

General Description

The MAX3799 is a highly integrated limiting amplifier and VCSEL driver that operates up to 14Gbps, making it suitable for Ethernet and Fibre Channel applications. By providing a selectable data path with a noise-shaping filter, the MAX3799 enables a module with 10G optics to be fully compliant with both 1000BASE-SR and 10GBASE-SR specifications. Operating from a single +3.3V supply, this low-power integrated limiting amplifier and VCSEL driver IC enables a platform design for SFP MSA as well as for SFP+ MSA-based optical transceivers. The high-sensitivity limiting amplifier limits the differential input signal generated by a transimpedance amplifier into a CML-level differential output signal. The compact VCSEL driver provides a modulation and a bias current for a VCSEL diode. The optical average power is controlled by an average power control (APC) loop implemented by a controller that interfaces to the VCSEL driver through a 3-wire digital interface. All differential I/Os are optimally backterminated for a 50Ω transmission line PCB design.

The use of a 3-wire digital interface reduces the pin count while enabling advanced Rx (rate selection, LOS threshold, LOS squelch, LOS polarity, CML output level, signal path polarity, deemphasis, and fast mode-select change time) and Tx settings (modulation current, bias current, polarity, and eye safety control) without the need for external components. The MAX3799 provides multiple current and voltage DACs to allow the use of low-cost controller ICs.

The MAX3799 is packaged in a lead-free, 5mm x 5mm, 32-pin TQFN package.

Applications

1000BASE-SR/10GBASE-SR Multirate SFP+ Optical Transceiver

1x/2x/4x/8x/16x SFF/SFP/SFP+ MSA Fibre Channel (FC) Optical Transceiver

Features

- **♦** Enables Single-Module Design Compliance with 1000BASE-SR and 10GBASE-SR Specifications
- ♦ -21.5dBm Optical Sensitivity at 1.25Gbps Using a 10.32Gbps ROSA (-19.7dBm OMA)
- ♦ Low Power Dissipation of 320mW at 3.3V Power Supply
- **♦ Typical Electrical Performance of 14.025Gbps on** Rx/Tx (Non-Retimed 16x Fibre Channel Solution)
- ♦ 3mV_{P-P} Receiver Sensitivity at 10.32Gbps
- ♦ 4psp-p DJ at Receiver Output at 8.5Gbps 8B/10B
- ◆ 4psp-p DJ at Receiver Output at 10.32Gbps 2³¹ - 1 PRBS
- ♦ 26ps Rise and Fall Time at Rx/Tx Output
- ♦ Rate Select for 1Gbps Mode or 10Gbps Mode
- ♦ CML Output Squelch
- ♦ Polarity Select for Rx and Tx
- **♦ LOS Assert Level Adjustment**
- **♦ LOS Polarity Select**
- ♦ Modulation Current Up to 12mA Into 100Ω **Differential Load**
- ♦ Bias Current Up to 15mA
- ♦ Integrated Eye Safety Features
- ♦ 3-Wire Digital Interface
- ♦ Programmable Deemphasis at Tx Output

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3799ETJ+	-40°C to +85°C	32 TQFN-EP*

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Typical Application Circuit and Pin Configuration appear at end of data sheet.

^{*}EP = Exposed pad.

ABSOLUTE MAXIMUM RATINGS

VCCR, VCCT, VCCD0.3V to +4.0V Voltage Range at DISABLE, SDA, SCL, CSEL, RSEL, FAULT, BMON, LOS, CAZ20.3V to (VCC + 0.3V) Voltage Range at ROUT+, ROUT(VCC - 1V) to (VCC + 0.3V) Voltage at TIN+, TIN(VCC - 2.5V) to (VCC - 0.5V) Voltage Range at TOUT+, TOUT(VCC - 2V) to (VCC + 0.3V) Voltage at BIAS	Current Range into FAULT, LOS1mA to +5mA Current Range into SDA1mA to +1mA Current into ROUT+, ROUT40mA Current into TOUT+, TOUT60mA Continuous Power Dissipation (T _A = +70°C) 32-Pin TQFN (derate 34.5W/°C above +70°C)2759mW Operating Junction Temperature Range55°C to +150°C Storage Temperature Range65°C to +160°C
Voltage at RIN+, RIN(V _{CC} - 2V) to (V _{CC} - 0.2V)	Storage Temperature Range65°C to +160°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC}=2.85 \text{V to } 3.63 \text{V}, T_{A}=-40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{CML}$ receiver output load is AC-coupled to differential 100Ω , $C_{AZ}=1 \text{nF}$, transmitter output load is AC-coupled to differential 100Ω (see Figure 1), typical values are at $+25 ^{\circ}\text{C}$, $V_{CC}=3.3 \text{V}$, $I_{BIAS}=6 \text{mA}$, $I_{MOD}=6 \text{mA}$, unless otherwise specified. Registers are set to default values unless otherwise noted, and the 3-wire interface is static during measurements. For testing, the RATE_SEL bit was used and the RSEL pin was left open.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY	<u>'</u>		'			
Power-Supply Current	Icc	Includes the CML output current; excludes I _{BIAS} = 6mA, I _{MOD} = 6mA, V _{DIFF_ROUT} = 400mV _{P-P} (Note 1)		97	150	mA
Power-Supply Voltage	Vcc		2.85		3.63	V
GENERAL						
Input Data Rate			1.0625		10.32	Gbps
Input/Output SNR			14.1			
BER					10E-12	
POWER-ON RESET						
High POR Threshold				2.55	2.75	V
Low POR Threshold		IBIAS = IBIASOFF and IMOD = IMODOFF	2.3	2.45		V
Rx INPUT SPECIFICATIONS						
Differential Input Resistance RIN+/RIN-	R _{IN_DIFF}		75	100	125	Ω
Largest Committee (NI-th O)		RATE_SEL = 0 (1.25Gbps)		1	3	>/
Input Sensitivity (Note 2)	VINMIN	RATE_SEL = 1 (10.32Gbps)		3	8	mV _{P-P}
Input Overload	VINMAX		1.2			V _{P-P}
Input Datum Laga	SDD11	DUT is powered on, f ≤ 5GHz	14	14		I.D.
Input Return Loss	1 20011	DUT is powered on, f ≤ 16GHz		7		dB
January Datasana I. a a a	SCC11	DUT is powered on, 1GHz < f ≤ 5GHz		8		15
Input Return Loss	30011	DUT is powered on, 1GHz < f ≤ 16GHz		8		dB
Rx OUTPUT SPECIFICATIONS						
Differential Output Resistance	Routdiff		75	100	125	Ω

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=2.85 V \text{ to } 3.63 V, T_A=-40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{CML}$ receiver output load is AC-coupled to differential 100Ω , $C_{AZ}=1 \text{nF}$, transmitter output load is AC-coupled to differential 100Ω (see Figure 1), typical values are at $+25 ^{\circ}\text{C}$, $V_{CC}=3.3 V$, $I_{BIAS}=6 \text{mA}$, $I_{MOD}=6 \text{mA}$, unless otherwise specified. Registers are set to default values unless otherwise noted, and the 3-wire interface is static during measurements. For testing, the RATE_SEL bit was used and the RSEL pin was left open.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Outside Data was Land	00000	DUT is powered on, f ≤ 5GHz		11		-10
Output Return Loss	SDD22	DUT is powered on, f ≤ 16GHz		5		dB
Outrant Datum Lana	00000	DUT is powered on, 1GHz < f ≤ 5GHz		9		٩D
Output Return Loss	SCC22	DUT is powered on, 1GHz < f ≤ 16GHz		7		dB
CML Differential Output Voltage High		5mV _{P-P} ≤ V _{IN} ≤ 1200mV _{P-P} , SET_CML[162]	595	800	1005	mV _{P-P}
CML Differential Output Voltage Medium		10mV _{P-P} ≤ V _{IN} ≤ 1200mV _{P-P} , SET_CML[80]	300	400	515	mV _{P-P}
CML Differential Output DAC Limit		SET_CML[7:0]			215	
		Outputs AC-coupled, V _{INMAX} applied to input V _{DIFF_ROUT} = 800mV _{P-P} at 8.5Gbps (Notes 2, 3)		6	15	mV _{P-P}
Data Output Transition Time (20% to 80%)	t _R /t _F	$10\text{mV}_{P-P} \le V_{\text{IN}} \le 1200\text{mV}_{P-P},$ $\text{RATE_SEL} = 1, V_{\text{DIFF_ROUT}} = 400\text{mV}_{P-P}$		26	35	ps
(Notes 2, 3, 4)	'H/ 'F	$5\text{mV}_{P-P} \le V_{\text{IN}} \le 1200\text{mV}_{P-P},$ RATE_SEL = 0, $V_{\text{DIFF}_ROUT} = 800\text{mV}_{P-P}$		60	100	рз
Rx TRANSFER CHARACTERIST	ICS					
		$60\text{mV}_{P-P} \le V_{\text{IN}} \le 400\text{mV}_{P-P}$ at 10.32Gbps , RATE_SEL = 1, V_{DIFF_ROUT} = 400mV_{P-P}		4	12	
Deterministic Jitter (Notes 2, 3, 5)	DJ	$10 \text{mV}_{P-P} \le V_{\text{IN}} \le 1200 \text{mV}_{P-P}$ at 8.5Gbps, RATE _SEL = 1, V_{DIFF} _ROUT = 400 mV $_{P-P}$		4	12	ps _{P-P}
		$5\text{mV}_{P-P} \le V_{\text{IN}} \le 1200\text{mV}_{P-P}$ at 1.25Gbps, RATE _SEL = 0, $V_{\text{DIFF}}_{\text{ROUT}} = 800\text{mV}_{P-P}$		20		
Dandon litter/Notes 2, 2)	DI	Input = 60mV _{P-P} at 1.25Gbps, RATE_SEL = 0, V _{DIFF_ROUT} = 800mV _{P-P}		1.8	2.5	202110
Random Jitter (Notes 2, 3)	RJ	Input = 60mV _{P-P} at 8.5Gbps, RATE _SEL = 1, V _{DIFF_ROUT} = 400mV _{P-P}		0.32	0.48	psrms
Low-Frequency Cutoff		$C_{AZ} = 0.1 \mu F$		2		kHz
Low-Frequency Cuton		C _{AZ} = open		500		RIIZ
Rx LOS SPECIFICATIONS						
LOS Assert Sensitivity Range			14		77	mV _{P-P}
LOS Hysteresis		10 x log (VDEASSERT/VASSERT) (Note 6)	1.25	2.1		dB
LOS Assert/Deassert Time		(Note 7)	2.3		80	μs
Low Assert Level		SET_LOS[7] (Notes 2, 6)	8 11 14		14	mV _{P-P}
Low Deassert Level		SET_LOS[7] (Notes 2, 6)	14 18 21		21	mV _{P-P}
Medium Assert Level		SET_LOS[32] (Notes 2, 6)	39 48 58		58	mV _{P-P}
Medium Deassert Level		SET_LOS[32] (Notes 2, 6)	65 81 95		95	mV _{P-P}
High Assert Level		SET_LOS[63] (Notes 2, 6)	77	94	112	mV _{P-P}
High Deassert Level		SET_LOS[63] (Notes 2, 6)	127	158	182	mV _{P-P}

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=2.85V\ to\ 3.63V,\ T_A=-40^{\circ}C\ to\ +85^{\circ}C,\ CML\ receiver\ output\ load\ is\ AC-coupled\ to\ differential\ 100\Omega,\ C_{AZ}=1nF,\ transmitter\ output\ load\ is\ AC-coupled\ to\ differential\ 100\Omega$ (see Figure 1), typical values are at +25°C, $V_{CC}=3.3V,\ I_{BIAS}=6mA,\ I_{MOD}=6mA,\ unless\ otherwise\ specified\ .$ Registers are set to default values unless otherwise\ noted, and the 3-wire interface is static during measurements. For testing, the RATE_SEL bit was used and the RSEL pin was left open.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Tx INPUT SPECIFICATIONS	•		•			
Differential land AVallana		Data rate = 1.0625Gbps	0.2		2.4	
Differential Input Voltage	VIN	Data rate = 10.32Gbps	0.075		0.8	V _{P-P}
Common-Mode Input Voltage	VINCM			2.75		V
Differential Input Resistance	RIN		75	100	125	Ω
Input Deturn Lead	SDD11	DUT is powered on, f ≤ 5GHz		15		4D
Input Return Loss	ווטטא	DUT is powered on, f ≤ 16GHz		6		dB
Input Deturn Lead	00011	DUT is powered on, 1GHz < f ≤ 5GHz		9		٩D
Input Return Loss	SCC11	DUT is powered on, 1GHz < f ≤ 16GHz		5		dB
Tx LASER MODULATOR	•		•			
Maximum Modulation-On Current into 100Ω Differential Load	IMODMAX	Outputs AC-coupled, V _{CCTO} ≥ 2.95V	12			mA
Minimum Modulation-On Current into 100Ω Differential Load		Outputs AC-coupled			2	mA
Modulation Current DAC Stability		2mA ≤ I _{MOD} ≤ 12mA (Note 8)			4	%
Modulation Current Rise Time/ Fall Time	t _R /t _F	5mA ≤ I _{MOD} ≤ 10mA, 20% to 80%, SET_TXDE[3:0] = 10 (Notes 2, 4)		26	39	ps
		$5\text{mA} \le I_{\text{MOD}} \le 12\text{mA}$, at 10.32Gbps, $250\text{mV}_{\text{P-P}} \le \text{V}_{\text{IN}} \le 800\text{mV}_{\text{P-P}}$, $\text{SET_TXDE}[4:1] = 0$		6	12	
		$5\text{mA} \le I_{\text{MOD}} \le 12\text{mA}$, at 10.32Gbps, 250mV _{P-P} $\le V_{\text{IN}} \le 800\text{mV}_{\text{P-P}}$, SET_TXDE[4:1] = 10		6	13	
Deterministic Jitter (Notes 2, 9)	DJ	$5\text{mA} \le I_{\text{MOD}} \le 12\text{mA}$, at 8.5Gbps, 250mV _{P-P} $\le V_{\text{IN}} \le 800\text{mV}_{\text{P-P}}$, SET_TXDE[4:1] = 0		6	12	ps
		$5\text{mA} \le I_{\text{MOD}} \le 12\text{mA}$, at 8.5Gbps, $250\text{mV}_{\text{P-P}} \le V_{\text{IN}} \le 800\text{mV}_{\text{P-P}}$, $SET_TXDE[4:1] = 10$		6	12	
		2mA ≤ I _{MOD} ≤ 12mA, at 4.25Gbps		5]
		2mA ≤ I _{MOD} ≤ 12mA, at 1.0625Gbps		5		<u> </u>
Random Jitter		$5\text{mA} \le I_{\text{MOD}} \le 12\text{mA}, 250\text{mV}_{\text{P-P}} \le V_{\text{IN}} \le 800\text{mV}_{\text{P-P}}$		0.17	0.5	psRMS
Output Return Loss	SDD22	DUT is powered on, f ≤ 5GHz		12		dB
Outhor Heraill F099	JUUZZ	DUT is powered on, f ≤ 16GHz		5		UB_
Tx BIAS GENERATOR						
Maximum Bias-On Current	IBIASMAX	Current into BIAS pin	15			mA
Minimum Bias-On Current	IBIASMIN	Current into BIAS pin			2	mA

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=2.85V\ to\ 3.63V,\ T_A=-40^\circ C\ to\ +85^\circ C,\ CML\ receiver\ output\ load\ is\ AC$ -coupled to differential $100\Omega,\ C_{AZ}=1nF,\ transmitter\ output\ load\ is\ AC$ -coupled to differential 100Ω (see Figure 1), typical values are at $+25^\circ C,\ V_{CC}=3.3V,\ I_{BIAS}=6mA,\ I_{MOD}=6mA,\ unless\ otherwise\ specified.$ Registers are set to default values unless otherwise noted, and the 3-wire interface is static during measurements. For testing, the RATE_SEL bit was used and the RSEL pin was left open.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
BIAS Current DAC Stability		2mA ≤ I _{BIAS} ≤ 15mA (Notes 2, 10)			4	%
Compliance Voltage at BIAS	V _{BIAS}		0.9		2.1	V
BIAS Current Monitor Current Gain	I _{BMON}	External resistor to GND defines the voltage gain		16		mA/A
Compliance Voltage at BMON	V _{BMON}		0		1.8	V
BIAS Current Monitor Current Gain Stability	I _{BMON}	2mA ≤ I _{BIAS} ≤ 15mA (Note 10)			5	%
Tx SAFETY FEATURES						•
Excessive Voltage at BMON	VBMON	Average voltage, FAULT warning always occurs for V _{BMON} ≥ V _{CC} - 0.55V, FAULT warning never occurs for V _{BMON} ≤ V _{CC} - 0.65V	V _{CC} - 0.65V	V _{CC} - 0.6V	V _{CC} - 0.55V	V
Excessive Voltage at BIAS	V _{BIAS}	Average voltage, FAULT always occurs for V _{BIAS} ≤ 0.44V, FAULT never occurs for V _{BIAS} ≥ 0.65V	0.44	0.48	0.65	V
Maximum VCSEL Current in Off State	loff	FAULT or DISABLE, V _{BIAS} = V _{CC}			25	μA
SFP TIMING REQUIREMENTS	•		•			•
DISABLE Assert Time	t_OFF	Time from rising edge of DISABLE input signal to IBIAS = IBIASOFF and IMOD = IMODOFF			1	μs
DISABLE Negate Time	t_ON	Time from falling edge of DISABLE to IBIAS and I _{MOD} at 90% of steady state when FAULT = 0 before reset			500	μs
FAULT Reset Time of Power-On Time	t_INIT	Time from power-on or negation of FAULT using DISABLE			100	ms
FAULT Reset Time	t_FAULT	Time from fault to FAULT on, $C_{FAULT} \le 20pF$, $R_{FAULT} = 4.7k\Omega$			10	μs
DISABLE to Reset		Time DISABLE must be held high to reset FAULT	5			μs
OUTPUT_LEVEL VOLTAGE DAC	(SET_CML)					
Full-Scale Voltage	VFS	100Ω differential resistive load		1200		mV _{P-P}
Resolution				5		mV _{P-P}
Integral Nonlinearity	INL	5mA ≤ I _{CML_LEVEL} ≤ 20mA		±0.9		LSB
LOS THRESHOLD VOLTAGE DA	C (SET_LOS)					
Full-Scale Voltage	VFS			94		mV _{P-P}
Resolution				1.5		mV _{P-P}
Integral Nonlinearity	INL	11mV _{P-P} ≤ V _{TH_LOS} ≤ 94mV _{P-P}		±0.7		LSB
BIAS CURRENT DAC (SET_IBIA	S)					
Full-Scale Current	IFS			21		mA

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=2.85V\ to\ 3.63V,\ T_A=-40^{\circ}C\ to\ +85^{\circ}C,\ CML\ receiver\ output\ load\ is\ AC-coupled\ to\ differential\ 100\Omega,\ C_{AZ}=1nF,\ transmitter\ output\ load\ is\ AC-coupled\ to\ differential\ 100\Omega$ (see Figure 1), typical values are at +25°C, $V_{CC}=3.3V$, $I_{BIAS}=6mA$, $I_{MOD}=6mA$, unless otherwise specified. Registers are set to default values unless otherwise noted, and the 3-wire interface is static during measurements. For testing, the RATE_SEL bit was used and the RSEL pin was left open.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Resolution				40		μΑ
Integral Nonlinearity	INL	1mA ≤ I _{BIAS} ≤ 15mA		±1		LSB
Differential Nonlinearity	DNL	1mA ≤ I _{BIAS} ≤ 15mA, guaranteed monotonic at 8-bit resolution (SET_IBIAS[8:1])		±1		LSB
MODULATION CURRENT DAC (S	ET_IMOD)					
Full-Scale Current	IFS			21		mA
Resolution				40		μΑ
Integral Nonlinearity	INL	2mA ≤ I _{MOD} ≤ 12mA		±1		LSB
Differential Nonlinearity	DNL	2mA ≤ I _{MOD} ≤ 12mA, guaranteed monotonic at 8-bit resolution (SET_IMOD[8:1])		±1		LSB
CONTROL I/O SPECIFICATIONS	•					•
RSEL Input Current	I _{IH} , I _{IL}				150	μΑ
RSEL Input High Voltage	VIH		1.8		Vcc	V
RSEL Input Low Voltage	V _{IL}		0		0.8	V
RSEL Input Impedance	RPULL	Internal pulldown resistor	40	75	110	kΩ
DICARI E Invest Occurrent	lін				12	
DISABLE Input Current	IIL	Dependency on pullup resistance		420	800	μΑ
DISABLE Input High Voltage	VIH		1.8		V _C C	V
DISABLE Input Low Voltage	V _{IL}		0		0.8	V
DISABLE Input Impedance	R _{PULL}	Internal pullup resistor	4.7	8	10	kΩ
LOS, FAULT Output High Voltage	VoH	$R_{LOS} = 4.7 k\Omega - 10 k\Omega \text{ to V}_{CC},$ $R_{FAULT} = 4.7 k\Omega - 10 k\Omega \text{ to V}_{CC}$	V _{CC} - 0.5		V _C C	V
LOS, FAULT Output Low Voltage	VoL	$R_{LOS} = 4.7 k\Omega$ - $10 k\Omega$ to V_{CC} , $R_{FAULT} = 4.7 k\Omega$ - $10 k\Omega$ to V_{CC}	0		0.4	V
3-WIRE DIGITAL I/O SPECIFICAT	IONS (SDA,	CSEL, SCL)				•
Input High Voltage	VIH		2.0		Vcc	V
Input Low Voltage	V _{IL}				0.8	V
Input Hysteresis	VHYST			0.082		V
Input Leakage Current	I _{IL} , I _{IH}	V_{IN} = 0V or V_{CC} ; internal pullup or pulldown (75k Ω typ)			150	μΑ
Output High Voltage	Voн	External pullup of 4.7kΩ to V _{CC}	V _{CC} - 0.5			V
Output Low Voltage	V _{OL}	External pullup of 4.7kΩ to V _{CC}			0.4	V
3-WIRE DIGITAL INTERFACE TIN	IING CHARA	ACTERISTICS (See Figure 4)				
SCL Clock Frequency	fscl			400	1000	kHz
SCL Pulse-Width High	tch		0.5			μs
SCL Pulse-Width Low	tCL		0.5			μs

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=2.85 \text{V to } 3.63 \text{V}, T_{A}=-40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{CML}$ receiver output load is AC-coupled to differential 100Ω , $C_{AZ}=1 \text{nF}$, transmitter output load is AC-coupled to differential 100Ω (see Figure 1), typical values are at $+25 ^{\circ}\text{C}$, $V_{CC}=3.3 \text{V}$, $I_{BIAS}=6 \text{mA}$, $I_{MOD}=6 \text{mA}$, unless otherwise specified. Registers are set to default values unless otherwise noted, and the 3-wire interface is static during measurements. For testing, the RATE_SEL bit was used and the RSEL pin was left open.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SDA Setup Time	tDS			100		ns
SDA Hold Time	tDH			100		ns
SCL Rise to SDA Propagation Time	t _D			5		ns
CSEL Pulse-Width Low	tcsw		500			ns
CSEL Leading Time Before the First SCL Edge	tL			500		ns
CSEL Trailing Time After the Last SCL Edge	t _T			500		ns
SDA, SCL External Load	СВ	Total bus capacitance on one line with 4.7k Ω pullup to VCC			20	pF

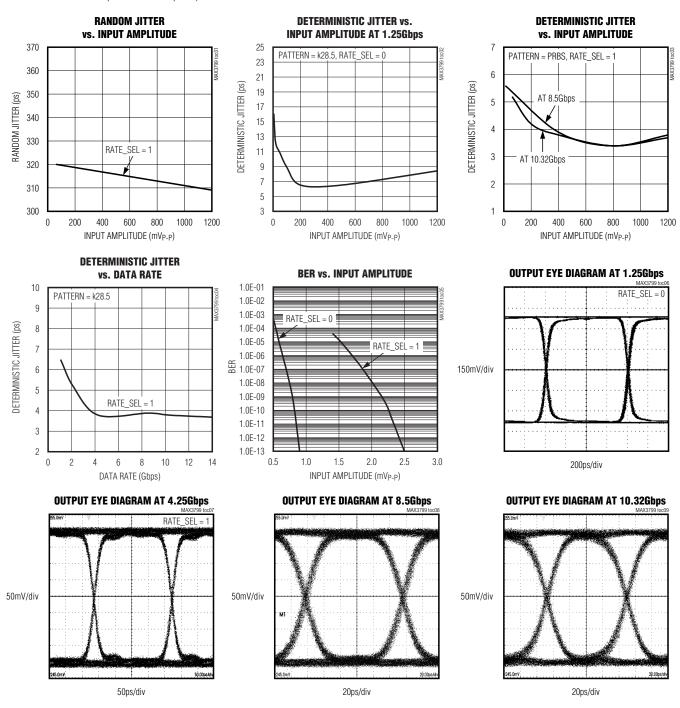
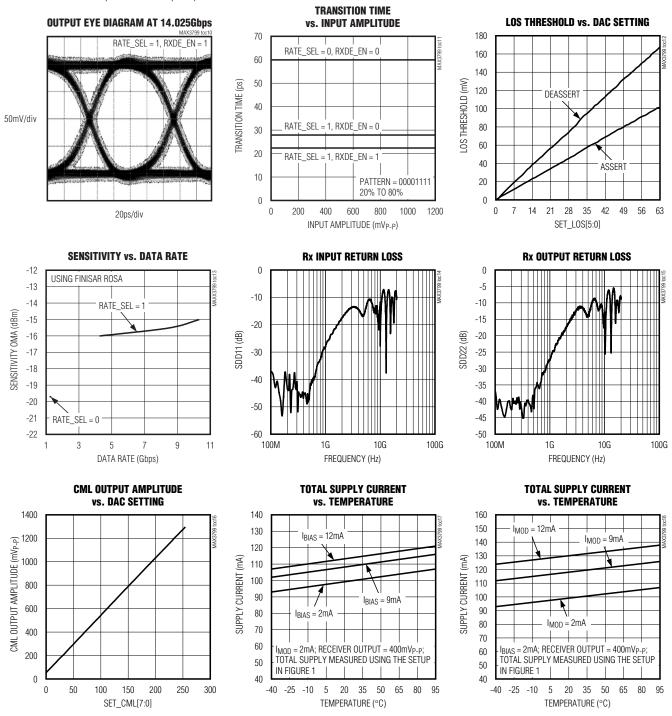
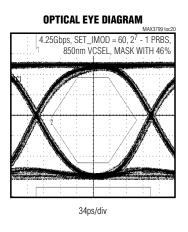

- Note 1: Supply current is measured with unterminated receiver CML output or with AC-coupled Rx output termination. The Tx output and the bias current output must be connected to a separate supply to remove the modulation/bias current portion from the supply current. BIAS must be connected to 2.0V. TOUT+/- must be connected through 50Ω load resistors to a separate supply voltage.
- **Note 2:** Guaranteed by design and characterization, $T_A = -40$ °C to +95°C.
- **Note 3:** The data input transition time is controlled by a 4th-order Bessel filter with -3dB frequency = 0.75 x data rate. The deterministic jitter caused by this filter is not included in the DJ generation specifications.
- Note 4: Test pattern is 00001111 at 1.25Gbps for RATE_SEL = 0. Test pattern is 00001111 at 8.5Gbps for RATE_SEL = 1.
- **Note 5:** Receiver deterministic jitter is measured with a repeating 2³¹ 1 PRBS equivalent pattern at 10.32Gbps. For 1.25Gbps to 8.5Gbps, a repeating K28.5 pattern [00111110101100000101] is used. Deterministic jitter is defined as the arithmetic sum of pulse-width distortion (PWD) and pattern-dependent jitter (PDJ).
- Note 6: Measured with a k28.5 pattern from 1.0625Gbps to 8.5Gbps. Measured with 2³¹ 1 PRBS at 10.32Gbps.
- **Note 7:** Measurement includes an input AC-coupling capacitor of 100nF and C_{CAZ} of 100nF. The signal at the input is switched between two amplitudes: Signal_ON and Signal_OFF.
 - 1) Receiver operates at sensitivity level plus 1dB power penalty.
 - a) Signal_OFF = 0
 - Signal_ON = (+8dB) + 10log(min_assert_level)
 - b) Signal_ON = (+1dB) + 10log(max_deassert_level) Signal OFF = 0
 - 2) Receiver operates at overload.
 - $Signal_OFF = 0$
 - Signal_ON = $1.2V_{P-P}$
 - max_deassert_level and the min_assert_level are measured for one LOS_THRESHOLD setting.
- Note 8: Gain stability is defined as [(I_measured) (I_reference)]/(I_reference) over the listed current range, temperature, and V_{CC} from +2.95V to +3.63V. Reference current measured at V_{CC} = +3.2V, T_A = +25°C.
- **Note 9:** Transmitter deterministic jitter is measured with a repeating 2⁷ 1 PRBS, 72 0s, 2⁷ 1 PRBS, and 72 1s pattern at 10.32Gbps. For 1.0625Gbps to 8.5Gbps, a repeating K28.5 pattern [00111110101100000101] is used. Deterministic jitter is defined as the arithmetic sum of PWD and PDJ.
- Note 10: Gain stability is defined as [(I_measured) (I_reference)]/(I_reference) over the listed current range, temperature, and V_{CC} from +2.85V to +3.63V. Reference current measured at V_{CC} = +3.3V, T_A = +25°C.

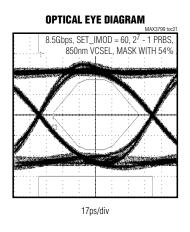
Figure 1. Test Circuit for VCSEL Driver Characterization


Typical Operating Characteristics—Limiting Amplifier

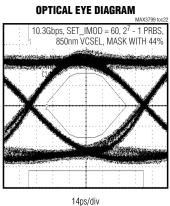
 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise specified.$ Figure 1 shows the typical setup used for measurements. Registers are set to default values unless otherwise noted, and the 3-wire interface is static during measurements. For testing, the RATE_SEL bit was used and the RSEL pin was left open.)

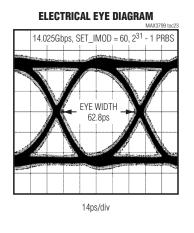
Typical Operating Characteristics—Limiting Amplifier (continued)

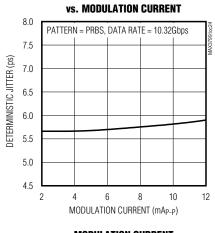

 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise specified.$ Figure 1 shows the typical setup used for measurements. Registers are set to default values unless otherwise noted, and the 3-wire interface is static during measurements. For testing, the RATE_SEL bit was used and the RSEL pin was left open.)

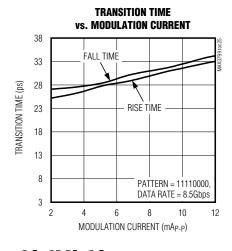


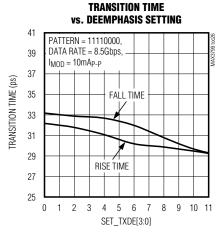
_Typical Operating Characteristics—Limiting Amplifier (continued)

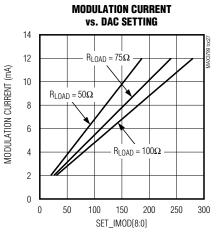

 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise specified.$ Figure 1 shows the typical setup used for measurements. Registers are set to default values unless otherwise noted, and the 3-wire interface is static during measurements. For testing, the RATE_SEL bit was used and the RSEL pin was left open.)

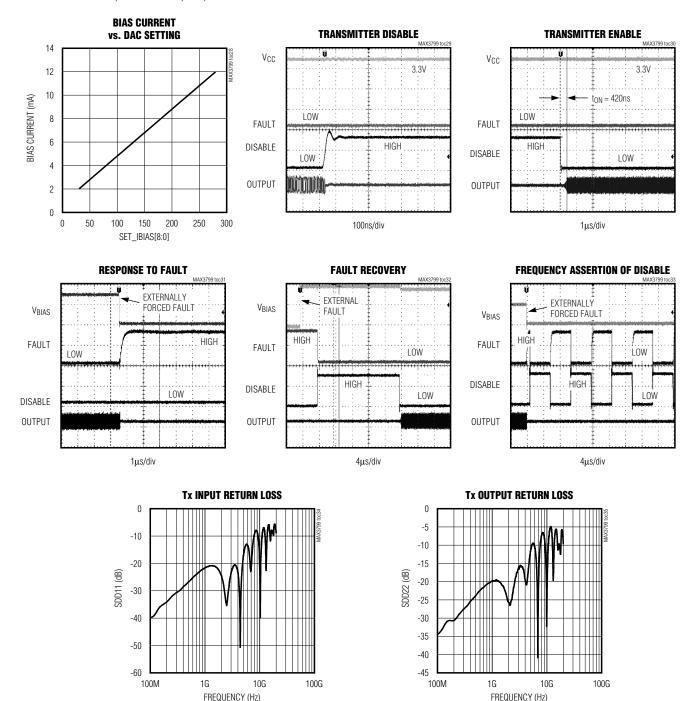

OPTICAL EYE DIAGRAM 2.125Gbps, SET_IMOD = 60, 2⁷ - 1 PRBS, 850nm VCSEL, MASK WITH 50% OPTICAL EYE DIAGRAM MAX3799 to:19 68ps/div OPTICAL EYE DIAGRAM MAX3799 to:22 10.3Gbps, SET_IMOD = 60, 2⁷ - 1 PRBS, 850nm VCSEL, MASK WITH 44%

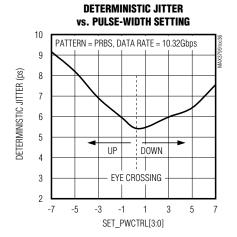


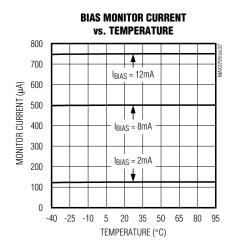



DETERMINISTIC JITTER






_Typical Operating Characteristics—Limiting Amplifier (continued)


 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise specified.$ Figure 1 shows the typical setup used for measurements. Registers are set to default values unless otherwise noted, and the 3-wire interface is static during measurements. For testing, the RATE_SEL bit was used and the RSEL pin was left open.)

Typical Operating Characteristics—Limiting Amplifier (continued)

 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise specified.$ Figure 1 shows the typical setup used for measurements. Registers are set to default values unless otherwise noted, and the 3-wire interface is static during measurements. For testing, the RATE_SEL bit was used and the RSEL pin was left open.)

Pin Description

PIN	NAME	FUNCTION
1	LOS	Loss-of-Signal Output, Open Drain. The default polarity of LOS is high when the level of the input signal is below the preset threshold set by the SET_LOS DAC. Polarity of the LOS function can be inverted by setting LOS_POL = 0. The LOS circuitry can be disabled by setting the bit LOS_EN = 0.
2	RSEL	Mode-Select Input, TTL/CMOS. Set the RSEL pin or RATE_SEL bit (set by the 3-wire digital interface) to logic-high for high-bandwidth mode. Setting RSEL and RATE_SEL logic-low for high-gain mode. The RSEL pin is internally pulled down by a 75k Ω resistor to ground.
3, 6, 27, 30	Vccr	Power Supply. Provides supply voltage to the receiver block.
4	ROUT+	Noninverted Receive Data Output, CML. Back-terminated for 50Ω load.
5	ROUT-	Inverted Receive Data Output, CML. Back-terminated for 50Ω load.
7	VCCD	Power Supply. Provides supply voltage for the digital block.
8	DISABLE	Transmitter Disable Input, TTL/CMOS. Set to logic-low for normal operation. Logic-high or open disables both the modulation and bias current. Internally pulled up by an $8k\Omega$ resistor to V_{CC} .
9	SCL	Serial-Clock Input, TTL/CMOS. This pin has a 75kΩ internal pulldown.
10	SDA	Serial-Data Bidirectional Input, TTL/CMOS. Open-drain output. This pin has a $75k\Omega$ internal pullup, but it requires an external $4.7k\Omega$ pullup resistor to meet the 3-wire digital timing specification. (Data line collision protection is implemented.)
11	CSEL	Chip-Select Input, TTL/CMOS. Setting CSEL to logic-high starts a cycle. Setting CSEL to logic-low ends the cycle and resets the control state machine. Internally pulled down by a $75 \text{k}\Omega$ resistor to ground.
12, 15, 18, 21, 24, 25	V _{CCT}	Power Supply. Provides supply voltage to the transmitter block.
13	TIN+	Noninverted Transmit Data Input, CML

Pin Description (continued)

PIN	NAME	FUNCTION
14	TIN-	Inverted Transmit Data Input, CML
16	BMON	Bias Current Monitor Output. Current out of this pin develops a ground-referenced voltage across an external resistor that is proportional to the laser bias current.
17	VEET	Ground. Provides ground for the transmitter block.
19	TOUT-	Inverted Modulation Current Output. Back-termination of 50Ω to V_{CCT} .
20	TOUT+	Noninverted Modulation Current Output. Back-termination of 50Ω to V_{CCT} .
22	BIAS	VCSEL Bias Current Output
23	FAULT	Transmitter Fault Output, Open Drain. Logic-high indicates a fault condition. FAULT remains high even after the fault condition has been removed. A logic-low occurs when the fault condition has been removed and the fault latch has been cleared by the DISABLE signal.
26	VEER	Ground. Provides ground for the receiver block.
28	RIN-	Inverted Receive Data Input, CML
29	RIN+	Noninverted Receive Data Input, CML
31	CAZ2	Offset Correction Loop Capacitor. A capacitor connected between this pin and CAZ1 sets the time constant of the offset correction loop. The offset correction can be disabled through the digital interface by setting the bit AZ_EN = 0.
32	CAZ1	Offset Correction Loop Capacitor. Counterpart to CAZ2, internally connected to VEER.
_	EP	Exposed Pad. Ground. Must be soldered to circuit board ground for proper thermal and electrical performance (see the <i>Exposed-Pad Package</i> section).

Detailed Description

The MAX3799 SFP+ transceiver combines a limiting amplifier receiver with loss-of-signal detection and a VCSEL laser driver transmitter with fault protection. Configuration of the advanced Rx and Tx settings of the MAX3799 is performed by a controller through the 3-wire interface. The MAX3799 provides multiple current and voltage DACs to allow the use of low-cost controller ICs.

Limiting Amplifier Receiver

The limiting amplifier receiver inside the MAX3799 is designed to operate from 1.0625Gbps to 10.32Gbps. The receiver includes a dual path limiter, offset correction circuitry, CML output stage with deemphasis, and loss-of-signal circuitry. The functions of the receiver can be controlled through the on-chip 3-wire interface. The registers that control the receiver functionality are RXCTRL1, RXCTRL2, RXSTAT, MODECTRL, SET_CML, and SET_LOS.

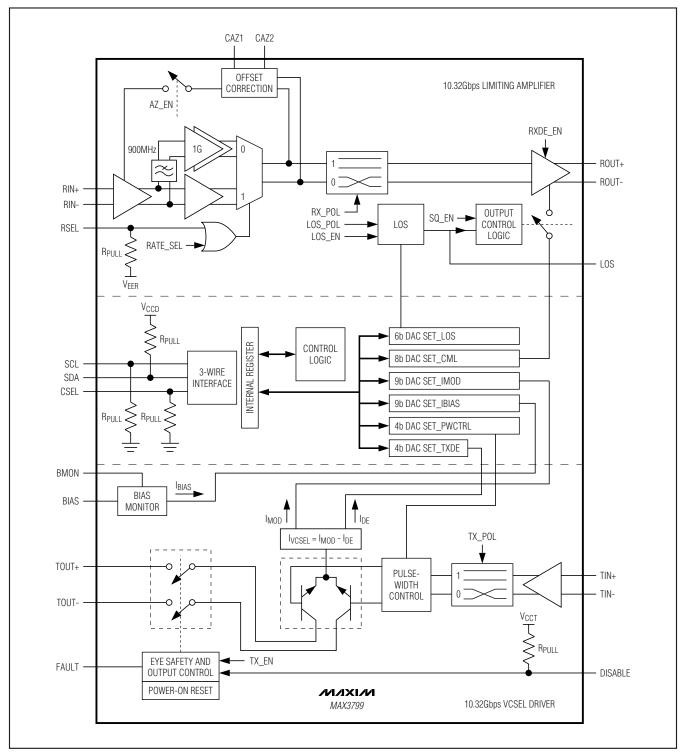


Figure 2. Functional Diagram

Dual Path Limiter

The limiting amplifier features a low data-rate mode (1.25Gbps) and a high data-rate mode (up to 10.32Gbps), allowing for overall system optimization. Either the RSEL pin or the RATE_SEL bit can perform the rate selection. For operating up to 1.25Gbps, the low data-rate mode (RATE_SEL = 0) is recommended. For operation up to 14.025Gbps, the high data-rate mode (RATE_SEL = 1) is recommended. The polarity of the ROUT+/ROUT- relative to RIN+/RIN- is programmed by the RX_POL bit.

Offset Correction Circuitry

The offset correction circuit is enabled to remove pulsewidth distortion caused by intrinsic offset voltages within the differential amplifier stages. An external capacitor (CAZ) connected between the CAZ1 and CAZ2 pins is used to set the offset correction loop cutoff frequency. The offset loop can be disabled using the AZ_EN bit.

CML Output Stage with Deemphasis and Slew-Rate Control

The CML output stage is optimized for differential 100Ω loads. The RXDE_EN bit adds analog deemphasis compensation to the limited differential output signal for SFP connector losses. The output stage is controlled by a combination of the RX_EN and SQ_EN bits and the LOS pin. See Table 1.

Amplitude of the CML output stage is controlled by an 8-bit DAC register (SET_CML). The differential output amplitude range is from $40 mV_{P-P}$ up to $1200 mV_{P-P}$ with $4.6 mV_{P-P}$ resolution (assuming an ideal 100Ω differential load).

Table 1. CML Output Stage Operation Mode

RX_EN	SQ_EN	LOS OPERATION MOI DESCRIPTION	
0	Х	Х	CML output disabled.
1	0	Х	CML output enabled.
1	1	0	CML output enabled.
1	1	1	CML output disabled.

Loss-of-Signal (LOS) Circuitry

The input data amplitude is compared to a preset threshold controlled by the 6-bit DAC register SET_LOS. The LOS assert level can be programmed from 14mVp-p up to 77mVp-p with 1.5mVp-p resolution (assuming an ideal 100Ω differential source). LOS is enabled through the LOS_EN bit and the polarity of the LOS is controlled with the LOS POL bit.

VCSEL Driver

The VCSEL driver inside the MAX3799 is designed to operate from 1.0625Gbps to 10.32Gbps. The transmitter contains a differential data path with pulse-width adjustment, bias current and modulation current DACs, output driver with programmable deemphasis, power-on reset circuitry, BIAS monitor, VCSEL current limiter, and eye safety circuitry. A 3-wire digital interface is used to control the transmitter functions. The registers that control the transmitter functionality are TXCTRL, TXSTAT1, TXSTAT2, SET_IBIAS, SET_IMOD, IMODMAX, IBIASMAX, MODINC, BIASINC, MODECTRL, SET_PWCTRL, and SET_TXDE.

Differential Data Path

The CML input buffer is optimized for AC-coupled signals and is internally terminated with a differential $100\Omega.$ Differential input data is equalized for high-frequency losses due to SFP connectors. The TX_POL bit in the TXCTRL register controls the polarity of TOUT+ and TOUT- vs. TIN+ and TIN-. The SET_PWCTRL register controls the output eye-crossing adjustment. A status indicator bit (TXED) monitors the presence of an AC input signal.

Table 2. Slew-Rate Control for CML Output Stage

RATE_SEL	OPERATION MODE DESCRIPTION
0	1.25Gbps operation with reduced output edge speed.
1	Up to 10.32Gbps operation.

Bias Current DAC

The bias current from the MAX3799 is optimized to provide up to 15mA of bias current into a 50Ω to 75Ω VCSEL load with 40µA resolution. The bias current is controlled through the 3-wire digital interface using the SET_IBIAS, IBIASMAX, and BIASINC registers.

For VCSEL operation, the IBIASMAX register is first programmed to a desired maximum bias current value (up to 15mA). The bias current to the VCSEL then can range from zero to the value programmed into the IBIASMAX register. The bias current level is stored in the 9-bit SET_IBIAS register. Only bits 1 to 8 are written to. The LSB (bit 0) of SET_IBIAS is initialized to zero and is updated through the BIASINC register.

The value of the SET_IBIAS DAC register is updated when the BIASINC register is addressed through the 3-wire interface. The BIASINC register is an 8-bit register where the first 5 bits contain the increment information in two's complement notation. Increment values range from -8 to +7 LSBs. If the updated value of SET_IBIAS[8:1] exceeds IBIASMAX[7:0], the IBIASERR warning flag is set and SET_IBIAS[8:0] remains unchanged.

Modulation Current DAC

The modulation current from the MAX3799 is optimized to provide up to 12mA of modulation current into a 100Ω differential load with 40µA resolution. The modulation current is controlled through the 3-wire digital interface using the SET_IMOD, IMODMAX, MODINC, and SET_TXDE registers.

For VCSEL operation, the IMODMAX register is first programmed to a desired maximum modulation current value (up to 12mA into a 100 Ω differential load). The modulation current to the VCSEL then can range from zero to the value programmed into the IMODMAX register. The modulation current level is stored in the 9-bit SET_IMOD register. Only bits 1 to 8 are written to. The LSB (bit 0) of SET_IMOD is initialized to zero and is updated through the MODINC register.

The value of the SET_IMOD DAC register is updated when the MODINC register is addressed through the 3-wire interface. The MODINC register is an 8-bit register where the first 5 bits contain the increment information in two's complement notation. Increment values range from -8 to +7 LSBs. If the updated value of

SET_IMOD[8:1] exceeds IMODMAX[7:0], the IMODERR warning flag is set and SET_IMOD[8:0] remains unchanged.

Output Driver

The output driver is optimized for an AC-coupled 100Ω differential load. The output stage also features programmable deemphasis that allows the deemphasis amplitude to be set as a percentage of the modulation current. The deemphasis function is enabled by the TXDE_EN bit. At initial setup, the required amount of deemphasis can be set using the SET_TXDE register. During the system operation, it is advised to use the incremental mode that updates the deemphasis (SET_TXDE) and the modulation current DAC (SET_IMOD) simultaneously through the MODINC register.

Power-On Reset (POR)

Power-on reset ensures that the laser is off until the supply voltage has reached a specified threshold (2.55V). After power-on reset, bias current and modulation current ramp up slowly to avoid an overshoot. In the case of a POR, all registers are reset to their default values.

Bias Current Monitor

Current out of the BMON pin is typically 1/16th the value of I_{BIAS} . A resistor to ground at BMON sets the voltage gain. An internal comparator latches a SOFT FAULT if the voltage on BMON exceeds the value of V_{CC} - 0.55V.

Eye Safety and Output Control Circuitry

The safety and output control circuitry contains a disable pin (DISABLE) and disable bit (TX_EN), along with a FAULT indicator and fault detectors (Figure 3). The MAX3799 has two types of faults, HARD FAULT and SOFT FAULT. A HARD FAULT triggers the FAULT pin and the output to the VCSEL is disabled. A SOFT FAULT operates more like a warning and the outputs are not disabled. Both types of faults are stored in the TXSTAT1 and TXSTAT2 registers.

The FAULT pin is a latched output that can be cleared by toggling the DISABLE pin. Toggling the DISABLE pin also clears the TXSTAT1 and TXSTAT2 registers. A single-point fault can be a short to VCC or GND. Table 3 shows the circuit response to various single-point failures.

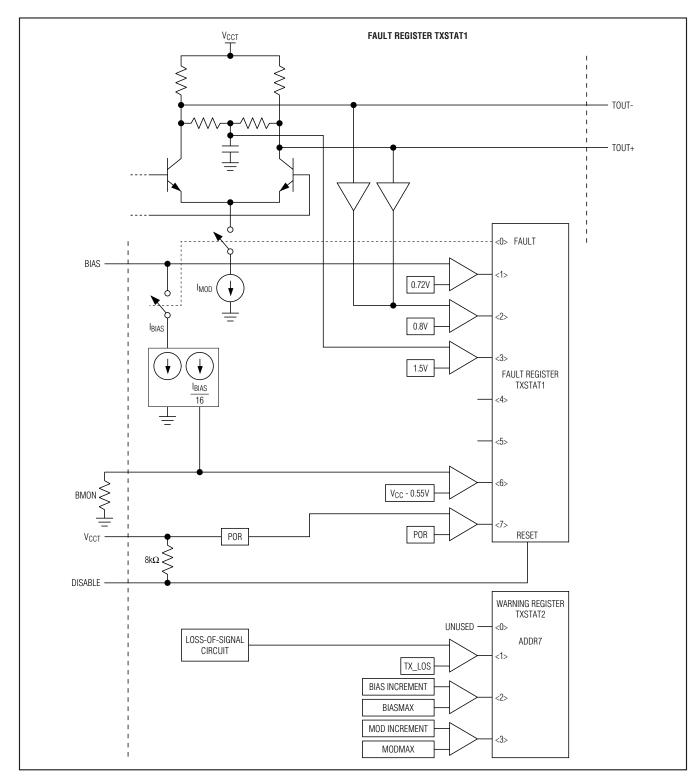


Figure 3. Eye Safety Circuitry

Table 3. Circuit Response to Single-Point Faults

PIN	NAME	SHORT TO V _{CC}	SHORT TO GND	OPEN
1	LOS	Normal (Note 1)	Normal (Note 1)	Normal (Note 1)
2	RSEL	Normal (Note 1)	Normal (Note 1)	Normal (Note 1)
3	VCCR	Normal	Disabled—HARD FAULT (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
4	ROUT+	Normal (Note 1)	Normal (Note 1)	Normal (Note 1)
5	ROUT-	Normal (Note 1)	Normal (Note 1)	Normal (Note 1)
6	VCCR	Normal	Disabled—HARD FAULT (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
7	VCCD	Normal	Disabled—HARD FAULT	Disabled—HARD FAULT
8	DISABLE	Disabled	Normal (Note 1). Can only be disabled with other means.	Disabled
9	SCL	Normal (Note 1)	Normal (Note 1)	Normal (Note 1)
10	SDA	Normal (Note 1)	Normal (Note 1)	Normal (Note 1)
11	CSEL	Normal (Note 1)	Normal (Note 1)	Normal (Note 1)
12	Vсст	Normal	Disabled—Fault (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
13	TIN+	SOFT FAULT	SOFT FAULT	Normal (Note 1)
14	TIN-	SOFT FAULT	SOFT FAULT	Normal (Note 1)
15	V _{CCT}	Normal	Disabled—Fault (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
16	BMON	Disabled—HARD FAULT	Normal (Note 1)	Disabled—HARD FAULT
17	VEET	Disabled—Fault (external supply shorted) (Note 2)	Normal	Disabled—HARD FAULT
18	VCCT	Normal	Disabled—Fault (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
19	TOUT-	I _{MOD} is reduced	Disabled—HARD FAULT	I _{MOD} is reduced
20	TOUT+	I _{MOD} is reduced	Disabled—HARD FAULT	I _{MOD} is reduced
21	V _{CCT}	Normal	Disabled—Fault (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
22	BIAS	IBIAS is on—No Fault	Disabled—HARD FAULT	Disabled—HARD FAULT
23	FAULT	Normal (Note 1)	Normal (Note 1)	Normal (Note 1)
24	Vccт	Normal	Disabled—Fault (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
25	Vccт	Normal	Disabled—Fault (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
26	VEER	Disabled—Fault (external supply shorted) (Note 2)	Normal	Normal (Note 3)—Redundant path
27	Vccr	Normal	Disabled—HARD FAULT (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
28	RIN-	Normal (Note 1)	Normal (Note 1)	Normal (Note 1)
29	RIN+	Normal (Note 1)	Normal (Note 1)	Normal (Note 1)

Table 3. Circuit Response to Single-Point Faults (continued)

PIN	NAME	SHORT TO V _{CC}	SHORT TO GND	OPEN
30	VCCR	Normal	Disabled—Fault (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path
31	CAZ2	Normal (Note 1)	Normal (Note 1)	Normal (Note 1)
32	CAZ1 (V _{EER})	Disabled—Fault (external supply shorted) (Note 2)	Normal (Note 3)—Redundant path	Normal (Note 3)—Redundant path

Note 1: Normal—Does not affect laser power.

Note 2: Supply-shorted current is assumed to be primarily on the circuit board (outside this device) and the main supply is collapsed by the short.

Note 3: Normal in functionality, but performance could be affected.

Warning: Shorted to VCC or shorted to ground on some pins can violate the Absolute Maximum Ratings.

3-Wire Digital Communication

The MAX3799 implements a proprietary 3-wire digital interface. An external controller generates the clock. The 3-wire interface consists of an SDA bidirectional data line, an SCL clock signal input, and a CSEL chip-select input (active high). The external master initiates a data transfer by asserting the CSEL pin. The master starts to generate a clock signal after the CSEL pin has been set to 1. All data transfers are most significant bit (MSB) first.

Protocol

Each operation consists of 16-bit transfers (15-bit address/data, 1-bit RWN). The bus master generates 16 clock cycles to SCL. All operations transfer 8 bits to the MAX3799. The RWN bit determines if the cycle is read or write. See Table 4.

Register Addresses

The MAX3799 contains 17 registers available for programming. Table 5 shows the registers and addresses.

$Write\ Mode\ (RWN=0)$

The master generates 16 clock cycles at SCL in total. The master outputs a total of 16 bits (MSB first) to the SDA line at the falling edge of the clock. The master closes the transmission by setting CSEL to 0. Figure 4 shows the interface timing.

Read Mode (RWN = 1)

The master generates 16 clock cycles at SCL in total. The master outputs a total of 8 bits (MSB first) to the SDA line at the falling edge of the clock. The SDA line is released after the RWN bit has been transmitted. The slave outputs 8 bits of data (MSB first) at the rising edge of the clock. The master closes the transmission by setting CSEL to 0. Figure 4 shows the interface timing.

Mode Control

Normal mode allows read-only instruction for all registers except MODINC and BIASINC. The MODINC and BIASINC registers can be updated during normal mode. Doing so speeds up the laser control update through the 3-wire interface by a factor of two. The normal mode is the default mode.

Setup mode allows the master to write unrestricted data into any register except the status (TXSTAT1, TXSTAT2, and RXSTAT) registers. To enter the setup mode, the MODECTRL register (address = H0x0E) must be set to H0x12. After the MODECTRL register has been set to H0x12, the next operation is unrestricted. The setup mode is automatically exited after the next operation is finished. This sequence must be repeated if further unrestricted settings are necessary.

Table 4. Digital Communication Word Structure

	ВІТ														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Register Address					RWN			Data	that is w	ritten or	read.				

Table 5. Register Descriptions and Addresses

ADDRESS	NAME	FUNCTION
H0x00	RXCTRL1	Receiver Control Register 1
H0x01	RXCTRL2	Receiver Control Register 2
H0x02	RXSTAT	Receiver Status Register
H0x03	SET_CML	Output CML Level Setting Register
H0x04	SET_LOS	LOS Threshold Level Setting Register
H0x05	TXCTRL	Transmitter Control Register
H0x06	TXSTAT1	Transmitter Status Register 1
H0x07	TXSTAT2	Transmitter Status Register 2
H0x08	SET_IBIAS	Bias Current Setting Register
H0x09	SET_IMOD	Modulation Current Setting Register
H0x0A	IMODMAX	Maximum Modulation Current Setting Register
H0x0B	IBIASMAX	Maximum Bias Current Setting Register
H0x0C	MODINC	Modulation Current Increment Setting Register
H0x0D	BIASINC	Bias Current Increment Setting Register
H0x0E	MODECTRL	Mode Control Register
H0x0F	SET_PWCTRL	Transmitter Pulse-Width Control Register
H0x10	SET_TXDE	Transmitter Deemphasis Control Register

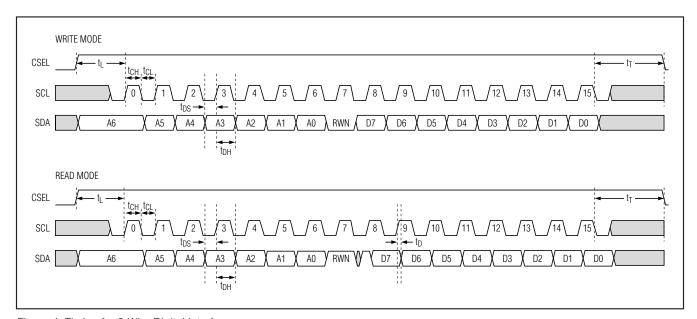


Figure 4. Timing for 3-Wire Digital Interface

Register Descriptions

Receiver Control Register 1 (RXCTRL1)

Bit # 7 6 5 4 2 0 **ADDRESS** 3 Χ Χ Χ Χ Χ Χ RATE_SEL Name Χ H0x00 Default Value Χ Χ Χ Χ Χ Χ 0 Χ

Bit 1: RATE_SEL. RATE_SEL combined with the RSEL pin through a logic-OR function selects between the low data-rate mode (1.25Gbps) or high data-rate mode (up to 10.32Gbps).

Logic-OR output 0 = 1Gbps mode

Logic-OR output 1 = 10Gbps mode

Receiver Control Register 2 (RXCTRL2)

Bit #	7	6	5	4	3	2	1	0	ADDRESS
Name	Χ	LOS_EN	LOS_POL	RX_POL	SQ_EN	RX_EN	RXDE_EN	AZ_EN	H0x01
Default Value	Χ	1	1	1	0	1	0	1	HUXUT

Bit 6: LOS_EN. Controls the LOS circuitry. When RX_EN is set to 0, the LOS detector is also disabled.

0 = disabled

1 = enabled

Bit 5: LOS_POL. Controls the output polarity of the LOS pin.

0 = inverse

1 = normal

Bit 4: RX_POL. Controls the polarity of the receiver signal path.

0 = inverse

1 = normal

Bit 3: SQ_EN: When SQ_EN = 1, the LOS controls the output circuitry.

0 = disabled

1 = enabled

Bit 2: RX_EN. Enables or disables the receive circuitry.

0 = disabled

1 = enabled

Bit 1: RXDE_EN. Enables or disables the deemphasis on the receiver output.

0 = disabled

1 = enabled

Bit 0: AZ_EN. Enables or disables the autozero circuitry. When RX_EN is set to 0, the autozero circuitry is also disabled.

0 = disabled

1 = enabled

Receiver Status Register (RXSTAT)

Bit #	7	6	5	4	3	2	1	0 (STICKY)	ADDRESS
Name	Χ	Х	X	Х	Χ	Х	Х	LOS	H0x02
Default Value	X	Х	X	X	Χ	X	X	X	HUXUZ

Bit 0: LOS. Copy of the LOS output circuitry. This is a sticky bit, which means that it is cleared on a read. The first 0-to-1 transition gets latched until the bit is read by the master or POR occurs.

Output CML Level Setting Register (SET_CML)

Bit #	7	6	5	4	3	2	1	0	ADDRESS
Name	SET_CML[7] (MSB)	SET_CML[6]	SET_CML[5]	SET_CML[4]	SET_CML[3]	SET_CML[2]	SET_CML[1]	SET_CML[0] (LSB)	H0x03
Default Value	0	1	0	1	0	0	1	1	

Bits 7 to 0: SET_CML[7:0]. The SET_CML register is an 8-bit register that can be set up to R15, corresponding to an output up to 1000mV_{P-P}. See the *Typical Operating Characteristics* section for a typical CML output voltage vs. DAC code graph.

LOS Threshold Level Setting Register (SET_LOS)

Bit #	7	6	5	4	3	2	1	0	ADDRESS
Name	X	X	SET_LOS[5] (MSB)	SET_LOS[4]	SET_LOS[3]	SET_LOS[2]	SET_LOS[1]	SET_LOS[0] (LSB)	H0x04
Default Value	Х	Х	0	0	1	1	0	0	

Bits 5 to 0: SET_LOS[5:0]. The SET_LOS register is a 6-bit register used to program the LOS threshold. See the *Typical Operating Characteristics* section for a typical LOS threshold voltage vs. DAC code graph.

MAX3799

1Gbps to 14Gbps, SFP+ Multirate Limiting Amplifier and VCSEL Driver

Transmitter Control Register (TXCTRL)

Bit #
Name
Default Value

7	6	5	4	3	2	1	0	ADDRESS
X	X	Х	Х	TXDE_EN	SOFTRES	TX_POL	TX_EN	H0x05
X	Х	Х	Х	0	0	1	1	HUXUS

Bit 3: TXDE EN. Enables or disables the transmit output deemphasis circuitry.

0 = disabled

1 = enabled

Bit 2: SOFTRES. Resets all registers to their default values.

0 = normal

1 = reset

Bit 1: TX_POL. Controls the polarity of the transmit signal path.

0 = inverse

1 = normal

Bit 0: TX_EN. Enables or disables the transmit circuitry.

0 = disabled

1 = enabled

Transmitter Status Register 1 (TXSTAT1)

Bit #

Name

Default Value

7 (STICKY)	6 (STICKY)	5 (STICKY)	4 (STICKY)	3 (STICKY)	2 (STICKY)	1 (STICKY)	0 (STICKY)	ADDRESS
FST[7]	FST[6]	Х	X	FST[3]	FST[2]	FST[1]	TX_FAULT	H0x06
X	Χ	Х	X	Х	Х	Χ	Χ	ПОХОО

Bit 7: FST[7]. When the V_{CCT} supply voltage is below 2.45V, the POR circuitry reports a FAULT. Once the V_{CCT} supply voltage is above 2.55V, the POR resets all registers to their default values and the FAULT is cleared.

Bit 6: FST[6]. When the voltage at BMON is above VCC - 0.55V, a SOFT FAULT is reported.

Bit 3: FST[3]. When the common-mode voltage at V_{TOUT}+/- goes below 1.5V, a SOFT FAULT is reported.

Bit 2: FST[2]. When the voltage at VTOUT+/- goes below 0.8V, a HARD FAULT is reported.

Bit 1: FST[1]. When the BIAS voltage goes below 0.44V, a HARD FAULT is reported.

Bit 0: TX_FAULT. Copy of a FAULT signal in FST[7] to FST[1]. A POR resets FST[7:1] to 0.

Transmitter Status Register 2 (TXSTAT2)

Bit #

Default Value

7	6	5	4	3 (STICKY)	2 (STICKY)	1 (STICKY)	0 (STICKY)	ADDRESS
Χ	X	Χ	Х	IMODERR	IBIASERR	TXED	Χ	H0x07
Χ	Х	Х	Х	Х	Х	Χ	Х	HUXU7

Bit 3: IMODERR. When the modulation-incremented result is greater than IMODMAX, a SOFT FAULT is reported. See the *Programming Modulation Current* section.

Bit 2: IBIASERR. When the bias incremented result is greater than IBIASMAX, then a SOFT FAULT is reported. See the *Programming Bias Current* section.

Bit 1: TXED. This only indicates the absence of an AC signal at the transmit input. This is not an LOS indicator.

Bias Current Setting Register (SET_IBIAS)

Bit #	7	6	5	4	3	2	1	0	ADDRESS
Name	SET_IBIAS [8] (MSB)	SET_IBIAS [7]	SET_IBIAS [6]	SET_IBIAS [5]	SET_IBIAS [4]	SET_IBIAS [3]	SET_IBIAS [2]	SET_IBIAS [1]	H0x08
Default Value	0	0	0	0	0	1	0	0	

Bits 7 to 0: SET_IBIAS[8:1]. The bias current DAC is controlled by a total of 9 bits. The SET_IBIAS[8:1] bits are used to set the bias current with even denominations from 0 to 510 bits. The LSB (SET_IBIAS[0]) bit is controlled by the BIASINC register and is used to set the odd denominations in the SET_IBIAS[8:0].

Modulation Current Setting Register (SET_IMOD)

Bit #	7	6	5	4	3	2	1	0	ADDRESS
Nama	SET_IMOD	SET_IMOD	SET_IMOD	SET_IMOD	SET_IMOD	SET_IMOD	SET_IMOD	SET_IMOD	
Name	[8] (MSB)	[7]	[6]	[5]	[4]	[3]	[2]	[1]	H0x09
Default Value	0	0	0	1	0	0	1	0	

Bits 7 to 0: SET_IMOD[8:1]. The modulation current DAC is controlled by a total of 9 bits. The SET_IMOD[8:1] bits are used to set the modulation current with even denominations from 0 to 510 bits. The LSB (SET_IMOD[0]) bit is controlled by the MODINC register and is used to set the odd denominations in the SET_IMOD[8:0].

Maximum Modulation Current Setting Register (IMODMAX)

Bit #	7	6	5	4	3	2	1	0	ADDRESS
Name	IMODMAX [7] (MSB)	IMODMAX [6]	IMODMAX [5]	IMODMAX [4]	IMODMAX [3]	IMODMAX [2]	IMODMAX [1]	IMODMAX [0] (LSB)	H0x0A
Default Value	0	0	1	1	0	0	0	0	

Bits 7 to 0: IMODMAX[7:0]. The IMODMAX register is an 8-bit register that can be used to limit the maximum modulation current. IMODMAX[7:0] is continuously compared to the SET_IMOD[8:1].

Maximum Bias Current Setting Register (IBIASMAX)

Bit #	7	6	5	4	3	2	1	0	ADDRESS
Name	IBIASMAX [7] (MSB)	IBIASMAX [6]	IBIASMAX [5]	IBIASMAX [4]	IBIASMAX [3]	IBIASMAX [2]	IBIASMAX [1]	IBIASMAX [0] (LSB)	H0x0B
Default Value	0	0	0	1	0	0	1	0	

Bits 7 to 0: IBIASMAX[7:0]. The IBIASMAX register is an 8-bit register that can be used to limit the maximum bias current. IBIASMAX[7:0] is continuously compared to the SET_IBAS[8:1].

Modulation Current Increment Setting Register (MODINC)

Bit #
Name
Default Value

7	6	5	4	3	2	1	0	ADDRESS
SET_IMOD [0]	X	DE_INC	MODINC[4] (MSB)	MODINC[3]	MODINC[2]	MODINC[1]	MODINC[0] (LSB)	H0x0C
0	0	0	0	0	0	0	0	

Bit 7: SET_IMOD[0]. This is the LSB of the SET_IMOD[8:0] bits. This bit can only be updated by the use of MODINC[4:0].

Bit 5: DE_INC. When this bit is set to 1 and the deemphasis on the transmit output is enabled, the SET_TXDE[3:0] is incremented or decremented by 1 LSB. The increment or decrement is determined by the sign bit of the MODINC[4:0] string of bits.

Bits 4 to 0: MODINC[4:0]. This string of bits is used to increment or decrement the modulation current. When written to, the SET_IMOD[8:0] bits are updated. MODINC[4:0] are a two's complement string.

Bias Current Increment Setting Register (BIASINC)

Bit # Name

Default Value

7	6	5	4	3	2	1	0	ADDRESS
SET_IBIAS [0]	X	X	BIASINC[4] (MSB)	BIASINC[3]	BIASINC[2]	BIASINC[1]	BIASINC[0] (LSB)	H0x0D
0	0	0	0	0	0	0	0	

Bit 7: SET_IBIAS[0]. This is the LSB of the SET_IBIAS[8:0] bits. This bit can only be updated by the use of BIASINC[4:0]. **Bits 4 to 0: BIASINC[4:0].** This string of bits is used to increment or decrement the bias current. When written to, the SET_IBIAS[8:0] bits are updated. BIASINC[4:0] are a two's complement string.

Mode Control Register (MODECTRL)

Bit # Name

Default Value

7	6	5	4	3	2	1	0	ADDRESS
MODECTRL	MODECTRL	MODECTRL	MODECTRL	MODECTRL	MODECTRL	MODECTRL	MODECTRL	
[7] (MSB)	[6]	[5]	[4]	[3]	[2]	[1]	[0] (LSB)	H0x0E
0	0	0	0	0	0	0	0	

Bits 7 to 0: MODECTRL[7:0]. The MODECTRL register enables a switch between normal and setup modes. The setup mode is achieved by setting this register to H0x12. MODECTRL must be updated before each write operation. Exceptions are MODINC and BIASINC, which can be updated in normal mode.

Transmitter Pulse-Width Control Register (SET_PWCTRL)

Name

Default Value

Bit #

7	6	5	4	3	2	1	0	ADDRESS
Χ	Χ	X	X	SET_ PWCTRL[3] (MSB)	SET_ PWCTRL[2]	SET_ PWCTRL[1]	SET_ PWCTRL[0] (LSB)	H0x0F
Χ	Χ	Χ	Χ	0	0	0	0	

Bits 3 to 0: SET_PWCTRL[3:0]. This is a 4-bit register used to control the eye crossing by adjusting the pulse width.

Transmitter Deemphasis Control Register (SET_TXDE)

Bit #	7	6	5	4	3	2	1	0	ADDRESS
Name	X	X	X	X	SET_TXDE [3] (MSB)	SET_TXDE [2]	SET_TXDE [1]	SET_TXDE [0] (LSB)	H0x10
Default Value	Χ	Χ	Χ	Х	0	0	0	0	

Bits 3 to 0: SET_TXDE[3:0]. This is a 4-bit register used to control the amount of deemphasis on the transmitter output. When calculating the total modulation current, the amount of deemphasis must be taken into account. The deemphasis is set as a percentage of modulation current.

_____Design Procedure Programming Bias Current

1) IBIASMAX[7:0] = Maximum_Bias_Current_Value

2) SET_IBIAS_i[8:1] = Initial_Bias_Current_Value

Note: The total bias current value is calculated using the SET_IBIAS[8:0] register. SET_IBIAS[8:1] are the bits that can be manually written. SET_IBIAS[0] can only be updated using the BIASINC[7:0] register.

When implementing an APC loop, it is recommended to use the BIASINC[7:0] register, which guarantees the fastest bias current update.

- 3) BIASINC_i[4:0] = New_Increment_Value
- 4) If (SET_IBIAS_i[8:1] ≤ IBIASMAX[7:0]), then (SET_IBIAS_i[8:0] = SET_IBIAS_{i-1}[8:0] + BIASINC_i[4:0])
- 5) Else (SET IBIASi[8:0] = SET IBIASi-1[8:0])

The total bias current can be calculated as follows:

6) $I_{BIAS} = [SET_IBIAS_i[8:0] + 20] \times 40\mu A$

Programming Modulation Current

- 1) IMODMAX[7:0] = Maximum_Modulation_Current_Value
- 2) SET_IMOD_i[8:1] = Initial_Modulation_Current_Value

Note: The total modulation current value is calculated using the SET_IMOD[8:0] register. SET_IMOD[8:1] are the bits that can be manually written. SET_IMOD[0] can only be updated using the MODINC[7:0] register.

When implementing modulation compensation, it is recommended to use the MODINC[7:0] register, which guarantees the fastest modulation current update.

- 3) MODINC_i[4:0] = New_Increment_Value
- 4) If $(SET_IMOD_i[8:1] \le IMODMAX[7:0])$, then $(SET_IMOD_i[8:0] = SET_IMOD_{i-1}[8:0] + MODINC_i[4:0])$
- 5) Else (SET_IMOD $_{i}$ [8:0] = SET_IMOD $_{i-1}$ [8:0])

The following equation is valid with assumption of 100Ω on-chip and 100Ω external differential load (Rextd). The maximum value that can be set for SET_TXDE[3:0] = 11.

6) $IMOD(Rextd=100\Omega) = [(20 + SET_IMOD_i[8:0]) \times 40\mu A]$

$$\times \left[1 - \frac{2 + \mathsf{SET}_\mathsf{TXDE[3:0]}}{64}\right]$$

For general Rextd, the modulation current that is achieved using the same setting of SET_IMOD_i[8:0] as for Rextd = 100Ω is shown below. It can be written as a function of IMOD(Rextd= 100Ω), still assuming a 100Ω onchip load.

7)
$$I_{MOD(Rextd)} = 2 \times I_{MOD(Rextd=100\Omega)} \left[\frac{Rext}{Rext+100} \right]$$

Programming LOS Threshold

 $LOS_{TH} = (SET_LOS[7:0] \times 1.5 mV_{P-P})$

Programming Transmit Output Deemphasis

The TXDE_EN bit must be set to 1 to enable the deemphasis function. The SET_TXDE register value is used to set the amount of deemphasis, which is a percentage of the modulation current. Deemphasis percentage is determined as:

$$DE(\%) = \frac{100 \times (2 + SET_TXDE[3:0])}{64}$$

where the maximum $SET_TXDE[3:0] = 11$.

For an I_{MOD} value of 10mA, the maximum achievable deemphasis value is approximately 20%. Maximum deemphasis achievable for full I_{MOD} range of 12mA is limited to 15%.

With deemphasis enabled, the value of the modulation current amplitude is reduced by the calculated deemphasis percentage. To maintain the modulation current amplitude constant, the SET_IMOD[8:0] register must be increased by the deemphasis percentage. If the system conditions like temperature, required I_{MOD} value, etc., change during the transmit operation, the deemphasis setting might need to be readjusted. For such an

impromptu deemphasis adjustment, it is recommended that the DE_INC (MODINC[5]) bit is used. Use of this bit increments or decrements the deemphasis code setting by 1 LSB based on the sign of increment in the MODINC[4:0] and, hence, the SET_IMOD[8:0] setting. This helps maintain the BER while having the flexibility to improve signal quality by adjusting deemphasis while the transmit operation continues. This feature enables glitchless deemphasis adjustment while maintaining excellent BER performance.

Activating Receiver Output Deemphasis

The RXDE_EN bit must be set to 1 to enable the deemphasis function. Deemphasis decreases the output amplitude at ROUT+/ROUT- by 25%. To maintain the same output amplitude as before the activation of deemphasis, the SET_CML register value needs to be increased by 25%. When deemphasis is enabled, the limiting amplifier AC performance is guaranteed up to 800mVP-P typical output amplitude. The SET_CML register can be set from 0 to 255 bits, but it is important to note that performance is guaranteed up to 215 bits.

Programming Pulse-Width Control

The eye crossing at the Tx output can be adjusted using the SET_PWCTRL register. Table 6 shows these settings.

The sign of the number specifies the direction of pulse-width distortion. The code of 1111 corresponds to a balanced state for differential output. The pulse-width distortion is bidirectional around the balanced state (see the *Typical Operating Characteristics* section).

Programming CML Output Settings

Amplitude of the CML output stage is controlled by an 8-bit DAC register (SET_CML). The differential output amplitude is up to 1000 mVp-p with 4.6 mVp-p resolution (assuming an ideal 100Ω differential load). The guaranteed output CML DAC range is up to 215.

Output Voltage R_{OUT} (mV_{P-P}) = 40 + 4.55 (SET_CML)

Select the Coupling Capacitor

For AC-coupling, the coupling capacitors C_{IN} and C_{OUT} should be selected to minimize the receiver's deterministic jitter. Jitter is decreased as the input low-frequency cutoff (f_{IN}) is decreased.

 $f_{IN} = 1/[2\pi(50)(C_{IN})]$

The recommended C_{IN} and C_{OUT} is $0.1 \mu \text{F}$ for the MAX3799.

Select the Offset-Correction Capacitor

The capacitor between CAZ1 and CAZ2 determines the time constant of the signal path DC-offset cancellation loop. To maintain stability, it is important to keep at

least a one-decade separation between f_{IN} and the low-frequency cutoff (f_{OC}) associated with the DC-off-set cancellation circuit. A 1nF capacitor between CAZ1 and CAZ2 is recommended for the MAX3799.

_Applications Information Layout Considerations

To minimize inductance, keep the connections between the MAX3799 output pins and laser diode as close as possible. Optimize the laser diode performance by placing a bypass capacitor as close as possible to the laser anode. Use good high-frequency layout techniques and multiple-layer boards with uninterrupted ground planes to minimize EMI and crosstalk.

Exposed-Pad Package

The exposed pad on the 32-pin TQFN provides a very low-thermal resistance path for heat removal from the IC. The pad is also electrical ground on the MAX3799 and must be soldered to the circuit board ground for proper thermal and electrical performance. Refer to Application Note 862: HFAN-08.1: Thermal Considerations of QFN and Other Exposed-Paddle Packages for additional information.

Laser Safety and IEC 825

Using the MAX3799 laser driver alone does not ensure that a transmitter design is compliant with IEC 825. The entire transmitter circuit and component selections must be considered. Each user must determine the level of fault tolerance required by the application, recognizing that Maxim products are neither designed nor authorized for use as components in systems intended for surgical implant into the body, for applications intended to support or sustain life, or for any other application in which the failure of a Maxim product could create a situation where personal injury or death could occur.

Table 6. Eye-Crossing Settings for SET PWCTRL

SET_PWCTRL[3:0]	PWD	SET_PWCTRL[3:0]	PWD
1000	-7	0111	8
1001	-6	0110	7
1010	-5	0101	6
1011	-4	0100	5
1100	-3	0011	4
1101	-2	0010	3
1110	-1	0001	2
1111	0	0000	1

Table 7. Register Summary

REGISTER FUNCTION/ ADDRESS	REGISTER NAME	NORMAL MODE	SETUP MODE	BIT NUMBER /TYPE	BIT NAME	DEFAULT VALUE	NOTES
Receiver Control Register 1 Address = H0x00	RXCTRL1	R	RW	1	RATE_SEL	0	Mode-select 0: high-gain mode, 1: high- bandwidth mode
		R	RW	6	LOS_EN	1	LOS control 0: disable, 1: enable (always 0 when RX_EN = 0)
		R	RW	5	LOS_POL	1	LOS polarity 0: inverse, 1: normal
		R	RW	4	RX_POL	1	Rx polarity 0: inverse, 1: normal
Receiver Control Register 2 Address = H0x01	RXCTRL2	R	RW	3	SQ_EN	0	Squelch 0: disable, 1: enable
		R	RW	2	RX_EN	1	Rx control 0: disable, 1: enable
		R	RW	1	RXDE_EN	0	Rx deemphasis 0: disable, 1: enable
		R	RW	0	AZ_EN	1	Rx autozero control 0: disable, 1: enable (always 0 when RX_EN = 0)
Receiver Status Register Address = H0x02	RXSTAT	R	R	0 (sticky)	LOS	Х	Copy of LOS output signal
		R	RW	7	SET_CML[7]	0	MSB output level DAC
		R	RW	6	SET_CML[6]	1	
Outrant ONAL Laval		R	RW	5	SET_CML[5]	0	
Output CML Level Setting Register	SET_CML	R	RW	4	SET_CML[4]	1	
Address = H0x03	OLI_OME	R	RW	3	SET_CML[3]	0	
		R	RW	2	SET_CML[2]	0	
		R	RW	1	SET_CML[1]	1	
		R	RW	0	SET_CML[0]	1	LSB output level DAC
		R	RW	5	SET_LOS[5]	0	MSB LOS threshold DAC
LOS Threshold		R	RW	4	SET_LOS[4]	0	
Level Setting	SET_LOS	R	RW	3	SET_LOS[3]	1	
Register Address = H0x04		R	RW	2	SET_LOS[2]	1	
7.00.000 - 110.04		R	RW	1	SET_LOS[1]	0	
		R	RW	0	SET_LOS[0]	0	LSB LOS threshold DAC

Table 7. Register Summary (continued)

REGISTER FUNCTION/ ADDRESS	REGISTER NAME	NORMAL MODE	SETUP MODE	BIT NUMBER /TYPE	BIT NAME	DEFAULT VALUE	NOTES
		R	RW	3	TXDE_EN	0	Tx deemphasis 0: disable, 1: enable
Transmitter		R	RW	2	SOFTRES	0	Global digital reset
Control Register Address = H0x05	TXCTRL	R	RW	1	TX_POL	1	Tx polarity 0: inverse, 1: normal
		R	RW	0	TX_EN	1	Tx control 0: disable, 1: enable
		R	R	7 (sticky)	FST[7]	X	TX_POR → TX_VCC low- limit violation
		R	R	6 (sticky)	FST[6]	Х	BMON open/shorted to V _{CC}
		R	R	5 (sticky)	X	Х	
		R	R	4 (sticky)	X	Х	
Transmitter Status Register 1 Address = H0x06	TXSTAT1	R	R	3 (sticky)	FST3]	X	V _{TOUT+} /- common-mode low-limit violation
Addicoo - Hoxoo		R	R	2 (sticky)	FST[2]	Х	V _{TOUT+/-} low-limit violation
		R	R	1 (sticky)	FST[1]	Х	BIAS open or shorted to GND
		R	R	0 (sticky)	TX_FAULT	X	Copy of FAULT signal in case POR bits 6 to 1 reset to 0
		R	R	3 (sticky)	IMODERR	Х	Warning increment result > IMODMAX
Transmitter Status Register 2 Address = H0x07	TXSTAT2	R	R	2 (sticky)	IBIASERR	X	Warning increment result > IBIASMAX
Addicas = Hoxor		R	R	1 (sticky)	TXED	Х	Tx edge detection
		R	R	0 (sticky)	Unused	Х	Unused
		R	RW	8	SET_IBIAS[8]	0	MSB bias DAC
		R	RW	7	SET_IBIAS[7]	0	
		R	RW	6	SET_IBIAS[6]	0	
Diag Cumant		R	RW	5	SET_IBIAS[5]	0	
Bias Current Setting Register	SET_IBIAS	R	RW	4	SET_IBIAS[4]	0	
Address = H0x08		R	RW	3	SET_IBIAS[3]	1	
		R	RW	2	SET_IBIAS[2]	0	
		R	RW	1	SET_IBIAS[1]	0	
		Accessib REG_AD		0	SET_IBIAS[0]	0	LSB bias DAC

Table 7. Register Summary (continued)

REGISTER FUNCTION/ ADDRESS	REGISTER NAME	NORMAL MODE	SETUP MODE	BIT NUMBER /TYPE	BIT NAME	DEFAULT VALUE	NOTES
		R	RW	8	SET_IMOD[8]	0	MSB modulation DAC
		R	RW	7	SET_IMOD[7]	0	
		R	RW	6	SET_IMOD[6]	0	
Modulation		R	RW	5	SET_IMOD[5]	1	
Current Setting	SET_IMOD	R	RW	4	SET_IMOD[4]	0	
Register	SET_INIOD	R	RW	3	SET_IMOD[3]	0	
Address = H0x09		R	RW	2	SET_IMOD[2]	1	
		R	RW	1	SET_IMOD[1]	0	
		Accessib REG_AD		0	SET_IMOD[0]	0	LSB modulation DAC
		R	RW	7	IMODMAX[7]	0	MSB modulation limit
		R	RW	6	IMODMAX[6]	0	
Maximum		R	RW	5	IMODMAX[5]	1	
Modulation	INACONANY	R	RW	4	IMODMAX[4]	1	
Current Setting Register	IMODMAX	R	RW	3	IMODMAX[3]	0	
Address = H0x0A		R	RW	2	IMODMAX[2]	0	
		R	RW	1	IMODMAX[1]	0	
		R	RW	0	IMODMAX[0]	0	LSB modulation limit
		R	RW	7	IBIASMAX[7]	0	MSB bias limit
		R	RW	6	IBIASMAX[6]	0	
Maximum Bias		R	RW	5	IBIASMAX[5]	0	
Current Setting	IDIACNAAY	R	RW	4	IBIASMAX[4]	1	
Register	IBIASMAX	R	RW	3	IBIASMAX[3]	0	
Address = H0x0B		R	RW	2	IBIASMAX[2]	0	
		R	RW	1	IBIASMAX[1]	1	
		R	RW	0	IBIASMAX[0]	0	LSB bias limit
		R	R	7	SET_IMOD[0]	0	LSB of SET_IMOD DAC register address = H0x09
		R	R	6	Χ	0	
Modulation		R	R	5	DE_INC	0	Deemphasis increment 0: no update, 1: SET_TXDE updates ±1 LSB
Current Increment Setting Register Address = H0x0C	MODINC	RW	RW	4	MODINC[4]	0	MSB MOD DAC two's complement
Addicas - HUAUC		RW	RW	3	MODINC[3]	0	
		RW	RW	2	MODINC[2]	0	
		RW	RW	1	MODINC[1]	0	
		RW	RW	0	MODINC[0]	0	LSB MOD DAC two's complement

Table 7. Register Summary (continued)

REGISTER FUNCTION/ ADDRESS	REGISTER NAME	NORMAL MODE	SETUP MODE	BIT NUMBER /TYPE	BIT NAME	DEFAULT VALUE	NOTES
	BIASINC	R	R	7	SET_IBIAS[0]	0	LSB of SET_IBIAS DAC register address = H0x08
Bias Current Increment Setting Register Address = H0x0D		R	R	6	X	0	
		R	R	5	X	0	
		RW	RW	4	BIASINC[4]	0	MSB bias DAC two's complement
		RW	RW	3	BIASINC[3]	0	
		RW	RW	2	BIASINC[2]	0	
		RW	RW	1	BIASINC[1]	0	
		RW	RW	0	BIASINC[0]	0	LSB bias DAC two's complement
Mode Control Register Address = H0x0E	MODECTRL	RW	RW	7	MODECTRL[7]	0	MSB mode control
		RW	RW	6	MODECTRL[6]	0	
		RW	RW	5	MODECTRL[5]	0	
		RW	RW	4	MODECTRL[4]	0	
		RW	RW	3	MODECTRL[3]	0	
		RW	RW	2	MODECTRL[2]	0	
		RW	RW	1	MODECTRL[1]	0	
		RW	RW	0	MODECTRL[0]	0	LSB mode control
Transmitter Pulse- Width Control Register Address = H0x0F	SET_ PWCTRL	R	RW	3	SET_PWCTRL[3]	0	MSB Tx pulse-width control
		R	RW	2	SET_PWCTRL[2]	0	
		R	RW	1	SET_PWCTRL[1]	0	
		R	RW	0	SET_PWCTRL[0]	0	LSB Tx pulse-width control
Transmitter Deemphasis Control Register Address = H0x10	SET_TXDE	R	RW	3	SET_TXDE[3]	0	MSB Tx deemphasis
		R	RW	2	SET_TXDE[2]	0	
		R	RW	1	SET_TXDE[1]	0	
		R	RW	0	SET_TXDE[0]	0	LSB Tx deemphasis

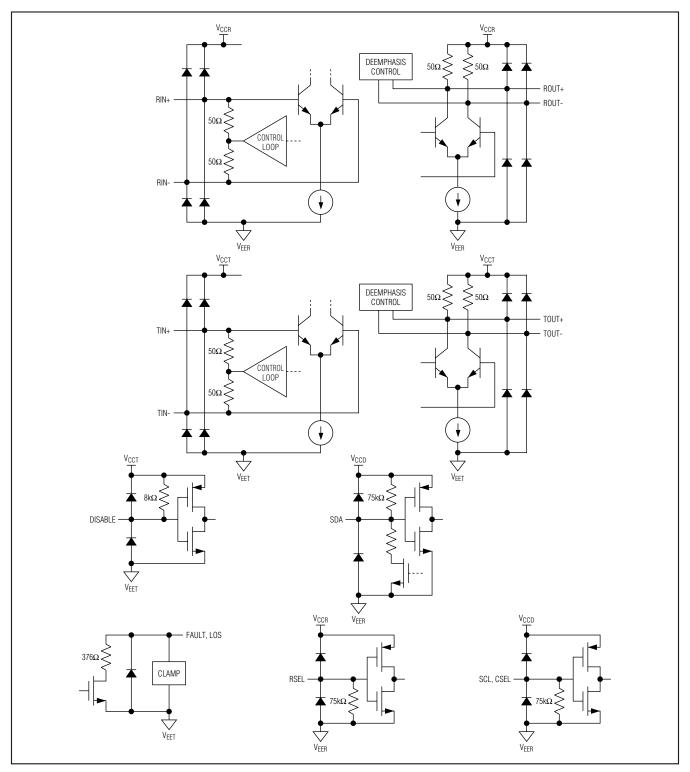
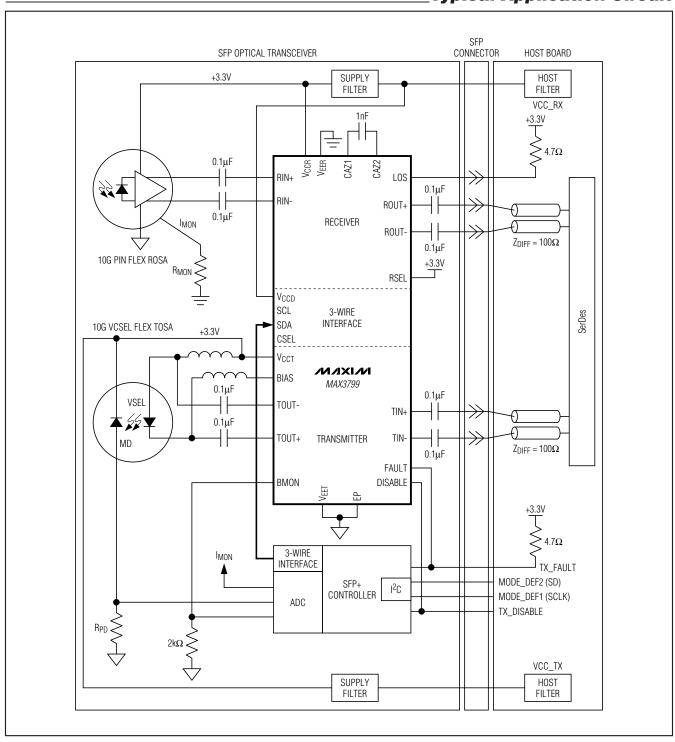



Figure 5. Simplified I/O Structures

Typical Application Circuit

__ /VI/IXI/VI

Pin Configuration

Chip Information

PROCESS: SiGe BiPOLAR

Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
32 TQFN-EP	T3255+3	<u>21-0140</u>

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.