NEC

User’s Manual

uPD170xx Series

4-bit Single-chip Microcontroller

Common items

Document No. U13262EJ2VOUMOO (2nd edition)
(Previous No. IEU-1363)
Date Published May 1998 N CP(K)

© NEC Corporation 1993
Printed in Japan

www.DataSheetdU.com

www.DataSheet4U.com

[MEMO]

www.DataSheetdU.com

NOTES FOR CMOS DEVICES

® PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored andtransported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions
need to be taken for PW boards with semiconductor devices on it.

(® HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, itis possible that an internal input level may be generateddue to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input
levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each
unused pin should be connected to Voo or GND with a resistor, if it is considered to have a
possibility of being an cutput pin. All handling related to the unused pins must be judged device
by device and related specifications governing the devices.

@ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, /O settings or contents of registers. Device is not initialized until
the reset signal is received. Reset operation must be executed immediately after power-on for
devices having reset function.

SIMPLEHOST and emIC-17K are trademarks of NEC Corporation.
PC/AT is a trademark of IBM Corporation.

Windows is either a registered trademark or a trademark of Microsoft
Corporation in the United States and/or other countries.

www.DataSheetdU.com

Purchase of NEC I2C components conveys a license under the Philips I’C Patent Rights to use these
components in an I2C system, provided that the system conformsto the I2C Standard Specification as defined
by Philips.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited
without governmental license, the need for which must be judged by the customer. The export or re-export of this product
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or otherintellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEG semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated “quality assurance program* for a specific application. The recommended applications of
a device depend onits quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
eguipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEGC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M7 96.5

www.DataSheetdU.com

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

» Device availability
« Ordering information

« Product release schedule

+ Availability of related technical literature

» Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

» Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics ltaliana s.r.1.
Milano, ltaly

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office

Madrid, Spain

Tel: 01-504-2787

Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311

Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-719-2377

Fax: 02-719-5951

NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil

Tel: 011-6465-6810
Fax: 011-6465-6829

Jogs. 2

www.DataSheetdU.com

MAJOR REVISIONS IN THIS VERSION

Page Contents
Throughout Assembler changed (AS17K — RA17K)
Throughout In-circuit emulator IE-17K-ET added
p. 8 Related Documents in INTRODUCTION changed

in previous edition uPD170xx Product Development and List of Functions in CHAPTER 1 GENERAL deleted

p. 79 6.7.3 Notes on using general register pointer added
p. 102 Diagram of the relationship between program status word (PSWORD) and status flip-flop in
Figure 8-1. Configuration of ALU Block added
p. 104 Operation and description of instructions added to Table 8-1. ALU Processing Instructions
p. 106 The following descriptions added to 8.2.3 Status flip-flop functions:
(1) Zflag
(2) CY flag
(3) CMP flag
(4) BCD flag
p. 108 Table 8-2. Results for Binary 4-bit and BCD Operations changed
p. 110 Table 8-3. Arithmetic Operation Instructions added
p. 121 Table 8-4. Logical Operation Instructions added
p. 124 Table 8-6. Bit Testing Instructions added
p. 126 Table 8-7. Compare Instructions added
p. 138 Example 3 added to 9.4.2 Symbol definition of register file and reserved words
p. 160 Description added to 12.2.6 Interrupt enable flip-flop (INTE)
p. 183 Remarks added to:

13.4.3 Releasing halt status by key input
13.4.4 Releasing halt status by timer carry (basic timer 0 carry)

p. 183, 184 Remark and Caution added to 13.4.5 Releasing halt status by interrupt

in previous edition 12.6 Current Dissipation in Halt and Clock Stop Modes in previous edition deleted

in previous edition CHAPTER 14 ONE-TIME PROM MODEL in previous edition deleted

p. 198 Description added to 14.4 Power-ON Reset
p. 282 15.5.9 (3) SYSCAL entry added

p. 289, 290 A.1 Hardware and A.2 Software changed

p. 293 C.1 Instruction Index (by function) added
p. 295 APPENDIX D REVISION HISTORY added

The mark % shows major revised points in this edition.

www.DataSheetdU.com

Targeted reader

Objective

How to read this manual

Legend

INTRODUCTION

This manual is intended for the users who understand the functions of the uPD170xx
series microcontrollers and design application systems using these microcontrollers.

This manual describes the functions common to all the models in the uPD170xx series,
and will serve as a reference manual when you develop a program for a uPD170xx
series microcontrollers.

It is assumed that the readers of this manual possess general knowledge about electric
engineering, logic circuits, and microcomputets.

Since the number of registers and memory capacity differ depending on the model of
the microcontroller, the maximum number and permissible range are described in this
manual. For the exact values, refer to the Data Sheet for each microcontroller.

The hardware peripherals are notdescribed in thismanual. Forthe hardware peripherals,
refer to the Data Sheet for each microcontroller.

» To understand the overall functions of the yPD170xx series,
— Read this manual using the Contents.

+ To understand the function of an instruction whose mnemonic is known,
— Use the APPENDIX C INSTRUCTION INDEX.

+ To understand the function of the instruction whose mnemonic is not known but
whose function is known,
— Refer to 15.3 Instruction List by referring to 15.5 Instruction Functions.

* To learn the electrical specifications of the yPD170xx series,
— Refer to the Data Sheet for the respective models.

Data significance : Higher digit on left, lower digit on right
Active low 1 XXX (bar over pin and sighal hames)
Memory map address : Top-low, bottom-high

Note : Description of Note in the text.

Caution : Information requiring particular attention
Remark : Supplementary explanation

Number : Binary ... xxxx or xxxxB

Decimal number ... xxxx or xxxxD
Hexadecimal number ... xxxxH

www.DataSheetdU.com

* Related Documents Also use the following documents.
The Data Sheet of each device, and the User’s Manuals of the SE board and device files
are also available.

Document Name Document No.
Japanese English
17K Series/DTS Standard Models Selection Guide u10317J U10317E
RA17K User's Manual U10305J U10305E
IE-17K/IE-17K-ET CLICE/CLICE-ET U10063J U10063E
User’s Manual
SIMPLEHOST™ emIC-17K™/RA17K Compatible Introduction | U10445J U10445E
User’s Manual Reference u10496J U10496E
17K Series Project Manager User’s Manual Reference u12810J EEU-1527
MAKE/CNV17K User’s Manual U10596J U10596E
emlIC-17K User’'s Manual Reference u12829J U12829E
LK17K User’s Manual u12518J U12518E
DOC17K User's Manual EEU-5006 EEU-1536

www.DataSheetdU.com

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... s s s e s s e s e m s e r e m e 19
1.1 Internal Configuration of yPD170xx SUDSErIescccereeireerr e e 20
CHAPTER 2 PROGRAM MEMORY (ROM) ...t s s s s s s s e s s s 21
2.1 Program Memory Configuration ..o s s e ssssseens 21
2.2 Program Memory FUNCLIONSciriimimnimmmninne s s smsn s e s s s e e ssmms s s s e 22
Pt T o € T = o T o 22
2.4 Branching Program ... s ssssss s s sssss s s s smss s nssssssmsse s e s 23
241 DIrECE BIANCH ... et e e e 23
2.4.2 INAIrECE DIranCh .. i e e e e e e e e e e e e e enee s 23
2.4.3 Notes 0N deBUGGING ..eeoioeii i e e e e e 23
P I = 111 o1 o 11 o - 25
2.5.1 Direct SUBIOULING Calloooiiiieeeiit e e e e 25
2.5.2 Indirect SUBIOUTLING CaIlc oo e e e e 25
2.6 System Call ... ——————————— 28
P A - 1o T U= 2 1= (=T =Y T T T 30
2.8 Notes on Using Operand for Branch and Subroutine Call Instructions................... 30
CHAPTER 3 PROGRAM COUNTER (PC) ..coiciiiiiiiiimrimnns s ms s s s s ssms s s s s s ssms s nassmn s 31
3.1 Program Counter Configuration ..o s s s s s 31
3.2 Program Counter FUNCLIONScccciiiimiirrmiemiss s mnss s s s s ssss s sass s s s snss s s sseenss 31
3.2.1 When branch (BR) instruction is executed ... 31

3.2.2 When subroutine call (CALL) or subroutine return (RET, RETSK) instruction is
13 = TeU Y (=T OO P UPTPRT 32
3.2.3 When table reference (MOVT) instruction is @Xecutedccccvveeiiieviineen e 32
3.2.4 When interrupt is accepted and when interrupt return (RETI) instruction is executed 32
3.25 When skip instruction is @Xecuted 32
G 202 T T g == Y 33
3.2.7 On system call iNStruCLioN EXECULIONocvuiiiiiiiie e e 33
3.3 Segment Register (SGR) ...ccuvimnimimmnirinnsmnns s s s 34
3.4 Notes on Using Program COUNtercccuvmiuirmrmns s s sssss s ssss s s smsss s snssenass 34
CHAPTER 4 ADDRESS STACK ...ttt e e e ee st s ee e s e e s e e s me e s e e e e s eme e s e e e emme s e nmnes 35
4.1 Address Stack Configuration ... e 35
4.2 Address Stack FUNCLIONScccceimiimrinnsmnisnir s s s s s s s s s s s snsss s 37
e 1 - T oo 1T 3 (=Y (5] 37
4.3.1 Stack pointer CONFIGUIALIONceiirii i e e e e e e e e 37
LG T~ ST - Te 1 o To T 41 (=T o] o =T - 11 o T o T 38
4.4 Address Stack RegiISters ... s s s s s 40
4.5 Stack Operations, When Subroutine, Table Reference, or Interrupt Is Executed ... 41
4.5.1 When subroutine call (CALL) or return (RET, RETSK) instruction is executed.................. 41
4.5.2 Table reference instruction (MOVT DBF, @AR)ccirireeiieeiineis e e e e 43
9

www.DataSheetdU.com

453 System call instruction (SYSCAL) and return instruction (RETI, RETSK).........cccvceiiieenee 44

454 When interrupt is accepted or when return (RETI) instruction is executedcccoeeeeee 45
4.6 ASR7 Nesting Level for Stack and PUSH AR and POP AR Instructions 47
CHAPTER 5 DATA MEMORY (RAM) ... s s s s s sm s s s s s s e s 49
5.1 Data Memory Configuration ... e e 49
5.2 Notes on Specifying Data Memory Address 51
CHAPTER 6 SYSTEM REGISTER (SYSREG)c.ccciiiiiimmi e r s s s smsss s s s s 53
6.1 System Register Configuration 53
6.2 System Register Functions 55
6.2.1 Each regiSter fUNCHIONSicc ettt st s se et e e eeeenneenne e 55
6.2.2 System register manipulation INSIIUCTION ... 55
6.3 Address Register (AR)cccoommnirimmns s e e 56
6.3.1 Address register configuration 56
6.3.2 Address register fUNCLIONSo o 56
6.3.3 Table reference instruction (MOVT DBF, @AR)ccoceiieiir et 56
6.3.4 Stack manipulation instruction (FUSH AR, POP AR) 57
6.3.5 Indirect branch instruction (BR @AR) ... 57
6.3.6 Indirect subroutine call instruction (CALL @AR)ccocmiiiiii e 57
6.3.7 Address register and data bBUFfer ... 59
6.4 Window Register (WR) ... v s ms s s s s s s s e s 60
6.4.1 Window register CONFIQUIALIONoiiiiiie ettt 60
6.4.2 Window register fUNCHIONSooiiii e e e e s 60
6.4.3 PEEK WR, rf instruction 60
6.4.4 POKE rf, WR instruction 60
6.5 Bank Register (BANK) ... s s 62
6.5.1 Bank register CONfIGUIatIoNo.oo oot 62
6.5.2 Bank register fUNCHIONcii i e sr e e s sre e eneannenne e 62

6.6 Index Register (IX) and Data Memory Row Address Pointer
(MP: Memory POINTEr) ...t e s s e e e e 65
6.6.1 Configurations for index register and data memory row address pointer 65
6.6.2 Index register and data memory row address pointer fFUNCLIONSc.coeocciiiii i 66
6.6.3 When MPE = 0, IXE = 0 (no data memory modifiCation)c.ccovvevnnierrieereinie e 68
6.6.4 When MPE = 1, IXE = 0 (diagonal indirect transfer)cccecverneirnnien s 70
6.6.5 When MPE =0, IXE = 1 (data memory address index modification)cccuvrrverrerraennns 72
6.6.6 When MPE = 1, IXE = 1 . ettt 77
6.7 General Register PoInter (RP) ... s s s e 79
6.7.1 General register pointer configuration 79
6.7.2 General register pointer fUNCLIONSc...iviiiiiier e e 79
6.7.3 Notes on using general register POINLEL ... e 79
6.8 Program Status Word (PSWORD)........cccciricrresemeeieereneereaes 81
6.8.1 Program status word configuration 81
6.8.2 Program status WOI fUNCHIONcovioeieriiiieiiies et s s snnene 82
6.8.3 Index enable flag (IXE) ...t et e e e e 83
6.8.4 Zero (Z) and compare (CMP) flagsc.ciieirieerir e 83
B.8.5 Aty flag (L) oot e e e e e e e e eeeaee s 84

10

www.DataSheetdU.com

6.8.6 Binary coded decimal flag (BCD)ooii oo e 84
6.8.7 Notes on executing arithmetic Operation ..o e 84
6.9 Notes on Using System RegiSterscccmiimmmmmnrmnmsm s s s s 85

6.9.1 Reserved words of system registers 85
6.9.2 Handling system register fixed to “0” 87
CHAPTER 7 GENERAL REGISTER (GR) ..ccicceciiriiimsimnins s ms s s s s s s ssss s s s s ssms s ssssmn s 89
7.1 General Register Configuration ... s s e 89
7.2 General Register FUNCLIONSccccviiimiimimiimisi s s s s ssss s sase s sss s s s ssennns 91
7.3 Notes on General Register USe ... s s s nnsseenns 91
7.3.1 Address specification for general registero 91
7.3.2 ROW address iN G8NEIAL ..ot ittt et ene e e enee e e 91
7.3.3 Operation between general register and immediate data............c.cocooviniii s 93
7.4 Address Generation and Operation for General Register and Data Memory by
EAcCh INSTFUCTIONooeieeiii st e e e s e 94
CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)....cciiiiiiimiimiis i e snsmsms s s sams s smms s s ssmms s smes

8.1 ALU Block Configuration
8.2 ALU BIOCK FUNCHON ...eeeeiiiiiei e mr s n s s s nsms s n sman s s ssmss s ms s s e ssmme s mms s
8.2.1 ALU FUNCHON ettt e e ettt et ettt ea bt e s e e et ee e she e e eae e eameeeanneeeereeenns
8.2.2 Functions of temporary registers A and B

8.2.3 Status flip-flop FUNCLONS c...oivee et er e e e
8.2.4 Binary 4-Dit OPEratioNooiii et e e e e e e
8.2.5 BOCD OPEIatIONeeiceieee e et e e e e e e e

8.2.6 ALU block processing sequence
8.3 Arithmetic Operation (Binary 4-bit addition/subtraction and

BCD addition/Subtraction)ccceccceiiresrrnscirssc e e ser s e e sr s s e
8.3.1 Addition/subtraction when CMP =0, BCD = 0couiiiii e
8.3.2 Addition/subtraction when CMP = 1, BCD = 0iiiiiie e
8.3.3 Addition/subtraction when CMP =0, BCD =1 ...
8.3.4 Addition/subtraction when CMP = 1, BCD =1 ... e
8.3.5 Notes on using arithmetic operation instruction

8.4 Logical OPeration ... s s s
8.4.1 Logical sum (LogiCal OR)cooiiiiii et e e e
8.4.2 Logical product (Logical AND) ... e e e e
8.4.3 Logical exclusive sum (Logical exclusive OR)occoiiiiir e

8.5 Bt TESHING ..o e e e e e

8.5.1 True bit (1) testing
8.5.2 False bit (0) testing

LS o 5 1o -
8.6.1 Comparison Of “BQUAl 107eeiiii it e e e
8.6.2 Comparison of “Not @qUAl 10"o e e
8.6.3 Comparison Of “Greater than”c.ccciie et ettt e e ee e enee s e e ereeenes
8.6.4 CompariSON Of “LeSS tNAN"coiiii i e e e e e e en e e e
8.7 Rotation ProCesSSINGccccuvriemiiiiimemrrinnssmr i ssrisssm s rssssms e saan s smas s sms e e r e snsmms s s s ms sanan

8.7.1 Right rotation processing

8.7.2 Left rotation ProCESSINGooi ittt et et et enn e e e eaeenas

11

www.DataSheetdU.com

CHAPTER 9 REGISTER FILE (RF) ... eiecee e e e e s e e e e s e s s s e 131

9.1 Register File Configuration ... s s e s 131

9.2 Register File FUNCLIONScccciiemiimiire s ser s s ss s s s s s s s s s e e s 133

9.2.1 Register file fUNCHONSociiiir e e e 133

9.2.2 Register file manipulation iNSLrUCIONviieiiiriie e e 133

L2 T T 010 41 (oY I 0= o [L= Y 135

9.3.1 Control register CoNfIQUIALIONcuii it e e eeesne e ens 135

9.3.2 Hardware peripheral control functions for control registercccveeevrinnievienseeie s 135

9.4 Notes on Using Register File ..o s s s 136

9.4.1 Notes on manipulating control registers (read-only and unused registers)ccccccevvenene 136

9.4.2 Symbol definition of register file and reserved words ... 137

9.4.3 Notes on using assembler (RA17K) macroinstructionsccceocvieeiiiiin s 138

CHAPTER 10 DATA BUFFER (DBF) ..ot es s s s e e s s s 139

10.1 Data Buffer Configurationcc.cccici i e e 139

10.2 Data Buffer FUNCHONS ... e e e 141

10.3 Notes on Using Data BUffer ... e e s 142
10.3.1 When manipulating addresses for write-only and read-only registers and

AN UNUSEA AAAIESS ..o et e e e e s e e e e s ee e e ee e e e e e s e e 142

10.3.2 Specification of peripheral register @ddressc.cocvveriiririiee s e 142

10.4 Data Buffer and Table Reference............. e 143

10.4.1 Table reference OPEIratioNc..covie e et eee e ee e st ere e eeseees e nesente e e eseesaeeeneen 143

10.4.2 Table reference program eXampPlettt 144

10.5 Data Buffer and Hardware Peripheralsccccumimcn s 148

10.5.1 Controlling hardware peripheralscccoo e e 148

10.5.2 Data length when transferring data with peripheral register..........cccoveiiiiiiiniincieeiee 149

CHAPTER 11 GENERAL-PURPOSE PORTSccc oot ssmms s s s s s s snn s s 151

11.1 General-Purpose Port Configurationcccccmiis s e 151

11.2 Function of General-Purpose Ports

11.2.1 General-purpose port data register (port register) ... 153

CHAPTER 12 INTERRUPT FUNCTIONS ... smss e s s s s s s s 155

12.1 Interrupt Block Configurationcccccccmiiimnnnnins s s e s 155

12.2 Interrupt FUNCHIONScooi i s s r e s s e e s e e s 157

12.2.1 Hardware Peripheral ... e e e e e 157

12.2.2 Interrupt request processing DIOCKo e 157

12.2.3 Configuration and function of interrupt request flag (IRQXXX) ...ccoeviiiriiiiiiiii e 158

12.2.4 CGConfiguration and functions of Interrupt permission flag (IPXXX) ..c..oovevreerniiiinieennesiienneens 159

12.2.5 Stack pointer, address stack register, and program COUNLerccciiviiiiiriieie v 160

12.2.6 Interrupt enable flip-flop (INTE) ...ccoceeiiiiiiiiiiees e e e e e 160

12.2.7 Vector address generator (VAG) oottt 160

12.2.8 INTEITUPE STACK ..o e et et et e e e et e e ane e e snee e 161

12.3 Acknowledding INtErruPtscccviiemmmn e e s e e 163

12.3.1 Acknowledging interrupts and Priofity ..o 163

12.3.2 Timing chart for acknowledging INTEIMUPTccccveeiirieeieiee e e e e e 165

12.4 Operation After Interrupt Has been Acknowledgedcooooreiiicinnecr e 169

12

www.DataSheetdU.com

12.5 Interrupt processing ROULINE ...t e e
22 T B - AV T PP
12.5.2 Restoration ProCESSINGcocuciiriuiieieie e e st e e e e e e e se e e e e s e e e e e e emnee e s eee e
12.5.3 Notes on interrupt processing routine

L2 T == 1 T
12.6.1 INEITUPE SOUICE PrIOTILY .ot e e et e e e nee e ennee e e e e
12.6.2 Interrupt limit by interrupt SLACK ...

CHAPTER 13 STANDBY FUNCTIONSccccoiiecirrissrerssresssrssssssss e ensssnsss e ssssesssssssssessssssnssessssessssenans
13.1 Configuration of Standby BIOCKccccciiiinimnirni s
13.2 Standby Function
13.3 Selecting Device Operation Mode with CE Pin

13.3.1 Controlling operation of internal peripheral hardware...........cccoov v 180
13.3.2 Enabling and disabling clock stop INStrUCion ... 180
13.3.83 RESEtiNG dEVICE ... e e e e e e 180
13.3.4 Signal INPUL 10 CE PN .ot e e e e e e s se e e 181

13.4 Halt FUNCHION ... s s s s e s e s e s s r e mmn e 181
13.4.1 HAEIL STALUS ..o e e e e e e e ere e 181
13.4.2 Halt release CONAILIONoii i et e a e 182
13.4.3 Releasing halt status by Key iNPpUL ... 183
13.4.4 Releasing halt status by timer carry (basic timer 0 Carry) ... 183
13.4.5 Releasing halt status by INTerrupt ..o e e 183
13.4.6 If two or more release conditions are simultaneously Setcccoviieiiiiriiein e 185

13.5 Clock StOP FUNCHION ..coiiicienrcr s ni s s s s e e s s e e 187
13.5.1 Clock stop status 187
13.5.2 Releasing clock stop status 187
13.5.3 Troubles occurring as result of executing clock stop instruction, when CE pin is high,

and remedies thErEfOr ... e e e e e e s 189
CHAPTER 14 RESET FUNCTIONS ... s s s e s s s s s mn s

14.1 Configuration of Reset Block

14.2 Reset Functionccccueeeee

I T 0 i -
14.3.1 CE reset when clock stop (STOP s) instruction is not Usedcooviiiiniii e 193
14.3.2 CE reset when clock stop (STOP s) instruction is used ... 194
14.3.3 NOES ON CE F8SEL .ot se e e e e e e enee e 195

14.4 POWEIr-ON ReSet et rrre e e e e e e e s mme e se e e e s e e e e eme e e e e nnme e e 198
14.4.1 Power-ON reset during NOrmal Operationccco e cee i e 199
14.4.2 Power-ON reset in clock stop status 199
14.4.3 Power-ON reset when supply voltage Vop rises from 0 V 199

14.5 Relation between CE Reset and Power-ON Resetccccccninnensniennnse e 201
14.5.1 If Vop pin and CE pin rise SIMUItANEOUSIY ..o 201
14.5.2 If CE pin rises in forced halt status of power-ON reset ..o 201
14.5.3 If CE pin rises after POWEr-ON FESELcocvi e e e e 201
14.5.4 Notes on raising supply VOILRGE VDD ... e e e 203

14.6 Power Failure Detection..........ccccvvmimmnnimrnnssnn s esr e
14.6.1 Power failure detection circuit
14.6.2 Notes on detecting power failure by TMCY flag.....cc.ceerirerrieirnieerie e e 208

13

www.DataSheetdU.com

14.6.3 Power failure detection by RAM judgement method...........coooiiiiiiiii i 210

14.6.4 Notes on detecting power failure by RAM judgement method ... 212
CHAPTER 15 INSTRUCTION SETcciciiiiiicccmrmesrnissssssmscsmesis ssssmsmssmsses ssssmsmssssssns sesmsmsmsnss s snsnmssmnnes 213
15.1 Instruction Set OUtlNe ... ———_—_— 213

LIS T8 - 1= T 214
15.3 INSTIUCLION LIST ..cciii i iinii st s srms s sr e e s ar s e mmn s s s n s e e s mmmnn e s s 215
15.4 Assembler (RA17K) Macro INStruCtioNSccccuveremiremrmnsmsrmmnssms s s snsss e e s e 217
15.5 InStruction FUNCHIONScoiiiii i s s s s s 218
15.5.1 Addition INSEIUCLIONS ..ottt e e e e e e en e e e e eeneeee e enee 218

15.5.2 Subtraction INSIIUCTIONSoii e et e e e e e e e e e eneeeceeeenee 230

15.5.3 Logical operation INSIIUCTIONS ...o..uii i et et e s 238

15.5.4 TeSE INSIIUCHIONS ...ttt ettt ettt e e e s et e e e e mee e e e sre e e e smee et e e anbere e e sanneeeesrnee 244

15.5.5 Compare INSIUCHIONSooi e e e e e e s e 246

15.5.6 ROtation INSEIUCKION ...cuiii ettt e e e e e e e e enae 249

15.5.7 Transfer INSIIUCLIONSot et ettt e e ettt ae e et eee e see e nee s 250

15.5.8 Branch iNSIIUGCLIONSeii ittt et e re e see e sae e sat e e s e e seeeenee s 272

15.5.9 SUBIOULINE TNSIIUCTIONSoiiiii ittt e e e e e e e e nre e e e srere e e aeneeeeeenne 277

15.5.10 INterrupt iNSTIUCTIONSo e e e et s e e 286

15.5.11 Other INSIIUCTIONSeiiii ettt e e e e sre e e een e e e e e e e e enee 288
APPENDIX A DEVELOPMENT TOOLS ...t ccrirssre e s s s s s s s ssms s ssss s s ssm s s e ssmn e sen e sms sanns 289
S T o 1o 1T - 289

A2 SOTWAIE .. s an e e s 290
APPENDIX B HOW TO ORDER THE MASK ROM ... ceccccecerer e ecee e s e e s e e e e e s s 291
APPENDIX C INSTRUCTION INDEXciiiiiisissmcsmmsrmssrssssssmsressessssssamsnssesss snssmmsmsssses nssmssmnssnsssssmns 293
C.1 Instruction Index (by fUNCLION) ..ciiciiieceriiin i 293

C.2 Instruction Index (by alphabetic Order) ..o - 294
APPENDIX D REVISION HISTORY ...t ieeecsrec e ceeee s ee s s s e e e e ee e ssn se e s e e e em e mmeee e ennmnn 295

14

www.DataSheetdU.com

LIST OF FIGURES (1/3)

Fig. No. Title Page
2-1 Configuration of Program Memory (ROM) ... ettt e e e 21
2-2 Operations of Branch Instructions and Maching COGESoveerrererieereeiee e 24
2-3 Subroutine Call Instructions OPErations ..o e e e 26
2-4 Using Subroutine Call INStTUCHIONSomi i e e 27
2-5 Using System Call INSTIUCLION ... i ettt e et e e e e e e e eneieeeeermenas 28
3-1 Configuration Of Program COUNTETce.uiioiiiieer it en e sr e e e e sree e e n s 31
3-2 Program Counter Setting When Each Instruction Is Executed ... 33
4-1 ConfigUIAtion Of SEACK ... oo e e ettt et e e s e e e e e ere e e ns 36
4-2 Configuration Of SLACK POINLETcici ettt st et sae e snee e e e e eneas 38
4-3 Stack Operation Examples When Subroutines Are Called 42
4-4 Stack Operation Example When Table Reference Instruction Is Executedcccooviiiiiiiiiiiie 43
4-5 Stack Operation Example When Interrupt OCCUISooi i e 46
4-6 Stack Operation Example When PUSH and POP Instructions Are Executed............ccoooiviiiiiine 48
5-1 Configuration Of DAta MEMIOIYccciieeeer ettt e er e e e e en e sreesr e e e e e n s 50
6-1 System Register Location on Data Memory Locationcco i 53
6-2 Configuration of SyStem ReEGISIENc.iieeiiiie e e e e e er e e s 54
6-3 Configuration of ADAreSS REGISLETicemiii et eee ettt ste e et e e sae e e sree e e e e e eneas 56
6-4 Data Transfer between Address Register and Data BUFfercccoevviiecnie e e 59
6-5 Configuration of Window REGISIETcceuuiiiiiiiii e e e e e e e e 60
6-6 Operations for PEEK and POKE INSTIUCHIONSc.viociieeiieiiecie e e e e 61
6-7 Configuration of Bank REGISTENccciiueieriiriiiiees e e e e e e sre e e e n s 62
6-8 Specifying Data MemOry Bankoco oo ettt ettt e e et e be et e e sas e e srbee s ebe e eareeean 63
6-9 Configurations for Index Register and Data Memory Row Address Pointer ... 65
6-10 Example of Operation When MPE =0, IXE = 0cooiiieiieeei e e e 69
6-11 Example of Operation When MPE =1, IXE = 0ccooiiiiiiieeeee e e e 71
6-12 Example of Operation When MPE =0, IXE = 1 ... e e e 73
6-13 Example of General Register Indirect Transfer Operation When MPE =0, IXE =1cc.ccoceeeiernne. 75
6-14 Example of Operation When MPE = 0, IXE = 1 (array proCeSsSSiNg)ccccueerieireieerraneeeseeesiieeseieeeseeens 76
6-15 General Register Indirect Transfer Example When MPE = 1, IXE = 1 78
6-16 Configuration of General Register POINTENc.ocviii i e e sn e e 79
6-17 Configuration of General REgiSLErcoiceiirii i e sreen e e e 80
6-18 Configuration of Program Status Word ... e e 81
6-19 Functions of Program STatus WOIA ..ottt et et e e et e e e e ane s 82
7-1 Configuration of General REGISIENcceuiiiiiiiiie e e e e e e e s 90
7-2 Example of Specifying General Register Row Addressccceeivrmevieenninen e 92
7-3 Address Specification for General Register and Data Memory 94
7-4 Example Showing Operation between Data Memory and General Register (1)ccccooiiiiniiecnicienine 95

15

www.DataSheetdU.com

LIST OF FIGURES (2/3)

Fig. No. Title Page
7-5 Example Showing Operation between Data Memory and General Register (2).......ccceovoeiiecnicennnnen. 96
7-6 Example Showing Data Transfer to General REgISIErcovvviiiiiiee e e e s 97
7-7 General Register Indirect Transfer EXamMPIEc.cuiiiiiieeiirnis e e e e e nre e 98
7-8 Example Showing Changing Row Address in General Register ... 100
8-1 Configuration Of ALU BIOCKiieeoi ettt et ettt et e ees e e e sreesre e s e eneeen e eeeneas 102
9-1 Relations between Register File and Data MemOry ..o 132
9-2 Configuration of RegiSter FIlE ..ot e e e e e s 132
9-3 Accessing Example of Register File with PEEK or POKE Instructioncoociiiiiiiiiiii e 134
10-1 Data Buffer LOCAIONccceeeirieeiiiese e ereee e
10-2 Configuration of Data Buffer
10-3 Relations between Data Buffer, Hardware Peripherals and Table Reference (Example)........ccccennnn.. 141
10-4 Example of Table REfEIENCEccuiii ettt et e e e r e e en e ene e 143
10-5 Example Showing Data Transfer between Data Buffer and Hardware Peripheralcc.ccoeveveeeenen. 149
10-6 Example Showing Data Transfer between Data Buffer and Hardware Peripheralccc.ooeevvvieennnn. 150
11-1 Block Diagram of General-Purpose POI......c..cciiiiiiiiirin et ar e s 152
11-2 Relation between Port Register and PiNS ... e 153
12-1 Configuration Example of INterrUPL BIOCKccieiiieriierriiies e e e e e s 156
12-2 Configuration Example of Interrupt ReqUESE FIagcooviveiieeiiiieiie e e e s 158
12-3 Configuration Example of Interrupt Permission Flagcccueriiieiriiniin e e e 159
12-4 Configuration Example of INterrUPt STACKccveiiieriiiriiies e e e e e s 161
12-5 Example of Interrupt Stack Operation (when maximum stack level = 2)cccccovieiiviciniciie e, 162
12-6 ACCEPIING INEEITUPDL ..ottt ettt e e e ee e e b e e s e b e e e e ae e e e eaa b bebe e et beee s e sareeesanen 164
12-7 Timing Chart of Acknowledging INTEITUPEccciiiiiir e e e e e s 166
12-8 Saving and Restoring in Interrupt Processing ROULING ..o 172
12-9 Saving System Register and Control Register When PEEK and POKE Instructions Are Used 173
12-10 EXAMPIE Of NESEING . ueeiiiie ittt et et et e st be e et e e ete e sabeesaaeeesasbe e e beesaneen saeeeennees 174
12-11 Interrupt Stack AUNG NESHINGcuii i e e e se e e e st bee e s e beeee s arareeeeanen 176
12-12 Example showing Nesting Exceeding Maximum Stack Level

(when interrupt stack is @t 1@Vl 2) ... e e e 177
12-13 Interrupt Stack Operation, When Maximum Stack Level Is Exceeded with 17K Series Emulator

S SO | I T I T Yo RS 178
13-1 Configuration Example of Standby BIOCKc.ciuveiiiiriiieiieeries e s
13-2 Halt Release CondIfION et e e e e e e e
13-3 Releasing Clock Stop Status by CE Reset...........ccocccciii
13-4 Releasing Clock Stop Status by Power-ON Reset
13-5 Malfunctioning in Clock Stop Instruction, Due to CE Pin Input, and Remedycccocooviiiiiiinnnnen. 190

16

www.DataSheetdU.com

LIST OF FIGURES (3/3)

Fig. No. Title Page
14-1 Configuration Example of Reset BIOCK.......c..oo i et e e 191
14-2 GE Reset Operation When Clock Stop Instruction Is Not USed ... 193
14-3 CE Reset Operation When Clock Stop Instruction Is Used ... 194
14-4 Operation of POWEI-ON RESELciiiiiiiiiiier et e e er e e e e e e n e nnnes 198
14-5 Power-ON Reset and Supply VORAgE VDDoooii e e e e 200
14-6 Relation between Power-ON Reset and CE ReSEtccceiiiiiiiiee i 202
14-7 NOLES ON RAISING VDD c.iiiiie i i cetiie et ir e e e ee e et tee e e s st e e e s e e e e e s e ter e e s seeeeeeaasbeeeaesasaee e eanteee e enrensesannren
14-8 Restoring from ClOCK SO STAIUSccciviueiirie et e e e e en e nre e s
14-9 Power Failure Detection FIOW Chart ... e e e
14-10 Status Transition of TMOY FIago et e eans
A @ oY= = u T T o R 1Y [0 4 =T PP

14-12 Vop and Destruction of Data Memory Gontents

17

www.DataSheetdU.com

LIST OF TABLES

Table No. Title Page
4-1 Operations of StACK POINIEE (SP) ...ccciiieiieeet et e e e e e e enesnneene e 39
4-2 Operation When Subroutine Call or Return Instruction Is Executed 41
4-3 Operation When Table Reference Instruction Is EXECULEdc..cevcviiieeiiiein e e 43
4-4 Operations When System Call Instruction Is Executed ..o 44
4-5 Operation of Stack When Interrupt Is Accepted and Return Instruction Is Executedccccveenenee. 45
4-6 Operations of PUSH and POP INSIIUCHIONSocuiiiiiiii e et ettt e e e e 47
6-1 Data Memory Address Modification by Index Register and Data Memory Row Address Painter 67
6-2 Status of Compare Flag (CMP) and Set and Reset Conditions of Zero Flag (Z)cc.ccceeovvvevieeicennen 83
7-1 Instructions Manipulating General Register and Data MemOryovvieeiiiiee i e 94

8-1 ALU Processing INSLIUGCHIONSc.eeii e e e e e e e e
8-2 Results for Binary 4-bit and BCD Operations
8-3 Arithmetic Operation Instructions

8-4 Logical Operation INSIIUCLIONSc.eiiiieiiiie ittt et e e e e e e e ene e e e e s e ee e e e enneee e enneas
8-5 Logical Operation Truth TaDIEooo e e e
8-6 Bit TESE INSITUCHIONS ...t et e e e e e e e e e e sreee e e s anneee e eneas
8-7 Compare INSITUCLIONS ... et et e e e e e e er e eee e
14-1 Relation between Internal Reset Signals and Each Reset Operation ... 192
14-2 Gomparing Power Failure Detection by Power Failure Detection Circuit and RAM Judgement
1Y 11 { g o o TP PRUP ST URUPRIE 210
18

www.DataSheetdU.com

CHAPTER 1 GENERAL

HPD170xx is a lineup of models in the 17K Series 4-bit microcontrollers. These models have functions for TV and
AM/FM radio applications, such as PLL circuit necessary for station selection and voltage synthesizer circuit.

The uPD170xx series microcontrollers have the CPU commonly employed in the 17K series with registers
connecting and controlling the station selection circuit and synthesizer circuit.

Each model has a different station selection circuit. Since this manual describes common features for the
HPD170xx series, for details on the station selection circuit and features peculiar to each model, refer to the Data Sheet
for the model.

UPD17P0xx is a one-time PROM model of uPD170xx, which is convenient for evaluation of a developed system
or small-scale production.

19

www.DataSheetdU.com

CH

APTER 1 GENERAL

1.1 Internal Configuration of yPD170xx Subseries

20

[¥

N R R R R E R IR !

11

Main clock
oscillation
Chapter 9
— —
o] \/
O—= Station
O=—{selection V Chapter 5
O=—]
Register file (RF) Chapter 7
Data memory (RAM) W/’ Chapter 10
General register (GR) fFn
Chapter 11 Data buffer (DBF)
System register <;:> LCD driver
(SYSREG)
Port
O] o
[\ Chapter 6
O]
o=—1 = ALU
Port <:1>
O=—1
i‘>/‘ Chapter 8
O]
Port
O=—r ° Instruction
O=—ry decoder Image
<;:> display
controller
Port K)
o
O |-Chapter 2
O=— /| Program memory | Z- Oscillation
Oa1 \,— (ROM)
Port
O—ro-
Chapter 3
O=—ry Serial 110
ot () =
Program counter
© <#> (PC)
Serial /10
Address stack
Chapter 14 (ASK)
V <::> AD
O— Chapter 4 converter
© " Reset
O— Interrupt
o controller
Chapter 12

The following block diagram indicates which chapter describes each functional block. Note that this diagram does
not necessarily show the actual internal block for the uPD170xx series.

www.DataSheetdU.com

CHAPTER 2 PROGRAM MEMORY (ROM)

The program memory stores the “program”, which is executed by the CPU (central processing unit), and

predetermined “constant data”.

As the program memory, uPD170xx is provided with a mask ROM (read-only memory), and uPD17P0xx, with an

EPROM (electrically erasable ROM).

2.1 Program Memory Configuration

As shown in Figure 2-1, the program memory (ROM) consists of several steps, with each step made up of 16 bits.

Each step is assigned as “address”.
Each 2K steps in the program memory constitute a “page”.

Four pages form a “segment”. Therefore, one page has addresses 0000H through 1FFFH.

One of the segments, called the “system segment”, consists of several blocks, with each block consisting of 256

steps.
Figure 2-1. Configuration of Program Memory (ROM)
’47 16 bits 4—‘
° 0000H Page 0 12K steps
€ Page 1
£ 8K steps
> Page 2
%]
1FFFH Page3 | ...
0000H
€
[
E
2]
(]
%]
{FFFH
0000H
8V}
5
= [System segment)
3 - 0000 Block 0 256 steps
{EFEH T Block 1
0000H Page 0 Block 2
™ X Block 3 2K steps
= Block 4 P
g’ ‘\\ Block 5
@ Block 6
1FFFH “___07FFH. Block7 |] L

21

www.DataSheetdU.com

CHAPTER 2 PROGRAM MEMORY (ROM)

2.2 Program Memory Functions
Broadly speaking, the program memory has the following three functions:

(1) To store programs
(2) To store constant data
(3) To store data for peripheral functions

A program is a collection of “instructions” according to which the CPU (Central Processing Unit: a functional block
that actually controls the microcontroller) operates. The CPU sequentially executes processing in accordance with
the “instructions”written in aprogram. Specifically, the CPU sequentially reads the “instructions” of the program stored
in the program memory and executes processing according to each “instruction”.

The “instructions” are all “one-word instruction” 16 bit long; therefore, one instruction is stored at one address in
the program memory.

The constant data is predetermined data. The program memory contents, including the constant data, can be read
to the data buffer (DBF) on the data memory (RAM) by executing special instruction MOVT. Reading constant data
from the program memory is called “table reference”.

Since the program memory is a read-only memory, its contents cannot be rewritten by an instruction. This is why
the program memory is also referred tc as “ROM” (Read-Only Memory).

2.3 Program Flow

The program operation flow is controlled by a program counter (PC) that specifies an address in the program
memory.

The program stored in the program memory is usually executed on an address-by-address basis, starting from
address 0000H. However, if a different program is to be executed, when a certain condition is satisfied, the program
execution flow must be changed (branched). In such a case, a branch (BR) instruction is used.

When the same portion of the program is to be executed over and over again, the execution efficiency will be
degraded, unless the execution sequence is altered, because the program is usually executed from address 0000H.
To enhance the execution efficiency, that portion of the program to be executed repeatedly should be stored at one
place andthis portion should be called by special instruction CALL. This portion of the program is called a “subroutine”.
As opposed to the subroutine, the portion of the program that is usually executed is called the “main routine”.

Some programs should be executed only when a certain condition is satisfied, regardless of the flow of the main
routine. In this case, the interrupt function is used, which cause the execution to branch to a predetermined address
(called a vector address), regardless of the program current flow, when a specified event occurs.

22

www.DataSheetdU.com

CHAPTER 2 PROGRAM MEMORY (ROM)

2.4 Branching Program

The program is branched by the branch (BR) instructions.

The branch (BR) instructions are classified into two categories: the direct branch instruction (BR addr), which
causes the execution to directly branch to a program memory address (addr) specified by the operand of the
instruction, and the indirect branch instruction (BR @AR), which causes the execution to branch to a program memory
address specified by the contents of an address register (AR) to be described shortly.

For details, also refer to CHAPTER 3 PROGRAM COUNTER (PC).

2.4.1 Direct branch

With the direct branch instruction, the branch destination program memory address is specified by the low-order
2 bits in the op code for an instruction and 11 bits in the operand for the instruction, totaling 13 bits. Therefore, any
address in a segment, address 0000H to 1FFFH, can be specified as the branch destination address by the direct
branch instruction. Note that the execution cannot be branched from one segment to another.

2.4.2 Indirect branch

With the indirect branch instruction, the branch destination address is set by the program in the address registet,
asshownin (2)in Figure 2-2. Gonsequently, the address range in which the branch destination can be specified differs,
depending on the number of bits in the address register.

The indirect branch instruction allows branching from one segment to another.

For details, refer to 6.3 Address Register (AR).

2.4.3 Notes on debugging

As shown in (1) in Figure 2-2, the operation code for a direct branch instruction differs, depending on the page to
which the execution is to be branched.

For example, the operation code for the instruction that branches the execution in page 0 is “0CH”, while that for
the instruction that branches the execution in page 1 is “ODH". The operation code for the instruction that branches
the execution to page 2 is “OEH”, and that for the instruction that branches the execution to page 3 is “OFH".

This is because the low-order 2 bits in the operation code are used to specify the branch destination address, as
the operand for the direct branch instruction, “addr”, has only 11 bits.

When these operation codes are assembled by the 17K Series Assembler (RA17K), the jump destination specified
by a label is automatically referenced and converted by the Assembler.

However, when performing patching while debugging the program, the programmer must understand the page to
which the execution is to be branched, and convert the operation code.

For example, when patching address 0900H for BBB in (1) in Figure 2-2 into address 0910H, input “OD110” as the
machine code for the “BR BBB” instruction.

23

www.DataSheetdU.com

CHAPTER 2 PROGRAM MEMORY (ROM)

Address
l

0000H

0500H

0800H

0900H

OFFFH

1000H

1200H

17FFH

1800H

1BOOH

1FFFH

24

Figure 2-2. Operations of Branch Instructions and Machine Codes

(a) Direct branch (BR addr)

Program memory (segment 0)
Label : Instruction (Machine code)
{ l {
BR AAA (0C500)
BR BBB (0D100)
BR CCC (0E200)
BR DDD (OF300)
Operation code
AAA
Page O
BR AAA (0C500)
BBB :
BR BBB (0D100)
Page 1
CCGC:
Page 2
DDD :
Page 3

Address
{

0000H
0010H
0085H

0500H

0800H

OFFFH

1000H

17FFH

1800H

1FFFH

(b) Indirect branch (BR @AR)

Program memory (segment 0)

MOV ARO, #5H
MOV ART1, #8H
MOV AR2, #0H
MOV ARS, #0H
BR @AR

MOV ARO, #0H
MOV AR1, #1H
MOV ARZ, #0H
MOV ARS, #0H
BR ®@AR

Page 3

www.DataSheetdU.com

CHAPTER 2 PROGRAM MEMORY (ROM)

2.5 Subroutine

The subroutine is used with the subroutine call (CALL) and subroutine return (RET or RETSK) instructions.

The subroutine call instructions are classified into two categories: the direct subroutine call instruction (CALL addr),
which directly calls a program memory address (addr) specified by the operand of the instruction, and the indirect
subroutine call instruction (CALL @AR), which calls a program memory address specified by the contents of the
address register.

In addition, a system call instruction (SYSCAL entry), that branches the execution to the system segment, is also
available.

To return from a subroutine, the RET and RETSK instructions are used. By executing these instructions, the
execution is returned to a program memory address next to the one at which the subroutine call (CALL) instruction
was executed. At this time, the RETSK instruction executes the firstinstruction after the return as no operation (NOP)
instruction.

For details, refer to CHAPTER 3 PROGRAM COUNTER (PC).

2.5.1 Direct subroutine call

The direct subroutine call instruction specifies the program memory address to be called by 11 bits in the operand
for an instruction. Therefore, when the direct subroutine call instruction is used, the called address, i.e., the first
address in the subroutine, must be in page 0 (address 0000H to 07FFH), as in (1) in Figure 2-3. The subroutine whose
call address is not in page 0 cannot be called.

However, the direct subroutine call instruction and the subroutine return (RET or RETSK) instruction can be in
pages other than page 0.

The direct subroutine call instruction cannot call a subroutine from one segment to another.

Examples 1. When return instruction is in page 1
As shown in Figure 2-4, the return address and return instruction can be in any page, as long as
the first address for the subroutine is in page 0.
As long as the first address for the subroutine is in page 0, the CALL instruction can be used without
being restricted by the concept of the page. However, if the first address for the subroutine cannot
be placed in page 0, follow the action described in Example 2 below.

2. When first address is in page 1
As shown in Figure 2-4, use a branch instruction (BR) in page 0, and call the actual subroutine
(SUBT) through this BR instruction.

2.5.2 Indirect subroutine call

The indirect subroutine call instruction (CALL @AR) specifies the address to which the execution is to be branched
by using the address register (AR), as shown in (2) in Figure 2-3. Therefore, the range for the program memory
address, in which the execution can be branched by this instruction, varies depending on the number of bits in the
address register.

For details, refer to 6.3 Address Register (AR).

The indirect subroutine call instruction can call a subroutine from one segment to anather.

25

www.DataSheetdU.com

CHAPTER 2 PROGRAM MEMORY (ROM)

Figure 2-3. Subroutine Call Instructions Operations

(a) Direct subroutine call (CALL addr)

Address
l

0000H

0500H

07FFH

0800H

OFFFH

1000H

17FFH

1800H

1FFFH

26

Program memory (segment 0)

Label : Instruction

) L
CALL SUB1

SUB1:

CALL SUBH1

Page 3

(b) Indirect subroutine call (CALL @AR)

Address
l

0000H

0010H
0085H

07FFH

0800H

OFFFH

1000H

17FFH

1800H

1FFFH

Program memory (segment 0)

Label : Instruction

SUB2 :
SUBS :

RET

MOV ARO, #0H
MOV AR1, #1H
MOV AR2, #0H
MOV ARS, #0H
CALL @AR

MOV ARO, #5H
MOV ART1, #8H
MOV AR2, #0H
MOV ARS, #0H
CALL @AR

Page 3

www.DataSheetdU.com

CHAPTER 2 PROGRAM MEMORY (ROM)

Figure 2-4. Using Subroutine Call Instructions

(1) When subroutine return (2) When first address for
instruction is in page 1 subroutine is in page 1
Address Program memory (segment 0) Address Program memory (segment 0)
0000H | Label: Instruction 0000H | Label: Instruction
2 { 2
CALL SUB1 CALL SUBT
0500H| | SUB1 :
SUB1 : BR SuB2
07FFH Page O 07FFH Page O
0800H 0800H
RET
0890H SuUB2 :
CALL SUB1 RET
CALL SUB1
OFFFH Page 1 OFFFH Page 1
1000H 1000H
17FFH Page 2 17FFH Page 2
1800H 1800H
1FFFH Page 3 1FFFH Page 3

27

www.DataSheetdU.com

28

CHAPTER 2 PROGRAM MEMORY (ROM)
2.6 System Call

single instruction in the system segment.

The system call instruction (SYSCAL entry) allows the execution to branch from each segment to a subroutine with

The operand “entry” for of this instruction can specify the program memory address to which the execution is to
be branched. The high-order 3 bits of the 7 bits for the operand specify a block, while the low-order 4 bits specify
an address. Therefore, only the first 16 steps for each block (block 0 to 7 in page 0 of the system segment) can be
specified. For details, refer to 3.2.7 System call.

anywhere.

The shaded portion in Figure 2-5 indicates the program memory range to which the execution can be branched
Examples 1.

by the system call instruction. The SYSCAL instruction or subroutine return instruction (RET or RETSK) can be

When SYSCAL instruction is in segment 0

As shown in Figure 2-5, the execution branches to the system segment specified by the operand
“entry”, when the SYSCAL instruction in segment 0 is executed.
If the operand is OOH (entry = O0H) at this time, the execution branches to address 00H (0000H)
in block 0.
If the operand is 1EH (entry = 1EH), the execution branches to address OEH (010EH) in block 1.
Figure 2-5. Using System Call Instruction
Address Segment 0 Address Segment n (system segment) Address
0000H ooooH [1T 0000H | ¥ When entry=00H __
SYSCAL entry Block 0 |, 000tH []
0100H N L A
Block 1 | ™ T. i
0200H \WoON_000EH| |
Block2 [\ N O000FH| []
0300H PR
o \\ ‘\
[0 Block 3 PN o
& 0400H Y <
o VN X 8 =
Block 4 VoY oo
0500H \ ‘\\
Block 5 VSNOOFFH| oy 00]
0600H v 0100H
Block 6 voototH |)
0700H ! L 1
e Block7_ ! T T
0800H L OTOEH | 1 When entry = 1EH___
VO010FH
o
o -
e k)
[o]
m

www.DataSheetdU.com

CHAPTER 2 PROGRAM MEMORY (ROM)

Examples 2.

Program using system call instruction

; module 1 (segment 0)

EXTERN LAB ENTRYO
EXTERN LAB ENTRY1
EXTERN LAB ENTRY2
EXTERN LAB ENTRY3

SYSCAL.DL.
SYSCAL.DL.
SYSCAL.DL.
SYSCAL.DL.

ENTRY0 SHR 4 AND 0070H
ENTRY1 SHR 4 AND 0070H
ENTRY2 SHR 4 AND 0070H
ENTRY3 SHR 4 AND 0070H

ENTRYO AND 000FH
ENTRY1 AND 000FH
ENTRY2 AND 000FH

OR
OR
OR
OR (ENTRY3 AND 000FH

,.\,.\,\,\
= =

()
()
()
()

; module 2 (segment 1)

CSEG1
PUBLIC ENTRYO, ENTRY1, ENTRY2, ENTRY3

ORG 2000H

ENTRYO:
BR SUBO

ENTRY1:
BR SUB1

ORG 2100H

ENTRY2:
BR SuB2

ENTRY3:
BR SUB3

29

www.DataSheetdU.com

CHAPTER 2 PROGRAM MEMORY (ROM)

2.7 Table Referencing

Table referencing is used to reference the constant data in the program memory. When the MOVT DBF, @AR
instruction is executed, the program memory address contents, specified by the address register, are stored in the
data buffer (DBF).

Since the program memory contents consist of 16 bits, the constant data stored in the data buffer by the MOVT
instruction is 16 bits (4 words) long. The program memory address that can be referenced by the MOVT instruction
is in the range the address register of each model can specify.

When table referencing is performed, one level of the stack is used.

For details, refer to 6.3 Address Register (AR) and 10.4 Data Buffer and Table Reference.

2.8 Notes on Using Operand for Branch and Subroutine Call Instructions

An error occurs, if a program memory address is directly (in numeral) specified as the operand for the branch (BR)
and subroutine call (CALL) instructions, as shown in Example 1 below, when the 17K Series Assembler (RA17K) is
used.

This feature to generate an error is incorporated in the assembler to reduce the causes of bugs that may occur,
when the program is edited.

Use label as the operand for the branch (BR) and subroutine call (CALL) instructions.

Examples 1. Error occurs
<>
BR 0005H ; Error occurs during assembly
; <2>
CALL 00FOH ;

2. Error does not occur

;<3>
LOOP1: ; BR or CALL instruction is
BR LOOP1 ; executed to label in program
;<4>
SUB1: ;
CALL SUB1 ;
;
LOOP2 LAB 0005H ; 0005H is assigned to LOOP2
BR LOOP2 ; as label type
; <6>
BR. LD. 0005H ; Converts operand value into label type.

; This method, should not be used often, to reduce causes of bugs

For details, refer to RA17K Assembler User’s Manual (U10305E).

30

www.DataSheetdU.com

CHAPTER 3 PROGRAM COUNTER (PC)

The program counter specifies an address in the program memory.
3.1 Program Counter Configuration

The program counter is a 13-bit binary counter and a segment register (SGR) of up to 3 bits, as shown in Figure
3-1.
Figure 3-1. Configuration of Program Counter

MSB LSB
|SGR2‘SGR1‘SGRO‘ PCiz | PC11 | PCto | PCo | PCs | PCr | PCs | PCs | PCsa | PCs | PC2 | PGy PCol

3.2 Program Counter Functions

The program counter selects an address containing an instruction to be actually executed or constant data to be
used from several instructions or constant data written in the program memory.

Usually, the program counter contents are incremented by one, each time an instruction has been fetched. When
the branch (BR), subroutine call (CALL), return (RET, RETSK, RETI), or table reference (MOVT) instruction has been
executed, and when an interrupt has been accepted, a specified address value is stored in the program counter and
the instruction at that address is executed.

3.2.1 through 3.2.7 describe the program counter operations, when each of the above instructions is executed.

3.2.1 When branch (BR) instruction is executed

Two kinds of branch instructions are available: the direct branch instruction (BR addr), which directly specifies
the branch destination, and the indirect branch instruction (BR @AR), which indirectly specifies the branch destination
by the contents of the address register (AR) to be described shortly.

When the direct branch instruction (BR addr) is executed, the value specified by the low-crder 11 bits in the operand
for the instruction is stored in the program counter as is, as shown in Figure 3-2. Since the low-order 2 bits in the
operation code (the high-order 5 bits) for the instruction are added to bits 12 (b12) and 11 (b11) in the program countet,
the range in which the executicn can be branched is the same segment (address 0000H through 1FFFH) of the
program memory that can be specified by a total of 13 bits.

The operation code for the instruction is determined by the Assembler (RA17K) that automatically searches for
the branch destination position.

When the indirect branch instruction (BR @AR) is executed, the contents of the address register (AR) in the system
register are written to the program counter to specify the branch destination, as shown in Figure 3-2. The low-order
13 bits in the address register are written to the program counter, and the high-order bits (3 bits max.) are written to
the segment register. Therefore, the branch range differs, depending on the number of bits in the address register
for the model used.

31

www.DataSheetdU.com

CHAPTER 3 PROGRAM COUNTER (PC)

3.2.2 When subroutine call (CALL) or subroutine return (RET, RETSK) instruction is executed

Two kinds of subroutine call instructions are available: the direct subroutine call (CALL addr), which directly
specifies the call destination, and the indirect subroutine call (CALL @AR) instruction, which indirectly specifies the
call destination by the address register (AR) contents.

When the direct subroutine call instruction (CALL addr) is executed, the value specified by the instruction operand
is stored in the program counter as is, as shown in Figure 3-2. Since the operand is 11 bits long, the high-order 2
bits in the program counter (b11 and bi2) are fixed to 0. Consequently, the range in which the execution can be
branched, by the direct subroutine call instruction, is address 0000H to 07FFH on page of the memory program.

When the indirect subroutine call instruction (CALL @AR) is executed, the address register contents in the system
register are written to the program counter, to specify the branch destination. Therefore, the range in which the
execution can be branched by the indirect subroutine call instruction differs, depending on the number of bits in the
address register.

When the subroutine return instruction (RET, RETSK) is executed, the address stack register (ASR) contents,
specified by the stack pointer (SP), i.e., the return address, are written tc the program counter.

For the details on the address stack, refer to CHAPTER 4 ADDRESS STACK.

3.2.3 When table reference (MOVT) instruction is executed

Whenthe table reference (MOVT DBF, @AR) instruction is executed, the address register (AR) contents are stored
in the program counter, as shown in Figure 3-2, and the specified pragram memory contents are read to the databuffer.
Therefore, the range in which table referencing can be executed differs, depending on the number of bits in the address
register.

After the program memory contents have been read to the data buffer, the address, next to the one at which the
table reference instruction is executed, is written to the program counter, and the subsequent program is executed.
Note that one stack level is used at this time. Exercise care not to exceed the permitted stack level, when using the
table referencing instruction in a subroutine or interrupt processing.

Also note that, to execute one table reference instruction, two instruction cycles are required.

3.2.4 When interrupt is accepted and when interrupt return (RETI) instruction is executed

When an interrupt has been accepted, an vector address (branch destination address), specified by the interrupt,
is stored in the program counter, as shown in Figure 3-2.

When the interrupt return (RETI) instruction has been executed, the return address, written to the address stack
specified by the stack pointer, is restored to the program counter.

For details, refer to CHAPTER 12 INTERRUPT FUNCTION.

3.2.5 When skip instruction is executed

When the skip instruction (SKT, SKF, SKE, etc.) has been executed, the address, next to the one containing the
skip instruction, is storedin the program counter, regardless of the skip condition contents. When the subroutine return
skip (RETSK) instruction is executed, the address stack register (ASR) contents, specified by the stack pointer, are
stored in the program counter.

If the instruction executed causes the execution to skip (such as RETSK), the subsequent instruction is executed
as a no-operation (NOP) instruction; therefore, the number of instructions to be executed is the same as when the
skip instruction has been executed, regardless of whether ar not the instruction next to the skip instruction is skipped.

32

www.DataSheetdU.com

CHAPTER 3 PROGRAM COUNTER (PC)

3.2.6 On reset

When power-ON reset (Vop = low to high) or CE reset (CE = low to high) has been executed, the program counter
contents are reset to 0000H, and the segment register (SGR) contents in the program counter are reset to 0.
Consequently, the program is executed from address 0 in segment 0.

When the clock stop instruction (STOP s) is executed, the program is stopped at the address for this instruction.
When the clock stop instruction is released (CE = low to high), the program is executed from address 0 in segment
0.

Also refer to CHAPTER 14 RESET FUNCTION.

3.2.7 On system call instruction execution

When the system call (SYSCAL entry) instruction is executed, the operand “entry” for the instruction is stored in
the program counter. Since the operand is 7 bits long, the segment value for the system segment is written to the
segment register (SGR) in the program counter and 0 is written to the remaining 6 bits, to specify an address for the
system segment.

Figure 3-2. Program Counter Setting When Each Instruction Is Executed

Program counter Contents of program counter (PC)
Instruction SGRZ‘SGFH‘SGRO biz | b11 | bro| be | bs | br | bs | bs | ba | bs | bz | b1 | bo
BR addr i Page 0 0|0
Paget | o[1]

Operand of instruction (addr) —————

;L"P'a'g;;z' | Notchanged | ¢ | ¢ |

| Page3 | FRER
CALL addr o0 Operand of instruction (addr) —————
BR @AR
CALL @AR Contents of address register (b1s-bo of AR) ———————=

MOVT DBF, @AR

RET)
Contents of address stack register (ASR)

RETSK specified by stack
(Return address)

RETI

When interrupt is accepted 0 0|0 Vector address of each interrupt

Power-ON reset, CE reset 0 0 0 0 0 0 ‘ 0 ‘ 0 0 0 0 0 0 ‘ 0 ‘ 0 ‘ 0
SYSCAL entry Sysiemseqment| 0 | 0 | PBiiden |0 |0 |0 |0 | FREERSY

33

www.DataSheetdU.com

CHAPTER 3 PROGRAM COUNTER (PC)

3.3 Segment Register (SGR)

The segment register specifies a segment of the program memory.

SGRO0-SGR2 in Figure 3-2 show the segment register operations, when each instruction is executed.

The segment register is set when the SYSCAL instruction is executed, and when the indirect branch or direct
subroutine call instruction is executed.

The segment register is reset to 0 on power-ON reset or CE reset.

3.4 Notes on Using Program Counter

The program counter contents are incremented by one, each time an instruction is fetched.

If abranch (BR)or return (RET, RETSK, or RETI) instruction is at the end address (1FFFH) in the program memory,
the next address specified by the program counter is 0000H. Consequently, the microcontroller may malfunction.

Moreover, if the program memory capacity is small; for example, if the end address is OFEFH and its contents are
an instruction other than the branch or return instruction, the next address specified by the program counter is OFFOH,
which also causes the microcontroller to malfunction.

Therefore, write the branch instruction (BR) to the last address for each segment. However, if the return address
has been written to that address, it can remain untouched.

If an instruction causes the program counter value to exceed the permitted range, the Assembler (RA17K)
generates a warning with an error.

34

www.DataSheetdU.com

CHAPTER 4 ADDRESS STACK

The address stack is a register that saves the program return address, when a subroutine is called or when an
interrupt is accepted, or a table reference instruction is executed.

In addition to the address stack, an interrupt stack is also provided to which the system register contents are saved,
when an interrupt has been accepted. For details on the interrupt stack, refer to 12.2.8 Interrupt stack.

4.1 Address Stack Configuration

As shown in Figure 4-1, the address stack is made up of a stack pointer and address stack registers. The stack
pointer is a 4-bit binary counter.

Up to 16 address stack registers, ASRO-ASRn (n < 15), are available, with each register consisting of up to 16 bits.

The low-order 13 bits in each address stack register form a program counter stack (PCSR) and the high-order 3
bits form a segment register stack (SGRSR), as shown in Figure 4-1.

35

www.DataSheetdU.com

CHAPTER 4 ADDRESS STACK

Figure 4-1. Configuration of Stack

1oL WNWHfS\ROW[HH[
o T"T"""W'"T""\"'Tﬁ?'1""[""\'"T"\""T'"V"
1 WIWHTAS\RZWTHHT
*CHWIWHTH[HH[
1o T"T"""W'"T""\""T'A'\?'F\EW""[""\'"T"\""T'"V"
N T"T"""W'"T""\""T'{\'S'F'SW""[""\'"T"\""T'"V"
1 WTWHT:Z::WTHH """""

36

www.DataSheetdU.com

CHAPTER 4 ADDRESS STACK

4.2 Address Stack Functions

The address stack saves the return address from a subroutine or interrupt routine or when a subroutine has been
called or when an interrupt has been accepted or a table reference instruction is executed.

When the subroutine call (CALL addr, CALL @AR) instruction has been executed, the program memory address
next to the one executing the subroutine call instruction, i.e., the return address, is saved to an address stack register
ASRO0-ASRn (n £ 15). When the subroutine return instruction (RET, RETSK) is executed later, the return address,
saved to the address stack register, is restored to the program counter.

The address stack is also used when the table reference instruction (MOVT DEF, @AR) is executed.

The address stack can be manipulated by stack manipulation instructions (POP AR and PUSH AR).

4.3 and 4.4 describe the functions for the stack pointer and address stack registers.

4.3 Stack Pointer (SP)

The stack pointer is a register that selects one of up to 16 address stack registers ASR0-ASRn (n < 15).
4.3.1 Stack pointer configuration

The stack pointer is a register consisting of up to 4 bits flags, as shown in Figure 4-2.

The stack pointer is in a control register in the register file. For details on the control register, refer to CHAPTER
9 REGISTER FILE (RF).

37

www.DataSheetdU.com

CHAPTER 4 ADDRESS STACK

Figure 4-2. Configuration of Stack Pointer

Name Flag Symbol Address Read/Write
bz b b1 bo
Stack pointer SP3 | SP2 | SP1 | SPO | Depends R/W
SP on model

Specifies address of address stack register (ASR)

0| 0| 0| 0| Address 0 (ASRO)
0|0 |0]| 1]Address1(ASR1)
0| 0| 1| 0| Address 2 (ASR2)
0| 0| 1] 1]Address3(ASR3)
0|1 | 0| O] Address 4 (ASR4)
0| 1] 0| 1]Address5 (ASR5)
O | 1| 1| 0| Address 6 (ASR6)
0|1 | 1] 1]Address7 (ASR7)
110 | 0| 0| Address 8 (ASR8)
110 |0 | 1| Address9 (ASR9)
10| 1 | 0| Address 10 (ASR10)
10| 1| 1]Address 11 (ASR11)
1| 1] 0| 0| Address 12 (ASR12)
1| 1] 0| 1] Address 13 (ASR13)
1| 1] 1| 0| Address 14 (ASR14)
1] 1] 1| 1]Address 15 (ASR15)

4.3.2 Stack pointer operation
The stack pointer contents are decremented by one, as shown in Table 4-1, during the first instruction cycle in the
subroutine call (CALL addr, CALL @AR), system call (SYSCAL), or table reference instruction (MOVT DBF, @AR),
orwhen an interrupt has been accepted, and incremented by one during the second instruction cycle of the subroutine
return instruction (RET, RETSK), table reference instruction (MOVT DBF, @AR), stack manipulation (POP AR), or
interrupt return (RETI) instruction.

38

www.DataSheetdU.com

CHAPTER 4 ADDRESS STACK

Table 4-1. Operations of Stack Pointer (SP)

Instruction

Stack Pointer Value

CALL addr

CALL @AR

SYSCAL, entry

MOVT DBF, @AR

PUSH AR

When interrupt is accepted

SP - 1

RET

RETSK

MOVT DBF, @AR
POP AR

RETI

SP + 1

For the operation of each instruction, refer to 4.5 Stack Operations, When Subroutine, Table Reference, or
Interrupt Is Executed.

Since the stack pointer is a binary counter, that can be up to 4 bits long, its value ranges from OH to nH (n < F).
However, there are fewer stack registers for some models than the maximum value of the stack pointer. In this case,
if the stack pointer specifies a value corresponding to no stack register, the microcontrollers malfunction. For details,
refer to 4.6 Nesting Level for Address Stack and PUSH and POP Instructions.

Because the stack pointer is located on the register file, its value can be read or data can be written to it by
manipulating the stack with the PEEK or POKE instruction. Although the stack pointer value is changed at this time,
the address stack register contents are not affected.

39

www.DataSheetdU.com

CHAPTER 4 ADDRESS STACK

4.4 Address Stack Registers

The address stack register is used to save the return address when a subroutine call instruction or table reference
instruction is executed. When an interrupt is accepted, the return address of the program and the contents of the
program status word (PSWORD) are automatically saved to the stack.

The address stack registers save the value of the program counter (PC) plus 1, i.e., the return address when the
first instruction cycle of a subroutine call (CALL addr, CALL @AR), system call (SYSCAL entry), or table reference
(MOVT DBF, @AR) instruction is executed. When a stack manipulation instruction (PUSH AR) is executed, the
contents of the address register (AR) are saved to an address stack register. The address stack register that stores
data is specified by the value of the stack pointer (SP) minus 1 when any of the above instructions is executed.

When the second instruction cycle of a subroutine return (RET, RETSK), interrupt return (RETI), or table reference
(MOVT DBF, @AR) instruction is executed, the contents of the address stack register specified by the stack pointer
are restored to the program counter, and the value of the stack pointer is incremented by 1. When a stack manipulation
instruction (POP AR) is executed, the value of the address stack register specified by the stack pointer is transferred
to the address register, and the value of the stack pointer is incremented by 1.

For the operation of each instruction, refer to 4.5 Stack Operations, When Each Subroutine, Table reference,
or Interrupt Is Executed.

The address stack register number is up to 16 (ASRO-ASRn where n < 15) and differs depending on the
microcontroller model. If a subroutine is called or an interrupt occurs exceeding the maximum stack level for a
microcontroller, the microcontroller malfunctions. For details, refer to 4.6 Nesting Level for Address Stack and
PUSH and POP Instructions, and 12.6 Nesting.

40

www.DataSheetdU.com

CHAPTER 4 ADDRESS STACK

4.5 Stack Operations, When Subroutine, Table Reference, or Interrupt Is Executed
4.5.1 through 4.5.4 describe the address stack operations.
4.5.1 When subroutine call (CALL) or return (RET, RETSK) instruction is executed
Table 4-2 below shows the operations for the stack pointer, address stack registers, and program counter, when

the subroutine call or return instruction has been executed.

Table 4-2. Operation When Subroutine Call or Return Instruction Is Executed

Instruction Operation

CALL addr <1> Increments value of program counter (PC) by 1

<2> Decrements value of stack pointer (SP) by 1

<3> Saves value of program counter (PC) to address stack register (ASR) specified by stack pointer
(SP)

<4> Transfers value specified by operand (addr) of instruction to program counter

RET <1> Restores value of address stack register (ASR) specified by stack pointer (SP) to program counter
RETSK (PC)
<2> Increments value of stack pointer (SP) by 1

When the RETSK instruction has been executed, the instruction to be executed first, after the program execution
has returned from the subroutine to the main routine, is treated as a no-operation (NOP) instruction.

Figure 4-3 shows an operation example. Inthis example, the CALL instruction at address 100H in the main routine
calls the subroutine at address 30H, and another CALL instruction at address 35H calls the subroutine at address
50H.

The subroutine, starting from address 30H, is called a subroutine for the “first level”, while the subroutine, starting
from address 50H, is called a subroutine for the “second level”. The arrows in the figure show the program flow.

In this example, assume that the stack pointer value is 7H, before the instruction at address 100H is executed.
Consequently, when the CALL instruction at address 100H is executed, the program counter contents become 101H,
and the stack pointer value is decremented by one to 6H.

Next, address 101H, which is the return address from the first-level subroutine, is saved to the address stack
register at address 6H, and the operand for the CALL instruction, 30H, is transferred to the program counter.

When the CALL instruction at address 35H is executed, the stack pointer value is decremented by one to 5H. The
return address from the second-level subroutine, 36H, is saved to the address stack register at address 5H (ASR5),
and the operand for the CALL instruction, 50H, is transferred to the program counter. When the RET instruction is
executed in the second-level subroutine, the address stack register contents (36H) at 5H (ASRS5), which is specified
by the stack pointer, are restored to the program counter. The stack pointer value is, accordingly, incremented by
one to 6H. When the RET instruction for the first-level subroutine is subsequently executed, the return address for
the main routine, 101H, is restored to the program counter, and the stack pointer value is incremented by one to 7H.

a1

www.DataSheetdU.com

CHAPTER 4 ADDRESS STACK

42

Figure 4-3. Stack Operation Examples When Subroutines Are Called

Main routine

(100H): CALL SUB1

Operation of <1>
Stack pointer (SP)

H

H

Operation of <2>

H

I

Operation of <3>

I

H

Operation of <4>

:

7H

Subroutine (1st level)

—= SUB1 (30H):

<1> ‘

(35H): CALL SUB2

|

RET

<4>

Address stack register (ASR)

5H ASR5
6H 101H ASR6
7H Undefined ASR7
5H 36H

6H 101H

7H

5H 36H

6H 101H

7H

5H 36H

B6H 101H

7H

Subroutine (2nd level)

— SUB2 (50H):
2>

A

-

<3>
RET

Program counter (PC)

30H

50H

36H

101H

www.DataSheetdU.com

CHAPTER 4 ADDRESS STACK

4.5.2 Table reference instruction (MOVT DBF, @AR)
Table 4-3 shows the operations to be performed, when the table reference instruction has been executed

Table 4-3. Operation When Table Reference Instruction Is Executed

Instruction Cycle

Operation

MOVT DBF, @AR | First

<1> Increments value of program counter (PC) by 1

<2> Decrements value of stack pointer (SP) by 1

<3> Saves value of program counter (PC) to address stack register (ASR) specified
by stack pointer (SP)

<4> Transfers value of address register (AR) to program counter (PC)

Second

 Transfers contenis of program memory (ROM) specified by program counter
(PC) to data buffer (DBF)

<6> Restores value of address stack register (ASR) specified by stack pointer (SP)
to program counter (PC)

<7> Increments value of stack pointer (SP) by 1

Figure 4-4 shows an operation example. Assume that, in this example, the table reference instruction is at address
200H, that the program memory address, in which the constant data to be referenced is stored, is 20H, and that the

stack pointer value, immediately before the “MOVT DBF, @AR” instruction at address 200H is executed, is 7H.

When the “MOVT DBF, @AR” instruction at address 200H is executed, the stack pointer value is decremented
by one to 6H during the first instruction cycle and address 201H, which is next to the address storing the “MOVT DBF,
@AR” instruction, is saved to the address stack register at address 6H. The program memory address 20H, in which
the constant data is stored, is transferred to the program counter.

This address, 20H, is specified by the address register.

During the second cycle in the instruction, the constant data at address 20H, which is the program counter contents,
is transferred to the data buffer, and the contents for the address stack register, 201H, are restored to the program

counter. The stack pointer value is

incremented by one to 7H.

Figure 4-4. Stack Operation Example When Table Reference Instruction Is Executed

Program example

0020H: Constant data

0200H: MOVT DBF, @AR: 20H is stored in address register (AR)

1st instruction cycle
Stack pointer (SP)

2nd instruction cycle

Address stack register (ASR)
Program counter (PC)

5H 20H

6H 201H

7H Undefined

.
6H 201H

7H

43

www.DataSheetdU.com

CHAPTER 4 ADDRESS STACK

4.5.3 System call instruction (SYSCAL) and return instruction (RETI, RETSK)
Table 4-4 indicates the operations of the stack pointer (SP), address stack register (ASR), and program counter
(PC), when the system call or return instruction has been executed.

Table 4-4. Operations When System Call Instruction Is Executed

Instruction Operation

SYSCAL entry <1> Increments value of program counter (PC) by 1.

«<2> Decrements value of stack pointer (SP) by 1

<3> Saves values of program counter (PC) and segment register (SGR) to address stack register
(ASR) specified by stack pointer (SP)

<4> Sets segment register (SGR) to 1

<5> Transfers value specified by operand (entry) for instruction to bits bio-bs and bs-bo for program
counter (PC)

RET, RETSK <1> Restores value of address stack register (ASR), specified by stack pointer (SP), to program
counter (PC) and segment register (SGR)

<2> Increments value of stack pointer (SP) by 1

<3> Only when RETSK is executed, processes first instruction after restoration as no-operation
(NOP) instruction and proceeds to next instruction (skip operation)

The stack operations, when the system call instruction has been executed, are the same as those when the
subroutine call instruction is executed, except that the segment register is set to 1, when the system call instruction
has been executed.

Note, however, that the subroutine call instruction specifies a different program memory address to be called.

44

www.DataSheetdU.com

CHAPTER 4 ADDRESS STACK

4.5.4 When interrupt is accepted or when return (RETI) instruction is executed
Table 4-5 shows the stack operations, when an interrupt has been accepted or when the return instruction has been
executed.

Table 4-5. Operation of Stack When Interrupt Is Accepted and Return Instruction Is Executed

Instruction Operation

When interrupt is | <1> Increments value of program counter (PC) by 1

accepted However, if branch (BR) or subroutine call (CALL) instruction is executed when interrupt is
accepted, address of program memory (ROM) to which execution branches or from which
subroutine is called is loaded to PC

<2> Decrements value of stack pointer (SP) by 1

<3> Saves value of program counter (PC) and segement register (SGR) to address stack register
specified by stack pointer (SP)

<4> Saves BCD, CMP, CY, Z, and IXE flags of PSWORD and BANK to interrupt stack register

<5> Transfers vector address to program counter (PC), and resets segment register (SGR)

RETI <1> Restores value of interrupt stack register to BCD, CMP, CY, Z, and IXE flags of PSWORD and
BANK

<2> Restores value of address stack register specified by stack pointer (SP) to program counter (PC)
and segment register (SGR)

<3> Increments stack pointer (SP) by 1

Figure 4-5 shows an operation example. Assume thatthe stack pointervalueis 7H and thatan interruptis accepted,
while the instruction at address 300H is executed.

After the instruction at address 300H has been executed, the stack pointer value is decremented by one to 6H.
The address stack register at address 6H (ASR6), address 301 H, which would have been executed next, is stored,
and the low-order 2 bits in the bank register and 1 bit in the index enable flag are saved to the interrupt stack register.
The interrupt vector address for the INTo pin, 0005H, is transferred to the program counter, and the instruction at
address 0005H is executed.

When the return (RETI) instruction is executed in the interrupt processing routine, the interrupt stack register
contents are restored to the bank register and index enable flag. The address stack register contents, 301H, are
restored to the program counter, and the stack pointer is incremented by 1 to 7H.

For details on interrupt operations, refer to CHAPTER 12 INTERRUPT FUNCTIONS.

Interrupt sources and the vector address differ depending on the model. Refer to the Data Sheet of each mode.

45

www.DataSheetdU.com

CHAPTER 4 ADDRESS STACK

46

Figure 4-5. Stack Operation Example When Interrupt Occurs

Main routine

0300H: Interrupt
is
accepted

Operation of <1>
Stack pointer (SP)

Operation of <2>

<1>

-

Interrupt routine

—= 0005H:

2> RETI

Address stack register (ASR) Program counter (PC)
o
6H 301H
7H Undefined
.
6H 301H
7H

www.DataSheetdU.com

CHAPTER 4 ADDRESS STACK

4.6 ASR7 Nesting Level for Stack and PUSH AR and POP AR Instructions

The stack pointer operates as a 3-bit binary counter, whose contents are simply incremented or decremented by
one, when the subroutine call or return instruction has been executed.

Therefore, while the stack pointer value is OH, if the CALL, SYSCAL, or MOVT instruction is executed or if an
interrupt is accepted the stack pointer value is decremented by one to 7H, and the return address and address register
value from the subroutine or the interrupt processing routine are written to ASR7, which is the address 7H in the
address stack registers. Since ASR7 does not existin fact, the return address and the address register value cannot
be written.

If the return instruction is executed, when the stack pointer value is 7H, therefore, the ASR7 contents at address
stack register address 7H are transferred to the program counter and segment register.

To prevent this, the contents, read from ASR7 at address 7H, are “undefined” and the program flow cannot be
restored normally.

In this case, save the address stack register value by using the PUSH or POP instruction.

Table 4-6 shows the operations for PUSH and POP instructions.

Table 4-6. Operations of PUSH and POP Instructions

Instruction Operation
POP <1> Transfers value of address stack register specified by stack pointer (SP) to address register (AR)
<2> Increments value of stack pointer (SP) by 1
PUSH <1> Decrements value of stack pointer (SP) by 1

<2> Transfers value of address register (AR) to address stack register specified by stack pointer (SP)

Figure 4-6 shows an operation example. Inthis example, a CALL instruction, that calls the seventh-level subroutine,
which starts from address 30H, exists at address 10H of the sixth-level subroutine, and another CALL instruction that
calls the eighth-level subroutine, which starts from address 50H, exists at address 35H.

The arrows in the figure indicate the program execution flow.

In this example, the value for the stack pointer, immediately before address 10H is executed, is 1H. When the CALL
instruction at address 10H has been executed, the stack pointer value is decremented by one to OH, and the return
address from the seventh-level subroutine, 11H, is saved to the address stack register at address OH. The operand
for the GALL instruction, 30H, is transferred to the program counter.

When the POP instructionin the subroutine for the seventh-level is executed, the stack pointer value is incremented
by one to 1H. Consequently, the address stack register contents at address OH, 11H, are transferred to the address
register.

When the CALL instruction at address 35H is executed, the stack pointer value is decremented by one to OH, and
the return address from the eighth-level subroutine, 41H, is saved to the address stack register at OH. The operand
for the GALL instruction, 50H, is transferred to the program counter.

When the RET instruction in the eighth-level subroutine is executed, the address stack register contents OH, 41H,
are restored to the program counter, and the stack pointer is incremented by one to 1H.

47

www.DataSheetdU.com

CHAPTER 4 ADDRESS STACK

When the PUSH instruction in the seventh-level subroutine is executed, the stack pointer is decremented by one
to OH. The contents of the address register, which are address 11, i.e., the return address to the sixth-level subroutine,
are transferred to the address stack register at address OH.

When the RET instruction in the seventh-level subroutine is executed, the address stack register contents at OH,
11H, are restored to the program counter. The stack pointer is, accordingly, incremented by one to 1H.

In this way, the nesting levels for the stack can be set to 8 levels.

Figure 4-6. Stack Operation Example When PUSH and POP Instructions Are Executed

Subroutine (6th level) Subroutine (7th level) Subroutine (8th level)

— SUB7 (30H): * SUB8 (50H):
<1>

(35H) <2>POP AR __

(10H): CALL SUB7 ~ =—
(40H): CALL SUBS

<6>
L hia RET
(45H) <5> PUSH AR
¥ RET
Operation of <1>
Stack pointer (SP) Address stack register (ASR) Program counter (PC) Address register (AR)

:
[
|

OH OH 11H 30H

1H

Operation of <2>

1H
Operation of <3>
1H

Operation of <4>

1H OH 41H 41H 11H

:

1H

Operation of <5>

OH OH 11H 45H 11H

il

1H

Operation of <6>

1H OH 11H 11H 11H

:

1H

48

www.DataSheetdU.com

CHAPTER 5 DATA MEMORY (RAM)

The data memory is to store data for arithmetic and control operations. The data in the data memory can always
be read or the data can be written to the memory by instructions.

5.1 Data Memory Configuration

As shownin Figure 5-1, the data memory is divided into up to 16 divisions in units of “banks”. Each bankis assigned
a number. Therefore, there are bank 0 to bank n (n < 15).

Each bank is assighed an address, which stores 4-bit data. The high-order 3 bits in an address are called a “row
address”, while the low-order 4 bits are called a “column address”. For example, the data memory address, whose
row address is 1H and whose column address is OAH, is 1AH. One address consists of 4 bits, or one “nibble”.

The data memory is also divided into the following five blocks, in terms of functions:

(1) System register (SYSREG)
The system register consists of 12 nibbles assigned to addresses 74H through 7FH in the data memory. The
system register is assigned, regardless of the bank. That is, any bank has the same system register at
addresses 74H through 7FH.

(2) Data buffer (DBF)
The data buffer consists of 4 nibbles at addresses 0CH through OFH in bank O for the data memory.

(3) Port data register (port register)
This register is configured of a part of each bank in the data memory.

(4) General-purpose data memory
This is a portion of the data memory, other than the system register and port register, and consists of 112

nibbles.

(5) Unassigned data memory
The data memory area in the port register, to which no actual port is assigned, is fixed to 0.

49

www.DataSheetdU.com

CHAPTER 5 DATA MEMORY (RAM)

Figure

Column address

5-1. Configuration of Data Memory

123456789 ABCDEF

Row address
~NoOOEEWN—=O

Data memory

BANKO
. | BANK1
:l.ﬁ>_/ {
b BANK15
E E :Tj—, | System register |
P Column address
b 0 1 2 3 4 5 6 7 8 9 A B C D E F
e Sl Data buffer(DBF)
R .
i i i ﬁz Example
b IS5 3 Address 1AH
g of BANKO
Pl x4 —
[<
b 5 BAII\IKO
BRI
E i E 7 P i T T T T T T T T T T T
o T V[T Sysemrasr(svsRes] | | |
I 0 1 2 3 4 5 6 7 8 9 ABCDTEF
:"1:":‘"*0
o 1
L oge
bl
P83 BANK1
Ll ®
Coroz4
b8
0 Ts
B
E : 7 P i [s R e e e L L S Bt
. ort register ' Syslem reglster (SYSREG) r—i|
: : e e A L T e e e T demedenadannn
b 0 1 2 3 4 5 6 7 8 9 A B C D E F
e |
! 1 BANK2
g L —|
: _53// \\\\\ ////
E -‘%4’ T |
8
I E5 BANK14
L6
: 7 i L e e e e e L L B -
i Port register i Syslem reglster (SYSREG) r—i|
: o e L L T e e e demedesadannn
E o 1 2 3 4 5 6 7 8 9 A B C D E F
Lem
1
@92
]
5 3
E
z 4
o]
cs5 BANK15]
6
7 P i L e e e e L L L B -
ort register ' A Syslem reglster(SYSREG) T
D e e e L E I T P

www.DataSheetdU.com

CHAPTER 5 DATA MEMORY (RAM)

5.2 Notes on Specifying Data Memory Address

When using the 17K Series Assembler (RA17K), an error occurs if a data memory address is directly described
as a numeral in the operand for a data memory manipulation instruction, as shown in Example 1 below.
This feature of the assembler is to reduce the causes of bugs, when the program is edited.

Examples 1. Error occurs
;<>
MOV 2FH, #0001B ; Directly specifies address 2FH
; <2>
MOV 0.2FH, #0001B ; Directly specifies address 2FH of BANKO

Error does not occur
; <3>
MO2F MEM 0.2FH ; Defines symbol in MO2F with address 2FH of BANKO as memory type
MOV MO2F, #0001B ;
D <4>
MOV .MD.2FH, #0001B ; Converts address 2FH into memory type by .MD.
; This method, however, must be avoided to reduce causes of bugs.

It is therefore necessary to define data memory addresses as symbols in advance, using the
assembler directive MEM (symbol definition directive).

To define a data memory address as a symbol, it is also necessary to define a bank, as shown
in Example 2.

This is used by the data memory map creation function of the Assembler.

At this time, however, if the data in the following example 2 memory address, which is defined as
a symbol in the BANK2 as shown, is used in the BANK1 range for the program, the BANK1 data
memory address is manipulated.

M1 MEM 0.15H ;
M2 MEM 1.15H ;| Symbol definition directive

M3 MEM 2.15H ;
L

I 1
Bank Row address Column address

BANK1 ; Assembler macroinstruction BANK ¢« 1

MOV M1, #0000B ;| M1, M2, and M3 are defined as symbols by another bank in <15,
MOV M2, #0000B ; | but are treated as BANK1 on program. These three instructions
MOV M3, #0000B ; | write 0 to data memory at address 15H in BANK1

51

www.DataSheetdU.com

[MEMO]

52

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

The system register directly controls the CPU and is located on the data memory.
6.1 System Register Configuration

Figure 6-1 shows the system register location on the data memory. As shown in this figure, the system register
is located at addresses 74H through 7FH in the data memory, independent from the bank. Therefore, the same system
register exists at addresses 74H through 7FH for any memory bank.

Since the system register is on the data memoty, it can be manipulated by any data memory manipulation
instruction.

It is also possible to specify the system register as a general register.

Figure 6-2 shows the system register configuration.

As shown in this figure, the system register consists of the following seven kinds of registers:

Address register (AR)

Window register (WR)

Bank register (BANK)

Index register (IX)

Data memory row address pointer (MP)
General register pointer (RP)

Program status word (PSWORD)

Figure 6-1. System Register Location on Data Memory Location

Column address

o 1 2 3 4 5 6 7 8 9 A B C D E F

Data memory

Row address

BANK15

System register
4 5 6 7 8 9 A B C D E F

53

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Figure 6-2. Configuration of System Register

Address | 74H ‘ 75H ‘ 76H ‘ 77H ‘ 78H ‘ 79H ‘ 7AH ‘ 7BH ‘ 7CH ‘ 7DH ‘ 7EH ‘ 7FH
Name System register
Address register Window | Bank Index register (IX) Genral register | Progrem
(AR) register | register pointer status
(WR) (BANK) | Data memory (RP) word
row address (PSWORD)
pointer
(MP)
Symbol | AR3 AR2 AR1 ARO WR BANK IXH IXM IXL RPH RPL PSW
MPH MPL
Bit bs|bz|br1 |bo[bs| bz|b1 [bo|bs|bz|b1|bo| bs|bz bt |bo |bs [bz|b1| bo|bs| bz | bt [bo| ba| bz |b1|bo |bs [bz| bt | bo| bs [bz| b1 | bo|bs| bz | b1 |bo| bs| bz |b1bo| bs | b2 | bt | bo
bata M IX B|C|C|Z| I
CM]Y| (X
E D E
('lVlF;)

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.2 System Register Functions

6.2.1 Each register functions
The functions for each constituent register in the system register are as follows. The functions for each register
are described in more detail in 6.4 through 6.9.

(1) Address register (AR)
Indirectly specifies an address in the program memory.

(2) Window register (WR)
Transfers data with the register file.

(3) Bank register (BANK)
Specifies a bank in the data memory.

(4) Index register (IX)
Qualifies an address in the data memory.

(5) Data memory row address pointer (MP)
Specifies a row address during general register indirect transfer.

(6) General register pointer (RP)
Specifies a bank and row address in the general register.

(7) Program status word (PSWORD)
Sets the conditions of arithmetic operation and transfer instructions.

6.2.2 System register manipulation instruction

Since the system register is located on the data memory, it can be controlled by all data memory manipulation
instructions. In addition, the address register and index register can be manipulated by the following dedicated
instructions:

INC AR: Increments the address register (AR) contents by one. The address register has 14 valid bits. When
the address register contents are incremented, when the current contents are 1FFFH, the register
contents become 0000H. The address register contents cannot be incremented to a total exceeding 8K
steps.

INC IX : Increments the index register by (IX) contents by one. The index register has 11 valid bits. When the
index register contents are incremented, when the current contents are incremented, when the current
contents are 7FFH, the register contents become C00H.

55

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.3 Address Register (AR)

6.3.1 Address register contiguration

Figure 6-3 shows the address register configuration.

As shown in this figure, the address register consists of 16 bits in the system register: 74H through 77H (AR3
through ARO).

Figure 6-3. Configuration of Address Register

Address 74H 75H 76H 77H

Name Address register (AR)

Symbol AR3 AR2 AR1 ARO

Bit bs | b2 | b1 | bo|bs|ba|bi|bo|bs|ba|bi|bo|bs]|bz|bi]|bo

Data ﬂ /|_\
S S
e &

6.3.2 Address register functions

The address register specifies a program memory address, when the indirect branch instruction (BR @AR), indirect
subroutine call instruction (CALL @AR), table reference instruction (MOVT DBF, @AR), or stack manipulation
instruction (PUSH AR, POP AR) has been executed.

6.3.3 through 6.3.4 describe the address register aperations, when each of these instructions has been executed.

A sole use instruction (INC AR), that can increment the contents of the address register by one, is available. When
this instruction is used, the address register data can be incremented in 13-bit units. When the “INC AR” instruction
is executed, while the address register contents are 1FFFH, the address register is incremented to 0000H.

Note that an address exceeding the program memory range must not be set.

6.3.3 Table reference instruction (MOVT DBF, @AR)

When the “MOVT DBF, @AR” instruction is executed, the constant data (16 bits) in a program memoty address,
specified by the address register contents, are read to the data buffer (DBF: addresses OCH through OFH in BANKO)
on the data memory.

The program memory addresses, from which constant data can be read to the data buffer, can be specified in the
address register range for each model.

For details, also refer to 10.4 Data Buffer and Table Reference.

56

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Example

Address Label

0000H DATA1 :|16-bit constant data
MOV ARO, #0FH ; Writes OFH to ARO
MOV ART, #0H ; Writes OH to AR1
MOV AR2, #0H ; Writes OH to AR2
MOV AR3, #0H ; Writes OH to AR3
MOVT DBF, @AR ; Roads constant data at program memory address

; 000FH to data buffer

6.3.4 Stack manipulation instruction (PUSH AR, POP AR)

By executing the “PUSH AR” instruction, the stack pointer is decremented by one and the address register (AR)
contents are stored to the address stack register specified by the stack pointer.

When the “POP AR” instruction is executed, the address stack register contents, specified by the stack pointer,
are transferred to the stack register, and the address stack register is incremented by one.

For details, refer to CHAPTER 4 ADDRESS STACK.

6.3.5 Indirect branch instruction (BR @AR)

When the “BR @AR” instruction is executed, the program execution branches to a program memory address
specified by the address register contents.

Example
MOV ARO, #0FH ; Writes OFH to ARO
MOV ARH1, #0H ; Writes OH to AR1
MOV AR2, #0H ; Writes OH to AR2
MOV ARS, #0H ; Writes OH to ARS3
BR @AR ; Program branches to 000FH

6.3.6 Indirect subroutine call instruction (CALL @AR)

When the “CALL @AR” instruction is executed, the subroutine at the program memory, specified by the address
register contents, can be called.

57

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Examples 1.
Address Label
000FH SUB:

Subroutine processing

RET

MOV ARO, #0FH ; Writes OFH to ARO

MOV AR1, #0H ; Writes OH to AR1

MOV AR2, #0H ; Writes OH to AR2

MOV ARS3, #0H : Writes OH to AR3

CALL @AR ; Calls subroutine at address 000FH

In this example, the address from which a subroutine is indirectly called is specified by the “MOV”
instruction.

By this method, however, the program memory efficiency is degraded, if the subroutine is
frequently called.

Therefore, it is recommended to use the “POP”, “PUSH”, and table reference instructions, as
shown in Example 2 below.

2.

SUBENTRY:
DI
POP AR
MOVT DBF, @AR
INC AR
PUSH AR
El
PUT AR, DBF
BR @AR

SUB1

suB2

MAIN

CALL SUBENTRY
DW .DL.SUB1
CALL SUBENTRY
DW .DL.SUB2

58

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.3.7 Address register and data buffer
The address register can be directly manipulated by the data memory manipulation instruction. It can also transfer
data through the data buffer as a part of the hardware peripherals.

Data can be read from or written to the address register through the data buffer by using the “PUT” and “GET”
instructions, in addition to the data memory manipulation instruction.

Figure 6-4 shows the relations between the address register and data buffer.
For details on the data buffer, refer to CHAPTER 10 DATA BUFFER (DBF).

Figure 6-4. Data Transfer between Address Register and Data Buffer

Name Data buffer
Symbol DBF3 DBF2 DBFA1 DBFO
Address OCH ODH OEH OFH
Bit bis | b1a | b1z | biz | b11 | bio | be | bse | b7 | bse | bs | bs | bz | b2 | b1 bo
Data Transfer data

GET

PUT
Name Address register
Symbol AR
sggﬁagiral Depends on model
Bit bis | bua | b1z | brz | bt1 | bio | be bs b7 bs bs b4 bs b2 b1 bo
Data Valid data
Symbol AR3 AR2 AR1 ARO
Address 74H 75H 76H 77H

Data memory manipulation
instruction

When data is directly read from or written to address register

59

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.4 Window Register (WR)

6.4.1 Window register configuration

Figure 6-5 shows the window register configuration. As shown in this figure, the window register consists of 4 bits

in 78H in the system register.

Figure 6-5. Configuration of Window Register

Address 78H

Name Window register
(WR)

Symbol WR

Bit bs b2 b1 bo

Data

(w v)
(w v r)

6.4.2 Window register functions

The window register is used to transfer data with the register file (RF).

To transfer data between the window register and register file, sole use instructions, “PEEK WR, rf” and “POKE

rf, WR”, are used.

6.4.3 and 6.4.4 describe the window register operation, when each of these instruction is executed.

For details, refer to CHAPTER 9 REGISTER FILE (RF).

6.4.3 PEEK WR, rf instruction

As shown in Figure 6-6, the register file contents, addressed by rf, are transferred to the window register, when

the PEEK WR, rf instruction (rf: address of register file) is executed.

6.4.4 POKE rf, WR instruction

As shown in Figure 6-6, the window register contents are transferred to the register file addressed by rf, when the

POKE rf, WR instruction (rf: register file address) is executed.

60

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Row address

Figure 6-6. Operations for PEEK and POKE Instructions

Column address

1 2 3 4 5 6 7 8 9 A B C D E F

Register file

POKE OFH, WR

‘ ‘ WR System register

61

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.5 Bank Register (BANK)

6.5.1 Bank register configuration

Figure 6-7 shows the bank register configuration.
As shown in this figure, the bank register consists of 4 bits in 79H (BANK) for the system register.

Figure 6-7. Configuration of Bank Register

Address 79H
Name Bank register
(BANK)
Symbol BANK
Bit bs | bz | b1 bo
Data /I\Z /L\
S S
B B
N~ N

6.5.2 Bank register function
The bank register selects a bank in the data memory.
As shown in Figure 6-8, the data memory is divided into up to 16 banks, and the data memory area in the bank,

specified by the bank register, is manipulated by a data memory manipulation instruction.
Therefore, to manipulate the data memory area in BANK1, when BANKO is currently selected, it is necessary to

write 0001H to the bank register, in order to select BANK1.
At this time, the bank concept does not apply to the system register located at addresses 74H through 7FH in the

data memory, and the system register in any bank serves as is. Consequently, 0 is written to the bank register (BANK:
address 78H), regardless of whether the “MOV BANK, #0” instruction is executed in BANK1 or BANK2. To manipulate

the bank register, therefore, the bank specified at that time is independent.

62

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Figure 6-8. Specifying Data Memory Bank

— Same system
register exists
in any bank

Bank register
(BANK) Bank of data
memory Column address
bs | bz | b1 | bo 0123456867 8 9 ABCDEF
ololofo BANKO ﬁ?
olo|o|1 BANK1 B,
53 BANKO
o|lo|1]|o BANK2 | 2.
oo | 1|1 BANK3 5
6
o|l1]0]|o BANK4 - I
System register
ol 1ol BANKS | RANEY J ay
0
o|l1]1]|o BANK6 1
o 1|11 BANK7 2 BANKI
3
1/lo0l0]o0 BANKS 4
11001 BANK® 2
1|01]o0 BANK10 \mm e '
! lememmamaman Systemregister ________. I
10|11 BANK11 0
1]1]l0]o0 BANK12 1
2
11101 BANK13 3 BANK2
111|110 BANK14 — 4
5= poud
RN RN BANKIS | 5 i
e semeater
0
1
2
3 BANK14
4
5
6
e et
0
1
2
3 BANK15
4
5
6
e Ssemeater

W,

63

DataSheetdU.com

*

CHAPTER 6 SYSTEM REGISTER (SYSREG)

64

As an instruction that specifies a bank, the 17K Series Assembler (RA17K) offers a macroinstruction “BANKn” (0
<n<4).
Here is an example showing how to manipulate the bank and data memory:

Example

M000
M100
BANKO
MOV
BANKA1
MOV
MOV

MEM 0.00H
MEM 1.00H

M000, #0101B

M100, #0101B
MO000, #0101B

; Defines symbol

; Same as MOV BANK, #0000B

; Writes 0101B to address 00H in BANKO
; Same as MOV BANK, #0001B

; Writes 0101B to address 00H in BANKH1
; Writes 0101B to address 00H in BANK1

; This means that data memory M0OOO is defined in BANKO by
; means in symbol definition, but the bank selected at that time is

; assumed when program is executed.

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.6 Index Register (IX) and Data Memory Row Address Pointer (MP: Memory Pointer)

6.6.1 Configurations for index register and data memory row address pointer

Figure 6-9 shows the configurations for the index register and data memory row address pointer. As shownin this
figure, the index register consists of a total of 12 bits, of which the low-crder 3 bits (IXH) are for 7AH in the system
register, and the others are for 7BH and 7CH (IXM, IXL), and an index enable (IXE) flag, which is at the least significant

bit for 7FH (PSW).

The data memory row address pointer (memory pointer) consists of a total of 7 bits, of which the low-order 3 bits
are for 7AH (MPH) and the others are for 7BH (MPL), plus a data memory row address pointer enable flag (MPE)
at the most significant bit for 7AH (MPH).

This means that the high-order 7 bits in the index register are shared by the data memory row address pointer.

Figure 6-9. Configurations for Index Register and Data Memory Row Address Pointer

(4
Address 7AH 7BH 7CH) 7EH 7FH
Name Index register (IX) Program status word
| Memory pointer (MP) | (PSWORD)
Symboal IXH IXM IXL PSW
"""" MPH | wmPL
Bit bs | bz | b1 [bo | bs|bz| bt |bo|bs|bz]|bi|bo <bs bz | bt | bo | bs | bz | bt | bo
Data M /M\ /I_\ I
S S X
E \B/ P/ E
IX
~ ~
M L
S S
g N7
MP
7

65

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.6.2 Index register and data memory row address pointer functions
The following paragraphs (1) and (2) describe the functions of the index register and data memory row address
pointer:

(1) Index register
When a data memory manipulation instruction is executed, the index register modifies with its contents the
bank and address of the data memory specified by the instruction.
However, the address modification by the index register is valid only when the index enable flag (IXE) is set.
To modify an address, the bank and address cof the data memory are ORed with the contents of the index
register, and the instruction is executed to the data memory at the address (called real address) specified by
the result of the OR operation.
The index register modifies an address with all the data memory manipulation instructions.
The instructions that cannot be used for address modification are as follows:

MOVT DBF, @AR BR addr INC AR El
PEEK WR, rf BR @AR INC IX DI
POKE rf, WR CALL addr RORC r

GET DBF, p CALL @AR STOP s

PUT p, DBF RET HALT h

PUSH AR RETSK NOP

POP AR RETI

(2) Data memory row address pointer
The data memory row address pointer modifies with its contents the address at the indirect transfer destination
when a general register indirect transfer instruction (MOV @r, m or MOV m, @r) is executed.
However, address modification by the data memory row address pointer is valid only when the data memory
row address pointer enable flag (memory pointer enable flag: MPE) is set to 1.
In addition, the address specified by an instruction other than the general register indirect transfer instruction
is not modified.
To modify an address, the bank and row address at the indirect transfer destination are replaced with the
contents of the data memory row address pointer.

Figure 6-1 illustrates data memory address modification and indirect transfer address modification by the index
register and data memory row address pointer.

6.6.3 through 6.6.6 describe the operations to modify a data memory address by the index register and data memory
row address pointer.

66

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Table 6-1. Data Memory Address Modification by Index Register and Data Memory Row Address Pointer

General Register Address Data Memory Address Indirect Transfer Address
Specified by r Specified by m Specified by @r
T T T T T T
| I I I I I
I Row 1 Column I Row 1 Column I Row 1 Column
IXE | MPE Bank i Address i Address Bank i Address i Address Bank i Address i Address
| | | | | |
bz [bz b1 | bo|bz|b1|bo|bs|bz|b1|bo|bs|bz|bi|bo|bz|bi|bo|bs|bz|bt|bo|bs|bz|bi|lbo|bz|b1|be|bs|bz|b1|bo
| | | | | |
1 i i i i i
0 0 RP! ! r BANK 1 'm BANK | mr ! (N
} i i i i i
| | | | | |
j i i i i i
0 1 | ditto ! I ditto ! MP! : (N
L L A
1 i BANK | im BANK | mm |
| I T t U 1
1 0 | ditto ! Logical OR Logical OR ! (N
! : Lo ! XH | XM !
; | | | | ;
| i i i | i
1 1 ! ditto ! I ditto ! MP! ! "
| | | | : i
Instructions modified
o | ADD
@l|lapDC|] m
3| suB
< |susc m, #n4
E AND r m
| OR -~ oo
S| xoRr
m, #n4
o | SKE
3 | skGE
5| SKLT m, #n
O | SKNE
g=| SKT
SE| SKF m, #n
LD
"q:) ST r m
(4]
| =
g
[m, #n4
MOV Fmmm oo oo o oo oo
@r m Indirect transfer address
BANK : Bank register MP : Data memory row address pointer
IX : Index register MPE : Memory pointer enable flag
IXE : Index enable flag r : General register column address
IXH : Bits 10-8 of index register RP : General register pointer
IXM : Bits 7-4 of index register (x) : Contents addressed by x
IXL : Bits 3-0 of index register x : Direct address such as m, r
m : Data memory address specified by mr, mc : Register such as BANK
mr : Data memory row address (high)

Remark The settings of IXE and MPE differ depending on the model. Refer to the Data Sheet for each model.

67

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.6.3 When MPE = 0, IXE = 0 (no data memory modification)
As indicated in Table 6-1, the data memory address is not affected by the index register and data memory row
address pointer.
(1) Data memory manipulation instruction
Examples 1. If general register is at row address 0
R003 MEM 0.03H
M061 MEM 0.61H
ADD R003, M061
When the above instructions are executed, the contents of general register R003 and those
of data memory M061 are added, and the result is stored to general register R003, as shown
in Figure 6-10.

(2) General register indirect transfer

Examples 2. If general register is at row address 0

R005 MEM 0.05H
MO034 MEM 0.34H
MOV RO05, #8 : ROO5 « 8

MOV @RO005, M034 ; Register indirect transfer

When the above instructions are executed, the contents of data memory M034 are transferred
to address 38H of the data memory, as shown in Figure 6-10.

Therefore, the “MOV @r, m” instruction transfers the contents of the data memory specified
by m to the data memoary at an indirect address specified by @r of the same row address
as m.

The indirect transfer address is the contents of the general register with a row address same
as m (row address 3in the above example) and a column address specified by r (8 in the above
example). Therefore, it is 38H in the above example.

68

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Row address

Examples 3. If general register is at row address 0

Ro0OB MEM 0.0BH

M034 MEM 0.34H

MOV RO00B, #0EH ; ROOB «— OEH

MOV M034, @R00B ; Register indirect transfer

When the above instructions are executed, the contents of the data memory at address 3EH
are transferred to data memory M034 as shown in Figure 6-10.

Therefore, the “MOV m, @r” instruction transfers the contents of the data memory at an
indirect address specified by @r of a row address same as m to the data memory addressed
by m.

The indirect transfer address is the contents of the general register with a row address same
as m (row address 3 in the above example) and a column address specified by r (OEH in the
above example). Therefore, it is 3EH in the above example.

Comparing this with Example 2, the source address of the data memory whose contents are
to be transferred and the destination address are exchanged.

Figure 6-10. Example of Operation When MPE = 0, IXE=0

Column address

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 -] E

1 : Specifies column address | Specifies column address
__ attransfer destination | at transfer source _

2 Example 2. MOV @R005, M034 ; ;

: E

4 Example 3. MOV M034, @R00B

5 Example 1. ADD R003, M061

JI

7 | |

System register

Generation of address in Example 1 Generation of address in Example 2
ADD R003, M06&1 MOV @R005, M034
Bank Row | Column Bank Row | Column
ank | Address | Address anX | Address | Address
Data memory address M 0000 110 0001 Data memory address M 0000 011 0100
General register address R 0000 000 0011 General register address R 0000 000 0101
Indirect transfer address @R 0000 011 1000
Content
SameI as M o R
69

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.6.4 When MPE = 1, IXE = 0 (diagonal indirect transfer)

As shown in Table 6-1, the bank and row address of the indirect transfer address specified by @r are the value
of the data memory row address pointer only when a general register indirect transfer instruction (MOV @r, m or MOV
m, @r) is executed.

Examples 1. If general register is at row address 0

R0O05 MEM 0.05H

M034 MEM 0.34H

MOV MPL, #0110B ; MP <« 6

MOV MPH, #1000B ; MPE « 1

MOV RO005, #8 ; RO0O5 « 8

MOV @R005, M034 ; Register indirect transfer

When the above instructions are executed, the contents of data memory M034 are transferred to
data memory address 68H as shown in Figure 6-11.

When the “MOV @r,m” instruction is executed when MPE = 1, the contents of the data memory
specified by m are transferred to the column address specified by @r having a row address
specified by the memory pointer.

At this time, the indirect address specified by @r is the contents of the general register with a bank
and row address being the value of the data memory row address pointer (row address 6 in the
above example) and a column address specified by r.

It is, therefore, 68H in the above example.

When this is compared with Example 2 in 6.6.3, the bank and row address of the indirect address
specified by @r are specified by the data memory row address pointer in the above example, while
the bank and row address of the indirect address in Example 2 in 6.6.3 are the same as m.
Therefore, general register indirect transfer can be diagonally carried out by setting MPE to 1.

70

www.DataSheetdU.com

CHAPTER

6 SYSTEM REGISTER (SYSREG)

Examples 2.

If general register is at row address 0

ROOB MEM 0.0BH

M034 MEM 0.34H

MOV MPL, #0110B ; MP < 6

MOV MPH, #1000B ; MPE « 1

MOV R0OOB, #0EH ; ROOB « OEH

MOV M034, @R0O0B ; Register indirect transfer

When the above instructions are executed, the contents of the data memory at address 6EH are

transferred to data memory M034, as shown in Figure 6-11.

Figure 6-11. Example of Operation When MPE = 1, IXE=0

Column address

0o 1 2 3 4 5 6 7 8 9 A

B C D E F

; El E
1 : Specifies column address | Specifies column
| at transfer destination | address at transfer

2 [. isource _____ .
g | |
o
g3 | |
® . | Example 2. MOV M034, @R00B
=)
o I
& 5 | Example 1. MOV @R005, M034 |

[<— General register

: il

l«<— Memory pointer = 00110B

7g|

System register

Generation of address in Example 1

MOV @R005, M034

Generation of address in Example 2

MOV M034, @R00B

www.DataSheetdU.com

Bank Row | Column Bank Row | Column
an Address | Address an Address | Address
Data memory address M 0000 011 0100 Data memory address M 0000 011 0100
General register address R 0000 000 0101 General register address R 0000 000 0111
Indirect transfer address @R 0000 110 1000 Indirect transfer address @R 0000 110 1110
Contenlt of MP C%?t,:nt Conten‘t of MP C%?t,:nt
71

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.6.5 When MPE =0, IXE = 1 (data memory address index modification)

When a data memory manipulation instruction is executed as indicated in Table 6-1, all the banks and addresses
of the data memory directly specified by the operand “m” of the instruction are modified by the index register.

When a general register indirect transfer instruction (MOV @r, m or MOV m, @r) is executed, the bank and row
address of the indirect transfer address specified by @r are also modified by the index register.

To modify an address, the contents of the data memory address and those of the index register are ORed, and
the instruction is executed to the data memory address (called an real address) specified by the result of the OR
operation.

Examples 1. If general register is at row address 0

R003 MEM 0.03H
MO061 MEM 0.61H

MOV IXL, #0010B ; IX < 00000010010B
MOV IXM, #0001B ;

MOV IXH, #0000B i MPE < 0

OR PSW, #DF.IXE AND OFH ; IXE « 1

ADD R003, M061

When the instructions in this example are executed, the contents of the data memory at address
73H (real address) and the contents of general register R003 (address 03H) are added, and the
result is stored to general register R003 as shown in Figure 6-12.

Therefore, whenthe “ADD r, m” instruction is executed, the data memory address specified by “m”
(address 61H in the above example) is modified by the index register.

To modify the address, address 61H, which is the address of data memory M061 (00001100001B
in binary), is ORed with the value of the index register (00000010010B in the above example), and
the result 00001110011B is treated as the real address (address 73H), and the instruction is
executed to this real address.

Comparing this with Example in 6.6.3 (when IXE = 0), the address of the data memory directly
specified by the operand “m” of the instruction is modified (ORed) by the index register.

72

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Row address

Figure 6-12. Example of Operation When MPE = 0, IXE = 1

Column address

l<— General register

o 1 2 3 4 5 8 7 8 9 A B C D E

0 ‘ ‘ RO03

1 Example 1. ADD R003, M061

2 [ttt » Index modification

5 i MO81 : 00001100001B
! OR) IX : 00000010010B

4 |
| Real address 000011100118

5 MOB1 | T

[—————————— J
6 I | '
7 |]

System register

Generation of address in Example 1

ADD R003, M061

Row | Column
Bank | Address | Address
Data memory address M 0000 110 0001
General register address R 0000 000 0011
Index modification i Mo61 0000 110 0001
i BANK m
. 1x | oooo | oot | ooto |
i IXH IXM IXL
I
i ng;‘i?“ 0000 | 111 | o011
|

Instruction is executed to this address.

73

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Examples 2.

74

General register indirect transfer

If general register is in BANKO at row address 0
R005 MEM 0.05H
M034 MEM 0.34H

MOV IXL, #0001B ; IX « 00000000001B
MOV IXM, #0000B ;

MOV IXH, #0000B i MPE« 0O

OR PSW, #.DF.IXE AND OFH ; IXE « 1

MOV R0O05, #8 ; RO05 « 8

MOV @RO005, M034 ; Register indirect transfer

When the above instructions are executed, the contents of the data memory at address 35H are
transferred to the address 38H of the data memory as shown in Figure 6-13.

Therefore, if the “MOV @r, m” instruction is executed when IXE = 1, the data memory address
(direct address) specified by “m” is modified with the contents of the index register, and the bank
and row address of the indirect address specified by “@r” are also modified by the index register.
All the bank, row, and column address of the address specified by “m” are modified, and the bank
and row address of the indirect address specified by “@r” are modified.

In the above example, therefore, the direct address is 35H and the indirect address is 38H.
When this is compared with Example 3 in 6.6.3 when IXE = 0, the bank, row, and column address
of the direct address specified by “m” are modified by the index register and general register indirect
transfer is executed to the row address same as the modified data memory address in the above
example, while the direct address is not modified in Example 3 in 6.6.3.

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Figure 6-13. Example of General Register Indirect Transfer Operation When MPE = 0, IXE =1

Column address

o 1.2 3 4 5 6 7 8 9 A B C D E F
0 8 R005 <— General register
]
1 : Specifies column address
TTTTTTTTTTT attransfer destination
0 2 MO34 y
? 1 >
5 3 o | | Example 2. MOV @R005, M034
§ Index I Direct |
H 4 | modification y address I Indirect address
T 5 M034 : 000001101008 !
OR) IX : 000000000018 !
6 | Real address 00000110101B ----!
d I
| System register

Examples 3. To clear contents of all data memory to 0

M000

LOOP:

MEM 0.00H
MOV IXL, #0 ;IX<«0
MOV IXM, #0 ;
MOV IXH, #0 s MPE <0

OR PSW, #.DF.IXE AND OFH ; IXE « 1

MOV MQO00, #0 ; Clears data memory specified by IX to 0
INC IX ;IX e~ IX +1
AND PSW, #1110B ; IXE « 0: Since IXE is

; at address 7FH, it is not modified by IX
SKE IXM, #0111B ; Row address 77?
BR LOOP ; LOOP if not 7 (row address is not cleared)

75

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Examples 4. Processing of array

Suppose 8-bit data A is defined one-dimensionally as shown in Figure 6-14. To execute the
following operation, the instructions below should be executed:
A(N)=A(N)+4(0<N<15)

Where general register is at row address 7
MO000 MEM 0.00H
MO0O01 MEM 0.01H

MOV IXH, #0 ; IX < 2N

MOV IXM, #N SHR 3 ; Since array element is 8 bits, data memory address to
MOV IXL, #N SHL 1 AND OFH ; be modified is shifted

OR PSW, #.DF.IXE AND OFH ; IXE « 1

ADD MOO00, #4 ; Adds 4 to data memory M00O

ADDC MOO01, #0 ; and M001 that are modified by IX, i.e., adds 4 to 8-bit

; array specified by A(N)

To specify N of array A(N) as indicated in the above example, specify a value 2 times that of N
to the index register.

Figure 6-14. Example of Operation When MPE = 0, IXE = 1 (array processing)

Column address

ol A@ ! AM ! A@ | A@) | A@ | A®B | A® | A
1| A® || A@® | A®0) | A(I1) | A(12) | A(13) | A(14) | A(15)
0 2
o 3 A(0)
B O0H 01H
S 4
ng bs | b2 | bt | bo| b7z | bs | bs | ba
5
6
7
| | System register

76

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.6.6 When MPE =1, IXE = 1

All the addresses for the data memory, directly specified by operand “m” when a data memory manipulation
instruction is executed, are qualified by the index register, as shown in Table 6-1.

When a general register indirect transfer instruction (MOV @r, m or MOV m, @r) has been executed, the direct
address specified by “m” is qualified by the index register, and the indirect address, specified by “@r”, is specified
by the data memory row address pointer.

Example When the row address for general register in BANKO is 0

R005 MEM 0.05H
R034 MEM 0.34H

MOV IXL, #0001B ; (IX) « 00010000001B
MOV IXM, #1000B ; (MP) < 0001000B

MOV IXH, #0000B ;

MOV R0O05, #8 : ROO5 « 8

OR IXH, #1000B ; MPE « 1

OR PSW, #.DF.IXE AND OFH ; IXE < 1

MOV @RO005, M034 ; Register indirect transfer

When the above instructions are executed, the data memory address 35H contents in BANK1 are
transferred to address 08H in BANK1, as shown in Figure 6-15.

When the “MOV @r, m” instruction is executed with MPE = 1 and IXE = 1, therefore, the data memory
address (direct address) specified by “m” is qualified with the index register contents, and the indirect
address, specified by “@r”, is specified by the data memory row address pointer contents.

To qualify the direct address, all the bank in the data memory address specified by “m”, row address,
and column address are ORed with the index register contents, and the indirect address, specified by
@r, is the bank and row addresses, which are contained in the data memory row address pointer.
Therefore, in the above example, the direct address is 35H in BANK1, and the indirect address is 08H
in BANK1. The difference between this example and Example 2 in 6.6.5, where MPE = 0, IXE = 1,
is that the bank and row addresses, for the indirect address specified by “@r”, are specified by the data
memory row address pointer contents (in Example 2 in (5), the indirect address is qualified by the index
register).

77

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Row address
a A W N

78

o 0 A W N = o

~

Figure 6-15. General Register Indirect Transfer Example When MPE =1, IXE = 1

Column address

0 1 2 3 4 5 6 7

8

9 A B C D E

F

=— General register

‘ 38 ‘ R005
______________ : Specifies column address of
M034 i transfer destination

BANKO

System register

Y

Index qualification
MO034 : 00000110100B
OR IX : 00010000001B

Direct address

LJ Indirect address

Example 2: MOV @R005 M034

l=— MP = 0001000B

Specifies bank and row
address of indirect
address

Same system
register exists —

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.7 General Register Pointer (RP)

6.7.1 General register pointer configuration

Figure 6-16 shows the general register pointer configuration. As shown in this figure, the general register pointer
consists of a total of 7 bits: 4 bits in address 7DH (RPH) for the system register and the high-order 3 bits in address

7EH (RPL).

Figure 6-16. Configuration of General Register Pointer

Address 7DH 7EH
Name General register
pointer (RP)
Symbol RPH RPL
Bit bs | bz | bt | bo| bs|b2|bt]|bo
Data M L|B
S S|C
B

6.7.2 General register pointer functions

The general register pointer specifies a general register (GR) on the data memory.

The general register can specify 16 nibbles, which are at the same row address on the data memory. Therefore,
as shown in Figure 6-17, the general register pointer specifies which row address is to be used.

The row address in the data memory, that can be specified as the general register, differs depending on the general

register pointer (RP) for each model.

When the data memory is specified as a general register, an arithmetic operation or data transfer can be executed

between the general register and data memory.

Forexample, when aninstruction, suchas ADD r, mor LD r, m, is executed, addition or transfer is executed between
a general register, addressed by operand “r” of the instruction, and the data memory, addresses by “m”.

For details, refer to CHAPTER 7 GENERAL REGISTER (GR).

6.7.3 Notes on using general register pointer

The lowest-order bit of address 7EH (RPL) to which the general register pointer is assigned is allocated to the BCD

flag of the program status word.

Therefore, the value of the BCD flag is changed when RPL is rewritten.

79

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Figure 6-17. Configuration of General Register

General register pointer

[=— Example:

General register
when RP = 0000010B

General register
setting range

- !

(RP)
RPH RPL Column address
bs | b2 | bi | bo | bs | bel| bi| bo 01 2 3 45 6 7 8 9 ABCD E|F
0jo0jo0jo0jo0j0|0g -0
= |1
ojlo|jo0olO0O|0|O]|1T]|O
olo 0lololilo 8 -2 General register (16 nibbles)
-3
o|(o0o|O0O|0 | 0|1 1
-4
o|jo|jojOoO|1|0]|O 5
olofofo]1]o]1 BANKO
e r
o(o|O0|O0 |1 110 !
-7 -
olololol1]1]i1 | System register | RP ‘
" - 0
Specifies BANK Specifies
row address 1
2
Remark s
BCD flag: BCD decimal 4
operation flag 5 BANKA1
6
7 ITTTTTTTTTTTT T o T e o

80

w N o

\

Iy

Row Address

~N o o b~

BANK14

Same system
register exists

o

Row Address

~N o o 0N

BANK15

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.8 Program Status Word (PSWORD)

6.8.1 Program status word configuration

Figure 6-18 shows the program status word configuration.

As shown in this figure, the program status word consists of a total of 5 bits: the least significant bit in address
7EH (RPL) for the system register and 4 bits in 7FH (PSW). Each of the 5 bits in the program status word has its
own function as a binary-coded decimal flag (BCD), compare flag (CMP), carry flag (CY), zero flag (Z), and index

enable flag (IXE), respectively.

Figure 6-18. Configuration of Program Status Word

Address 7EH 7FH

Name (RP) Program status word
(PSWORD)

Symbol RPL PSW

Bit bs | bz | b1 | bo | bs |ba| bt | bo

Data Z | |
C|M|Y X
D E

81

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.8.2 Program status word function
Each flag of the program status word sets the condition for an arithmetic operation or transfer instruction in the
ALU (Arithmetic Logic Unit), or to indicate an operation result. Figure 6-19 shows the program status word functions.

Figure 6-19. Functions of Program Status Word

7EH 7FH
bo bs b2 b1 bo
BCD | CMP | CY A IXE

Index enable flag | Index modification is enabled when this flag is set.

Zero flag Reset if result of arithmetic operation is other than
"0". Set condition differs depending on contents of
CMP flag.
(1) When CMP =0

Set if operation result is "0"
(2) When CMP =1

Set if Z=1 and operation result is "0"

Carry flag Set (1) if carry occurs as result of executing addition
instruction, or if borrow occurs as result of executing
subtraction instruction.

Remains reset (0) if neither carry nor borrow occurs.
Also set (1) if least significant bit of general register is
"1" when RORC instruction is executed, and reset (0)
if LSB is "0".

Compare flag Result of arithmetic operation is not stored in data
memory while this flag is set (1). CMP flag is reset (0)
automatically when SKT or SKF instruction is
executed.

BCD flag All arithmetic operations are performed in decimal
(BCD) when this flag is set (1), and in binary when
this flag is reset (0).

82

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.8.3 Index enable flag (IXE)

The IXE flag is used to modify an address of the data memory when a data memory manipulation instruction is
executed.

When this flag is set to 1, the contents of the data memory address specified by the instruction are ORed with the
contents of the index register (IX), and the instruction is executed to the data memory addressed by the result of the
OR operation (real address).

For details, refer to 6.6 Index Register (IX) and Data Memory Row Address Pointer (MP: Memory Pointer).

6.8.4 Zero (Z) and compare (CMP) flags

The Z flag indicates that the result of an arithmetic operation executed is 0, and the CMP flag made setting so that
the result of an arithmetic operation is not stored in the data memory or general register.

The conditions under which the Z flag is set or reset differ depending on the status of the CMP flag, as shown in
Table 6-2.

Table 6-2. Status of Compare Flag (CMP) and Set and Reset Conditions of Zero Flag (Z)

. Status of Z Flag
Condition
When CMP Is O When CMP [s 1
On reset Reset Reset with CMP
When “0” is directly written to Z flag by data memory Reset Reset
manipulation instruction
When “1” is directly written to Z flag by data memory Set Set
manipulation instruction
If result of arithmetic operation is other than“0” Reset Reset
If result of arithmetic operation is “0” Set Retains previous status of Z flag

The Z and CMP flags are used to compare the contents of a general register with those of the data memory. The
status of the Z flag is not changed by an operation other than an arithmetic operation, and the status of the CMP flag
is not changed by an operation other than bit testing.

83

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.8.5 Carry flag (CY)

The CY flag indicates occurrence of a carry or borrow after an addition or subtraction instruction is executed.

The CY flag is set to 1 if a carry or borrow occurs as a result of the arithmetic operation; it is reset to 0 if neither
a carry nor a borrow occurs.

When the “RORC r” instruction, which shifts the contents of a general register specified by r 1 bit to the right, is
executed, the value of the CY flag immediately before the instruction is executed is shifted to the most significant bit
position of the general register, and the least significant bit is shifted to the CY flag.

The CY flag is convenient for skipping the next instruction if a carry or borrow occurs.

The status of this flag is not changed by an operation other than arithmetic operation or rotation processing.

6.8.6 Binary coded decimal flag (BCD)

The BCD flag is used to execute a BCD operation.

When this flag is set to 1, all arithmetic operations are executed in BCD format. When itis reset to 0, the operations
are executed in binary and 4-bit units.

This flag does not affect the logical operation, bit judgment, comparison, and rotation processing.

6.8.7 Notes on executing arithmetic operation
When executing an arithmetic operation (addition or subtraction) to the program status word (PSWORD), note that

the “result” of the arithmetic operation is stored in the PSWORD, as indicated by the following example:

Example MOV PSW, #0001B
ADD PSW, #1111B

When the above instructions are executed, a carry occurs. Consequently, the CY flag, which is bit 2
of the PSW, would be set to 1. Actually, however, 0000B is stored to the PSW because the result of
the operation is 0000B.

84

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.9 Notes on Using System Registers

6.9.1 Reserved words of system registers

Because the system registers are located on the data memory, all the data memory manipulation instructions can
be usedto manipulate the system registers. When usingthe 17K series assembler (RA17K), however, a data memory
address must be defined as a symbol in advance because a data memory address cannot be directly written as the

operand of an instruction.

Although the system registers are part of the data memory, they are defined as symbols as “reserved words” by
the assembler (RA17K) because they have dedicated functions, unlike the ordinary data memory areas.

The reserved words of the system registers are assigned to addresses 74H through 7FH, and are defined by
symbols (such as AR3, AR2, and PSW) shown in Figure 6-2 Configuration of System Registers.

When these reserved words are used, it is not necessary to define a symbol, as shown in the following Example 2.

For the reserved words, refer to the Data Sheet of each model.

Examples 1.

MOV
MOV
M037
MOV

MOV

34H, #0101B ; If data memory address 34H or 76H is
76H, #1010B ; written as operand, error occurs.
MEM 0.37H ; Data memory address of general-purpose

MO037, #0101B ; data memory must be defined as symbol by MEM directive

AR1, #1010B ; Symbol needs not to be defined if reserved word AR1 (address 6H)
; is used.
; Reserved word AR1 is defined in device file as “AR1 MEM 0.76H”

When the assembler (RA17K) is used, the following macro instructions are embedded in the assembler as flag

type symbol manipulation instructions:

SETn
CLRn
SKTn
SKFn
NOTn
INITFLG

: Sets flag to “1”

: Resets flag to “0”

: Skips if all flags are “1”
: Skips if all flags are “0”
: Inverts flag

- Initializes flag

85

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Therefore, by using these macro instructions, the data memory can be manipulated as flags as shown in Example

3 below.

* Since each bit (flag) of the program status word and memory pointer enable flag has its own function, a reserved
word (MPE, BCD, CMP, CY, Z, or IXE) is defined for each bit.
By using this flag type reserved word, therefore, an embedded macro instruction can be used as is as shown in

Example 4.

Examples 3.

86

FO003 FLG 0.00.3 ; Flag type symbol definition

SET1 FO003 ; Embedded macro

Macro expansion
OR .MF.F0003 SHR 4, #.DF.F0003 AND OFH
; Sets bit 3 at address 00H in BANKO

SET1 BCD ; Embedded macro

Macro expansion

OR .MF.BCD SHR 4, #.DF.BCD AND OFH
; Sets BCD flag

; BCD is defined by “BCD FLG 0.7EH.0”

CLR2 Z, CY ; Flag of same address

AND .MF.Z SHR 4, #DF. (NOT (Z OR CY) AND OFH)

’— Macro expansion

CLR2 Z, BCD ; Flag of different addresses

Macro expansion
AND .MF.Z SHR 4, #.DF. (NOT Z AND 0FH)
AND .MF.BCD SHR 4, #.DF. (NOT BCD AND OFH)

www.DataSheetdU.com

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.9.2 Handling system register fixed to “0”
Data of the system registers fixed to “0” (refer to Figure 6-2. Configuration of System Registers calls for your
attention when the device, emulator, or assembler operates, as described in (1), (2), and (3) below.

4]

)

3)

When device operates
The data fixed to “0” is not affected even when a write instruction is executed to it. When this data is read,
“0” is always read.

When using 17K series in-circuit emulator (IE-17K or IE-17K-ET)
An error occurs if an instruction that writes “1” is executed to the data fixed to “0”.
Therefore, if the following instructions are executed, an error occurs on the in-circuit emulator:

Examples 1. MOV BANK, #0100B ; Writes 1 to bit 3 fixed to 0

2. MoV IXL, #1111B ;
MOV IXM, #1111B ;
MOV IXH, #0001B ;
ADD IXL, #1 ;
ADDC IXM, #0 ;
ADDC IXH, #0 ;

However, an error does not occur even if the “INC AR” or “INC IX” instruction is executed when all the valid
bits are “1” as shown in Example 2. This is because the “INC” instruction, which is executed when all the valid
bits of the address register and index register are “1”, clears all the valid bits to “0”.

Even if “1” is written to the data fixed to “0” of the address register as shown in Examples 1 and 2 above, an
error does not occur.

When using 17K series assembler (RA17K)

An error is not output even if there is an instruction that writes “1” to data fixed to “0”. Therefore, when “MOV
BANK, #0100B” instruction shown in Example 1 is used, the assembler does not cause an error, but an
emulator error occurs when the instruction is executed on the in-circuit emulator.

The assembler (RA17K) does not causes an error because it cannot detect the data memory address subject
to manipulation by an instruction while register indirect transfer is executed.

The assembler causes an error only on the following occasion:

When value greater than 1 is used as “n” of embedded macro instruction “BANKn”

This is because it is judged that the bank register of the system registers is to be explicitly manipulated when
the BANKDn instruction is used.

87

www.DataSheetdU.com

[MEMO]

88

www.DataSheetdU.com

CHAPTER 7 GENERAL REGISTER (GR)

The general registers are located on the data memory. They perform direct arithmetic operations and transfer
operations with the data memory.

7.1 General Register Configuration

The general register configuration is shown in Figure 7-1. As shown in this figure, sixteen nibbles in the row
addresses for the data memory (16 words x 4 bits) can be used as a general register area.

Which row, among row addresses to be used, is specified by the general register pointer. Specified row address

is set to the general register pointer in the system register.
For details, refer to 6.7 General Register Pointer (RP).

89

www.DataSheetdU.com

CHAPTER 7 GENERAL REGISTER (GR)

Figure 7-1. Configuration of General Register

Address | 7DH | 7EH
Name General register pointer
(RP)
Symbol RPH RPL
Bit bs bz |b1|bo [bs|bz2|b1 |bo
Data
A\ N\
M L|C
S S
B B
N N

\—'—1 Column address

0123456789 ABCDE|F

0
1 General register
w2 General register (16 nibbles) l=— when RP = 0000010B
— Row addresses OH-7H of BANKn ®
(n < 15) can be set by general 3 3
register pointer (RP) ; 4
€ 5 =
6 BANKO
7
| | System register | RP. | |-—
0
1
2
3
4
5
6 BANK1
7| | -3
4 L System register -
0 BANK2
1
L . 2 Same system
L 3] /\/: register exists
i 4
5
6 BANK14
7| | -5
4 i_ System register -—
0
1
2
3
4
5
6 BANK15
4 . System register [

90

www.DataSheetdU.com

CHAPTER 7 GENERAL REGISTER (GR)

7.2 General Register Functions

By using the general register, arithmetic operations and transfer operations can be executed between the data
memory and general memory with a single instruction.

To put this in another way, since the general register is on the data memory, arithmetic operations and data transfer
between two data memory addresses can be executed with a single instruction.

Moreover, the general register can be controlled by the data memory manipulation instruction in the same manner
as the data memory, since the general register is on the data memory.

For details on data memory manipulation instructions, refer to 7.4 Address Generation and Operation for
General Register and Data Memory by Each Instruction.

7.3 Notes on General Register Use
7.3.1 through 7.3.3 describes the points to be noted in using the general register.

7.3.1 Address specification for general register

When using the 17K Series Assembler (RA17K), an error occurs, if a general register address is directly described
as the operand for an instruction, as shown below.

This assembler feature reduces the bugs causes, when the program is edited.

Therefore, a general register address should be defined as a symbol in advance.

Example Error occurs
LD 04H, 32H ; General register address or data memory address is directly specified
; as a numeral

Error does not occur
R004 MEM 0.04H ; Defines address 04H as a symbol, in R004 as memory type
M032 MEMO0.32H ;
LD R004, M032 ;

7.3.2 Row address in general

Since the row address in the general register is determined by the general register pointer, the bank for the address
and row address, specified by operand “r” for an instruction, are ighored.

If the following example program is executed, both <1> and <2> transfer the data memory M032 contents (address
32H in BANKO) to address 64H in BANKO, as shown in Figure 7-2.

That is, instructions <1> and <2> ignore the bank and row addresses for R004 and R154, which specify a general
register address, and only address 4H in the column address is valid.

91

www.DataSheetdU.com

CHAPTER 7 GENERAL REGISTER (GR)

Example Specifying row address for general register, where BANKO is specified

R004
R154
M032
MOV
MOV

;<>
LD

; <2>
LD

MEM 0.04H
MEM 1.54H
MEM 0.32H

RPH, #0000B :

RPL, #0110B

RO04, M032

R154, M032

3
3
3
3

; RP < 0000110B

Figure 7-2. Example of Specifying General Register Row Address

Column address

o}

o {1 2 3 4 5 6 7 8 9 A B C D E F
0 Ro04
1
2
£ [
©
3 4
3 LD R004, M032
o= 5 LD R154, M032
6 ‘ BANKO General register
7
‘ System register
0
1
2
3
4 R154
: L]
6 BANK1
7 R T TP T EEER
! System register { RP J e

92

=— RP = 0000110B

Same system
register exists

www.DataSheetdU.com

CHAPTER 7 GENERAL REGISTER (GR)

7.3.3 Operation between general register and immediate data

There is no instruction that executes an arithmetic operation between a general register and immediate data. To
execute an operation between a data memory area, specified as a general register, and immediate data, the data
memory area must be treated as a data memory area, instead of as a general register. For example,

Example Example showing operation between general register and immediate data, where BANKO is
specified

R065 MEM 0.65H ;
M105 MEM 1.05H ;
;<>
MOV RPH, #0001B ; Sets general register at row address 6H in BANKO
MOV RPL, #0100B ;
BANKH ; Assembler (RA7K) macroinstruction
; <2>
ADD RO065, #3 ;
D <3>
ADD M105, #3 ;

Inthe above Example <2>, immediate data 3 is added to a data memory areaat address 65H in BANK1.
In <3>, 3 is added to a data memory area at address 0.5H.

Although the general register is set at row address 6H for BANKO in <15, the instruction <2> operand,
R065, is treated as data memory, rather than as a general register.

Therefore, to add data to the general register at address 6H in BANKO with instruction <2>, the following
program must be used:

BANKO ; Assembler (RA17K) macroinstruction
ADD RO065, #3

93

www.DataSheetdU.com

CHAPTER 7 GENERAL REGISTER (GR)

7.4 Address Generation and Operation for General Register and Data Memory by Each Instruction

Table 7-1 lists the instructions that execute arithmetic operation or data transfer between a general register and
a data memory area.

To specify an address with these instructions, taking instruction ADD r, m for example, general register R is
specified by the register pointer contents and the operand r value for the instruction, as shown in Figure 7-3.

Data memory address “M” is specified by the bank register contents and operand m for the instruction.

Therefore, this instruction adds the general register “(R)” contents to the data memory contents “(M)”, and stores
the result in general register R.

This general register address generation is executed by the other instructions listed in Table 7-1. Examples 1
through 3 show instructions operation examples.

Table 7-1. Instructions Manipulating General Register and Data Memory

Group Instruction Operation
Addition ADDr,m (R) « (R) + (M)
ADDCr, m (R) < (R) + (M) + (CY)
Subtraction SUBr, m (R) « (R) = (M)
SUBCr, m (R) « (R) — (M) - (CY)
Logical ANDr, m (R) « (R) AND (M)
operation ORr, m (R) « (R) OR (M)
XORr, m (R) « (R) XOR (M)
Transfer LDr, m (R) « (M)
STm,r (M) « (R)
MOV @r. m [MP. (R)] « (M) or,
[m. (R)] « (M)
MOV m, @r M « [MP, (R)] or,
M« [H, (R)]
Shift RORC r Right shift with (CY)

Figure 7-3. Address Specification for General Register and Data Memory

Instruction Address Contents Generated Address
Symbol Bank Row address Column address
bi | bo | b2 bo b1 | bo
ADDr, m Address of general register R
specified by r (RP) !

Address of data memory M
(BANK) m

specified by m

94

www.DataSheetdU.com

CHAPTER 7 GENERAL REGISTER (GR)

Examples 1. OQperation between data memory and general register

(1) When the bank for the data memory is equal to that for the general register
Assuming that a general register is at row address OH in BANKO

R004 MEM 0.04H ; Symbol definition
M056 MEM 0.56H ;
ADD R004, M056 ; Addition of contents of data memory and general register

When the above instructions are executed, the general register R004 contents (address 04H
of BANKO) are added to those for data memory M056 (address 56H), and the result is stored
in general register R004 (04H), as shown in Figure 7-4.

Figure 7-4. Example Showing Operation between Data Memory and General Register (1)

Column address
o 1 2 3 4 5 6 7 8 9 A B C D E F
0 7]

General register

ADD R004, M056

Row address
AW N

6 BANKO

I
‘ System register ‘ RP ‘ |

000000B

95

www.DataSheetdU.com

CHAPTER 7 GENERAL REGISTER (GR)

96

(2) When the data memory bank is different from that for the general register

Assuming the general register is at row address OH in BANKO

R004 MEM 0.04H ; Symbol definition

Mi156 MEM 1.56H ;

BANK1 ; Assembler (RA17K) macroinstruction

ADD R004, M156 ; Addition of contents of data memory and general register

When the above instructions are executed, the general register R004 contents (at address
04H in BANKO) are added to those for the data memory M156 (address 56H in BANK1), and
the result is stored in general register R004 (04H), as shown in Figure 7-5.

Although the selected bank is BANK1, the data memories in BANK1 and BANKO are added
with a single instruction, because the general register is in BANKO.

Figure 7-5. Example Showing Operation between Data Memory and General Register (2)

Row address

0

1

Column address

2 3 4 5 6 7 8 9 A B C D E F

‘ R ‘ General register

ADD R004, M156
_—

BANKO

‘ System register ‘ RP ‘ |—7

o Same system
1 System register [RP J =——— register exists

www.DataSheetdU.com

CHAPTER 7 GENERAL REGISTER (GR)

Examples 2.

Transfer to general register
Assuming that a general register is at row address OH in BANKO

Ro001
R002
R003
R004
M045
M046
M047
M048
LD
LD
LD
LD

MEM 0.01H
MEM 0.02H
MEM 0.03H
MEM 0.04H
MEM 0.45H
MEM 0.46H
MEM 0.47H
MEM 0.48H
RO01, M045
R002, M046
R003, M047
R004, M048

3
3
3

Symbol definition

This program transfers the contents for data memory areas M045, M046, M047, and M048
(addresses 45H, 46H, 47H, and 48H) to general registers R0O01, R002, R003, and R004
(addresses 01H, 02H, 03H, and 04H), respectively.

Figure 7-6. Example Showing Data Transfer to General Register

3 4 5

Column address

6 7 8 9 A B

C D E

F

General register

l=— RP = 0000000B

Row address

System register

RP

97

www.DataSheetdU.com

CHAPTER 7 GENERAL REGISTER (GR)

Examples 3.

98

Indirect transfer to general register
Assuming that the row address for a general register is OH in BANKO

R004 MEM 0.04H ;

M052 MEM0.52H ;

MOV RO004, #8 ; (RO04) « 8

MOV @RO004, M052 ; General register indirect transfer

When the above instructions are executed, the data memory area M052 contents (address 52H)
are transferred to another data memory area (in this example, address 58H), as shown in Figure
7-7.

The “MOV @r, m” instruction is called a general register indirect transfer instruction. It transfers
the contents in a data memory area, addressed by m, to another data memory area, specified by
@r (called an indirect address).

At this time, the data memory address (indirect address) for indirect transfer specified by @r is

as follows:
Row address : The same row address as data memory specified by m
Column address: Contents of the general register specified by r

In Example 3 above, the row address is 5H (row address of address 52H), and the column address
is 8H (contents of address 08 is 8), therefore, data memory address is address 58H.

For details on the general register indirect transfer, refer to 6.6 Index Register (IX) and Data
Memory Row Address Pointer (MP: Memory Pointer).

Figure 7-7. General Register Indirect Transfer Example

Column address

o 1 2 3 4 5 66 7 8 9 A B C D E F
0 ‘ 8 ‘ General register
1 + : _________________ Specifies column address
5 ! i with contents of R004 (8)
2 MOV @R004, M052 - i
5 3 ! I
® : ;
z 4 Indirect : ¢ Y
£ transfer !
5 B e ' I:l Same row address as M052
6
7 g
‘ System register ‘ RP ‘ |

www.DataSheetdU.com

CHAPTER 7 GENERAL REGISTER (GR)

Examples 4. To change a row address in general register
Assuming that general register is at row address OH in BANKO

R001
R002
R003
Roo04
R005
R006
R007
Ro08
M045
M046
Mo047
M048
M049
MO4A
MO04B
M04C
LD
LD
LD
LD
;<>
MOV
MOV
LD
LD
LD
LD

MEM 0.01H
MEM 0.02H
MEM 0.03H
MEM 0.04H
MEM 0.05H
MEM 0.06H
MEM 0.07H
MEM 0.08H
MEM 0.45H
MEM 0.46H
MEM 0.47H
MEM 0.48H
MEM 0.49H
MEM 0.4AH
MEM 0.4BH
MEM 0.4CH
RO01, M045
R002, M046
R003, M047
RO04, M048

; Symbol definition

RPH, #0000B ; Transfers 0000110B to general register pointer, i.e., sets row

RPL, #0110B ; address 6H in BANKO

R005, M049
R006, MO4A
R007, M04B
R008, M04C

The above program is to transfer the contents in 8-nibble data memory M045-M04C on BANKO
to a different row address in BANKO, 4 nibbles atatime. Atthistime, ifthe generalregister is fixed,
for example, when it exists only at row address 0 in BANKO, an instruction is necessary to enable
the above program <1> to transfer all 8 nibbles to the general register and then store the nibbles

in the data memory again, as shown in the following program.

However, as shown in the above program, the operation can be performed with only the LD
instruction, if the row address for the general register is changed by the general register pointer.

99

www.DataSheetdU.com

CHAPTER 7 GENERAL REGISTER (GR)

100

Row address

~N oo o AW

M065 MEM 0.65H ; Symbol definition
Moé66 MEM 0.66H ;
M067 MEM 0.67H ;
M068 MEM 0.68H ;
LD R005, M049
LD R006, MO4A
LD R007, M04B
LD R008, M04C
BANK1 ; Assembler (RA17K) macroinstruction
; BANK « 1
ST MO065, RO05
ST MO066, R0O06
ST MO067, RO0O7
ST MO068, RO08
Figure 7-8. Example Showing Changing Row Address in General Register
Column register
o 1 2 3 4 5 6 7 8 9 A B C D E F
=— RP = 0000000B

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

The ALU performs arithmetic operations, logical operations, bit testings, compare, and rotations of 4-bit data.
8.1 ALU Block Configuration

Figure 8-1 shows the configuration of the ALU block.

As shown, the ALU block consists of an ALU, which processes 4-bit data, temporary registers A and B, which are
peripheral circuits of the ALU, status flip-flops controlling the status of the ALU, and a decimal correction circuit that
is used when a BCD operation is performed.

The status flip-flops include a zero flag FF, carry flag FF, compare flag FF, and BCD flag FF, as shown in Figure
8-1.

The status flip-flops correspond to the zero (Z), carry (CY), compare (CMP), and BCD (BCD) flags of the program
status word (PSWORD: addresses 7EH and 7FH) of the system registers on a one-to-one basis.

8.2 ALU Block Function

The ALU performs arithmetic operation, logical operation, bit testing, compare, or rotation processing, depending
on the instructions written to the program. Table 8-1 lists the operation, testing, and rotation instructions.

By executing each of the instructions listed in this table, operation in 4-bit units, testing, rotation processing, or 1-
digit decimal operation can be executed with a single instruction.

8.2.1 ALU function

Arithmetic operations include addition and subtraction. An arithmetic operation can be executed between the
contents of a general register and those of the data memory, or between the contents of the data memory and
immediate data. In addition, an arithmetic operation can be executed in binary number in 4-bit units, or in decimal
number in 1-digit units (BCD operation).

Logical operations include logical product (AND), logical sum (OR), and exclusive logical sum (XOR). A logical
operation can be executed between the contents of a general register and those of the data memory, or between the
contents of the data memory and immediate data.

Bit testing is to test whether one of the bits of the 4-bit data in the data memory is “0” or *1”.

Comparison is to compare the contents of the data memory with immediate data to judge whetherone datais “equal

to”,

not equal to”, “greater than”, or “less than” the other.
Rotation processing is to shift the 4-bit data of a general register 1 bit toward the least significant bit direction
(rotation to the right).

101

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

102

Figure 8-1. Configuration of ALU Block

Data bus

g

Bt

Temporary Temporary Status
register A register B flip-flops
SE— - Arithmetic operation
- Logical operation
- Bit testing
- Compare
N - Rotation processing
Decimal correction
circuit
Address | 7EH 7FH
N Program status word
ame (PSWORD)
Bit bo bs b2 b1 bo
Flag BCD CMP cY z IXE
Status Flip-flop
BCD CMP cY z
flag flag flag flag
FF FF FF FF

Functional Outline

Indicates result of arithmetic operation is 0

Stores carry or borrow resulting from

arithmetic operation

Specifies whether result of arithmetic

operation is stored

Specifies whether decimal correction is

performed for arithmetic operation

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

[MEMO]

103

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

Table 8-1. ALU Processing Instructions (1/2)

ALU Function Instruction Operation Remarks
Adds general register and data memory contents, and
ADDr, m () < (n + (m)
stores result to general register
Adds data memory and immediate data contents, and
ADD m, #n4 (m) < (m) + n4
Addi- stores result to data memory
tion Adds general register and data memory contents with
ADDC r, m (r) < (r) + (m) + CY
CY flag, and stores result to general register
Adds data memory and immediate data contents with
ADDC m, #n4 (m) < (m) + n4 + CY
Arith- CY flag, and stores result to data memory
metic Subtracts data memory contents from generalregister
SUBr, m (r) « (r) — (M)
conients, and stores result to general register
Subtracts immediate data from data memory contents,
SUB m, #n4 (m) « (m) —n4
Sub- and stores result to data memory
traction Subtracts data memory contents from general register
SUBCr, m (r) < (r) — (m) — CY
contents with CY flag, and stores result to general register
Subtractsimmediate dataand CY flag from datamemory
SUBC m, #n4 (m) « (m) —n4 - CY
contents, and stores result to data memory
ORs general register and data memory contents, and
ORr,m (r) < (r) v (m)
OR stores result to general register
ORs data memory contents and immediate data, and
OR m, #n4 (m) « (m) v n4
stores result to data memory
ANDs general register and data memory contents, and
AND r, m (r) < (r) A (m)
Logical | AND stores result to general register
ANDs data memory contents and immediate data, and
AND m, #n4 (m) < (m) A n4
stores result to data memory
XORs general register and data memory contents, and
XORr, m (r) « (r) = (m)
stores result to general register
XOR
XORs data memory contents and immediate data, and
XOR m, #n4 (m) « (M) +nd
stores result to data memory
CMP «0,if(m) An=n, Skips if all bits of data memory contents specified by
. True SKT m, #n
Bit . then skip n are True (1). Result is not stored
testing
CMP « 0, if(m) An=0, Skips if all bits of data memory contents specified by
False SKF m, #n
then skip n are False (0). Result is not stored
o Skips if data memory contents are equal to immediate
Equal to| SKE m, #n4 (m) — n4, skip if zero
data. Result is not stored
Not . Skips if data memory contents are not equal to imme-
equal SKNE m, #n4 (m) — n4, skip if not zero
to diate data. Result is not stored
Compare
Skips if data memory contents are greater than imme-
Careater SKGE m, #n4 (m) — n4, skip if not borrow P Y I
than diate data. Result is not stored
Less . Skips if data memory contents are less than immediate
th SKLT m, #n4 (m) — n4, skip if borrow
an data. Result is not stored
Rotation Righlt RORC r |—> CY = (s — (ot = (Nez = (e —| Rotates general register contents to right with CY flag,
rotation and stores result to general register
104

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

Table 8-1. ALU Processing Instructions (2/2)

ALU Function

Difference in Operation Because of Program Status Word (PSWORD)

Value of Value of Operation CY Flag Z Flag Modification
BCD Flag | CMP Flag when IXE =1
0 0 Binary operation. Set when | Set if operation result is Executed
Result is stored. carry or 0000B; otherwise, reset
Arithmetic 0 1 Binary operation. borrow Retains status if operation
operation Result is not stored.| 9CCUrs; result is 0000B; otherwise, reset
therwi
1 0 BCD operation. © etrw se: Set if operation result is
rese
Result is stored. 0000B; otherwise, reset
1 1 BCD operation. Retains status if operation
Result is not stored. result is 0000B; otherwise, reset
| | | | | | |
I | I | I I |
| | | | | | |
| | | | | | |
I I | | | I |
| | | | | | |
I | I | | I |
I | I | | I |
' : : : : | .
| | | | | | |
| | | | | | |
Don’t care | Don’t care Not affected Don'’t care Don't care Executed
(retained) | (retained) (retained) (retained)
	I	I			
	I	I			
	I		I		
I			I I		
Logical					
operation i i i i i	i				
	I		I		
I				I	
I	I		I		
I	I		I		
I I	I	I			
		I	I		
! ! : ! : ! :					
		I	I		
Don’t care Reset Not affected Don’t care Don't care Executed					
Bit testing (retained) (retained) (retained)					
	I		I		
		I			
i i	i i				
Don'’t care	Don’t care Not affected Don't care Don't care Executed				
(retained)	(retained) (retained) (retained)				
I	I I				
					:
Comparison :					I
i i i i i	i				
I I	I I I				
I	I I				
I I	I I I				
I I	I I I				
: : ; : : : :
. Don't care | Don't care Not affected Value of bo Don't care Executed
Rotation)) of general .
(retained) | (retained) register (retained)
105

www.DataSheetdU.com

*

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.2.2 Functions of temporary registers A and B
The temporary registers A and B are necessary for processing 4-bit data at one time, and temporarily store data
to be processed and data processing.

8.2.3 Status flip-flop functions

The status flip-flops control the operations of the ALU and store the status of the processed data. Since these flip-
flops correspond to the flags of the program status word (PSWORD) on a one-to-one basis, they can be manipulated
by manipulating the system register. Each flag of the program status word has the following functions:

(1) Zflag
This flag is set to 1 if the result of an arithmetic operation is 0000B; otherwise, it is reset to 0.
However, the condition under which this flag is set to 1 differs depending on the status of the CMP flag, as
follows:

(i) When CMP flag = 0
The Z flag is set to 1 if the result of an operation is 0000B; otherwise, it is reset to 0.

(i) When CMP flag = 1
The Z flag retains the previous status if the result of an operation is 0000B; otherwise, it is reset to 0.
The flag is not affected by an operation other than arithmetic operations.

(2) CY flag
This flag is set to 1 if a carry or borrow occurs as a result of an arithmetic operation; otherwise, it is reset to
0.
If an arithmetic operation executed involves a carry or borrow, the content of the CY flag is reflected on the
least significant bit of the execution result.
When rotation processing (RORC instruction) is executed, the content of the CY flag at that time is loaded to
the most significant bit (bs) position of a general register, and the content ofthe least significantbit of the general
register is loaded to the CY flag.
The CY flag is not affected by any operation other than arithmetic operation and rotation processing.

(3) CMP flag
The result of an arithmetic operation executed when the CMP flag is set to 1 is not stored in a general register
or data memory.
If a bit test instruction is executed, the CMP flag is reset to 0.
This flag does not affect the compare and logical operations, and rotation processing.

(4) BCD flag
When the BCD flag is set to 1, the results of all the arithmetic operations executed are corrected to decimal.
When this flag is reset to 0, operation is performed in binary 4-bit.

The BCD flag does not affect the logical operation, bit test, compare, and rotation processing.

The values of these flags can be changed by directly manipulating the program status word. At this time, the value
of the corresponding status flip-flop is changed accordingly.

106

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.2.4 Binary 4-bit operation
An arithmetic operation is executed in binary and in 4-bit units when the BCD flag is 0.

8.2.5 BCD operation

Whenthe BCD flag is 1, the arithmetic operation is performed in decimal format. The differences between the binary
4-bit operation and BCD operation are shown in Table 8-2. If the result of a decimal correction operation is more than
20, of if the result of a decimal subtraction is other than —10 to +9, data for more than 1010B (0AH) is stored in the
data memory (shaded part in Table 8-2).

107

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

Table 8-2. Results for Binary 4-bit and BCD Operations

Result Binary 4-bit Addition BCD Addition Result Binary 4-bit Addition BCD Addition
CcY Result CcY Result CcY Result CcY Result
0 0 0000 0 0000 0 0 0000 0 0000
1 0 0001 0 0001 1 0 0001 0 0001
2 0 0010 0 0010 2 0 0010 0 0010
3 0 0011 0 0011 3 0 0011 0 0011
4 0 0100 0 0100 4 0 0100 0 0100
5 0 0101 0 0101 5 0 0101 0 o101
6 0 0110 0 0110 6 0 0110 0 0110
7 0 0111 0 0111 7 0 0111 0 0111
8 0 1000 0 1000 8 0 1000 0 1000
9 0 1001 0 1001 9 0 1001 0 1001
10 0 1010 1 0000 10 0 1010 1 1100
11 0 1011 1 0001 11 0 1011 1 1101
12 0 1100 1 0010 12 0 1100 1 1110
13 0 1101 1 0011 13 0 1101 1 1111
14 0 1110 1 0100 14 0 1110 1 1100
15 0 1111 1 0101 15 0 1111 1 1101
16 1 0000 1 0110 -16 1 0000 1 1110
17 1 0001 1 0111 -15 1 0001 1 1111
18 1 0010 1 1000 -14 1 0010 1 1100
19 1 0011 1 1001 -13 1 0011 1 1101
20 1 0100 1 i1 -12 1 0100 ! 1110
21 1 0101 1 111 =11 1 0101 1 1111
22 1 0110 1 110 -10 1 0110 1 0000
23 1 0111 1 1101 -9 1 0111 1 0001
24 1 1000 1 1110 -8 1 1000 1 0010
25 1 1001 1 1111 -7 1 1001 1 0011
26 1 1010 1 1100 -6 1 1010 1 0100
27 1 1011 1 1101 -5 1 1011 1 0101
28 1 1100 1 101 —4 1 1100 1 0110
29 1 1101 1 1011 -3 1 1101 1 0111
30 1 1110 1 110 -2 1 1110 1 1000
31 1 1111 1 1101 —1 1 1111 1 1001
108

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.2.6 ALU block processing sequence

When an arithmetic operation, logical operation, bit testing, compare, or rotation processing instruction is executed
onthe program, the data to be operated, tested, or processed and processing data are temporarily stored in temporary
registers A and B.

The data to be processed is the contents of a general register or data memory addressed by the first operand of
the instruction, and is 4-bit data. The processing data is the contents of the data memory addressed by the second
or immediate data directly specified by the second operand, and is 4-bit data.

Take the following instruction for example:

ADD r, m
Second operand
First operand

The data to be processed is the contents of a general register addressed by r, and the processing data is the
contents of the data memory addressed by m.

ADD m, #n4

The data to be processed by this instruction is the contents of the data memory addressed by m, and the processing
data is immediate data specified by #n4.

RORC r

With the following rotation processing instruction, only the data to be processed is necessary because the
processing method is determined, and the data to be processed is the contents of a general register addressed by
r:

The data storedintemporary registers A and B are operated arithmetically or logically, tested, compared, or rotated
according to the instruction executed. If an arithmetic operation, logical operation, or rotation processing instruction
has been executed, the data processed by the ALU is stored in a general register or the data memory addressed by
the first operand of the instruction, and the operation is finished. If a bit testing or compare instruction is executed,
the next instruction on the program is skipped (i.e., executed as an NOP instruction) depending on the result of the
processing performed by the ALU, and the operation is finished.

Bear in mind the following points when using the ALU block:

(1) Arithmetic operations are affected by the CMP and BCD flags of the program status word.

(2) Logical operations are not affected by the CMP and BCD flags of the program status word, and do not affect
the Z and CY flags.

(3) The bit test instruction resets the CMP flag of the program status word.

(4) Arithmetic and logical operations, bit test, compare, and rotation processing are modified by the index register
if the IXE flag of the program status word is set to 1.

109

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.3 Arithmetic Operation (Binary 4-bit addition/subtraction and BCD addition/subtraction)

As shownin Table 8-3, the arithmetic operations are broadly classified into four types: addition, subtraction, addition
with carry, and subtraction with borrow. These operations are performed by “ADD”, “ADDC”, “SUB”, and “SUBC”
instructions, respectively.

These instructions are also classified into addition or subtraction between a general register and data memory,
and that between the data memory and immediate data. Whether the operation is executed between a general register
and data memory, or between the data memory and immediate data is determined by the value written as the operand
of the instruction. If the operand is “r, m”, addition or subtraction is executed between a general register and the data
memory; if the operand is “m, #n4”, the operation is between the data memory and immediate data.

The arithmetic operation instruction is affected by the status flip-flops, that is, the program status word (PSWORD)
of the system registers. The BCD flag of the program status word specifies whether the operation is executed in binary
and 4-bit units or in BCD, and the CMP flag specifies that the result of the operation is not stored anywhere.

8.3.1 through 8.3.4 describe the relations between each arithmetic operation instruction and the program status
word.

Table 8-3. Arithmetic Operation Instructions

Without carry General register and data memory ADDr, m
Add ADD Data memory and immediate data ADD m, #n4
Add w/carry General register and data memory ADDC r, m
. . . ADDC Data memory and immediate data ADDC m, #n4
Arithmetic operation
Without borrow General register and data memory SUBr, m
SUB Data memory and immediate data SUB m, #n4
Subtract
Subtract w/borrow General register and data memory SUBCr, m
SUBC Data memory and immediate data SUBC m, #n4

110

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.3.1 Addition/subtraction when CMP =0, BCD =0

Addition or subtraction is executed in binary and 4-bit units, and the result is stored in a specified general register
or data memory address.

The CY flag is setto 1 if the result of the operation exceeds 1111B (if a carry occurs) or is less than 0000B (a borrow
occurs); otherwise, it is reset to 0.

If the result of the operation is 0000B, the Z flag is set to 1, regardless of whether a carry or barrow occurs; if the
result is other than 0000B, the Z flag is reset to 0.

Examples 1.
MOV R1, #1111B ; Transfers 1111B to general register R1
MOV M1, #0001B ; Transfers 0001B to data memory M1
ADD R1, M1 ; Adds R1 to M1

At this time, R1 + M1 is calculated as follows:

1111B ... Contents of R1
+ 0001B....... Contents of M1

1 ooooB
Carry

Therefore, the addition result, 0000B, is written to R1, and the CY flag is setto 1. The M1 contents
do not change.

In addition, the Z flag is set to 1, because the result is 0000B.
If the carry is not output, when the R1 and M1 contents are added, the CY flag is reset to 0.

MQV M1, #1010B ; Transfers 1010B to data memory M1
ADD M1, #0101B ; Adds immediate data 0101B to M1
At this time, M + 0101B is calculated as follows:

1010B M1 contents
+0101B Immediate data

01111B
Carry

Therefore, 1111B is written to M1, and the CY and Z flags are reset.

111

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

3.
MOV Rft, #1000B ; Writes 1000B to general register R1
MOV M1, #1111B ; Writes 1111B to data memory M1
;<1>
ADD M1, #0001B ; Adds immediate data 0001B to M1
D <2>
ADDC Ri, M1 ; Adds R1 to M1 with carry
In <1> above, the calculation is executed as follows:
1111B M1 contents
+ 0001B Immediate data
1 0000B
Carry
Therefore, 0000B is written to R1 and the CY and Z flags are setto 1. In <2> above, the calculation
is executed as follows:
1000B R1 contents
0000B M1 contents
+ 1. CY flag contents
0 1001B
Carry
When the ADDG instruction is executed, therefore, the addition is executed, including the CY flag
content at that time, and the CY flag is rewritten by the resultant carry output.
4.

MOV Ri1, #0000B ; Writes 0000B to general register R1
MOV M1, #1000B ; Writes 1000B to data memory M1
suB R1, M1 ; Subtracts M1 from R1

At this time, R1 — M1 is calculated as follows:

0000B R1 contents
— 1000B M1 contents

1 1000B
Borrow

Therefore, the result, 1000B, is written to R1. Atthistime, the CY flagis setto 1, because a borrow
has occurred.

The carry, that occurs as a result of executing an addition instruction, and the borrow, that occurs
as a result of executing a subtraction instruction, are governed by the same CY flag.

112

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

MOV
MOV
;<>
sSuB
P <2>
SUBC

R1, #0000B ;
M1, #0000B ;

M1, #0001B ;

R1, M1 ;

At this time, <1> and <2> are calculated as follows:

<1>
0000B M1 contents
- 0001B Immediate data

1 1111B
Borrow

<2>
0000B R1 contents
1111B ... M1 contents
- 1. CY flag contents
1 0000B

Borrow
Therefore, the results are R1 = 0000B, M1 = 1111B, CY flag =1, and Z flag = 1.

8.3.2 Addition/subtraction when CMP =1, BCD =0
Addition or subtraction is executed in bihary and 4-bit units.
However, the result of the operation is not stored in a general register or data memory address because the CMP
flag is set to 1.
If a carry or borrow occurs as a result of the operation, the CY flag is set to 1; otherwise, the flag is reset to 0.
The Z flag retains the previous status if the result of the operation is 0000B; otherwise, it is reset to 0.

Examples 1.
MOV PSW, #1000B ; Sets CMP flag (writes to program status word)
MOV R1, #1111B ;
MOV M1, #1111B
<>
ADD R1, M1 ;
; <2>
SuB R1, M1 ;
MOV PSW, #1010B ; Sets CMP and Z flags
; <3>
SuB R1, M1 ;

113

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

114

At this time, <1> is calculated as follows:

1111B ... R1 contents
+ 1111B M1 contents

11110B
Carry

The operation result is not stored in R1, because the CMP flag is set to 1.

The CY flag is set to 1, because a carry occurs.

The Z flag is reset, because the result is not 0000B.

In <2>, the CY flag is reset to 0, because the R1 and M1 contents are the same as <1>. The Z
flag retains the current status, 0, though the result is 0000B.

In <3>, the calculation is executed in the same manner as in <2>, but the Z flag retains 1, because
it has been set to 1 in advance.

If the CMP flag is set to 1, the operation result is not stored, and only the statuses for CY and Z
flags change. This is convenient for comparing data, which is 5 bits or longer.

MOV PSW, #1010B ; Sets CMP and Z flags to 1
i <1>

SuB M1, #0001B (1H) ;
;<2>

SUBC M2, #0010B (2H) ;
;<3>

3

SUBC M3, #0011B (3H) ;

At this time, the operation result is not stored because the CMP flag is set to 1. Therefore, the
M1, M2, and M3 contents remain unchanged, even if <1>, <2>, and <3> have been executed.
In addition, because the Z flag is set to 1 at first, the Z flag remains set to 1, if all the <15, <25,
and <3> results are 0000B. The Z flag is reset to 0, if even one of the results is not 0000B.
The CY flag is set if the 12-bit contents for M3, M2, and M1 are less than 001100100001B (321H).
Consequently, by testing the Z and CY flags after <1>, <2> and <3> have been executed, the 12-
bit data for M3, M2, and M1 can be compared with the 12-bit data for 321H, as follows:

If Z=1, CY =0; M3, M2, M1 = 321H
T
Always 0
If Z=0, CY =0; M3, M2, M1 > 321H
If Z=0,CY =1; M3, M2, M1 < 321H

It is also possible to compare the general register contents with those for data memory area, by
using the SUB r, m and SUBC r, m instructions in Example 2.

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.3.3 Addition/subtraction when CMP = 0, BCD =1

A BCD operation is executed.

The result of the operation is stored in a specified general register or data memory address. The CY flag is set
to 1 if the result exceeds 1001B (9D) or is less than 0000B (0D), and is reset to 0 if the result is in the range of 0000B
(OD) to 1001B (9D).

The Z flag is set to 1 if the result is 0000B (0D); otherwise, it is reset to 0.

The BCD operation is executed by converting the result of an operation executed in binary into decimal number
by using the decimal correction circuit. For details on this binary-to-decimal conversion, refer to Table 8-2 Results
for Binary 4-bit and BCD Operations.

To execute a BCD operation correctly, therefore, keep in mind the following points:

(1) The result of addition must be 0D to 19D.
(2) The result of subtraction must be 0D to 9D or -10 to —1D.
The value range of OD to 19D is determined by giving consideration to the CY flag, and is in binary:
[0,0000B to 1,0011B
CcY cYy
Likewise, the range of —10D to —1D is:
1,0110B to 1,1111B
cY cY

If a BCD operation is executed without the above conditions (1) and (2) satisfied, the CY flag is setto 1, and data
greater than 1010B (0AH) is output as a result.

Examples 1.
MOV M1, #0111B (7) ;

MOV RPL, #0001B ; Sets BCD flag (BCD flag is assigned to bo in RPL for
; system register)
MOV PSW, #0000B ; Resets CMP, CY, and Z flags
;<>
ADD M1, #1001B (9) ;7+9
;<2>
SuB M1, #0111B (7) ;6-7

115

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

At this time, <1> is calculated as follows:

0111B M1 contents
+ 1001B....... Immediate data

1 0000B Binary addition result
Carry

d Converted by binary-to-decimal adjustment in Table 7-2
1 0110B Data stored in M1
Carry

Therefore, the CY flag is setand 0110B (6) is stored in M1. Assuming that the CY flag significance
is 10, this means that a decimal operation of 7 + 9 = 16 has been executed.
In <2>, the calculation is executed as follows:

0110B M1 contents
- 0111B Immediate data

L1 111B Binary subtraction result
Borrow

{ Binary-to-decimal adjustment
1 1001B Data stored in M1

Since 6 is stored in M1 in <1>, 6-7 has been performed with the result of 9. Therefore, the CY
flag is set.

MOV M1, #0101B (5) ;
MOV M2, #0110B (6)
MOV M3, #0111B (7) ;

MOV RPL, #0001B ; Sets BCD flag to 1

MOV PSW, #0000B ; Resets CMP, CY, and Z flags to 0
i <1>

SuUB M1, #0111B (7) ;
;<2>

SUBC M2, #0110B (6) ;
;<3>

SUBGC M3, #0101B (5) ;

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

At this time, the calculation is carried out as follows in <15, <2>, and <3>.

<1>
0101B M1 contents
- 0111B Immediate data

1 1110B
Borrow

1 Binary-to-decimal adjustment
1 1000B (8) Data stored in M1
Borrow

<2>
0110B M2 contents
- 0110B....... Immediate data

1 1111B CY flag
Borrow

J Binary-to-decimal adjustment
1.1001B (9) Data stored in M2
Borrow

<3>
0111B M3 contents
- 0101B....... Immediate data

0 0001B...... CY flag
Borrow

{ Binary-to-decimal adjustment
0 0001B (1) Data stored in M3

Therefore, immediate data 567 is subtracted from 765 stored in M3, M2, and M1, and the result
is 198.

MOV M1, #1001B

3

MOV RPL, #0001B : Sets BCD flag to 1

MOV PSW, #0000B ; Resets CMP, CY, and Z flags to 0
;<>

ADD M1, #1010B ;
; <2>

ADDC M1, #1010B ;

117

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

118

At this time, <1> is calculated as follows:

1001B (9) M1 contents
+ 1010B (10) Immediate data

10011B...... CY flag
Carry

{ Binary-to-decimal adjustment
1 1001B Result
Carry

Therefore, 9 + 10 = 9 is executed. If the CY flag is taken into consideration, a decimal operation
of 9 + 10 = 19 has been performed.
However, in <2>, the calculation is carried out as follows:

1001B (9) M1 contents
+ 1010B (10) Immediate data

1 0100B CY flag
Carry

{ Binary-to-decimal adjustment
1 1110B Result
Carry

The operation result exceeds 19, because the CY flag is set to 1, and accurate decimal operation
cannot be performed.

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.3.4 Addition/subtraction when CMP =1, BCD =1

A BCD operation is petformed.

The result of the operaticn is not stored in a general register or data memory address.

Therefore, the operation to be performed when the CMP flag is 1 and that performed when the BCD flag is 1 are
performed at the same time.

Examples 1.
MOV RPL, #0001B ; Sets BCD flag to (1)
MOV PSW, #1010B ; Sets CMP and Z flags to 1 and resets CY flag to (0)
suB M1, #0001B ; <1>
SUBC M2, #0010B ; <2>
SUBC M3, #0011B ; <3>
At this time, the contents of the 12 bits of M3, M2, and M1 can be compared with inmediate data
321 in decimal number.
2.

MOV RPL, #0001B ; Sets BCD flag to 1
MOV PSW, #1010B ; Sets CMP and Z flags to 1, and resets CY flag to 0

;<>

SuUB M1, #0001B ;
D <2>

SUBC M2, #0010B ;
; <3>

SUBC M3, #0011B ;

At this time, 12-bit contents in M3, M2, and M1 can be compared with immediate data 321 in
decimal number by <1>, <2>, and <3>.

8.3.5 Notes on using arithmetic operation instruction

When an arithmetic operation is executed to the program status word (PSWORD), note that the result of the
operation is stored in the program status word.

The CY and Z flags of the program status word are usually set or reset as a result of an arithmetic operation. If
an arithmetic operation is executed to the program status word, however, the result is stored to the program status
word, making it impossible to test occurrence of a carry or borrow, or whether the result is zero.

When the CMP flagis set to 1, however, the result is not stored in the program status word, and the CY and Z flags
are set or reset as usual.

119

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

Examples 1.
MOV PSW, #0110B
MOV PSW, #1010B

At this time, the calculation is carried out as follows:

0110B PSW contents
+ 1010B....... Immediate data

1 0000B
Carry

Although the CY and Z flags must be set, the result 0000B is stored in the PSW, because the CMP
flag is O.

MOV PSW, #1010B
ADD PSW, #1000B

At this time, the calculation is carried out as follows:

1010B PSW contents
+ 1000B....... Immediate data

1 0010B
Carry

Because the CMP flag is set to 1, the result 0010B is not stored in the PSW. Conseqguently, the
CY flag is set to 1 and the Z flag is reset to 0, and 1100B is stored in the PSW.

8.4 Logical Operation

As logical operations, logical sum (OR), logical product (AND), and exclusive logical OR (XOR) can be executed
as shown in Table 8-4.

The logical operations are classified into these three types and are implemented by the “OR”, “AND”, and “XOR”
instructions.

These instructions are also classified into an operation executed between a general register and data memory,
and that between the data memory and immediate data. Whether the operation is executed between a general register
and data memory, or between the data memory and immediate data is determined depending on the value written
as the operand of the instruction, i.e., whether “r, m” or “m, #n4” is described as the operand, like the arithmetic
operation instruction.

The logical operation is not affected by the BCD and CMP flags of the program status word (PSWORD). It does
not affect the CY and Z flags. However, the operation is subject to modification by the index register if the index enable
flag (IXE) is set to 1.

120

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

Table 8-4. Logical Operation Instructions

Logical operation

Logical sum

OR

General register and data memory

CRr,m

Data memory and immediate data

CR m, #n4

Logical product

AND

General register and data memory

AND r, m

Data memory and immediate data

AND m, #n4

Exclusive Logical product

XOR

General register and data memory

XORr, m

Data memory and immediate data

XOR m, #n4

Table 8-5. Logical Operation Truth Table

Logical product Logical sum Exclusive logical sum
C=AANDB C=AO0ORB C=AXORB
A B C A B C A B C
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

8.4.1 Logical sum (Logical OR)
The logical sum instruction ORs 4-bit data, according to the truth table shown in Table 8-5.

Example

MOV Rf1, #1010B ;
MOV M1, #1001B ;

;<>

OR R1, M1 ;

D <2>

OR M1, #1100B ;

121

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

At this time, <1> is calculated as follows:

1010B R1 contents
OR 1001B M1 contents

1011B...... Result

Therefore, 1011B is stored in R1.
In <2>, the calculation is executed as follows:

1001B M1 contents
OR 1100B...... Immediate data

1101B

Therefore, 1101B is stored in M1.

The logical sum instruction is convenient for setting the contents of a data memory areato 1in 1, 2, 3, or 4 bit units.

8.4.2 Logical product (Logical AND)

The logical product instruction ANDs 4-bit data, according to the truth table shown in Table 8-5.

Example
MOV Rf1, #1010B ;
MOV M1, #1001B
;<>
AND R1, M1 ;
; <2>
AND M1, #1100B ;

At this time, <1> is calculated as follows:

1010B..... R1 contents
AND 1001B..... M1 contents

Therefore, 1000B is stored in R1.
In <2>, the calculation is executed as follows:

122

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

1001B..... M1 contents
AND 1100B..... Immediate data

1000B
Therefore, 1000B is stored in M1.

The logical product instruction is convenient for resetting the data memory area contents to 0 in 1, 2, 3, or 4 bit

units.

8.4.3 Logical exclusive sum (Logical exclusive OR)
The logical exclusive sum instruction exclusive-ORs 4-bit data, according to the truth table shown in Table 8-5.

Example
MOV R1, #1010B ;
MOV M1, #1001B ;
J<1>
XOR Ri1, M1 ;
;<2>
XOR M1, #1100B ;

At this time, <1> is calculated as follows:

1010B..... R1 contents
XOR 1001B..... M1 contents

0011B

Therefore, 0011B is stored in R1.
In <2>, the calculation is executed as follows:

1001B..... M1 contents
XOR 1100B..... Immediate data

0101B
Therefore, 0101B is stored in M1.

The exclusive logical sum instruction is convenient for inverting data memory area contents in 1, 2, 3, or 4 units

123

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.5 Bit Testing

As shown in Table 8-6, bit testing can be classified into True bit (1) testing and False bit (0) testing.

These testings are made respectively by the “SKT” and “SKF” instructions.

These instructions can be executed to only the data memory.

Bit testing is not affected by the BCD flag of the program status word (PSWORD). It does not affect the CY and
Z flags. However, the CMP flag is reset to 0 when the “SKT” or “SKF” instruction is executed. Modification is made
by the index register if the instruction is executed while the index enable flag (IXE) is setto 1. For details on modification
by the index register, refer to CHAPTER 6 SYSTEM REGISTER (SYSREG).

8.5.1 and 8.5.2 describe True bit (1) testing and False bit (0) testing, respectively.

Table 8-6. Bit Test Instructions

True bit (1) testing
SKT m, #n

Bit testing
False bit (0) testing

SKF m, #n

124

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.5.1 True bit (1) testing
The True bit (1) test instruction, “SKT m, #n”, tests whether bit(s) specified by n of the 4 bits of a data memory

address is “True (1)”.

Example

If all the bits specified by n is “True (1)”, the next instruction is skipped.

MOV M1, #1011B

SKT M1, #1011B ; <1>
BR A

BR B

SKT M1, #1101B ; <2>
BR Cc

BR D

In <1>, execution branches to B because all the bits 3, 1, and 0 of M1 are True (1).
In <2>, the bits 3, 2, and 0 of M1 are tested, and execution branches to C because bit 2 is False (0).

8.5.2 False bit (0) testing
The False bit (0) test instruction, “SKF m, #n”, tests whether bit(s) specified by n of the 4 bits of a data memory

address is “False (0)”".

Example

If all the bits specified by n is “False (0)”, the next instruction is skipped.

MOV M1, #1001B

SKF M1, #0110B ; <1>
BR A ;

BR B ;
SKF M1, #1110B ; <2>
BR C ;

BR D ;

In <1>, execution branches to B because both the bits 2 and 1 of M1 are False (0).
In <2>, the bits 3, 2, and 0 of M1 are tested, and execution branches to C because bit 3 of M1 is True

(1)

125

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.6 Compare

As shown in Table 8-7, the compare operations are divided into four types: “equal to”, “not equal to”, “greater than”,
and “less than”.

To make these comparisons, the “SKE”, “SKNE”, “SKGE”, and “SKLT” instructions are used.

These instructions can be used only to compare the contents of a data memory address with immediate data. To
compare the contents of a general register and those of a data memory address, use a subtraction instruction with
the CMP and Z flags of the program status word (PSWORD) (refer to 8.3 Arithmetic Operation (Binary 4-bit
addition/subtraction and BCD addition/subtraction)).

Comparison is not affected by the BCD and CMP flags of the program status word. It does not affect the CY and
Z flags.

When the index enable flag (IXE flag) is set to 1, modification is performed by the index register. For modification
by the index register, refer to CHAPTER 6 SYSTEM REGISTER (SYSREG).

8.6.1 through 8.6.4 describe comparison of “equal to”, “not equal to”, “greater than”, and “less than”, respectively.

Table 8-7. Compare Instructions

Equal to
SKE m, #n4

Not equal to
SKNE m, #n4

Compare
Greater than

SKGE m, #n4

Less than
SKLT m, #n4

126

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.6.1 Comparison of “Equal to”

The “SKE m, #n4” instruction tests whether the contents of a specified data memory address are “equal to” specified

immediate data.

If the data memory contents are “equal to” the immediate data, the instruction next to this instruction is skipped.

Example

MOV M1, #1010B

SKE M1, #1010B ; <1>
BR A

BR B

SKE M1, #1000B ; <2>
BR C

BR D

In <1>, execution branches to B because the contents of M1 are equal to immediate data 1010B.
In <2>, however, execution branches to C because the contents of M1 are not equal to immediate
data 1000B.

8.6.2 Comparison of “Not equal to”

The “SKNE m, #n4” instruction tests whether the contents of a specified data memory address are “not equal to”

specified immediate data.

If the data memory contents are “not equal to” the immediate data, the instruction next to this instruction is skipped.

Example

MOV M1, #1010B
SKNE M1, #1000B ; <1>
BR A

BR B

SKNE M1, #1010B ; <2>
BR C

BR D

In <1>, execution branches to B because the contents of M1 are not equal to immediate data 1000B.
In <2>, however, execution branches to C because the contents of M1 are equal to immediate data
1010B.

127

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.6.3 Comparison of “Greater than”
The “SKGE m, #n4” instruction tests whether the contents of a specified data memory address are “greater than”
specified immediate data.
If the data memory contents are “greater than” or “equal to” the immediate data, the instruction next to this instruction

is skipped.

Example

MOV
SKGE
BR
BR

SKGE
BR
BR

SKGE
BR
BR

M1, #1000B
M1, #0111B ; <1>

M1, #1000B ; <2>

M1, #1001B ; <3>

Because the contents of M1 are 1000B, <1 is judged to be “Greater than”, <2>, “Equal to”, and <3>,

“Less than”, and execution branches to B, D, and E, respectively.

8.6.4 Comparison of “Less than”
The “SKLT m, #n4” instruction tests whether the contents of a specified data memory are “less than” specified

immediate data.

If the data memory contents are “less than” the immediate data, the instruction next to this instruction is skipped.

Example

128

MOV
SKLT
BR
BR
SKLT
BR
BR
SKLT
BR
BR

M1, #1000B
M1, #1001B ; <1>
A

M1, #1000B ; <2>

#0111B ; <3>

Because the contents of M1 are 1000B, <1> is judged to be “Less than”, <2>, “Equal to”, and <3>,

“Greater than”, and execution branches to B, C, and E, respectively.

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.7 Rotation Processing

Rotation processing can be classified into right rotation and left rotation.

To execute the right rotation processing, the “RORC” instruction is used.

This instruction can be executed only to a general register.

The rotation processing by the “RORC” instruction is not affected by the BCD and CMP flags of the program status
word (PSWORD). It does not affect the Z flag.

The “RORC” instruction does not modify (increment/decrement) addresses by using the index register (1X) even
if the index enable flag (IXE flag) is set to 1.

8.7.1 and 8.7.2 below describe the respective rotation processing.

8.7.1 Right rotation processing

The right rotation processing instruction “RORGC r” rotates the contents of a specified general register 1 bit toward
the least significant bit direction.

At this time, the content of the CY flag is written to the most significant bit (bit 3) position of the general register,
and the content of the least significant bit (bit 0) is written to the CY flag.

Examples 1. MOV PSW, #0100B ; Sets CY flag to 1
MOV R1, #1001B
RORC Ri1

At this time, the processing is performed as follows:

CY flag bs b2 b1 bo

’—>14>1—>1—>0—>0—‘

Therefore, right rotation is executed from the CY flag as shown above.

Examples 2. MOV PSW, #0000B ; Resets CY flag to 0

MOV R1, #1000B ; MSB
MOV R2, #0100B

MOV R3, #0010B ; LSB
RORC Ri

RORC R2

RORC RS

The above program rotates the 13-bit data of R1, R2, and R3 to the right.

129

www.DataSheetdU.com

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.7.2 Left rotation processing

The left rotation processing can be performed by using the addition instruction “ADDC r, m” as follows:

Example MOV

MOV
MOV
MOV
ADDC
ADDC
ADDC
SKF
OR

PSW,
R1,
R2,
R3,
R3, R3
R2, R2
R1, R1
cY
R3,

#0000B ; Resets CY flag to 0
#1000B ; MSB

#0100B

#0010B ; LSB

#0001B

The above program rotates the 13-bit data of R1, R2, and R3 to the left.

130

www.DataSheetdU.com

CHAPTER 9 REGISTER FILE (RF)

The register file is a register area that can be manipulated by the “PEEK” and “POKE” instructions.
The register file mainly sets the hardware conditions peripheral.

9.1 Register File Configuration

The register file consists of a control register and a data memory area, as shown in Figure 9-1. Addresses 40H
through 7FH overlap with a data memory area. Therefore, these register file addresses are addresses 40H through
7FH in the bank currently selected for the data memory.

Therefore, if BANKO is currently selected, register file addresses 40H through 7FH are for BANKO. These
addresses can be manipulated as both data memery addresses and register file addresses.

Addresses 00H through 3FH in the register file form a control register area that sets various conditions for the
hardware peripherals.

These areas constitute a 128-nibble (128 words X 4 bits) register file, as shown in Figure 9-2.

131

www.DataSheetdU.com

CHAPTER 9 REGISTER FILE (RF)

Figure 9-1. Relations between Register File and Data Memory

Column address

0O 1 2 3 4 5§ 6 7 8 9 A B C D E F

Row address
w

BANK15

System register

Control register

Figure 9-2. Configuration of Register File

Column address

0o 1 2 3 4 5§ 6 7 8 9 A B C D E F

0
1
Control register
2
1]
o
5 3 N
B [Register file ------------------------
z 4
o]
[ans
5 Data memory
6 (of each bank)
7

132

www.DataSheetdU.com

CHAPTER 9 REGISTER FILE (RF)

9.2 Register File Functions

9.2.1 Register file functions
The register file control registers mainly set the peripheral hardware conditions.

The rest of the register file (addresses 40H through 7FH) is overlapped with the data memory. Therefore, it can

be operated in the same manner as the data memory, except that they can be manipulated by the “PEEK” and “POKE”

instructions.

9.2.2 Register file manipulation instruction

Data is written to or read from the register file via the window register of the system registers (WR: address 78H).

To write or read data, the following dedicated instructions are used:

PEEK WR, rf: Reads data of register file addressed by 1f to WR
POKE rf, WR: Writes data of WR to register file addressed by rf

Example MO030
M032
RF11
RF33
RF70
RF73
BANKO
<1> PEEK

CLRA1

CLR1

OR
<2> LD

<3> POKE
<4> PEEK
<5> POKE

<6> ST

MEM 0.30H
MEM 0.32H
MEM 0.91H
MEM 0.B3H
MEM 0.70H
MEM 0.73H

WR, RF11

MPE

IXE

RPL, #0110B
M030, WR

RF73, WR
WR, RF70
RF33, WR

WR, M032

Uses address 30H of data memory as WR saving area

Uses address 32H of data memory as WR manipulation area
Symbol definition

Symbols at addresses 00H-3FH of register file must be defined as
80H-BFH of BANKO. For details, refer to 9.4 Notes on Using Register
File

; Indicates example for saving contents of WR to general-purpose data
; memory (addresses 00H-3FH). As example, saving data to data memory

; address 30H without address modification is indicated.

3

; Data can be directly transferred between data memory at addresses

40H-7FH and control register by WR, PEEK, and POKE instructions

133

www.DataSheetdU.com

CHAPTER 9 REGISTER FILE (RF)

Figure 9-3 shows an example of operation.

As shown in this figure, the control register (addresses 00H-3FH) reads or writes the contents of the register file
addressed by “rf” from or to the window register when the “PEEK WR, rf” or “POKE rf, WR” instruction is executed.

Since addresses 40H through 7FH of the register file overlap the data memory, the “PEEK WR, 1f” or “POKE rf,
WR?” instruction is executed to data memory address “rf” in the bank selected at that time.

Addresses 40H through 7FH of the register file can also be manipulated by a memory manipulation instruction.

The control register can be manipulated in 1-bit units by using a macro instruction (refer t0 9.4.2 Symbol definition
of register file and reserved word).

Figure 9-3. Accessing Example of Register File with PEEK or POKE Instruction

BANKO Column address
o 1 2 3 4 5 6 7 8 9 A B C D E F

0 Data memory | Data buffer (DBF)

N

0

o |] <6> ST WR, M032

5 3
i__ g -~ I - I __ 1
'z 4| [<2>LD MO30, WR i

[a] 1
[
! 5| <3> POKE RF73, WR i
! <4> PEEK WR, RF70 I_ |
| 6 + :
i 1 !
! 7 | I | |
! 1 WR System register '
! i
! |
! |
! I
[I
! |
i 0 !
i . <1> PEEK WR, RF11 !
l !
! |
i 2 !
| <5> POKE RF33, WR)) !
! 3 Control register |

___ !

i :
| I

134

www.DataSheetdU.com

CHAPTER 9 REGISTER FILE (RF)

9.3 Control Register

9.3.1 Control register configuration

The control register sets the conditions for hardware peripherals.

The control register consists of 64 words x 4 bits at addresses 00H through 3FH in the register file.

Of these control register words, those actually used differ, depending on the microcontroller model.

Each control register has 1 nibble of attribute and may be read/write (R/W), read-only (R), write-only (W), or reset,
when read (R & Reset). Note, however that some of the read/write (R/W) flags are always “0” when they are read.

Nothing is changed when data is written to the read-only register (R or R & Reset).

An “undefined value” is read when the write-only register (W) is read.

Of the 4-bit data for 1 nibble, the bit fixed to “0” is always “0” when read, and retains “0”, even when it is written.

An undefined value is read when the unused register is read, and nothing is changed when data is written to this
register.

To manipulate the unused register, write-only register (W), and read-only register (R), care must be exercised in
using the Assembler (RA17K). For details, refer to 9.4 Notes on Using Register File.

9.3.2 Hardware peripheral control functions for control register
The control functions, register to control the hardware peripherals, are described in the Data Sheet for each model.

135

www.DataSheetdU.com

CHAPTER 9 REGISTER FILE (RF)

9.4 Notes on Using Register File

9.4.1 Notes on manipulating control registers (read-only and unused registers)
When you manipulate the read-only (R) and unused registers of the control registers (addresses 00H through 3FH
of the register file), you must pay attention when the device operates, as described in (1), (2), and (3) below when
* you use the 17K Series assembler (RA17K) and the in-circuit emulators (IE-17K, IE-17K-ET).

(1) When device operates
Nothing is changed even when data is written to a read-only register.
If an unused register is read, an “undefined value” is read. Nothing is changed even when data is written to
this register.

* (2) When using assembler (RA17K)
An “error” occurs when an instruction that writes data is executed to access a read-only register.
An “error” also occurs when an instruction that reads or writes data is executed to an unused register.

* (3) When using an 17K series in-circuit emulator (IE-17K or IE-17K-ET) (patch processing, etc.)
An “error” does not occur even when data is written to a read-only register.

When an unused register is read, an “undefined value” is read, and nothing is changed even when data is
written to this register, but an “error” does not occur.

136

www.DataSheetdU.com

CHAPTER 9 REGISTER FILE (RF)

9.4.2 Symbol definition of register file and reserved words

If a register file address is directly written in numeric value as operand “rf” of the “PEEK WR, rf” or “POKE tf, WR”
instruction when the 17K series assembler (RA17K) is used, an “error” occurs.

It is therefore necessary to define the address of the register file as a symbol as shown in Example 1 below.

Examples 1. Error occurs
PEEK WR, 02H
POKE 21H, WR

Error does not occur
RF71 MEMO.71H ; Symbol definition
PEEK WR, RF71 ;

At this time, pay attention to the following point:

To define a control register as a symbol of data memory address type, it must be defined as the addresses 80H
through BFH of BANKO.

This is because the control register is manipulated via the window register, and an error must occur when the control
register is manipulated by an instruction other than “PEEK” and “POKE".

However, the register file (addresses 40H through 7FH) that overlap the data memory can be defined as a symbol
without changing the address.

Here is an example:

Examples 2. RF71 MEM1.71H ; Register file overlapping data memory

RF02 MEMO0.82H ; Control register
PEEK WR, RF71 ; RF71 is data memory at address “71H”
PEEK WR, RF02 ; RF02 is control register at address 02H

137

www.DataSheetdU.com

CHAPTER 9 REGISTER FILE (RF)

* When the assembler (RA17K) is used, the following macro instructions are included in the assembler as flag type
symbol manipulation instructions:

SETn : Sets flag to “1”
CLRn : Clears flag to “0”
SKTn : Skips if all flags are “1”
SKFn : Skips if all flags are “0”
NOTh > Inverts flag
INITFLG : Initializes flag

* INITFLGX : Initializes flag

Therefore, by using these macro instructions, the contents of the register file can be manipulated in 1-bit units, as
shown in the following Example 3.
Because many flags of the control registers are manipulated in 1-bit units, “reserved words” are defined on the
* assembler (RA17K) as flag type symbols.
However, no flag type reserved word is available for the stack pointer. The reserved word for the stack pointer
is defined as data memory type, “SP”. Therefore, the flag manipulation instruction cannot be used with a reserved
word.

* Examples 3. INITFLG WDTRES ; Initialize
(SETH WDTRES ; Sets flag)

Macro expansion
PEEK WR, .MF.WDTRES SHR4
OR WR, # DF.WDTRES AND OFH
POKE .MF.WDTRES SHR4, WR

* 9.4.3 Notes on using assembler (RA17K) macroinstructions
The following points (1) and (2) call for specific attention, when using the Assembler macroinstructions to access
the control registers:

(1) Flag manipulation macroinstructions cannot be used to manipulate the stack pointer
As describedin 9.4.2, noflagtype reserved word is defined for the stack pointer. Therefore, a flag manipulation
instruction cannot be used with a reserved word.

(2) Flag manipulation macroinstructions cannot be used to manipulate write-only register
The flag manipulation macroinstruction cannot be used to manipulate the write-only register.
If the “SETn” macroinstruction is used to manipulate a write-only register, the register file contents are once
read to the window register.
At this time, the value read to the window register becomes undefined (an undefined value is read from the
write-only register), and an undefined value is written to a bit not specified by the “SETn” instruction.
* At this time, the Assembler (RA17K) generates an error.

138

www.DataSheetdU.com

CHAPTER 10 DATA BUFFER (DBF)

The data buffer is used to transfer data with the hardware peripherals and to read data for table reference.

10.1 Data Buffer Configuration

As shown in Figure 10-1, the data buffer (DBF) is assigned to addresses OCH through OFH in BANKO for the data
memory, and consists of 4 bits x 4 words, or a total of 16 bits.
Since the data buffer is on the data memory, itcan be manipulated by all the data memory manipulation instructions.

Row address

Figure 10-1. Data Buffer Location

Column address

1 2 3 4 5 6 7 8 9 A B C D E F

Data buffer (DBF)

Data memory

BANK15

System register

139

www.DataSheetdU.com

CHAPTER 10 DATA BUFFER (DBF)

Figure 10-2 shows the data buffer configuration. As shown, the LSB for the data buffer is bit bo for address OFH
in the data memory, and the MSB is bit bs for address 0CH.

140

Figure 10-2. Configuration of Data Buffer

Data Memory Address OCH ODH OEH OFH
Bit bs | b2 | bt | bo|bs|be|bt|bo|bs|bz|bt|bo]|bs|ba|Dbi]|bo
Data buffer Bit bis | bta | bia [b2 | b1 |b1wo | be | ba | b7 | bs | bs | ba | ba | b2 | bt | bo
Symbol DBF3 DBF2 DBF1 DBFO
Data K/I\ /|_\
S S
B B
N~ N

Dellta

www.DataSheetdU.com

CHAPTER 10 DATA BUFFER (DBF)

10.2 Data Buffer Functions

The data buffer has the following two functions:

(1) Reads constant data on the program memory (table reference)
(2) Transfers data with hardware peripherals

Figure 10-3 shows the relations between the data buffer, hardware peripherals, and table reference.
For details on table reference, refer to 10.4 Data Buffer and Table Reference, and for relations with hardware

peripherals, refer to 10.5 Data Buffer and Hardware Peripherals.

Figure 10-3. Relations between Data Buffer, Hardware Peripherals and Table Reference (Example)

Data buffer
(DBF)

iy

Internal bus Peripheral Peripheral hardware
address (example)

IDC

A/D converter

Program memory
(ROM) Table
reference

Serial interface 0

Constant data Watch timer (seconds)

Watch timer (minutes)

Walch timer (hours)

WEEELE

Watch timer (days)

OEH Watch timer (weeks)

Serial interface 1

Modulo timer

A

Address register

Key source

42H controller/decoder

141

www.DataSheetdU.com

CHAPTER 10 DATA BUFFER (DBF)

10.3 Notes on Using Data Buffer

10.3.1 When manipulating addresses for write-only and read-only registers and an unused address

When transferring data through the data buffer to the hardware peripherals, pay attention to the following points
concerning the unused peripheral address, write-only peripheral register (PUT only), and read-only peripheral register
(GET only):

(1) Device operation
An “undefined value” is read from the write-only register when it is read.
The read-only register contents are not changed, even when an attempt has been made to write data to this
register.
When the unused register is read, an “undefined value” is read. The unused register contents are not changed,
even when an attempt has been made to write data to this register.

* (2) When using Assembler (RA17K)
An “error” occurs, when aninstruction is executed to read the write-only register, to write the read-only register,
or to read/write the unused register.

* (3) When using Emulator (IE-17K, IE-17K-ET) (manipulation for batch processing)
When the write-only register is read, an “undefined value” is read, but no “error” occurs.
When the read-only register is written, the register contents are not changed and no “error” occurs.
When the unused register is read, an “undefined value” is read. When this register is written, its contents are
not changed and no “error” occurs.

10.3.2 Specification of peripheral register address
* When using the 17K series Assembler (RA7K), an “error” does not occur, if a peripheral address “p” is directly
specified (in numeral) by the “PUT p, DBF” or “GET DBF, p” instruction, as shown in Example 1 below.
Using this method, however, is not desirable, in order to reduce the number of bugs in the program.
It is therefore recommended to define a symbol for the peripheral device, as shown in Example 2, by using the
symbol definition directive in the Assembler.
* To simplify symbol definition, peripheral addresses are defined in advance in the Assembler (RA17K) as “reserved
words”.
By using the reservedwords, therefore, the program can be created without defining symboals, as shown in Example

For the reserved words, refer to the Data Sheet for each model.

Examples 1. PUT 02H, DBF ; Error does not occur, even when peripheral address 02H or 03H is
GET DBF, 03H ; specified. Using this is not desirable, in order to reduce bugs
2. SIOODATA DAT 0O3H ; Assigns 03H to SIOODATA by symbol definition directive

PUT SIOO0DATA, DBF ;

3. PUT SIO0SFR, DBF ; Symbol need not be defined, if reserved word “SIO0SFR” is used

142

www.DataSheetdU.com

CHAPTER 10 DATA BUFFER (DBF)

10.4 Data Buffer and Table Reference

10.4.1 Table reference operation

By using the “MOVT DBF, @AR” instruction, constant data on the program memory can be read to the data buffer.

Therefore, by writing, for example, display data and constant data to the program memory in advance and

performing table reference as necessary, the need for creating a complicated data conversion program is eliminated.

The MOVT instruction function is as illustrated below.

Example

MOVT DBF, @AR ; Reads the program memory contents specified by the address
register contents to the data buffer, as shown in Figure 10-4

Figure 10-4. Example of Table Reference

Data buffer

DBF3 DBF2 DBF1 DBFO

Program memory

(ROM)

bis|b14|bis|biz|bi1|bio| be [bs | b7 | be | bs | ba|bs| bz | b1

bis

bia

b1z

bz

b1

bio| be | bs | b7 |bs [bs| ba | bs | bz |b1|bo

16 bits

MOVT DBF, @AR

Specifies program memory
address

Constant data

143

www.DataSheetdU.com

CHAPTER 10 DATA BUFFER (DBF)

When the table reference instruction is executed, one stack level is used.
The program memory address, to which table reference can be executed, differs depending on the number of bits

in the address register.
For details, refer to CHAPTER 4 ADDRESS STACK and 6.3 Address Register (AR).

10.4.2 Table reference program example

The following examples show table reference programs:

Examples 1.

144

M000
POA
PoOB
PoC

START:
BR

DATA:
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW

MAIN:

BANKO

SET4
SET4
SET1
MOV
MOV
MOV
MOV
MOV
MOV

MEM 0.00H ;
MEM 0.70H ;
MEM 0.71H ;
MEM 0.72H ;

; Program address 0000H
MAIN

0001H ; Constant data
0002H :
0004H :
0008H :
0010H ;
0020H :
0040H :
0080H :
0100H :
0200H ;
0400H :
0800H :

; Macroinstruction
POABIO3, POABIO2, POABIO1, POABIOO
POBBIO3, POBBIO2, POBBIO1, POBBIOO
POCGIO
RPH, #0000B ; Sets general register to row address 7H in BANKO
RPL, #0100B ;
ARS3, # (.DL.DATA SHR 12 AND OFH)
AR2, # (.DL.DATA SHR 8 AND OFH)
AR1, # (.DL.DATA SHR 4 AND 0FH)
ARO, # (.DL.DATA SHR 0 AND OFH)
; Sets 0001H in address register (AR)

www.DataSheetdU.com

CHAPTER 10 DATA BUFFER (DBF)

LOOP:
i<1>
MOVT DBF, @AR ; Transfers ROM value, specified by AR contents, to data buffer
;<2>
LD POA, DBF2 ; Transfers data buffer value to data register in PortOA (70H),
LD POB, DBF1 ; PortOB (71H), and Port0C (72H)
LD POC, DBFO ;
ADD MO000, #1 ; Increments address register contents by 1

ADD ARO, M0O0OO

ADDC ARf1, #0

ADDC AR2, #0

ADDC ARS3, #0

SKNE ARO, #0CH ; Writes 0 to ARO, when ARO value becomes 0CH
MOV ARO, #0 ;

BR LOOP

When this program is executed, the constant data stored in addresses 0001H through 000CH in the program
memory are sequentially read to the data buffer by <1> and output to ports OA, 0B, and 0C by <2>.

Since the constant data is shifted to the left on a bit-by-bit basis at this time, the high-level signal is sequentially
output to ports 0OA, 0B, and 0C as a result.

In this example, the start address for the program memory, that stores the constant data, is set in the address
register by the “MOV” instruction.

If the “MOV” instruction is used in this way, the start address for each constant setof data must be setinthe address
register, when there are many kinds of constant data to be stored.

Therefore, if the number of steps increases, because the “MOV” instruction is used many times, or in order to use
a common routine for control, the program shown in Example 2 is convenient.

145

www.DataSheetdU.com

CHAPTER 10 DATA BUFFER (DBF)

Examples 2.

146

3

; Reads address stack register contents to address register.

; At this time, stack pointer is shifted by constant data address,
; specified by contents M00O, specifying return address for

; main routine
;
;

: Reads constant data

; Returns to main routine

; Calls common processing routine

. At this time, DATA + 1 address is saved to address stack

; register

; Calls common processing routine

; At this time, DATA2 + 1 address is saved to address stack

; register

; Macroinstruction

POABIO3, POABIO2, POABO1, POABIOO
POBBIO3, POBBIO2, POBBO1, POBBIOO

Mo000 MEM 0.00H
START:

BR MAIN
DATAFETCH:

DI

POP AR

ADD ARO, M0O00O

ADDC ARf1, #0

ADDC AR2, #0

ADDC ARS, #0

MOVT DBF, @AR

El

RET
DATAI1:

CALL DATAFETCH

DW 0123H

DW 4567H

DW 89ABH
DATAZ:

CALL DATAFETCH

DW 1357H

DW 2468H

DW 9BDFH
MAIN:

BANKO

SET4

SET4

SET1 POCGIO

MOV RPH, #0000B

MOV RPL, #0100B
LOOP:

CALL DATA1

LD POA, DBF2

LD POB, DBF1

LD POC, DBFO

CALL DATA2

LD POA, DBF2

LD POB, DBF1

LD POC, DBFO

ADD MO000, #1

SKNE MO000, #0CH

MOV MO000, #0

BR LOOP

; Sets general register to row address 7H in BANKO

3

; Readsvalue for constantdata DATA1, specified by MO0O contents

3

; Transfers data buffer value to each port register in PortOA

: (70H), PortOB (71H) and Port0G (72H)

; Reads value for constant data DATA2, specified by M000

; contents

; Transfers data buffer value to each port register in PortOA (70H),

; PortOB (71H), and Port0C (72H)

’

; Writes 0 to ARO, when MO0QO contents become 0CH

3

www.DataSheetdU.com

CHAPTER 10 DATA BUFFER (DBF)

In this example, two stack levels are necessary, because the “CALL” instruction is executed two times, and the
“POP” and “MOVT” instructions are executed.

The “CALL" instruction can be executed only once, as shown in Example 3 below. In this case, two stack levels
are also necessary for the “MOVT” instruction.

Examples 3. DATAFETCH:

Dl ;

POP AR ; Reads address stack register contents to address register
MOVT DBF, @AR ; Transfers constant data storage address to data buffer

INC AR ; Stores return address for main routine

PUSH AR ;

PUT AR, DBF ; Transfers constant data storage address to address register

ADD ARO, M0OOO ; Shifts by constant data address specified by M0O00 contents
ADDC ARf1, #0 ;
ADDC AR2, #0 ;
ADDC ARS, #0 ;
MOVT DBF, @AR ; Reads constant data
El
RET ; Returns to main routine
DATAI1:
DW 0123H ; Constant data
DATAZ2:
DW 1357H ; Constant data
MAIN:
LOOP:
CALL DATAFETCH ;
Dw .DL.DATA1 ;
LD POA, DBF2 ;
CALL DATA2 ;
DwW .DL.DATA2 ;
LD POA, DBF2 ;

BR LOOP

147

www.DataSheetdU.com

CHAPTER 10 DATA BUFFER (DBF)

10.5 Data Buffer and Hardware Peripherals

10.5.1 Controlling hardware peripherals

The central processing unit (CPU) controls hardware peripherals by setting data in or reading data from the
hardware peripherals through the data buffer.

Each of the hardware peripherals has a register for data transfer (called a peripheral register), to which an address
(peripheral address) is assighed.

By executing the sole use instructions “GET” and “PUT” to these peripheral registers, data can be transferred
between the data buffer and hardware peripherals.

The “GET” and “PUT” instruction functions are as follows:

GET DBF, p ; Reads data for peripheral register addressed by p, to data buffer
PUT p, DBF ; Sets data for the data buffer in peripheral register addressed by p

The peripheral registers are classified into read-write (PUT/GET), write-only (PUT), and read-only (GET) registers.
If the “GET” instruction is executed to the write-only (PUT only) register, and undefined value is read.

However, if the “PUT” instruction is executed to the read-only (GET) register, the register contents are not affected.
Care must be exercised in using the 17K series Assembler (RA17K) or Emulator (IE-17K, IE-17K-ET). For details,

refer to 10.3 Notes on Using Data Buffer.
For the peripheral registers, refer to the Data Sheet for each model.

148

www.DataSheetdU.com

CHAPTER 10 DATA BUFFER (DBF)

10.5.2 Data length when transferring data with peripheral register
Data is transferred between the data buffer and a hardware peripheral in 8- or 16-bit units. The PUT and GET
instructions can be executed in one instruction execution time, regardless of whether or not the data is 16 bits long.
If the actual data bit length for a hardware peripheral is less than 8 bits, say, 7 bits, and if data transfer is carried
out in 8 bit units, 1 excess bit results. This excess bit is treated as a “don’t care (can be any value)” bit, when data
is written, and as an undefined value, when data is read.

Figure10-5 shows an operation example, when the “PUT” instruction is executed (there are 6 valid bits in the
peripheral register, bits b1 through be).

Figure 10-5. Example Showing Data Transfer between Data Buffer and Hardware Peripheral

Data buffer

DBF3 DBF2 DBF1 DBFO
bits | b14 | b1z | b1z [b11 | bio| be | bs | b7 | bs | bs | ba | bs | bz | b1 | bo
Don't care Don’t care

—]

B Rl EELEEEE mmmmme- Don't care
8 bits Can be any value
PUT

Peripheral register

b7 | bs | bs | ba | ba | bz | b1 | bo

Valid bits!

-------------------------------------- “0” or “undefined value "
When 8-bit data is written to the peripheral register, the high-order 8 bits in the data buffer (contents of DBF3 and

DBF2) are don’t care bits.

Of the 8-bit data, the data buffer bits that correspond to the excess bits for the hardware peripheral are treated
as don’t care bits.

149

www.DataSheetdU.com

CHAPTER 10 DATA BUFFER (DBF)

Figure 10-6 shows an operation example, when the GET instruction is executed.

Figure 10-6. Example Showing Data Transfer between Data Buffer and Hardware Peripheral

Data buffer

DBF3 DBF2 DBF1 DBFO
bis | b1a [b1z | b12| b11 [bio| be | be | b7 [be | bs | ba | ba | b2 | b1 | bo
Don’t care Don’t care

VoeET
**************************** '------ “0” or “undefined value”
Value of peripheral
register is read as is.

Peripheral register

b7 | bs | bs | ba | ba | bz | bt | bo

Valid bits!

------------------------------------ “0” or “undefined value”

When 8-bit data is read, the values for the high-order 8 bits in the data buffer (contents of DBF3 and DBF2) do
not change.

Of the 8-bit data for the data buffer, the bits that correspond to the excess bits in the peripheral register are “0”
or “undefined”. Whether the bits are “0” or “undefined” is determined in advance by the peripheral register.

150

www.DataSheetdU.com

CHAPTER 11 GENERAL-PURPOSE PORTS

The general-purpose ports output signals to external circuits and read signals from external circuits.
11.1 General-Purpose Port Configuration

As shown in Figure 11-1, the general-purpose port writes data it inputs or outputs to addresses 70H through 73H
(port register) for each bank in the data memory.

Each port has several pins (for example, PortOA consists of POAz through P0Ao pins).

The general-purpose ports are classified into /O ports, input ports, and output ports.

The I/O ports are classified into bit /0 ports, which can be specified for input for output in 1-bit units (1-pin units),
and group I/O ports, which can be specified for input or output in 4-bit units (4-pin units).

151

www.DataSheetdU.com

CHAPTER 11 GENERAL-PURPOSE PORTS

Row address
NGO UAR WN 2O

152

Figure 11-1. Block Diagram of General-Purpose Port

Column address

01 2 3 45 6 7 8 9 ABCDEF

! DBF

Data memory

Port register

BANK2

Bit Bit Bit Group Bit
/O /O /O OQut Out I/O OutOut 1/0

(14 1

BANK15

System register

Control register

—y O o T
—
r=> L)

. 1/0 setting

Example of pin
. configration of POA

.

POA3 pin
POA2 pin
POA1 pin
POAO pin

www.DataSheetdU.com

CHAPTER 11 GENERAL-PURPOSE PORTS

11.2 Function of General-Purpose Ports

The general-purpose output ports and the general-purpose I/O ports set in the output mode output a high or low
level from the corresponding pins when data are set to the corresponding port register.

The general-purpose input ports and the general-purpose I/O ports set in the input mode detect the level of the
signals input to the corresponding pins by reading the contents of the corresponding port register.

The general-purpose 1/O ports are set in the input or output mode by the corresponding control register.

In other words, these ports can be set in the input or output mode by software.

Since general-purpose /O ports are set to the general-purpose input port after a power-on reset, the pins that are
also used for other hardware peripheral are specified independently by the corresponding control register.

11.2.1 General-purpose port data register (port register)

A port register sets output data of and reads the input data of the corresponding general-purpose port.

Because the port registers are mapped on the data memory, they can be manipulated by any data memory
manipulation instruction.

Figure 11-2 shows the relation between a port register and the corresponding port pins.

By setting data to the port register corresponding to the port pins set in the general-purpose output port mode, the
output of each pin is set.

By reading the contents of the port register corresponding to the port pins set in the general-purpose input port
mode, the input status of each pin is detected.

Figure 11-2. Relation between Port Register and Pins

Port register
Bank n
Address m
Bit |bs!be!bi!bo
POA:O————]
POA2
POA1 O
POA O

‘ | Bit significance of port register

Address of port register (e.g.. 70H = A, 71H =B, 72H = C, 73H = D)
Bank of port register
“P ” of Port

Reserved words are defined for the port registers by the assembler.

Because these reserved words are defined in flag (bit) units, the assembler embedded macro instructions can be
used.

Note that data memory type reserved words are not defined for the port registers.

153

www.DataSheetdU.com

[MEMO]

154

www.DataSheetdU.com

CHAPTER 12 INTERRUPT FUNCTIONS

The interrupt function stops any on-going processing and executes a program which is to be executed when
generating specific data, if a specified hardware peripheral outputs predetermined data.

Therefore, when a request is issued from a hardware peripheral, the program execution is stopped and branched
to a program starting with an address (vector address) specified in advance.

12.1 Interrupt Block Configuration

As shown in Figure 12-1, the interrupt block consists of interrupt request blocks that control interrupt requests,
interrupt enable flip-flop (INTE) that enables the interrupt, stack pointer that is controlled when an interrupt has been
accepted, address stack register, program counter, and interrupt stack.

An interrupt request is issued from a hardware peripheral.

The interrupt request processing block for each hardware peripheral consists of interrupt request flag (IRQxxx)
that detects an interrupt request, interrupt permission flag (IPxxx) that enables each interrupt, and vector address
generator (VAG) that specifies a vector address (branch destination address), when an interrupt has been accepted.

The interrupt request flag (IRQxxx) and interrupt permission flag (IPxxx) are shown in the interrupt processing block
in Figure 12-1.

Actually, however, they are in the interrupt request register and interrupt permission register in the control register.

155

www.DataSheetdU.com

CHAPTER 12 INTERRUPT FUNCTIONS

Figure 12-1. Configuration Example of Interrupt Block

Control register
Name Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Stack
request 1 request 2 request 3 request 4 request 5 |permission 1|permission 2 pointer
2 3 5 2
INTREQ1 INTREQ INTREQ: INTREQ4) | (INTREQ INTPM1 INTPM SP
Address 3BH 3CH 3DH 3EH 3FH 2EH 2FH 01H
Bit ba|bz|b1|bo|bz|b2|bi|bo|bs|b2|b1|bo|ba|bz2|b1|bo|ba|bz|bi|bo|bs|bz2|b1|bo|bz|bz|bi|bo bz | b2 |b1|bo
NN AN AN
Flag o(ojojl|o|ojojl|ojojo|l|jojofofl|Oojof(o|l|joOfO|O| I [l 1|I|1I S|(S|S|s
R R R R R PIPIP|P|P PIP|P|P
symbol Q Q Q Q Q 4(3|2|1]|0 3lzll|o
4 3 2 1 0 M
PO | :
INT () : TRQO [: ‘ Stack pointer
; VAG 01H —— >
= |
PO e S B —N)
! ! K A Address stack register
INT (1) | IRQ1 :
E VAG 02 | [:) () Program counter
| P2 : p System register
INT (2) [~ IRQ2 [: iE
! VAG 03H }—=r >
: ' Interrupt stack
! IP3 | p
INT @) H{_Iras [
I VAG 04H — >
: 1
i P4 | Q
INT (4) |- IRQ4 [
! VAG 05H | >
! g \ -~ —~
mornt e ronven ok [romspromore i1
source [}
hardware DI and El instructions
peripheral
156

www.DataSheetdU.com

CHAPTER 12 INTERRUPT FUNCTIONS

12.2 Interrupt Functions

An interrupt function stops the on-going program and executes a sole use processing program when a hardware
peripheral enters a certain status.

At this time, the interrupt signal from the hardware peripheral is called an “interrupt request”, and generation of
the interrupt signal is called “interrupt request issuance”. The sole use interrupt processing routine is called an
“interrupt processing routine”.

When an interrupt has been accepted, the program memory address contents, determined for each interrupt source
(vector address), are read and the program execution is branched. Therefore, each interrupt processing routine is
started from this vector address.

The interrupt functions are classified into processing before an interrupt is accepted and processing after the
interrupt has been accepted. Therefore, the functions are divided into accepting aninterruptin response to aninterrupt
request from a hardware peripheral and, when the interrupt has been accepted, branching the execution to a vector
address and returning the execution to the program executed before the interrupt has been accepted.

12.2.1 through 12.2.5 describe the functions of each block.

12.2.1 Hardware peripheral

A condition, under which an interrupt request is to be issued, can be set to each hardware peripheral.

For example, an external interrupt pin can be set so that an interrupt request is issued, when the rising or falling
edge of the signal is applied to the pin.

For details on the interrupt request issuance conditions for each hardware peripheral, refer to the Data Sheet for
each model.

12.2.2 Interrupt request processing block
Aninterruptrequest processing block is available for each hardware peripheral. |t detects the presence or absence

of each interrupt request, enables the interrupt, and generates a vector address when the interrupt has been accepted.
12.2.3 and 12.2.4 describe each flag for the interrupt request processing block.

157

www.DataSheetdU.com

CHAPTER 12 INTERRUPT FUNCTIONS

12.2.3 Configuration and function of interrupt request flag (IRQxxx)
Each interrupt request flag (IRQxxx) is set to “1” when an interrupt request is issued from the corresponding
peripheral hardware unit, and is reset to “0” when the interrupt is acknowledged.
Detecting these interrupt request flags (IRQxxx) when no interrupt is enabled will allow the state of each interrupt

request to be detected.
Directly writing “1”to an interrupt request flag via the window register is also equivalent to an interrupt request being

issued.

Once this flag has been set to “1”, it is not reset until the corresponding interrupt is acknowledged or an interrupt

request reset macro is executed.
If more than one interrupt requestis issued at the same time, the interrupt request flag corresponding to the interrupt
that has not been acknowledged is not reset.
The configuration and function of the interrupt request flag are shown below.

Figure 12-2. Configuration Example of Interrupt Request Flag

Name Interrupt request Interrupt request
register 1 register 2
Address Depends on model
RW
Bit bs b2 b+ bo bs b2 b1 bo
Flag 0| o | o [o|lo|o [
R R
symbol Q Q
4 3
L L
Fixedto O Fixed to O
158

IRQ3 Detects issuance status of interrupt request for INT (3)
0 Interrupt not requested
1 Interrupt requested

IRQ4 Detects issuance status of interrupt request for INT (4)
0 Interrupt not requested

Interrupt requested

www.DataSheetdU.com

CHAPTER 12 INTERRUPT FUNCTIONS

12.2.4 Configuration and functions of Interrupt permission flag (IPxxx)
Each interrupt permission flag enables the interrupt of the corresponding peripheral hardware unit.
All the following three conditions must be satisfied in order that an interrupt may be acknowledged:

+ The interrupt is enabled by the corresponding interrupt permission flag.

+ The interrupt request is issued by the corresponding interrupt request flag.

+ The “EI” instruction (that enables all the interrupts) is executed.

Since the interrupt permission flag is in the interrupt permission register in the control flag, it can be read or written

through the window register (WR).

Once this flag has been set, it will not be reset until “0” is written to it through the window register.

The interrupt permission register configuration and functions are as follows.

Figure 12-3. Configuration Example of Interrupt Permission Flag

Name Interrupt permission Interrupt permission
register 1 register 2
Address Depends on model
R/W
Bit bs b2 b1 bo bs bz b1 bo
Flag 0 0 0 | | | | |
P P P P P
symbol 4 3 2 1 0
L
Fixed to O

IPO Setting interrupt for INT (0)
0 Disables
1 Enables

IP1 Setting interrupt for INT (1)
0 Disables
1 Enables

P2 Setting interrupt for INT (2)
0 Disables
1 Enables

IP3 Setting interrupt for INT (3)
0 Disables
1 Enables

P4 Setting interrupt for INT (4)
0 Disables
1 Enables

www.DataSheetdU.com

159

CHAPTER 12 INTERRUPT FUNCTIONS

12.2.5 Stack pointer, address stack register, and program counter

The address stack register saves the return address to which execution is to be returned from an interrupt
processing routine.

The stack pointer specifies the address of the address stack register.

When an interrupt is acknowledged, therefore, the value of the stack pointer is decremented by one and the value
of the program counter at that time is saved to the address stack register specified by the stack pointer.

When the dedicated return instruction “RETI” is executed after the processing of the interrupt processing routine
has been executed, the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>