HR395.5 395.5MHz One-Port SAW Resonator For Wireless Remote Control

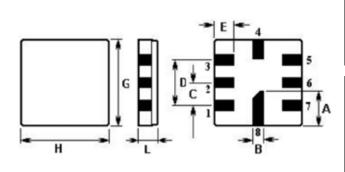
Approved by:

Checked by:

Issued by:

SPECIFICATION

PRODUCT: SAW RESONATOR MODEL: HR395.5 QCC8C


HOPE MICROELECTRONICS CO., LIMITED

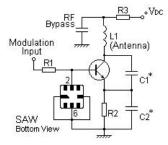
Tel:+86-755-82973806 Fax:+86-755-82973550 E-mail: <u>sales@hoperf.com</u> http://www.hoperf.com Page 1 of 1

The HR395.5 is a true one- port , surface- acoustic- wave(SAW) resonator in a low- profile QCC8C case. It provides reliable , fundamental- mode , quartz frequency stabilization of fixed- frequency transmitters operating at 395.5 MHz.

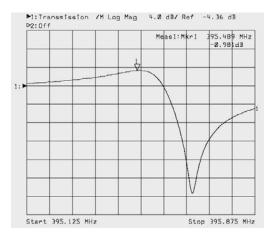
1.Package Dimension (QCC8C)

Pin	Configuration			
2	Terminal1			
6	Terminal2			
4,8	Case Ground			
1,3,5,7	Empty			

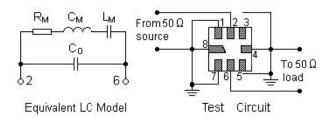
Sign	Data (unit: mm)	Sign	Data (unit: mm)		
А	2.08	E	1.2		
В	0.6	F	1.35		
С	1.27	G	5.0		
D	2.54	Н	5.0		

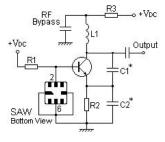

2.Marking

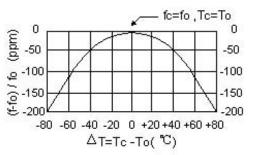
HR395.5


Color: Black or Blue

4.Typical Application Circuit


1) Typical Low-Power Transmitter Application


5.Typical Frequency Response


3.Equivalent LC Model and Test Circuit

2) Typical Local Oscillator Application

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7.Performance

7-1.Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation	+10	dBm
DC Voltage Between Any Two Pins	± 30V	VDC
Case Temperature	-40to+85	

7-2.Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency (+25)	Absolute Frequency	f _C	395.425		395.575	MHz
	Tolerancefrom433.920MHz	Δf_{C}		±75		kHz
Insertion Loss		١L		1.3	1.8	db
Quality Factor	Unloaded Q	QU		12980		
	50 Ω Loaded Q	QL		1,800		
Temperature Stability	Turnover Temperature	T ₀	25	40	55	
	Turnover Frequency	f ₀		f _C		KHz
	Frequency Temperature Coefficient	FTC		0.037		ppm/ ²
Frequency Aging Absolute Value during the First Year		fA		10		ppm/yr
DC Insulation Resistance Between Any Two Terminals			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		16.1	23	Ω
	Motional Inductance	L _M		84.139		μH
	Motional Capacitance	См		1.9266		fF
	Shunt Static Capacitance	C ₀		2.3		рF

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling !

1. Frequency aging is the change in f_c with time and is specified at +65 or less. Aging may exceed the specification for prolonged temperatures above +65 . Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.

2. The center frequency, fc , is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR 1.2 : 1. Typically, f_{oscillator} or f_{transmitter} is less than the resonator fc.

3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.

4. Unless noted otherwise , case temperature Tc=+25 ± 2 .

5. The design, manufacturing process, and specifications of this device are subject to change without notice.

6. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, fc versus Tc , and Co.

7. Turnover temperature, To, is the temperature of maximum (or turnover) frequency, fo, The nominal center frequency at any case temperature , Tc, may be calculated from :f = fo $[1-FTC (TO-TC)^2]$. Typically, oscillator To is 20 less than the specified resonator To.

8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only . The capacitance Co is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground .The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to Co.