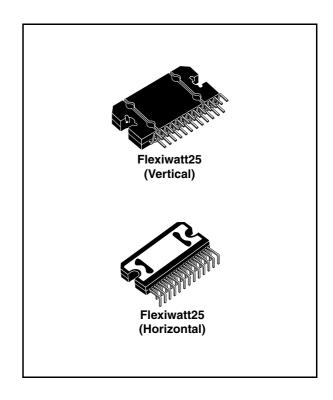


TDA7850


4 x 50W MOSFET Quad bridge power amplifier plus HSD

Features

- Superior output power capability:
 - $4 \times 50W/4\Omega$ Max.
 - 4 x 30W/4Ω @ 14.4V, 1KHz, 10%
 - 4 x $80W/2\Omega$ Max.
 - 4 x 55W/2Ω @ 14.4V, 1KHz, 10%
- MOSFET Output power stage
- Excellent 2Ω driving capability
- HI-FI class distortion
- Low output noise
- ST-BY Function
- Mute function
- Automute at min. supply voltage detection
- Low external component count:
 - Internally fixed gain (26dB)
 - No external compensation
 - No bootstrap capacitors
- On board 0.35A high side driver

Protections:

- Output short circuit to GND, to V_s, across the load
- Very inductive loads
- Overrating chip temperature with soft thermal limiter
- Output DC offset detection
- Load dump voltage
- Fortuitous open GND
- Reversed battery
- ESD

Description

The TDA7850 is a breakthrough MOSFET technology class AB audio power amplifier in Flexiwatt 25 package designed for high power car radio. The fully complementary P-Channel/N-Channel output structure allows a rail to rail output voltage swing, which, combined with high output current and minimised saturation losses, sets new power references in the car-radio field, with unparalleled distortion performances.

The TDA7850 integrates a DC offset detector.

Order codes

Part number	Package	Packing
TDA7850	Flexiwatt25 (Vertical)	Tube
TDA7850H	Flexiwatt25 (Horizontal)	Tube

November 2006 Rev 1 1/14

Contents TDA7850

Contents

1	Bloc	k diagram and pin description5	
2	Elec	trical specifications 6	
3	Арр	lication hints (ref. to the circuit of <i>Figure 3</i>)	
	3.1	SVR 10	
	3.2	Input stage 10	
	3.3	Stand-by and muting	
	3.4	DC offset detector	
	3.5	Heatsink definition	
4	Pack	rage Information	
5	Revi	sion history	

TDA7850 List of tables

List of tables

Table 1.	Absolute maximum ratings	6
Table 2.	Thermal data	6
Table 3.	Electrical characteristcs	6
Table 4.	Revision History	3

List of figures TDA7850

List of figures

	Block diagram	
Figure 2.	Pin connection (Top view)	5
Figure 3.	Standard test and application circuit	8
Figure 4.	P.C.B. and component layout of the <i>Figure 3</i>	9
Figure 5.	Flexiwatt25 (vertical) mechanical data & package dimensions	1
Figure 6.	Flexiwatt25 (horizontal) mechanical data & package dimensions	2

Block diagram and pin description 1

Figure 1. **Block diagram**

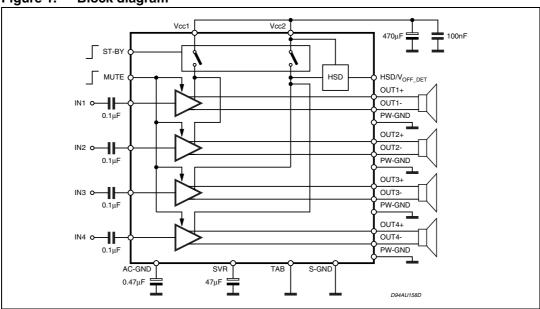
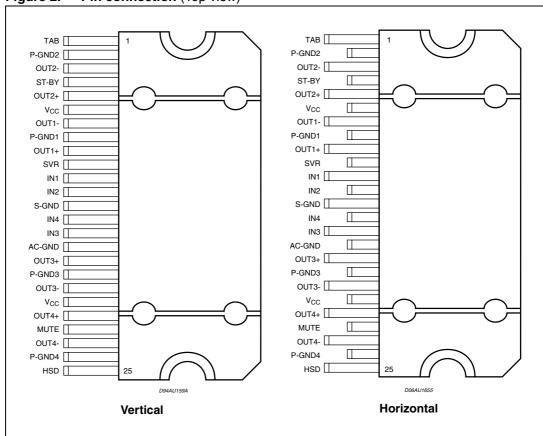



Figure 2. Pin connection (Top view)

2 Electrical specifications

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Operating supply voltage	18	V
V _{CC (DC)}	DC Supply voltage	28	V
V _{CC (pk)}	Peak supply voltage (for t = 50ms)	50	V
I _O	Output peak current repetitive (duty cycle 10% at f = 10Hz) non repetitive (t = 100µs)	9 10	A A
P _{tot}	Power dissipation Tcase = 70°C	80	W
T _j	Junction temperature	150	°C
T _{stg}	Storage temperature	-55 to 150	°C

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal resistance junction to case Max.	1	°C/W

Table 3. Electrical characteristcs

(Refer to the test and application diagram, V_S = 13.2V; R_L = 4 Ω ; R_g = 600 Ω ; f = 1KHz; T_{amb} = 25°C; unless otherwise specified).

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
I _{q1}	Quiescent current	$R_L = \infty$	100	180	280	mA
V _{OS}	Output offset voltage	Play Mode			±60	mV
dV	During mute ON/OFF output offset voltage				±60	mV
dV _{OS}	During St-By ON/OFF output offset voltage				±60	mV
G _v	Voltage gain		25	26	27	dB
dG _v	Channel gain unbalance				±1	dB
Po	Output power	$\begin{split} &V_S = 13.2V; \text{THD} = 10\% \\ &V_S = 13.2V; \text{THD} = 1\% \\ &V_S = 14.4V; \text{THD} = 10\% \\ &V_S = 14.4V; \text{THD} = 1\% \\ &V_S = 13.2V; \text{THD} = 10\%, 2\Omega \\ &V_S = 13.2V; \text{THD} = 1\%, 2\Omega \end{split}$	23 16 28 20 42 32	25 19 30 23 45 34		W W W W
		$V_{S} = 14.4V; THD = 10\%, 2\Omega$ $V_{S} = 14.4V; THD = 1\%, 2\Omega$	50 40	55 43		W W
P _{o max.}	Max. output power (1)	$V_S = 14.4V; R_L = 4\Omega$ $V_S = 14.4V; R_L = 2\Omega$		50 80		W W

TDA7850

Table 3.Electrical characteristcs (continued)
(Refer to the test and application diagram, $V_s = 13.2V$; $R_L = 4\Omega$; $R_g = 600\Omega$; f = 1KHz; $T_{amb} = 25^{\circ}C$; unless otherwise specified).

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
THD	Distortion	$P_0 = 4W$ $P_0 = 15W; R_L = 2\Omega$		0.006 0.015	0.05 0.07	% %
e _{No}	Output noise	"A" Weighted Bw = 20Hz to 20KHz		35 50	50 70	μV μV
SVR	Supply voltage rejection	f = 100Hz; V _r = 1Vrms	50	70		dB
f _{ch}	High cut-off frequency	P _O = 0.5W	100	300		KHz
R _i	Input impedance		80	100	120	ΚΩ
C _T	Cross talk	$f = 1KHz P_O = 4W$ $f = 10KHz P_O = 4W$	60	70 60	-	dB dB
	Ot D. O	$V_{St-B}y = 1.5V$			20	μΑ
I_{SB}	St-By Current consumption	$V_{St-B}y = 0$			10	μΑ
I _{pin5}	St-by pin current	$V_{St-By} = 1.5V \text{ to } 3.5V$			±10	μΑ
V _{SB out}	St-By Out threshold voltage	(Amp: ON)	3.5			V
V _{SB in}	St-By in threshold voltage	(Amp: OFF)			1.5	V
A _M	Mute attenuation	P _{Oref} = 4W	80	90		dB
V _{M out}	Mute out threshold voltage	(Amp: Play)	3.5			٧
V _{M in}	Mute in threshold voltage	(Amp: Mute)			1.5	V
V _{AM in}	VS automute threshold	(Amp: Mute) Att \geq 80dB; $P_{Oref} = 4W$ (Amp: Play) Att $<$ 0.1dB; $P_{O} = 0.5W$	6.5	7 7.5	8	V
		V _{MUTE} = 1.5V (Sourced current)	7	12	18	μΑ
I_{pin23}	Muting pin current	V _{MUTE} = 3.5V	-5		18	μΑ
HSD sect	ion	- MOTE				F** 1
V _{dropout}	Dropout Voltage	$I_O = 0.35A$; $V_S = 9$ to 16V		0.25	0.6	V
I _{prot}	Current Limits		400		800	mA
	tector (Pin 25)		1	I		
V _{M_ON}	Mute voltage for DC offset detection	V 5V	8			V
V_{M_OFF}	enabled	$V_{stby} = 5V$			6	V
V _{OFF}	Detected differential output offset	V _{stby} = 5V; V _{mute} = 8V	±2	±3	±4	V
V _{25_T}	Pin 25 Voltage for detection = TRUE	$V_{stby} = 5V$; $V_{mute} = 8V$ $V_{OFF} > \pm 4V$	0		1.5	V
V _{25_F}	Pin 25 Voltage for detection = FALSE	$V_{stby} = 5V; V_{mute} = 8V$ $V_{OFF} > \pm 2V$	12			V

^{1.} Saturated square wave output.

Figure 3. Standard test and application circuit

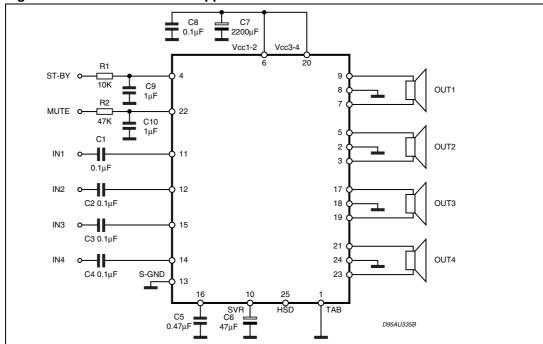
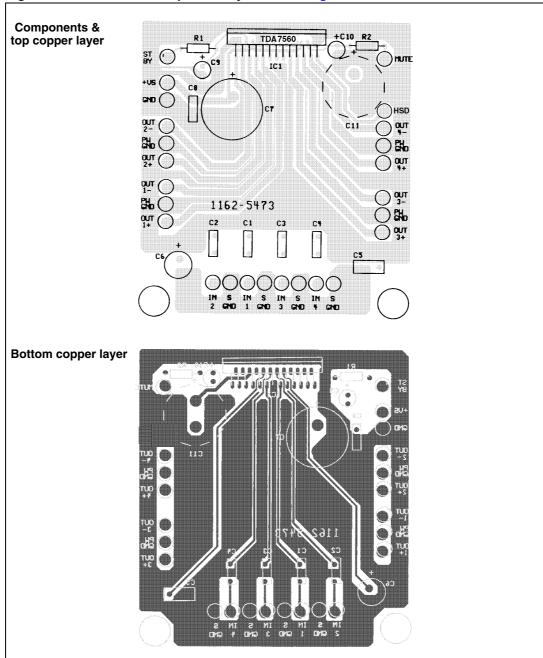



Figure 4. P.C.B. and component layout of the *Figure 3*..

3 Application hints (ref. to the circuit of *Figure 3*)

3.1 SVR

Besides its contribution to the ripple rejection, the SVR capacitor governs the turn ON/OFF time sequence and, consequently, plays an essential role in the pop optimization during ON/OFF transients. To conveniently serve both needs, **Its minimum recommended value is 10\mu F**.

3.2 Input stage

The TDA7850's inputs are ground-compatible and can stand very high input signals (± 8Vpk) without any performance degradation.

If the standard value for the input capacitors (0.1 μ F) is adopted, the low frequency cut-off will amount to 16 Hz.

3.3 Stand-by and muting

STAND-BY and MUTING facilities are both CMOS compatible. In absence of true CMOS ports or microprocessors, a direct connection to Vs of these two pins is admissible but a 470 kOhm equivalent resistance should be present between the power supply and the muting and stand-by pins.

R-C cells have always to be used in order to smooth down the transitions for preventing any audible transient noises.

About the stand-by, the time constant to be assigned in order to obtain a virtually pop-free transition has to be slower than 2.5V/ms.

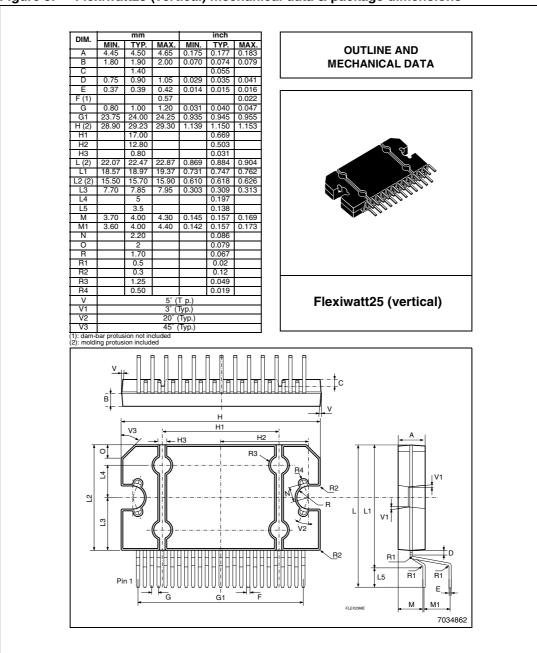
3.4 DC offset detector

The TDA7850 integrates a DC offset detector to avoid an anomalous DC offset on the inputs of the amplifier which may be multiplied by the gain, and result in a dangerous large offset on the outputs, which may lead to speaker damage through overheating.

The feature is enabled by the MUTE pin and works with the amplifier unmuted and with no signal on the inputs. The DC offset detection is signaled out on the HSD pin.

3.5 Heatsink definition

Under normal usage (4 Ohm speakers) the heatsink's thermal requirements have to be deduced from fig. 18, which reports the simulated power dissipation when real music/speech programmes are played out. Noise with gaussian-distributed amplitude was employed for this simulation. Based on that, frequent clipping occurence (worst-case) will cause Pdiss = 26W. Assuming $T_{amb} = 70^{\circ}\text{C}$ and $T_{CHIP} = 150^{\circ}\text{C}$ as boundary conditions, the heatsink's thermal resistance should be approximately 2°C/W. This would avoid any thermal shutdown occurence even after long-term and full-volume operation.

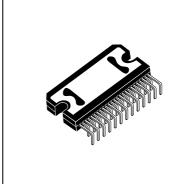

TDA7850 Package Information

4 Package Information

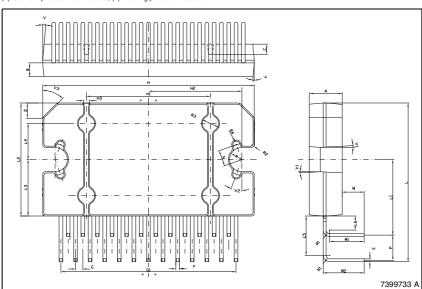
In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark.

ECOPACK specifications are available at: www.st.com.

Figure 5. Flexiwatt25 (vertical) mechanical data & package dimensions



5/


Figure 6. Flexiwatt25 (horizontal) mechanical data & package dimensions

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.45	4.50	4.65	0.175	0.177	0.183
В	1.80	1.90	2.00	0.070	0.074	0.079
С		1.40			0.055	
D		2.00			0.079	
Е	0.37	0.39	0.42	0.014	0.015	0.016
F (1)			0.57			0.022
G	0.75	1.00	1.25	0.029	0.040	0.049
G1	23.70	24.00	24.30	0.933	0.945	0.957
H (2)	28.90	29.23	29.30	1.139	1.150	1.153
H1		17.00			0.669	
H2		12.80			0.503	
Н3		0.80			0.031	
L (2)	21.64	22.04	22.44	0.852	0.868	0.883
L1	10.15	10.5	10.85	0.40	0.413	0.427
L2 (2)	15.50	15.70	15.90	0.610	0.618	0.626
L3	7.70	7.85	7.95	0.303	0.309	0.313
L4		5			0.197	
L5	5.15	5.45	5.85	0.203	0.214	0.23
L6	1.80	1.95	2.10	0.070	0.077	0.083
М	2.75	3.00	3.50	0.108	0.118	0.138
M1		4.73			0.186	
M2		5.61			0.220	
N		2.20			0.086	
Р	3.20	3.50	3.80	0.126	0.138	0.15
R		1.70			0.067	
R1		0.50			0.02	
R2		0.30			0.12	
R3		1.25			0.049	
R4		0.50			0.02	
V		•	5° (Тур.)	•	•
V1			3° (Typ.)		
V2			20° (Typ.)		
V3	45° (Typ.)					
1): dam-l	bar protus	ion not in	cluded; (2	2): moldin	g protusio	n include

OUTLINE AND MECHANICAL DATA

Flexiwatt25 (Horizontal)

47/

TDA7850 Revision history

5 Revision history

Table 4. Revision History

Date	Revision	Description of Changes
22-Nov-2006	1	First issue

13/14

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

