Preliminary HFD3381-002

FEATURES

- Prealigned SC Connector sleeve
- Data rates > 1GHz
- PIN detector and preamplifier in a TO-46 heremtic package
- 5V or 3.3V operation
- GaAs PIN detector and BiCMOS preamplifier
- Differential Output for low noise

The HFD3381-002 is a high-performance 850nm GaAs detector and preamplifier packaged for high-speed data communications. The product is designed for ease of use by the module designer or manufacturer in IEEE 802.3z (1.25Gbps Ethernet), ANSI 10625 (1.062 Gbps Fibre Channel) and ATM XXX, (622Mbps) communications standards.

The HFD3381-002 converts optical power into an electrical signal that is used in fiber optic communications and other applications. As the light increases, the output voltage increases, limiting at input powers above –10dBm. The differential output is designed to be **AC** coupled into a data amplifier. The pre-aligned and lensed package with an industry standard SC style connector sleeve, allows for "drop in" assembly to reduce manufacturing cost.

The Honeywell HFD3381-002 is designed to interface with 50/125 and 62.5/125mm multimode fiber.

ABSOLUTE MAXIMUM RATINGS

Parameter	Rating
Storage Temperature	-40 to +85°C
Case Operating Temperature	0 to +70°C
Lead Solder Temperature	260°C, 10 sec.
Power Supply Voltage	6 V
Incident Optical Power	0 dBm average, +4 dBm peak

NOTICE

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operations section for extended periods of time may affect reliability.

Preliminary

HFD3381-002

ELECTRO-OPTICAL CHARACTERISTICS (Vcc=5V, 0°C<T<70°C unless otherwise specified)

Parameters	Test Condition	Symbol	Min.	Тур.	Max.	Units	Notes
Electrical Characteristics							
Supply Voltage	$P_{in} = 0\mu W$, Rload=50 Ω	V _{cc}	3.0		5.5	Volts	1
Supply Current	$P_{in} = 0\mu W$, Rload=50 Ω	I _{cc}		35	40	mA	1
Output Voltage	$P_{in} = 100 \mu W$, Rload=50 Ω	V _{out}		200	500	mV	1
Opto-Electronic Characteristics							
Responsivity	$P_{in} = 20 \mu W$ peak,	R	2500	3500	5000	μV/μW	2,3
	Rload= 50Ω						
Lower 3dB Bandwidth		BW _{lower}	0.1	0.3	1	MHz	4
Upper 3dB Bandwidth		BW _{upper}	850	1200	1500	MHz	4
RMS Output Referred	$P_{in}=0\mu W, R_{load}=50\Omega$	300 NW 5		5			
Noise	937.5MHz BT Filter						
Sensitivity	BER=10 ⁻¹² , SNR=7	S	-20	-24		dBm	
Power Supply Rejection	$P_{in}=0\mu W, R_{load}=50\Omega$	PSRR	10	30		dB	6
Ratio							
Pulse Width Distortion	$P_{in}=20\mu W$ peak, $R_{load}=50\Omega$	PWD		35	60	ps	7
Rise/Fall Time	$P_{in}=20\mu W$ peak, $R_{load}=50\Omega$	T_R/T_F			400	ps	8
Wavelength Responsivity	$P_{in}=20\mu W$ peak, $R_{load}=50\Omega$	λ	760	850	860	nm	

Notes:

- 1. Pin refers to the total optical power at the face of the fiber optic cable input to the HFD3381-002.
- 2. Responsivity measured with source wavelength of 850nm, 125MHz square wave, $P_{in}=20\mu W$ peak, $R_{load}=50\Omega$.
- 3. The output voltage increases as received light power increases, up to approximately –15dBm. The preamplifier is designed to limit the electrical output signal above this optical input level, and does not introduce signal distortion until the average input power exceeds 0dBm.
- 1. Bandwidth is measured with a small signal sinusoidal light source with 50 μ W average power, R_{load}=50 Ω .
- RMS input referred optical noise is obtained by measuring the RMS output referred noise, then dividing by the responsivity.
- 6. PSRR is measured from 300KHz to 1GHz by injecting a 20dB electrical signal on the V_{cc} pin. The nominal value at 100MHz is recorded. No external bypass components are assumed. An external V_{cc} filter network will greatly increase the PSRR.

- Measured at the 50% level of output pulses using 0.5 GHz square wave with <200 ps rise time.
- $\label{eq:source} \begin{array}{ll} 1. & \mbox{Rise and fall times are measured with source wavelength} \\ & \mbox{of 850nm, 125MHz square wave, with optical rise and fall} \\ & \mbox{times} < 200 \mbox{ps, P_{in}=}20 \mbox{\mu W peak, R_{load}=}50 \mbox{\Omega}. \end{array}$

NOTICE

The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESDinduced damage and/or degradation to equipment, take normal ESD precautions when handling this product

Preliminary HFD3381-002

FIGURE 1: INTERNAL SCHEMATIC DIAGRAM OF THE HFD3381-002

FIGURE 2: RECOMMENDED INTERFACE CIRCUIT FOR THE HFD3381-002

R=10 Ω

 $C_1 = 10 nF$

 $C_2 = Data \ rate \ dependant \ (22nF \ for \ rates > 1Gbps$

ORDER GUIDE

Catalog Listing	Description
HFD3381-002	Connectorized PIN Plus Preamplifier

MOUNTING DIMENSIONS (for reference only) in./(mm)

PINOUT

Number	Function
1*	V _{CC}
2	Inverted Output
3	Ground
4	Non Inverted Output

* Aligned with the Receptacle notch

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Commencing with the date of shipment, Honeywell's warranty runs for 18 months. If warranted goods are returned to Honeywell during that period of coverage, Honeywell will repair or replace without charge those items it finds defective. The foregoing is Buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose.

While we provide application assistance, personally and through our literature, it is up to the customer to determine the suitability of the product in the application.

Specifications may change at any time without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

Preliminary

11/29/00

Honeywell Inc. 11 West Spring Street Freeport, Illinois 61032

Printed with Sov Ink on 50% Recycled Paper

006697-1-EN IL50 GLO 797 Printed in USA

Honeywell Inc. **Optoelectronics Facility** 830 East Arapaho Road Richardson, Texas 75081

Honeywell Control Systems Ltd. Zodiac House Aldermaston, Berkshire

Preliminary HFD3381-002

SALES AND SERVICE

MICRO SWITCH Sensing and Control serves its customers through a worldwide network of sales offices and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact a nearby sales office or call:

TELEPHONE

1-800-367-6786 (USA) 1-800-737-3360 (Canada) +49 (0) 89 35813310 (Germany) +65 3546768 (Singapore) +44 (0) 118 981 9511 (UK) 1-972-470-4271 (International)

FAX

1-972-470-4326 (Customer Response Center) 1-972-470-4549 (Fax on demand) +49 (0) 89 3599971 (Germany) +65 35436775 (Singapore) +44 (0) 118 981 7513 (UK)

INTERNET

http://www.Honeywell.com/sensing opto@micro.honeywell.com

Honeywell

Helping You Control Your World

Calleva Park RG7 8HW England