S O ﬁ/j,) 5(M}W.mg»d /{g.r C 4‘”,Ul

b AM29112 e S

vy
Rl A High-Performance 8-Bit Slice Microprogram Sequencer
) . ADVANCED INFORMATION
Pidevery D2 o0 1S
>
DISTINCTIVE CHARACTERISTICS E,
©
® Expandable ® Interruptible at the microprogram level a
8-bit Slice, cascadable up to 16-bits Two kinds of interrupts: maskable and unmaskable. N
® Deep stack ® Powerful loop control
A 33 deep on-chip stack is used for subroutine link- When cascaded, two counters can act as a single
age, interrupt handling and loop control. 16-bit counter or two independent 8-bit counters.
® Hold feature ® Powerful addressing modes
A hold pin facilitates muitiple sequencer implementa- Features direct, multiway, multiway reiative and pro-
tions. gram counter relative addressing.

GENERAL DESCRIPTION

The Am29112 is a high performance interrupfible micropro- Interrupts are accepted at the microcycle level and ser-
gram sequencer intended for use in very high speed viced in a manner completely transparent to the interrupted
microprogrammed machines and optimized for the new microcode.

state-of-the-art ALU's and other processing components.

The Am29112 is designed to operate in 10MHz micropro- APPLICATION NOTES REFERENCE

grammed systems. - Microprogrammed CPU using Am29116

- An intelligent fast disk controlier

- Am29116 architecture speeds pixel manipulation in
interactive bit-mapped graphics

It has an instruction set featuring relative and multiway
branching, a rich variety of looping constructs, and provi-
sion for loading and unioading the on-chip stack.

BLOCK DIAGRAM

$22|A2(O.IDIW P2OURADY

EMERGENCY LiFo
DETECT
CIRCUIT
)
2l
&! | vecroren INT REQ
Am29112 | -
2! | Prioany T ACK INTERAUPTIBLE [SC cogc%neou |
€| | WNYERRUPT MICROPROGRAM MUX
E| Jeorroue SEQUENCER |
- O
- A\
OE ¥
VECTOR
MAP
PROM
™
[&)]
MICROPROGRAM g
(@]
(&
PIPELINE REGISTER

BD002190

9

V6723

Figure 1. Am29112 in a Single Pipelined System.

G861 Asenuep

1 03657A

RELATED PRODUCTS

Part No. Description

Am29116 | A 16-Bit Bipolar Microprocessor
Am2904 Status and Shift Control Unit
Am2910A | Microprogram Controlier

Am29114 | Vectored Priority Interrupt Controlier
Am2925 System Clock Generator and Driver
Am2940 DMA Address Generator

Am2942 Programmable Timer/Counter/DMA
e, | 8Bt Bidirectional 1/0 Por

Am29118 | 8-Bit Bidirectional 1/0 Port/Accumulator

PIN DESCRIPTION

Pin No. |Name 1/0 | Description

Do-D7 170 Bidirectional data input for direct input to address multiplexer, counter and other control registers and stack output.

Yo-Y7 1/0 | Bidirectional microprogram address bus outputs microprogram address and inputs interrupt vector.

Mo-M3 | Multiway input pins for up to 16-way branches.

HOLD i When this signal is high, the Y bus is three-stated and the carry-in to the program counter incrementer is forced low.
Also, the CMUX output is selected at the incrementer input.

cC | Test input for the sequencer. (See Table 2.)

CCEN I Test enable for the sequencer. (See Table 2.)

POL | Polarity input for test. (See Table 2.}

lg-14 | Instruction input.

Ig-lg | Mode control input. Select one of three modes: normal, extended or forced continue. (See Table 1.)

STKERR o] Indicates stack overflow or underflow.

UINTR | Unmaskable interrupt request input.

MINTR | Maskable interrupt request input.

INTD 1 Disable for maskable interrupts.

MINTA (o] Maskable interrupt acknowledge.

LSS | Programs the least significant chip when high, most significant chip when low.

RST | Reset input. Selects zero as the next microprogram address, resets the stack pointer and interrupt logic, and disables
maskable interrupts.

CP | Clock input.

ACIO 1/0 | Bidirectional adder 1/0 line for cascaded Am29112s.

PCIO 170 | Bidirectional program counter 1/0 line for cascaded Am29112s.

Clo 110 Bidirectional counter /O line for cascaded Am29112s.

CzZI0 1/0 | Bidirectional counter zero 1/0 line for cascaded Am29112s.

PRODUCT OVERVIEW

The Am29112 is designed for use in single-level pipelined
systems. A typical configuration is shown in Figure 2.

Branch addresses, constants for the various registers, and
stack pointer values are supplied to the Am29112 through the
D port which is bidirectional to allow the stack to be unioaded
onto an external LIFO. The next address generated by the
sequencer is output on the Y port and directly drives the
microprogram memory. A single register at the output of the
microprogram memory contains the microinstruction being
executed, while the next is being fetched. External conditions
are applied to the CC input of the Am29112 via the condition
code MUX and also to the multiway inputs.

A vectored priority interrupt controller generates a prioritized
interrupt request (MINTR) to the Am29112, which acknowl-

edges the request via the MINTA pin. Upon receiving the
acknowledge, the priority interrupt control puts out the en-
coded priority of the interrupt, which is translated to a vector
by the vector mapping PROM. The MINTA output of the
Am29112 turns on the PROM output and simuitaneously turns
off the Y port, enabling the interrupt vector onto the micropro-
gram address bus. In the Am29112, internal states are
automatically saved on the stack while the interrupt vector is
transmitted through the Y port and incremented to form the
next microprogram address.

The emergency detect circuit generates an unmaskable inter-
rupt request upon power failure or stack error. On receiving an
unmaskable interrupt, the sequencer branches to the unmask-
able interrupt routine; the address of this routine is stored on
the Am29112 in the INTVECT register. Detailed interrupt
handling is discussed in a later section.

evenceNCy wro
cmeuT
7
[+
STACKERROR 1 CJ_r
-Of UINTR .
- PRIORITIZED REQUEST Am29112 INTERRUPTIBLE
—] REQ ————————————~Of WWTR MICROPROGRAM “
I ACKNOWLEDGE SEQUENCER N
INTERRUP MINTA —
AEovesrs | | |emommy ACK 9 clo—— | [| vesr
I foomm I [conpmions
CONTROLLER ccen '
I r—1 C
) Pros o M Pot cooemux | |
o€ |
INTERRUPT VECTOR —
VECTOR seL
PRIORITY MAPPING —
PROM
MICROPROGRAM
MEMORY
I PWPELINE REGISTER]

BDO001921

Figure 2. Control Path in a Single Pipelined System Using the Am29112.

ARCHITECTURE OF THE Am29112

The internal organization of the Am29112 is shown in Figure 3.
The most important control loop inside the sequencer consists
of the CMUX, incrementer, and PC register. The CMUX selects
the next microprogram address based on the instruction and
condition code inputs. The next microprogram address is
selected from the PC register for a continue, the D port for a
branch, the adder for relative and muitiway branches, the
interrupt register for unmaskable interrupts, the stack for
subroutine returns or loop repeats, or ail zeros for the JUMP
ZERO instruction.

The Am29112 has many registers other than the PC register
and the interrupt register. There is an 8-bit counter used for
loop control; the DWIDTH register is a 4-bit register which
programs the number of least significant bits of the D port that
are added to the PC in relative addressing modes; the stack
pointer is a 6-bit counter/register that points to the top of stack
element; the 3-bit command register is used to program the
chip on power-up for compatibility with the external hardware

configuration; finally, there is the INTRTN register which is
used for saving the CMUX output on the stack when an
interrupt occurs.

With the exception of the INTRTN register and the stack
pointer, each of the above registers can be loaded directly
from the D port of the Am29112.

The Am29112 features a high speed adder with full carry
lookahead across 8-bits. The adder is used for PC relative
addressing (branch address is PC + D), multiway relative
addressing (branch address is D + M, where M is the 4-bit
multiway input), and for testing the stack pointer against the D
bus. In cascaded configurations, carry ripples from the LSS
adder to the MSS adder over the CIO line.

The on-chip stack is 33 deep, and the Am29112 has instruc-
tions to save the D inputs, counter, multiway register, and PC-
register on the stack. The stack output bus is connected via
three-state buffers to the D port. It is possible to pop the stack
to the D port.

0p-0;

\4
_1
. STACK
SYKERR commano < counTer < 33x8
|
UINTR
e _1
ﬂ'ﬁ STACK MUX
WTD INTERRUPY O WIDTH
C> LOGKC '
< T L
Vee s DBUS FBUS || -,
C GND 2 A MUX ,1‘@
L8 { |
o \V4
" INTvECT ADOER
= L
S ACIO
[@ PCIO ﬁ
=
c10 =
3 20 € MUX PC <
=
CCEN —
& [INTRTN INC
;—S&' INSTRUCTION L
[S 5 INSTRUCTION PLA
7
, MODE
(- 7 .
HOLD Yo~ Yy
BD001931

Figure 3. Am29112 48-Pin Package.

INSTRUCTION SET OF THE Am29112
MODE BITS (lg, s5)

The Am29112 is controlled by 5 instruction inputs, two mode
inputs, and the condition code. In typical applications it is
expected that the instruction inputs are driven directly from the
pipeline, whereas the mode inputs are either permanently
wired high or low to select the desired operating mode, or
driven indirectly via external logic. (In some applications it
might be justifiable to drive the mode bits directly from the
pipeline.) The two mode bits select among three operating
modes: normal (00), extended (01) and forced continue (10
and 11). In the normal mode, the entire instruction set of the
Am29112 applies.

TABLE 1. MODE CONTROLS

lg,5 Mode Description

For cascaded Am29112s, two inde-

00 Normal pendent 8-bit counters

01 Extended For cascaded Am29112s, one 16-bit

counter
10 The Am29112 executes a continue
Forced . . : .
Continue instruction regardless of instruction,
11 condition code, and multiway inputs.

EXTENDED MODE

The instruction set includes instructions that differentiate
between upper and lower counters (when there are two
cascaded Am29112s). In the normal mode, the two counters
on cascaded Am29112s function independently, and it is
possible to set up a doubly nested loop without having to save
and restore counter values on the stack. in the extended
mode, however, the counters on cascaded Am29112s behave
like one 16-bit counter and instructions that differentiate
between the counters degenerate into identical instructions.
Hence in a system with only one Am29112 there is no use for
the extended mode.

FORCED CONTINUE MODE

In the forced continue mode the Am29112 executes a
continue in every cycle regardless of the instruction bits,
condition code, and multiway inputs. The simplest application
(if mode bits are driven directly from the pipeline) is to use
forced continue for straight-line segments of code thereby
permitting most of the sequencer control fields of the pipeline
to be shared. The forced continue also has an important
application in systems with a writeable control store where it is

necessary to step through the addresses sequentially while
loading the WCS.

The instructions of the Am29112 are classified into four
groups:

Branching and subroutine linkage
Looping

Stack and register

® Interrupt

The sequencer has an instruction repertoire of altogether 40
different instructions. In order to encode these instructions
with only 5 instruction lines, the condition code is used in some
cases to differentiate between two distinct instructions sharing
the same opcode. This way of encoding is used for the stack
and register, and interrupt groups of instructions. For these
instructions, therefore, the condition code multiplexer is not
used to select an external condition. However it is required to
force the condition code to unconditional Pass or Fail. The
condition code enable and polarity logic has been designed
with this in mind. Using the enable and polarity, it is possible to
generate both unconditional Pass and unconditional Fail
(regardless of the condition code input). Hence the condition
code for these instructions is like a sixth instruction line, and
the condition code multiplexer field of the pipeline can be
shared for these instructions (see Figure 4 and Table 2).

CCEN E
CONDITION

PF001060

Figure 4. Condition Code Circuit.

TABLE 2. CONDITION CODE TABLE

CCEN | CC | POL Condition
0 0 0 PASS
0 1 0 FAIL
0 0 1 FAIL
0 1 1 PASS
1 0 0 PASS
1 1 0 PASS
1 0 1 FAIL
1 1 1 FAIL

Am29112 Instruction Set

Opcode (lag) Condition Mnemonic Description
0 X JzZ.U UNCONDITIONAL JUMP ZERO
1 PASS PUSHD.P PUSH D (PASS)
1 FAIL LDCMD.F LOAD COMMAND REGISTER FROM D (FAIL)
2 COND POP.C POP; CONDITIONAL STACKOUT TO D
3 COND CcJD.C CONDITIONAL JUMP D
4 COND CJSD.C CONDITIONAL JUMP SUBROUTINE D
5 COND CJMW.C CONDITIONAL JUMP MULTIWAY D
6 COND CJSMW.C CONDITIONAL JUMP SUBROUTINE MULTIWAY D
7 COND CRTN.C CONDITIONAL RETURN
8 COND PUSHPL.C PUSH PC; COND LOAD LOWER COUNTER
9 COND LDLC.C LOAD LOWER COUNTER; COND PUSH COUNTER
10 X POPLC.U POP TO LOWER COUNTER
1 PASS RSTSP.P RESET STACK POINTER (PASS)
11 FAIL LDINTV.F LOAD UNMASKABLE INTERRUPT VECTOR (FAIL)
12* PASS RFCTU.P REPEAT LOOP, UPPER COUNTER = 0 (PASS)
12* FAIL RFCTL.F REPEAT LOOP, LOWER COUNTER =0 (FAIL)
13** PASS RPCTU.P REPEAT PIPELINE, UPPER COUNTER = 0 (PASS)
13** FAIL RPCTL.F REPEAT PIPELINE, LOWER COUNTER =0 (FAIL)
14 COND LOOP.C TEST END LOOP
15 PASS ENINT.P ENABLE INTERRUPTS (PASS)
15 FAIL DISINT.F DISABLE INTERRUPTS (FAIL)
16*** COND TWBL.C THREE-WAY BRANCH, LOWER COUNTER
17+ COND TWBU.C THREE-WAY BRANCH, UPPER COUNTER
18 PASS TSTSP.P TEST SP WITH D (PASS)
18 FAIL TSTMT.F JUMP D IF STACK NOT EMPTY
19 COND CJDF.C COND JUMP D/STACK AND POP
20 COND CJSDF.C COND JUMP SUBROUTINE D/STACK AND POP
21 COND CJMWR.C COND JUMP MULTIWAY RELATIVE D
22 COND CJSMWR.C COND JUMP SUBROUTINE MULTIWAY RELATIVE D
23 COND CJPP.C COND JUMP PIPELINE AND POP
24 COND PUSHPU.C PUSH PC; COND LOAD UPPER COUNTER
25 COND LDUC.C LOAD UPPER COUNTER; COND PUSH COUNTER
26 PASS POPUC.P POP TO UPPER COUNTER (PASS)
26 FAIL POPDW.F POP TO DISPLACEMENT WIDTH (FAIL)
27 COND LDOW.C LOAD DISPLACEMENT WIDTH; COND PUSH DW
28 COND CJR.C COND JUMP D PC REL
29 COND CJRN.C COND JUMP D PC REL NEGATIVE
30 COND CJSR.C COND JUMP SUBROUTINE D PC REL
31 COND CJSRN.C COND JUMP SUBROUTINE D PC REL NEGATIVE

* These instructions are identical in the extended mode.
**These too.
***These too.

Extensions: U - unconditional; C - conditional; P — PASS condition; F — FAIL condition.
Note: PASS/FAIL condition can be produced as follows. P stands for polarity and | for input:

CC |CCEN| POL | Condition
X 1 0 PASS
X 1 1 FAIL
| 0 P COND

0 Jump Zero (JZ.U)

1 Push D (PUSHD.P)

1 Load Command Register

from D (LDCMD.F)

00 SA 50 6E
()] 5B 51 6F
02 5C 52 70
STACK COMMAND REGISTER

03 sD 53 7

54 72

PF0O00600 PF000620 PF000611
UNCONDITIONAL FORCED PASS FORCED FAIL

2 Pop and Conditional Stack-

out to D (POP.C)

3 Conditi

onal Jump D (CJD.C)

4 Conditional Jump Subroutine
D (CJSD.C)

6A 9
92 STACK
3 68
32 6C 0 b
] D 94 D
2@ @ 6D (D) (D)
34 D PORT 6E § (D) +1 95 D) +1
3 6F ¢ (D) +2 96 (0) +2
s PASS
70 ¢ (D) +3 97 (0) +3
PF000571
FAIL PASS FAIL PASS
PFO00580 PF000550
CONDITIONAL CONDITIONAL CONDITIONAL

6 Conditional Jump Subroutine
Multiway D (CJSMW.C)

7 Conditional Return (CRTN.C)

5 Conditional Jump Multiway D
(CIJMW.C)

p 10 STACK
Ao 2
. 1
2% b 12
A2
27
A b 13
Ad 2 POP L B
AS 29 p 15
a6 24
FAIL PASS 8
PF000550
PF000560 FAIL PASS
PF000540
CONDITIONAL CONDITIONAL CONDITIONAL

8 Push PC and Conditional

Load Lower Counter
(PUSHPL.C)

STACK
{UNCONDITIONAL)

29 LOWER COUNTER
PASS

PF000511

CONDITIONAL

9 Load Lower Counter and
Conditional Push Counter
(LDLC.C)

LOWER COUNTER
(UNCONDITIONAL)

PASS
PF000521

CONDITIONAL

10

Pop to Lower Counter
(POPLC.U)

4A
4B

ac($)

40

4E @

4 LOWER COUNTER
PFO00531

UNCONDITIONAL

11 Reset Stack Pointer
(RSTSP.P)

LT 3
18 ¢

1© @—()
1

] STACK POINTER

PF000460

FORCED PASS

11

Vector (LDINTV.F)

2C ¢
20 ¢

x®——0@

2F @ INTVECT
REGISTER

PF000470

FORCED FAIL

Load Unmaskable Interrupt

12 Repeat Loop, Upper Count-
er (RFCTU.P)

22

23

24 UPPER COUNTER

25

27
28

PF000790

FORCED PASS

12 Repeat Loop, Lower Count-
er (RFCTL.F)

PF000440

FORCED FAIL

13 Repeat Pipeline, Upper
Counter (RPCTU.P)

UPPER COUNTER

9 D=19
20
2

PF000451

FORCED PASS

13

Repeat Pipeline, Lower
Counter (RPCTL.F)

LOWER COUNTER

19 D=1g

PF000781

FORCED FAIL

14 Test End Loop (LOOP.C)

4F
STACK

51
52 FAIL

PASS
PF000421

CONDITIONAL

15 Enable Interrupts (ENINT.P)

12

14

15 ENABLE
MASKABLE
INTERRUPTS

PF000430

FORCED PASS

15 Disable Interrupts (DISINT.F)

15 DISABLE
MASKABLE
INTERRUPTS

PF000390

FORCED FAIL

16 Three-Way Branch, Lower
Counter (TWBL.C)

STACK

Ay

{D) +1
D) +2

D)y+3

PFO00411

CONDITIONAL

17 Three-Way Branch, Upper
Counter (TWBU.C)

STACK

o —y

{D)+1
D) +2
O +3

PF000411

CONDITIONAL

18 Test SP with D (TSTSP.P)

STACK

cs 47 TESTSPWITHD
48
49
NOT 4A
ENOUGH ENOUGH
SPACE SPACE

PF000400

FORCED PASS

18 Jump D if Stack Not Empty

(TSTMT.F)
45
a6
a7
48)
49 D) +1
4A (D) + 2
STACK STACK
EMPTY NOT EMPTY
PF000660
FORCED FAIL

19 Conditional Jump D/Stack
and Pop (CJDF.C)

(70) stack
POP

UNCONDITIONAL

70 (0)

n (STK) +1) +1

72 (STK) + 2 (0} +2
73 (STI) + 3
FAIL PASS
(STACK) [}
PF000691
CONDITIONAL

20 Conditional Jump Subrou-
tine D/Stack and
Pop (CJSDF.C)

STACK

POP STACK
PUSH 65

70 (D}

D) +1

(STK)

n (STK) + 1

72 {STK) + 2 D) +2

73 (STK) + 3

FAIL PASS
(STACK) (D)
PF000681
CONDITIONAL

10

21 Conditional Jump Multiway
Relative D (CJMWR.C)

r
L)
zo
"

A4 Be

FAIL PASS

PFO00670

CONDITIONAL

22 Conditional Jump Subrou-
tine Multiway Relative D
(CJSMWR.C)

FAIL PASS
PF000700
CONDITIONAL

23 Conditional Jump Pipeline —!

and Pop (CJPP.C)

STACK
63 ¢
POP STACK
o IF PASS
85 §
pod
67 ¢ (D)
68) +1
) +2
FAIL PASS
PF000760
CONDITIONAL

24 Push PC and Conditional
Load Upper Counter
(PUSHPU.C)

2 9
STACK

me)@%@m

27

1

UPPER COUNTER
PA

3
29 ¢ SS

2A

PF000730

CONDITIONAL

25 Load Upper Counter and
Conditional Push Counter
(LDUC.C)

UPPER COUNTER
UNCONDITIONAL

PF000710

CONDITIONAL

26 Pop to Upper Counter
(POPUC.P)

®
(Emcs)

aA
4B
ac
4D
€ UPPER COUNTER
aF

PF000770

FORCED PASS

26 Pop to Displacement Width
(POPDW.F)

7 1L

74 DWIDTH REG

3

7 @

PF000720

FORCED FAIL

27 Load Displacement Width
and Conditional Push DW
(LDDW.C)

DWIDTH REG
1A(QY” UNCONDIIONAL

STACK
1E PASS

PF000740

CONDITIONAL

28 Conditional Jump D PC
Relative (CJR.C)

4A
D** =2
48
AC JUMP ADDRESS IS
{PC) + D**
40
PASS
FAIL 4E
4aF

PF000750

D** is displacement (see Note 1).
CONDITIONAL

29 Conditional Jump D PC Rel-
ative Negative (CJRN.C)

49 0% = -2 4A
“ PASS L0
4B .«
ac JUMP ADDRESS IS 40
© (PC) + D** "

FAIL
PF000490
D** = -2, should be two's comple-

ment (see Note 2).
CONDITIONAL

30 Conditional Jump Subrou-
tine D PC Relative (CJSR.C)

JUMP ADDRESS IS
(PC)+ O

D**is displacement (see Note 1).
CONDITIONAL

31 Conditional Jump Subrou-
tine D PC Relative Negative
(CJSRN.C)

49
STACK

PASS

D** = -2

4A
48

4c JUMP ADDRESS IS

40 (PC) + D**

FAIL

PF000480

D** = -2, should be two's comple-
ment (see Note 2).
CONDITIONAL

Notes: 1. The number of bits of D used as displacement is stored in DWIDTH register. The remaining high order bits are

zero-extended.

2. The number of bits of D used as displacement is stored in DWIDTH register. The remaining high order bits are

one-extended.

BRANCHING INSTRUCTIONS
Direct Branching

Instruction 0 is the unconditional jump to zero instruction. This
instruction also resets the stack pointer and the interrupt logic
as well as setting command register as follows: CR(0) =1,
CR(1) = LSS, CR(2) =1.

Direct branching is implemented by instruction 3 (COND JUMP
D) and 4 (COND JSB D). The branch address is input through
the D port. If the condition is PASS, the branch is taken,
otherwise the sequencer executes a continue. Two-way direct
branching is implemented by instruction 19 (COND JMP D/
STACK) and instruction 20 (COND JSB D/STACK). If the
condition is Pass, the branch address is taken from the D input
port, otherwise, the branch address is taken from the stack. In
either case the stack is popped. This instruction assumes that
the alternative address was pushed on the stack by a previous
instruction. Jump to subroutine differs from JUMP in that the
PC register is pushed on the stack. This enables the subrou-
tine to use COND RETURN (7) to return to the point of call.
Note that the two-way jump to subroutine (20) causes a
simultaneous pop and push so that the stack pointer is
unaffected but the top of stack element is replaced by the
return address.

Relative Branching

In the relative branch instructions, a dynamically alterable
subfield of the D inputs is added to the PC to form the branch
address. The remaining most significant bits of the D inputs
are ignored and internally converted to all 0's for forward
branches and all 1's for backward branches. The displace-
ment width (OWIDTH) register in the Am29112 holds the
number of least significant bits of D that participate in the
relative branch as the displacement, and can be loaded from
the lower four bits of the D port. In cascaded systems, the
displacement width has to be loaded consistently in the two
chips. For example, for a displacement width of 9, the lower
order chip gets a displacement width of 8 and the higher order
chip gets a displacement width of 1. As another example, if the
lower order chip has a displacement width of less than 8 bits,
the higher order chip must have a displacement width of zero.

If the displacement width register is loaded with any value
greater than 8, it is exactly as if it were loaded with 8.

Instruction 28 (29) is the relative jump (jump back) instruction,
and instruction 30 (31) is the reiative jump to subroutine (jump
back to subroutine) instruction. For backward relative branch-
es, the displacement must be coded as a two's complement
negative number. When the displacement width is the same as
the microaddress width the forward and backward relative
branch instructions are identical. When the displacement
width is less than the microaddress width, the more significant
bits of D outside the displacement are forced to all zeros for
positive branches and to all ones for negative branches. This
is effectively sign extension except that the sign information is
contained in the instruction rather than the displacement, and
there is no need for sign information to propagate between
cascaded chips since it is assumed that the displacement
width registers in the two chips have been consistently loaded.

The disadvantage of having the sign information in the
instruction rather than the displacement can be overcome by a
judicious choice of instruction format. The opcodes for forward
and backward relative branch instructions have been chosen
to differ in the least significant bit position only, with a ‘0’ in
that bit for forward branches and a "1’ for backward branches.
If the sequencer instruction field is contiguous with and on the
more significant side of the displacement field in the pipeline
register, then the least significant instruction bit is like the sign
bit for the displacement for relative branch instructions. This
permits the assembler to use the same opcode for forward
and backward relative branch instructions, but overlap the
displacement field (now declared to be one bit longer than the
actual displacement field in the pipeline} with the sequencer
instruction field by one bit. If the assembler now generates a
negative displacement, the sequencer opcode formed is the
backward branch; while if the displacement is positive, the
sequencer opcode formed is forward branch.

When the instruction is executed, the PC already has been
incremented and points to the next sequential instruction,
hence a forward branch with a displacement of 0 causes the
next sequential instruction to be executed.

12

PF000500;

Multiway Branching

Two variants of multiway branching are available on the
Am29112 - multiway substitute D and muitiway relative D. In
multiway substitute D the 4 multiway inputs directly replace the
4 least significant bits of the branch address input at D.
Instruction 5 is a conditional multiway branch and instruction 6
a conditional multiway subroutine call. In these instructions,
the least significant 4 bits of the D input port are not used by
the sequencer, and may be shared, for instance to select
among different sets of multiway inputs.

Multiway branching has the disadvantage that the jump table
must be aligned on a 16 word boundary. This disadvantage is
overcome in the Am29112 multiway relative branching instruc-
tions. In these instructions, the number input on the multiway
pins is added to the branch address input at D. Instruction 21
is a conditional multiway relative branch and instruction 22 a
conditional multiway relative subroutine call.

One of the advantages of multiway branching is that it enables
a 16 way decision to be made in exactly one microcycle.
However, the 16 target addresses are constrained to be
contiguous in memory. Hence, if the target routines need more
than one microword each, as is very likely, they are addressed
indirectty through a table of 16 contiguous branch instructions.
For very high speed applications, the extra microcycle needed
to branch indirectly off the jump table may not be acceptable.
This penalty is avoidable if the multiway bits are offset with
respect to the D inputs. When two cascaded Am29112s are
used, there are two sets of 4-bit multiway inputs. The least
significant chip has a multiway input with no offset, while the
most significant chip has a multiway input with an 8-bit offset.
The Am29112 command register has a bit CR(1) that enables
or disables multiway branching on the chip. in a system with
two cascaded Am29112s, each chip has a command register
bit. Multiway branching may be disabled in either chip by
resetting the command register bit on that chip, or enabled by
setting the command register bit. When muitiway branching is
disabled on a chip, for that chip both multiway and multiway
relative branches are converted to direct branches, and the
multiway inputs are a Don't Care. Multiway branching with an
8-bit offset is implemented by disabling multiway in the least
significant slice and enabling it in the most significant slice. In
this case, the 16 target addresses are dispersed in memory,
separated by 256 locations each. Another useful configuration
is obtained by enabling multiway on both chips. In this case, up
to 16 sets of target addresses are dispersed in memory,
separated by 256 locations each.

The Am29112 does not have an unconditional continue in its
instruction set. This is not expected to be a drawback because
the instruction set requires that both unconditional PASS and
unconditional FAIL are programmable by the sequencer to
select among different instructions sharing the same opcode.
Hence, a continue is obtained by executing instruction 3
(COND JUMP D) with a forced FAIL condition.

LOOPING INSTRUCTIONS

The looping instructions on the Am29112 are of two kinds:
conditional, which depend on an external condition to signal
loop termination, and iterative, which decrement the Am29112
counter and check for a count of zero. There is also a three-
way branch instruction that combines the check for external
condition with the check for count of zero in a single
instruction.

All the looping instructions are similar in two respects. Firstly,
the check for the loop condition is done at the end of the loop.
This implies that the loop body is always executed at least
once. Secondly, in the case that the loop has to be repeated, a
backward branch to the loop head is made by using the

address on top of stack. This frees the D inputs for other use,
but makes it necessary to push the address of the start of the
loop on the stack before entering the loop. Also, if the loop is
iterative, it is necessary to load a count value in the counter at
the same time. Instructions 24 (PUSH PC; COND LOAD
UPPER COUNTER) and 8 (PUSH PC; COND LOAD LOWER
COUNTER) combine both these requirements.

Instruction 14 implements a simple conditional repeat loop. If
the condition is FAIL the sequencer loops back using the top
of stack address, and if the condition is PASS, the sequencer
performs a continue to the next sequential address, and
simultaneously pops the stack to remove the address of the
loop head. The instruction may be described in Pascal-like
syntax as:

repeat PUSH PC
LOOP BODY
until condition = TRUE;

Instruction 23 (COND LOOP EXIT) implements a loop exit that
may be used with any of the Am29112 loop instructions. It is a
conditional jump to D, which simultaneously pops the stack. If
the condition is FAIL, it simply performs a continue.

As discussed earlier, the counters present in cascaded
Am29112s may be used independently or cascaded as a
single 16-bit counter under microprogram control. The mode
bits select the cascaded configuration only in the extended
mode. There are separate repeat and three-way branch
instructions for upper and lower counters. In the case of the
repeat instructions, the condition code is used to differentiate
between the repeat on the upper and the repeat on lower
counter (a condition of PASS selects the upper counter). In the
case of the three-way branch, which needs the condition code
input for the external condition, there are two separate
opcodes for three-way branch on upper (opcode 17) and
three-way branch on lower (opcode 16). When a single
Am29112 is used only the repeat on lower counter instructions
are useful; and when two Am29112s are cascaded but
operated in the extended mode, the repeat instructions on
upper and lower counter are identical in effect and both
operate on the 16-bit cascaded counter.

Instruction 12 (REPEAT LOOP {F COUNTER NOT ZEROQ) is
the iterative analog of instruction 14 (CONDITIONAL REPEAT
LOOP). Instruction 8 (PUSH PC; COND LOAD COUNTER) is
used with condition code as forced PASS and the desired
count in the D field of pipeline. This causes the address of the
loop head to be pushed on the stack, and the lower counter
loaded with the count. At the end of the loop body, the repeat
instruction checks if the count is zero. If it is not zero, it
performs a loop back using the top of stack address and
simultaneously decrements the counter: if it is zero, it pops the
address of the loop head off the stack and simultaneously
selects the next sequential address thereby exiting the loop. A
repeat loop on the upper counter can be set up using
instruction 24 instead of 8 to push PC and load upper counter
and using instruction 14 to loop back with condition code as
forced PASS. Note the potential off-by-one error: since the
count is checked before it is decremented, a count of 1 causes
two iterations: the first iteration finds a count of 1 and
decrements; on the second iteration the count is found to be
zero and the loop terminates. Hence, the value of count
loaded should be one less than the desired number of
iterations. In the example above, loading the counter with 7
resulted in 8 iterations.

The single instruction repeat (instruction 13} is provided for
applications where the loop body is a single microinstruction,
for example, an ALU shift. The loop is set up as before using
instruction 9 or 25 (LOAD COUNTER AND COND PUSH
COUNTER). The repeat instruction then presents its own

address to the D inputs of the sequencer. As with the repeat
loop instruction, the single instruction repeat checks for
counter = 0. If the counter is equal to zero, it continues to the
next sequential instruction; otherwise it repeats the address
presented to the D inputs, which is its own address, and
decrements the count by one. Instruction 13 can also be used
in place of instruction 12 where there is no stack location
available to hoid the address of the loop head.

Often it is necessary to repeat an action until either some
external condition becomes true or a predetermined count is
reached: for example, searching a character string for an
occurrence of some character. The three-way branch instruc-
tions of the Am29112 combine the test for count and external
condition in one cycle. At any toop iteration, if the condition
becomes PASS when the three-way branch is executed, then
the sequencer performs a continue to the next sequential
instruction, and pops the stack. If the condition is FAIL when
the three-way branch is 'xecuted, the sequencer tests the
count. If the count is zero, then the search is unsuccessful and
the sequencer performs a branch to the address input at the D
port, simultaneously popping the stack. If the count is not zero,
and the condition is FAIL, the sequencer performs a loop back
via the stack. The instruction always decrements the counter
by one if the counter is non-zero.

Since interrupts may occur at any point in the execution of
microcode, it is necessary to be able to save counter values
on the stack so that the interrupt routines can use the counter
without interfering with the operation of the interrupted code.
The sequencer provides instructions that permit arbitrary
nesting of loops and subroutine calls. instruction 9 (LOAD
LOWER COUNTER; CONDITIONAL PUSH COUNTER) can
be used to load the lower counter from the D port. If the
condition is PASS, then the instruction also causes the old
counter value to be pushed on the stack. To restore the
counter from the stack, instruction 10 (POP TO LOWER
COUNTER) can be used with a forced FAIL condition.
Instructions 25 (LOAD UPPER COUNTER; CONDITIONAL
PUSH COUNTER) and 26 (COND POP TO UPPER COUNT-
ER/POP TO DISPLACEMENT WIDTH) are the counterparts
for operating on the upper counter. Note that in cascaded
systems, when the counter is pushed, regardless of whether
instruction 25 or instruction 10 is executed, the entire counter
is pushed to keep the stack balanced in the two Am29112s.

STACK AND REGISTER INSTRUCTIONS

In addition to all the instructions mentioned eartier that
explicitly or implicitly alter the stack, the Am29112 has some
specialized instructions for stack manipulation.

The stack on the Am29112 is 33 deep. Attempting to push
when the stack is full or to pop when the stack is empty
causes the STACK ERROR signai out of the Am29112 to be
generated. The error is latched internally and persists until
either the chip is reset or the stack is popped in case of
overflow or pushed in case of underflow. When the stack
overflows, the stack pointer does not wrap around, and ail
subsequent pushes on the full stack write over the top-of-
stack location.

The stack on the Am29112 can be loaded through the D port
using instruction 1 (COND PUSH D/LOAD COMMAND REG-
ISTER) with condition as forced PASS and unloaded out of the
D port using instruction 2 (POP; COND STACKOUT TO D) with
a forced PASS condition. In the stackout instruction the D port
becomes an output port. Care must be taken to avoid
contention on the D bus when this instruction is executed. The
D bus is output enabled while CP is low for this instruction. The
ability to load and unload the stack is useful for implementing
context switches. For fast unloading of the stack, a tight two-
instruction loop can be set up using instruction 12 (POP;

COND STACKOUT TO D) with a forced FAIL condition and
instruction 18 (COND TEST SP/BRANCH STACK NOT EMP-
TY) also with a forced FAIL condition. The branch instruction
performs a branch to D if the stack is not empty.

The stack nesting level in an interruptible sequencer varies
dynamically. Hence, the Am29112 is provided with instructions
for checking the available stack space: instruction 18 (COND
TEST SP/BRANCH STACK NOT EMPTY). Two distinct in-
structions for testing the stack pointer have been packed into
the same opcode and are differentiated by the condition code.
A condition code of PASS selects the Test Stack Pointer
instruction. In this instruction, the sequencer tests the stack to
see if there is enough space, as determined by a constant
input at the D port; if there is enough space, the sequencer
performs a continue, whereas if there is not enough space, the
sequencer performs a subroutine return. The number of stack
locations required is input at the D port. In a system with only
one Am29112, the least significant 6 bits of the D are used
within the chip for this instruction. In a system with two
cascaded Am29112s the determination is made independently
in the two chips (since the stack pointer is at all times identical
in the two chips). Hence, the same number must be presented
to the two chips. The adders in the two Am29112s are not
cascaded for this instruction but function independently. in
both Am29112s only the 6 LSBs of the D port are actually
used in the comparison.

INTERRUPT HANDLING

The Am29112 recognizes two kinds of interrupts: maskable
and unmaskable. Maskable interrupts cause automatic saving
of status on the internal stack and can be inhibited, either
externally via the INTERRUPT DISABLE pin, or internally via
instruction 15 (COND ENABLE/DISABLE INTERRUPT). In
addition, maskable interrupts are disabled when there is not
enough space on the stack to service the interrupt, though this
internal inhibit can be overridden be clearing a bit in the
command register. The unmaskable interrupt, on the other
hand, cannot be disabled and does not cause saving of status
on the internal stack. It is intended for handling abnormal and
irrecoverable situations like power failure or stack overflow.
When an unmaskable interrupt occurs, the sequencer branch-
es to the address of the unmaskable interrupt routine stored in
the INTVECT register. This address is stored on chip at
system initialize time using instruction 11 (COND RESET SP/
LOAD INTERRUPT REGISTER) with a condition of FAIL. if a
maskable interrupt is being processed when the unmaskable
interrupt occurs, the unmaskable interrupt may be delayed at
most one cycle to prevent contention on the Y bus. In any
case, the unmaskable interrupt request should persist for at
least one clock edge.

The Am29112 contains an interrupt disable flip-flop on-chip.
The flip-flop is set by the DISABLE INTERRUPT instruction
(opcode 15 with forced FAIL) and reset by the ENABLE
INTERRUPT instruction (opcode 15 with forced PASS). The
flip-flop output performs the same function as the interrupt
disable pin. On reset, or on receiving an unmaskable interrupt,
the flip-flop is set thereby disabling maskable interrupts.
Hence, at the end of initialization, the ENABLE INTERRUPT
instruction wili have to be executed to reset the flip-flop and
enable maskable interrupts.

In the case of maskable interrupts, the interrupt return address
is saved on the stack automatically. using the INTRTN register.
the INTRTN register is loaded with the CMUX output with
every clock. When an interrupt is acknowledged, the Am29112
output is turned off and the vector applied externally. Howev-
er, the sequencer executes the instruction which is in the
pipeline register in that cycle. The result of executing the
interrupted instruction, namely the next address, does not

14

come out of the Am29112 Y bus because the Y bus is used to
input the interrupt vector. It is clocked into the INTRTN
register. On the first cycle of the interrupt routine, the
sequencer pushes the return address on the stack so that the
interrupt routine returns by doing a COND RETURN, like any
other subroutine.

THE INVISIBLE STACK PUSH THAT THE SEQUENCER
EXECUTES WHEN IT IS INTERRUPTED OCCURS IN THE
FIRST CYCLE OF THE INTERRUPT SERVICE ROUTINE,
HENCE, THE FIRST INSTRUCTION OF THE INTERRUPT
SERVICE ROUTINE MAY NOT BE ANY INSTRUCTION
THAT USES THE STACK.

Before acknowledging an interrupt, the sequencer checks the
stack to see if there is a minimum of five locations to handle
the interrupt. If there is insufficient space on the stack, the
acknowledge is not generated. This feature may be disabled
by a bit in the command register.

CR(0) = 1 INHIBIT ACKNOWLEDGE ON STACK FULL (DE-
FAULT)

CR(0) = 0 GENERATE ACKNOWLEDGE ON STACK FULL
MASKABLE INTERRUPTS

The branch vector for maskable interrupts is applied externally
to the Y port of the Am29112. This section discusses the
system timing considerations and their impact on interrupt
handling in the Am29112.

Figure 5(a) shows.a general system configuration highlighting
the interrupt portion of the circuitry and the control loop. A
priority interrupt controller generates an interrupt request for
the highest priority pending interrupt. This request is applied to
the MINTR pin of the Am29112. If the request is not masked,
the Am29112 puts out an acknowledge on the MINTA pin. The
interrupt controller then puts out the encoded priority of the
highest priority interrupt to the vector PROM, which maps the
priority code into a vector.

The MINTA line turns on the vector PROM output at the same
time as the Y port on the Am29112 is three-stated. Hence, the
interrupt vector gets onto the micromemory address bus and
is also input into the Am29112, and incremented to form the
next address. The Am29112 saves the return address on the
stack so that when the interrupt service routine does a
subroutine return, control returns to the instruction following
the interrupted instruction.

The maskable interrupt request is synchronized on the
Am29112. if there is no disable, therefore, the acknowledge
always is active in the cycle following the request. However,
the acknowledge to Y bus three-stating delay is programma-
ble: the Y bus three-stating signat can occur either in the same
cycle as, or in the cycle foliowing, the MINTA acknowledge,
depending on a bit in the command latch of the Am29112.

The command register bit that programs the postdeiay option
is bit 2, the third least significant bit. The command register
has 3 bits altogether and is loaded from the 3 LSBs of the D
inputs using instruction 1 (COND PUSH D/LOAD COMMAND
REGISTER) with a condition of PASS. Note that in a system
with two cascaded Am29112s, the 0 and 2 bits of the
command registers in the two chips must both be loaded with
the same data on system initialization. The postdelay bit in the
command register selects the postdelay option when it is zero.

Figure 5(b) shows the configuration without postdelay, includ-
ing a simplified view of the acknowledge circuit. The acknowl-
edge is granted at the same time the Y output of the Am29112
is three-stated and the vector PROM enabled by the MINTA
signal out of the Am29112. The critical delay path in this case

is clock to acknowledge (Am29112) + acknowledge to priorm
out (interrupt controller) + vector PROM access
time + microprogram memory access time + pipeline setup
time. Obviously, this delay will have a significant impact on
overall cycle time. However, in slow systems or in systems
where the vector is always available immediately with ac-
knowledge, this configuration is acceptable. It is also accept-
able if the vector mapping PROM is made part of the
microprogram memory by dedicating the locations in low
memory addressed by the priority to hold vectors to the
corresponding interrupt routines.

Figure 5(c) shows a simplified view of the Am291 12 configured
with postdelay active. An external D-type flip-flop adds a one
cycle delay to the MINTA signal before it switches the output
enable on the vector register. The interrupt request to ac-
knowledge delay is the same as in the circuit with postdelay
inactive, but the Y bus three-stating signal occurs one cycle
later than the acknowledge. The criticat path has been broken
into two with the register at the vector PROM output. In this
case the critical delay path is cut short by the microprogram
memory access time. While the vector PROM accesses the
interrupt vector, the microprogram memory accesses the next
sequential instruction. This implies that one more instruction of
the interrupted code executes after the cycle in which the
acknowledge is granted. (If that instruction happens to be a
DISABLE INTERRUPT instruction, then even though no more
interrupts will be accepted by the Am29112, the interrupt
which has been acknowledged goes through and the corre-
sponding interrupt service routine may enable interrupts again
using the ENABLE INTERRUPT instruction.)

The command register bits are summarized below:

CR(0) : Interrupt acknowledge on stack full
CR(0) = 1 : inhibit acknowledge on stack full
(default)
CR(0) = 0 : generate acknowledge on stack full

CR(1) : Multiway enable
CR(1) =1 : enable multiway branching
(default for LSS)
CR(1) =0 : disable multiway branching
(default for MSS)
CR(2) : Interrupt postdelay flip-flop

CR(2)=1: no postdelay (defauit)
CR(2) = 0 : postdelay

On reset & JZU: CR(0) = 1
CR(1) = LSS
CR(2) =1

HOLD

The Am29112 is equipped with a HOLD pin for configurations
utilizing more than one sequencer driving a common micropro-
gram address bus. In such situations, it is necessary to cause
the unselected sequencer to hold its internal state while some
other sequencer executes, so that it can resume execution at
the point where it was held. The HOLD pin, when asserted,
three-states the Y bus, forces low the carry into the PC
incrementer, and selects the internal CMUX output (instead of
the Y bus) at the incrementer input. To complete the HOLD
function, it is also necessary to disable interrupts and to put
the sequencer into the forced continue mode. Under these
conditions, the value of the PC is recirculated through the
CMUX and the incrementer until the HOLD is released, and all
the remaining state bits in the sequencer are not altered
because of the forced continue.

15

7

CR(2) = 1{DEFAULT)

| PIPELINE REG l

PF000371

Figure 5a. Interrupt Control Loop.
Note: The INTD connection directly from microprogram
memory.

|emerceEncY &
DETECT
[
VECTORED
PRIORITY
o INTERRUPT
] vec‘rouevo l- CONTROLLER - Amz9112
——] WTERRUPT GNTR | REQ
CONTROLLER Wi
. } WINTA
. REQ WNTR — ACK ’
. Am29W12 PRIORITY
] ACK MINTA
PRIORITY —{ Nvo
—=] INTD
v
[3
VECTOR
OF INTERRUPT PROM
VECTOR
A [
VECTOR
PROM
MICROPROGRAM
MEMORY
ROPROGRAM
MEMORY T

PF001112

Figure 5b. No Postdelay.

cP

VECTORED
e Am29112
INTERRUPT
| ~1 conTRoLLER
WINTR
| REQ
| WINTA
LN ACK
PRIORITY
ce
[
('3
VECTOR VECTOR
PROM oLD
REGISTER
II\
cp MICROPROGRAM
MEMORY

PF000341

Figure 5c. With Postdelay.

PHYSICAL DIMENSIONS -~~~
D-48-2 '

The International Standard of
Quality guarantees a 005% AQL on all
electrical parameters, AC and DC,

over the entire opera;'ﬁige.

18

U.S. AND CANADIAN SALES OFFICES

NORTHEAST AREA

Advanced Micro Devices

6 New England Executive Park
Burlington, Massachusetts 01803
Tel: (617) 273-3970

Advanced Micro Devices
(Canada) Ltd.

2 Sheppard Avenue East
Suite 1610

Wiilowdale, Ontario
Canada M2N5Y7

Tel: (416) 224-5193

Advanced Micro Devices
(Canada) Ltd.
AMD

4019 Carling # 301
Kanata, Ottawa

Canada K2K2A3

Ad d Micro Devi
290 Elwood Davis Road
Suite 316

Liverpool, New York 13088
Tel: (315) 457-5400
MID-ATLANTIC AREA

Ad Micro Devi

40 Crossways Park Way
Woodbury, New York 11797
Tel: (516) 364-8020

Advanced Micro Devices
Waterview Plaza, Suite 303
2001 U.S. Route #46
Parsippany, New Jersey 07054
Tel: (201) 299-0002

Ad d Micro D

110 Gibralter Road #110
Horsham, Pennsylvania 19044
Tel: (215) 441-8210

TWX: 510-665-7572

Advanced Micro Devices
Commerce Plaza

5100 Tiighman Street, Suite 320
Allentown, Pennsylvania 18104
Tel: {215) 398-8006

FAX: 215-398-8090

Advanced Micro Devices

205 South Avenue
Poughkeepsie, New York 12601
Tel: (914) 471-8180

TWX: 510-248-4219

Advanced Micro Devices
10 Main Street South
Southbury, Connecticut 06488
Tel: (203) 264-7600

Ad d Micro D s
7223 Parkway Drive # 203
Dorsey, Maryland 21076
Tel: (301) 796-9310

FAX: 796-2040

SOUTHEAST AREA

Ad d Micro Devi
4740 North State Road #7
Suite 102
Ft. Lauderdale, Florida 33319
Tel: (305) 484-8600

Advanced Micro Devices
7850 Ulmerton Road, Suite 1A
Largo, Florida 33541

Tel: (813) 535-9811

Advanced Micro Devices

15 Technology Parkway # 200
Norcross, Georgia 30092

Tel: (404) 449-7920

Advanced Micro Devices

8 Woodlawn Green, Suite 220
Woodlawn Road

Charlotte, North Carolina 28210
Tel: (704) 525-1875

Advanced Micro Devices

303 Williams Avenue Southwest
Suite 118

Huntsville, Alabama 35801

Tel: (205) 536-5505

Advanced Micro Devices
6501 Six Forks, Suite 150
Raleigh, North Carolina 27609
Tel: {919) 847-8471

MID-AMERICA AREA

Advanced Micro Devices
500 Park Boulevard, Suite 940
ltasca, lltinois 60143

Tel: (312) 773-4422

Advanced Micro Devices

9900 Bren Road East, Suite 601
Minnetonka, Minnesota 55343
Tel: (612) 938-0001

Advanced Micro Devices

3592 Corporate Drive, Suite 108
Columbus, Ohio 43229

Tel: (614) 891-6455

Advanced Micro Devices
16985 West Blue Mound Road,
Suite 201

Brookfield, Wisconsin 53005
Tel: (414) 782-7748

FAX: (414) 782-8041

NORTHWEST AREA

Advanced Micro Devices
1245 Oakmead Parkway
Suite 2900

Sunnyvale, California 94086
Tel: (408) 720-8811

Ad d Micro D

One Lincoln Center, Suite 230
10300 Southwest Greenburg Road
Portland, Oregon 79223

Tel: (503) 245-0080

Advanced Micro Devices
Honeywell Ctr., Suite 1002
600 108th Avenue N.E.
Bellevue, Washington 98004
Tel:(206) 455-3600

MID-CALIF AREA

Advanced Micro Devices
360 N. Sepulveda, Suite 2075
El Segundo, California 90245

Tel: 1213) 640-3210

Advanced Micro Devices
21600 Oxnard Street, Suite 675
Woodland Hills, California 91367
Tel: (213) 992-4155

SOUTHERN CALIF AREA

Advanced Micro Devices

4000 MacArthur Boulevard

Suite 5000

Newport Beach, California 92660
Tel: (714) 752-6262

Advanced Micro Devices
9619 Chesapeake Drive #210
San Diego, California 92123
Tel: (619) 560-7030

MOUNTAIN WEST AREA

Advanced Micro Devices
14755 Preston Road, Suite 700
Dallas, Texas 75240

Tel: (214) 934-9099

Advanced Micro Devices
8240 MoPac Expressway
Two Park North, Suite 385
Austin, Texas 78759

Tel: (512) 346-7830

Advanced Micro Devices
1873 South Bellaire Street
Suite 920

Denver, Colorado 80222
Tel: (303) 691-5100

Advanced Micro Devices
40 W. Baseline Road # 206
Tempe, Arizona 85283

Tel: (602) 242-4400

Advanced Micro Devices
1955 W. Grant Road #125
Tucson, Arizona 85745

Tel: (602) 792-1200

INTERNATIONAL SALES OFFICES

BELGIUM

Advanced Micro Devices
Belgium N.V.—S.A

Avenue de Tervueren 412, bte 9
B-1150 Bruxelles

Tel: (02) 771 99 93

TELEX: 61028

FAX: 7623712

FRANCE

Advanced Micro Devices, S.A.
Silic 314, Immeuble Helsinki
74, rue d'Arcueil

F-94588 Rungis Cedex

Tel: (01) 687.36.66

TELEX: 202053

FAX: 686.21.85

GERMANY

Advanced Micro Devices GmbH
Rosenheimer Str. 143B

8000 Muenchen 80 ~

West Germany

Tel: 49 89 41140

TELEX: 05-23883

FAX: 406 490

Ad d Micro D
Feuerseeplatz 4/5
D-7000 Stuttgart 1
Tel: (0711) 62 33 77
TELEX: 07-21882
FAX: 625 187
Advanced Micro Devices GmbH
Zur Worth 6

D-3108 Winsen/Aller

Tel: (05143) 53 62

TELEX: 925287

FAX: 5553

s GmbH

HONG KONG
d Micto Devi
1303 World Commercé Centre
Harbour City -
11 Canton Road
Tsimshatsui, Kowioon
Tel: (852) 3 695377
TELEX: 50426
FAX: (852) 123 4276

ITALY

Advanced Micro Devices S.R.L.
Centro Direzionale

Via Novara, 570

1-201563 Milano

Tel: (02) 3533241

TELEX: 315286

FAX: (39) 349 8000

JAPAN

Advanced Micro Devices, K.K.
Dai 3 Hoya Building

8-17, Kamitakaido 1 chome
Suginami-ku, Tokyo 168

Tel: (03) 329-2751

TELEX: 2324064

FAX: (03) 326 0262

SWEDEN

Advanced Micro Devices AB
Box 7013

$-172 07 Sundbyberg

Tel: (08) 98 12 35

TELEX: 11602

FAX: 298087

UNITED KINGDOM

Advanced Micro Devices (U.K.) Ltd.
AM.D. House,

Goldsworth Road,

Woking,

Surrey GU21 1JT

Tel: Woking (04862) 22121
TELEX: 8591

FAX: 22179

Advanced Micro Devices (U.K.) Ltd.
The Genesis Centre

Garrett Field

Science Park South

Birchwood

Warrington WA3 7BH

Tel: Warrington (0925) 828008
TELEX: 628524

FAX: 827693

ADVANCED MICRO DEVICES 901 Thompson Pi.,

P.O. Box 3453, Sunnyvale, CA 94088, USA

‘ TEL: {408) 732-2400 ® TWX: 910-339-9280 ® TELEX: 34-6306 @ TOLL FREE: (800) 538-8450

© 1984 Advanced Micro Devices, Inc.
Printed in US.A. SOG-B-2M-1/85-0

Advanced Micro Devices cannot assume responsibility for use of any circuitry described other than circuitry embodied in an Advanced Micro Devices' product.

19

