
MMBTSC5065

NPN Silicon Epitaxial Planar Transistor

for low noise, high gain amplifier at VHF~UHF band.

The transistor is subdivided into two groups O and Y, according to its DC current gain.

1. Base 2. Emitter 3. Collector

SOT-23 Plastic Package

Absolute Maximum Ratings (T_a = 25 °C)

	Symbol	Value	Unit
Collector Base Voltage	V _{CBO}	20	V
Collector Emitter Voltage	V _{CEO}	12	V
Emitter Base Voltage	V_{EBO}	3	V
Base Current	I _B	15	mA
Collector Current	I _C	30	mA
Power Dissipation	P _{tot}	200	mW
Junction Temperature	T_j	125	°C
Storage Temperature Range	Ts	-55 to +125	°C

MMBTSC5065

Characteristics at T_{amb}=25 °C

	Symbol	Min.	Тур.	Max.	Unit
DC Current Gain					
at V_{CE} =5 V , I_{C} =10 m A					
Current Gain Group O	h _{FE}	80	-	160	-
Υ	h _{FE}	120	-	240	-
Collector Cutoff Current					
at V _{CB} =10V	I _{CBO}	-	-	1	μA
Emitter Cutoff Current					
at V _{EB} =1.0V	I _{EBO}	-	-	1	μA
Transition Frequency					
at V _{CE} =5V, I _C =10mA	f _T	5	7	-	GHz
Reverse Transfer Capacitance					
at V _{CB} =5V, f=1MHz ¹⁾	C_re	-	0.45	0.9	pF
Output Capacitance					
at V _{CB} =5V, f=1MHz ¹⁾	C_ob	-	0.7	-	pF
Insertion Gain					
at V_{CE} =5V, I_C =10mA, f=500MHz	S _{21e} 2	-	17	-	dB
Insertion Gain					
at V_{CE} =5V, I_C =10mA, f=1.0GHz	S _{21e} 2 2	8.5	12	-	dB
Noise Figure					
at V _{CE} =5V, I _C =3mA, f=500MHz	NF_1	-	1	-	dB
Noise Figure					
at V _{CE} =5V, I _C =3mA, f=1.0GHz	NF_2		1.1	2	dB

 $^{^{1)}}$ $C_{\text{re}}\!$ is measured by 3 terminal method with capacitance bridge.

