and P0ODo are open (externally pulled up).

OPTP1A  PULLUP, OPEN, PULLUP, OPEN ; P1Asand P1A pins are connected to internal pull-up resistor.
P1A2 and P1Ao pins are open (externally pulled up).

Start of mask option definition block

OPTP1A  PULLUP
ENDOP

P1Bo pin is connected to internal pull-up resistor.
End of mask option definition block

256



CHAPTER 20 ASSEMBLER RESERVED WORDS

20.2 RESERVED SYMBOLS

The reserved symbols defined in the uPD17134A, 17135A, 17136A, and 17137A device file (AS17134) are listed
below.

System register (SYSREG)

Symbolic Attribute | Value Rgad/ Description
name write
AR3 MEM 0.74H R Bits 15 to 12 of the address register
AR2 MEM 0.75H R/W Bits 11 to 8 of the address register
AR1 MEM 0.76H R/W Bits 7 to 4 of the address register
ARO MEM 0.77H R/W Bits 3 to 0 of the address register
WR MEM 0.78H R/W Window register
BANK MEM 0.79H R/W Bank register
IXH MEM 0.7AH R/W Index register high
MPH MEM 0.7AH R/W Data memory row address pointer high
MPE FLG 0.7AH.3 R/W Memory pointer enable flag
IXM MEM 0.7BH R/W Index register middle
MPL MEM 0.7BH R/W Data memory row address pointer low
IXL MEM 0.7CH R/W Index register low
RPH MEM 0.7DH R/W General register pointer high
RPL MEM 0.7EH R/W General register pointer low
PSW MEM 0.7FH R/W Program status word
BCD FLG 0.7EH.O R/W BCD flag
CMP FLG 0.7FH.3 R/W Compare flag
CY FLG 0.7FH.2 R/W Carry flag
z FLG 0.7FH.1 R/W Zero flag
IXE FLG 0.7FH.0 R/W Index enable flag

257



CHAPTER 20 ASSEMBLER RESERVED WORDS

Data buffer (DBF)

Symbolic Attribute Value Rejad/ Description
name write
DBF3 MEM 0.0CH R/W DBF bits 15 to 12
DBF2 MEM 0.0DH R/W DBF bits 11 to 8
DBF1 MEM 0.0EH R/W DBF bits 7 to 4
DBFO MEM 0.0FH R/W DBF bits 3t0 0
Port register
Symbolic Attribute Value Rgad/ Description
name write
POA3 FLG 0.70H.3 R/W Port OA bit 3
| Poa2 | FLG | 070H2 | RW | PotoAbitz ]
[ Poar | FLG | 070H1 | RW | PortOAbBt1 ]
[ Poro | FLG | 070HO | RW | PortOAbito ]
POB3 FLG 0.71H.3 R/W Port OB bit 3
[ sz | FLG | 071H2 | RW | PortoBbE2
[ poer | FLG | 071H1 | RW | PortoBbC
[ poso | FLG | 071HO | RW | PortoBbitO
POC3 FLG 0.72H.3 R/W Port OC bit 3
| poc2 | FL.G | 072H2 | RW | Potocbitz
[ poc1 | FLG | 072H1 | RW | Potocbitr ]
[ Poco | FLG | 072H0 | RW | Potocbito ]
POD3 FLG 0.73H.3 R/W Port 0D bit 3
[ Pop2 | FL.G | 07342 | RW | PotoDbite ]
[ Pop1 | FL.G | 07341 | RW | PotoDbitz ]
[ Pobo | FL.G | 07340 | RW | PotoDbtO
P1A3 FLG 1.70H.3 R/W Port 1A bit 3
[ P2 | FLG | 170H2 | RW | Port1Abit2 ]
[ P | FLG | 170H1 | RW | Port1Abitz ]
| P1a0 | FLG | 170HO | RW | PotiAbito ]
P1B0 FLG 1.71H.0 R Port 1B bit 0

258




CHAPTER 20 ASSEMBLER RESERVED WORDS

Register file (control register)

Symbolic Attribute Value Rgad/ Description
name write
SP MEM 0.81H R/W Stack pointer
SIOTS FLG 0.82H.3 R/W SIO start flag
| somz | Fle | osen2 | rRw |sopnstate |
[ siocki | FLG | 082H1 | RMW | SIO source clock selection flag bit1 |
[ siocko | FLG | 082H0 | RW | SIOsource clock selection flag ito |
WDTRES FLG 0.83H.3 R/W Watchdog timer reset flag
[ WDOTEN | FLG | 083HO | RW | Watchdog timer enable flag |
TMOOSEL FLG 0.8BH.3 R/W Flag for switching timer O output and port
[ sioeN | Flc | osBHO | RW |siOenabefag |
POBGPU FLG 0.8CH.1 R/W POB group pull-up selection flag (pull-up = 1)
| PoacPU | FLG | 08CcHO | RW | POA group pull-up selection flag (pullup=1) |
INT FLG 0.8FH.0 R INT pin status flag
PDRESEN FLG 0.90H.0 R/W Power-down reset enable flag
TMOEN FLG 0.91H.3 R/W Timer 0 enable flag
| TMORes | FLG | 091H2 | Rw | Timeroresetfag |
[ TMocki | FLG | 091H1 | RMW | TimeroO source clock selection flag bt |
[ TMocko | FLG | 091HO | RM | Timer 0 source clock selection flag bito |
TM1EN FLG 0.92H.3 R/W Timer 1 enable flag
TM1RES FLG 0.92H.2 R/W Timer 1;(;S_(;t_f|:’:l;] _________________________________________
TMICKL FLG | 0.92H1 | RwW | Timer1source clock selection flagbits |
TM1CKO FLG 0.92H.0 R/W Timer 1 source clock seI;c_ti);]_ﬂ_a_g_t;it_(_) _________________________
BTMISEL FLG 0.93H.3 R/W BTM interrupt request clock selection flag
| BTMRES | FLG | 093H2 | RW |BTMresetfag |
| BTMCKL | FLG | 093H1 | RW | BTM source clock selection flagbitt |
[ BTMCKO | FLG | 093HO | RMW | BTMsource clock selection flagbito |
POC3IDI FLG 0.9BH.3 R/W POCs input port disable flag (ADC3s/POCs selection)
| pocaibl | FLG | 09BH2 | RMW | POC:input port disable flag (ADC/POC: selection) |
[ PociDI | FLG | 09BH1 | RMW | POC:input port disable flag (ADCYPOC: selecton) |
| pocoDl | FLG | 09BHO | RMW | POCoinput port disable flag (ADCoPOCo selection) |
POCBIO3 FLG 0.9CH.3 R/W POCs input/output selection flag (1 = output port)
[ PocBIO2 | FLG | 09CH2 | RMW | POC:inputioutput selection flag (1 = output porty |
| PoCBIOI | FLG | 0.9CH1 | RMW | POC:inputioutput selection flag (1 = outputporty |
| POoCBIOO | FLG | 0.9CHO | RMW | POCoinputioutput selection flag (1 = output porty |
ZCROSS FLG 0.9DH.0 R/W Zerocross detector enable flag
IEGMD1 FLG 0.9FH.1 R/W INT pin edge detection selection flag bit 1
| IEGMDO | FLG | 09FH.O | RM | INT pin edge detection selection flag bito |
ADCSTRT FLG 0.0A0H.0 R/W A/D converter start flag (always 0 when read)
ADCSOFT FLG 0.0A1H.3 R/W A/D converter software control flag (1 = single mode)
| ADccMP | FLG | 0.0A1H.1 | RMW | A/D converter comparison result flag (valid only in single mode) |
| ADCEND | FLG | 0.0A1HO | RMW | AD converter conversionendflag ]




CHAPTER 20 ASSEMBLER RESERVED WORDS

Symbalic Attribute Value Rgad/ Description

name write

ADCCH3 FLG 0.0A2H.3 R/W Dummy flag
| apccH2 | FlG | oomzH2 | Rw | Dummyfag
[ ADCCH1 | FLG | 0.0A2H.1 | RMW | AD converter channel selection flag bit1
| ADCCHO | FLG | 0.0A2HO | RW | AID converter channel selection flag bito

PODBIO3 FLG 0.0ABH.3 R/W PODs input/output selection flag (1 = output port)
| PoDBIO2 | FLG | 00ABH2 | RW | POD:inputioutput selection flag (1 = outputporty
| PODBIOL | FLG | 00ABH1 | RMW | POD:inputioutput selection flag (1 = output porty
| PODBIOO | FLG | 00ABHO | RMW | PODoinputioutput selection flag (1 = outputport)

P1AGIO FLG 0.0ACH.2 R/W P1A group input/output selection flag (1 = all P1As are output ports.)
[ poBGIO | FLG | 00ACH.1 | RMW | POB group inputioutput selection flag (1 = all POBs are output ports.) |
[ poacio | FLG | 00ACH.O | RMW | POA group inputioutput selection flag (1 = all POAs are output ports.) |

IPSIO FLG 0.0AEH.O R/W SIO interrupt enable flag

IPBTM FLG 0.0AFH.3 R/W BTM interrupt enable flag
[ pTM1 | FLG | 00AFH.2 | RMW | TM1interruptenable flag
[ pTMO | FLG | 0.0AFH.1 | RMW | TMOinterrupt enable flag
e | FLG | 0.0AFH.O | R/ | INT pin interrupt enable flag

IRQSIO FLG 0.0BBH.O R/W SIO interrupt request flag

IRQBTM FLG 0.0BCH.0 R/W BTM interrupt request flag

IRQTM1 FLG 0.0BDH.O R/W TM1 interrupt request flag

IRQTMO FLG 0.0BEH.O R/W TMO interrupt request flag

IRQ FLG 0.0BFH.0 R/W INT pin interrupt request flag

Peripheral register

Symbolic | piibite | value Rgad/ Description

name write

SIOSFR DAT 01H R/W Peripheral address of the shift register

TMOM DAT 02H w Peripheral address of the timer 0 modulo register

TM1M DAT 03H W Peripheral address of the timer 1 modulo register

ADCR DAT 04H R/W Peripheral address of A/D converter data register

TMOTM1C DAT 45H R Peripheral address of timer O timer 1 count register

AR DAT 40H R/W Peripheral address of the address register for GET, PUT, PUSH, CALL,

BR, MOVT, and INC instructions

Others

Symbolic ) _—

name Attribute Value Description

DBF DAT OFH Fixed operand value of PUT, GET, or MOVT instruction

IX DAT 01H Fixed operand value of INC instruction

260



APPENDIX A DEVELOPMENT OF uPD171xx SUBSERIES

<~—— suid jJo JaquinN 82 e

[44

9T

od
‘NIW A §'T :9bejjoa-mo] 10
owess)

"NIN A 8'T :3fe}oA-mo| ‘aluresd) IrotLtadn

8ot.Tadn
JgotLtadn
v0tT.TAd"

aX T Wod

Lot.1adr!
Jzotztadn
€ot.1adn

Jeotztadn

oY
"NIW A G'T :86e)j0A-MO] ‘OY
Jlwess)

"NIW A 8'T :86e3j0A-Mo)| ‘Olwesa)

aX T Nod

J19|j01u02 Aut]

oztz1adn

oY ‘ad §'T :NOY

Jlwel9d ‘'g) §'T [INOY TerL1adn

oY ‘g ¢ {INOoY zetLtadr

Jlwesdd ‘gy Z :INoY

€eTL1adn

oIureIad ‘gy Z INOY SyTLIad! UoT : B0BLAIUI [BLBS

ot

Yot :

yot

Yot :
Yoy :

:90ey8IUI [RLBS
JENTR

1 90BlIBUI [elBS
JawiL
Joreredwod

yog : Jewi|
Yoy : an

LyTLTadn
6vT.TAd!

oIUWeIRd gy ¥ {NOY
IR ‘gy 8 :NOY

$S012019Z QY

1od abeyon-wnipsiy
YoT : 0Bl [eLBS
yog : JEINN
yp av

vryeTLTadn
vsetLTadr

voeTLTad
v.etLTadn

O ‘g Z !INOY

olwelad ‘g ¢ IINOY

oY ‘g ‘oY
Jlwedd ‘gy ¥ INOY

sJa|jonu0d asodind-fesauab |ews -

('siopouw |[e 10} 3|qe|IRAR S| [BpOW NOHd dWI-BUQ)

~——— {dueuwliouad

261



[MEMO]

262



APPENDIX B COMPARISON OF FUNCTIONS BETWEEN pPD17135A, 17137A,
AND pPD17145 SUBSERIES

(1/2)
HPD17145 uPD17147 HPD17149 uPD17135A uPD17137A
ROM 2K bytes 4K bytes 8K bytes 2K bytes 4K bytes
RAM 110 x 4 bits 112 x 4 bits
Stack Address stack x 5 levels

Interrupt stack x 3 levels

Instruction execution time
(clock, supply voltage)

2 us (fx = 8 MHz, Vop = 4.5 t0 5.5 V)
4 us (fx =4 MHz, Vobo = 3.6 to 5.5 V)

8 s (fx = 2 MHz, Voo = 2.7 t0 5.5 V)

2 us (fx =8 MHz, Voo = 4.5t0 5.5 V)
4 ps (fx = 4 MHz, Voo = 2.7 t0 5.5 V)

110

CMOS I/0 12 (POA, POB, POC)
Input 2 (POFo, POF1) 1 (P1Bo)
Sense input 1 (INT) 1 (INT)

Can be pulled up by mask option

N-ch open-drain 1/0

8 (POD, POE, voltage: Vob)
POD pull up: software
POE pull up: software

8 (POD, P1A, voltage: 9 V)
POD pull up: mask option
P1A pull up: mask option

Internal pull-up resistor

100 kQ TYP. (except POD)
10 kQ TYP. (POD)

100 kQ TYP.

A/D converter (supply voltage)

8 bits x 4 channels (Voo = 4.0 to 5.5 V)

8 bits x 4 channels (Voo = 4.5t0 5.5 V)

Reference voltage pin

VRrer (VRer = 2.5 to Vob)

None (Vrer = Vabc = Vo)

Timer 8 bits (TMO, TM1) 2 (timer output: TM10OUT) 2 (timer output: TMOOUT)
TMO clock : fx/512 TMO clock : fx/256
fx/64 fx/64
fx/16 fx/16
INT INT
TM1 clock : fx/8192 TM1 clock : fx/1024
x/128 fx/512
fx/16 fx/256
TMO count up TMO count up
Basic interval timer 1 (multiplexed with watchdog timer) 1 (multiplexed with watchdog timer)
(BTM) Count pulse : fx/16384 Count pulse : fx/8192
fx/4096 fx/4096
fx/512 TMO count up
fx/16 INT
Interrupt | External 1 1
(with AC zero cross detection function)
Internal 4 (TMO, TM1, BTM, SIO)
SIO 1 (clocked 3-wire)

Output latch

Independent of POD: latch

Multiplexed with PODz1 latch

263



APPENDIX B COMPARISON OF FUNCTIONS BETWEEN pPD17135A, 17137A, AND uPD17145 SUBSERIES

(2/2)

uPD17145 uPD17147 uPD17149 uPD17135A uPD17137A

Standby function

HALT, STOP HALT, STOP
(with input pin RLS for releasing)

Oscillation stabilization wait time

128 x 256 counts 512 x 256 counts

POC function

Mask option Internal

Package

28-pin plastic SDIP (400 mil)
28-pin plastic SOP (375 mil)

One-time PROM

uPD17P149 uPD17P137A

Caution The pPD17145 subseries is not pin-compatible with the UPD17135A and 17137A. The uPD17145
subseries has no model equivalent to the  puPD17134A and 17136A (RC oscillation type).
For the electrical characteristics, refer to the Data Sheet of each model.

Remark fx: system clock oscillation frequency

264



APPENDIX C DEVELOPMENT TOOLS

The following support tools are available for developing programs for the uPD17134A subseries.

Hardware

Name

QOutline

In-circuit emulator
IE-17K
|IE-17K-ETNotel
EMU-17KNote2

These are in-circuit emulators that can be commonly used with microcontrollers in 17K series.
IE-17K and IE-17K-ET are connected to a host machine, NEC PC-9800 series or IBM PC/AT™,
through RS-232-C. EMU-17K is mounted in expansion slot of NEC PC-9800 series that serves as
host machine.

When these in-circuit emulators are used in combination with the evaluation board (SE board)
dedicated to each model of microcontroller, they operate as emulators corresponding to microcontroller.
When these in-circuit emulators are used with man-machine interface software SIMPLEHOST™, a
more sophisticated debugging environment can be created.

EMU-17K also has a function that allows you to monitor data memory contents real-time.

SE board (SE-17134)

SE-17134isan SE board for uPD17134A subseries series. It can be used alone for system evaluation
or in combination with an in-circuit emulator for debugging.

Emulation probe
(EP-17K28CT)

EP-17K28CT is an emulation probe for 17K series 28-pin shrink DIP (400 mil) and connects SE board
and target system.

Emulation probe
(EP-17K28GT)

EP-17K28GT is an emulation probe for 17K series 28-pin SOP (375 mil) and connects SE board and
target system by being used with EV-9500GT-28Note3,

Conversion adapter
(EV-9500GT-28Notes)

EV-9500GT-28 is an adapter for 28-pin SOP (375 mil) and is used to connect EP-17K28GT to target
system.

PROM programmer
AF-9703Note4
AF-9704Note4
AF-9705Noe4
AF-9706Nowe4

AF-9703, AF-9704, AF-9705, and AF-9706 are PROM programmers corresponding to uPD17P136A
and 17P137A. When connected with program adapter AF-9808F, these programmers can be used
to program puPD17P136A and 17P137A.

Programmer adapter
(AF-9808FNote4)

AF-9808F is an adapter for programming uPD17P136A and 17P137A, and is used in combination with
AF-9703, AF-9704 or AF-9706.

Notes 1.

Low-price model: external power supply type

2. This is a program of IC Corp. For details, consult IC.

3. Two EV-9500GT-28 are supplied as accessories with the EP-17K28GT. Five EV-9500GT-28's are
optionally available as a set.

4. Manufactured by Ando Electric. For details, consult Ando Electric.

265



APPENDIX C DEVELOPMENT TOOLS

Software
Name Description Host machine oS Distrjbution Part number
media
17K series AS17K is an assembler 5.inch. 2HD SEAL0ASLTK
assembler (AS17K) | applicable to the 17K series. PC-9800 -inch, K
In developing uPD17134A, series MS-DOS™
17135A, 17136A, and 17137A 3.5-inch, 2HD | uS5A13AS17K
programs, AS17K is used in
combination with a device file IBM PC/AT bC DOS™ Beinch. 2HC S7BLOAS17K
(AS17134). € bos -inen, H
ice fi AS17134 is a device file for
Device file ' viee 5-inch, 2HD | uSBA10AS17134
(AS17134) the uPD17134A, 17135A, PC-9800
17136A, and 17137A. series MS-DOS
It is used together with the 3.5-inch, 2HD | uS5A13AS17134
assembler (AS17K) which is
applicable to the 17K series.
ppl ! IBM PC/AT PC DOS 5-inch, 2HC USTB10AS17134
SIMPLEHOST, running on the .
Support software ; tnning 5-inch, 2HD | uSBAL0IEL7K
(SIMPLEHOST) Windows™, provides man- PC-9800
machine-interface in develop- | geries MS-DOS
ing programs by using a Windows | 3.5-inch, 2HD | uS5A13IE17K
personal computer and the in-
circuit emulator.
reul . IBM PC/AT |PC DOS 5-inch, 2HC US7B1OIEL7K

Remark The supported OS versions are as follows:

266

oS Version
MS-DOS Ver. 3.30 to Ver. 5.00ANete
PC DOS Ver. 3.1 to Ver. 5.0Nct
Windows Ver. 3.0 to Ver. 3.1

Note Although MS-DOS Ver. 5.00/5.00A and PC DOS
Ver. 5.0 have a task swap function, this function

cannot be used with this software.




APPENDIX D NOTES ON CONFIGURATION OF SYSTEM CLOCK OSCILLATION CIRCUIT

The system clock oscillation circuit oscillates by using a ceramic resonator connected across the X1 and X2 pins

or an oscillation resistor connected across the OSC1 and OSCo pins.
Figure D-2 shows the external circuits of the system clock oscillation circuit.

Figure D-1. External Circuit of System Clock Oscillation Circuit

uPD17135A uPD17134A

uPD17137A uPD17136A

uPD17P137A uPD17P136A
Xout XiN GND OSCo OSC:

Ceramic resonator

Caution Wire the system clock oscillation circuit so that the resistance component and inductance
component of the ground wiring can be minimized. Wire the portion enclosed in the dotted line
in Figure D-1 as follows to prevent influence of wiring capacitance.

« Keep the wiring length as short as possible.

* Do not cross the wiring with the other signal lines. Keep a distance between the wiring and
a line through which a high alternating current flows.

* Always keep the ground point of the capacitor of the oscillation circuit at the same potential
as Vss. Do not ground the wiring to a ground pattern through which a high current flows.

» Do not extract signals from the oscillation circuit.

Figure D-2 shows an examples of incorrect oscillation circuits.

267



APPENDIX D NOTES ON CONFIGURATION OF SYSTEM CLOCK OSCILLATION CIRCUIT

Figure D-2. Example of Incorrect Oscillation Circuits

(a) Wiring length of circuit is too long. (b) Crossed signal lines
Xout Xin GND PORT Xout XiN GND
—”:”7 Too long :L'j:
T . 7 i

(c) Signal line close to high alternating current

e

(d) Current flowing through ground line of

oscillation circuit (potential at points A and B

changes in respect to point C)

GND PORT Xout

High

XiN GND

current

(e) Signal is extracted

Xout XN

GND

268

T

Al e

High current 7-* a



E.1 INSTRUCTION LIST (by function)

[Addition Instructions]
ADD r,m... 198
ADD m, #n4 ... 201
ADDC r,m... 203
ADDC m, #n4 ... 205
INC AR ... 206
INC IX ... 208

[Subtraction Instructions]
SuB r, m...209
SUB m, #n4 ... 211
SUBC r,m.. 212
SUBC m, #n4 ... 214

[Logical Operation Instructions]

OR r,m... 216
OR m, #n4 ... 216
AND r,m... 217
AND m, #n4 ... 218
XOR r,m...219
XOR m, #n4 ... 220

[Judgment Instructions]
SKT m, #n ... 221
SKF m, #n ... 223

[Comparison Instructions]
SKE m, #n4 ... 223
SKNE m, #n4 ... 223
SKGE m, #n4 ... 224
SKLT m, #n4 ... 224

[Rotation Instructions]
RORC r..226

APPENDIX E

INSTRUCTION LIST

[Transfer Instructions]

LD r,m.. 227
ST m,r...228
MOV @r, m... 231
MOV m, @r ... 231
MOV m, #n4 ... 233

MOVT DBF, @AR ... 234
PUSH AR ... 235

POP AR ... 237

PEEK WR, rf ... 238
POKE rf, WR ... 239
GET DBF, p ... 240
PUT p, DBF ... 241

[Branch Instructions]
BR addr ... 243
BR @AR ... 243

[Subroutine Instructions]
CALL addr ... 246
CALL @AR ... 247

RET ... 249
RETSK ... 249
RETI ... 250

[Interrupt Instructions]
El ... 251
DI ... 252

[Other Instructions]
STOP s...253
HALT h...253
NOP ... 253

269



APPENDIX E INSTRUCTION LIST

E.2 IINSTRUCTION LIST (alphabetical order)

[A]
ADD m, #n4 ... 201
ADD r,m...198
ADDC m, #n4 ... 205
ADDC r,m... 203
AND m, #n4 ... 218
AND r,m.. 217
[B]
BR addr ... 243
BR @AR ... 243
[C]
CALL addr ... 246
CALL @AR ... 247
[D]
DI ... 252
[E]
El ... 251
[G]
GET DBF, p ... 240
[H]
HALT h...253
(1
INC AR ... 206
INC IX ... 208
[L]
LD r,m... 227
(M]
MOV m, #n4 ... 233
MOV m, @r ... 231
MOV @r, m... 231
MOVT DBF, @AR ... 234
[N]
NOP ... 253

270

(O]
OR m, #n4 ... 216
OR r,m... 216
[P]
PEEK WR, rf ... 238
POKE rf, WR ... 239
POP AR ... 237
PUSH AR ... 235
PUT p, DBF ... 241
(R]
RET ... 249
RETI ... 250
RETSK ... 249
RORC r..226
[S]
SKE m, #n4 ... 223
SKF m, #n ... 221
SKGE m, #n4 ... 224
SKLT m, #n4 ... 224
SKNE m, #n4 ... 223
SKT m, #n ... 221
ST m,r ... 228
STOP s ... 253
SUB m, #n4 ... 211
sSuB r,m... 209
SUBC m, #n4 ... 214
SUBC r,m... 212
(x]
XOR m, #n4 ... 220
XOR r,m...219



APPENDIX F ORDERING MASK ROM

After developing the program, place an order for the mask ROM version, according to the following procedure:

@

@

©)

4

Make reservation when ordering mask ROM.

Advise NEC of the schedule for placing an order for the mask ROM. If NEC is not informed in advance, on-
time delivery may not be possible.

Create ordering medium.

Use UV-EPROM to place an order for the mask ROM.
Add/PROM as an assemble option of the Assembler (AS17K), and create a mask ROM ordering HEX file (with
extender for .PRO).

Next, write the mask ROM ordering HEX file into the UV-EPROM.
Create three UV-EPROMs with the same contents.

Prepare necessary documents.

Fill out the following forms to place an order for the mask ROM:

*« Mask ROM ordering sheet

« Mask ROM ordering check sheet

Ordering

Submit the media created in (2) and documents prepared in (3) to NEC by the specified date.

Caution For details, refer to information document ROM Code Ordering Procedure (IEM-1366).

271



[MEMO]

272



Facsimile

NEC

Message

Although NEC hastaken all possible steps
toensure thatthe documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that

From: :
errors may occur. Despite all the care and
precautions we've taken, you may

Name encounter problemsinthe documentation.
Please complete this form whenever

Company you'd like to report errors or suggest
Improvements to us.

Tel. FAX

Address

Thank you for your kind support.

North America

NEC Electronics Inc.

Corporate Communications Dept.

Fax: 1-800-729-9288
1-408-588-6130

Europe

NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-889-1689

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea

NEC Electronics Hong Kong Ltd.
Seoul Branch

Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan

NEC Corporation

Semiconductor Solution Engineering Division
Technical Information Support Dept.

Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number:

Page number:

If possible, please fax the referenced page or drawing.

Document Rating
Clarity

Technical Accuracy
Organization

Excellent Good
a a
a a
a a

Acceptable Poor
a a
a a
a a

CS 96.8



