RENESAS

HD74SSTV16857B

1:1 14-bit SSTL_2 Registered Buffer

REJ03D0023–0100Z (Previous ADE-205-712 (Z)) Rev.1.00 Jun.03.2003

Description

The HD74SSTV16857B is a 14-bit registered buffer designed for 2.3 V to 2.7 V Vcc operation and LVCMOS reset (RESET) input / SSTL_2 data (D) inputs and CLK input.

Data flow from D to Q is controlled by differential clock pins (CLK, $\overline{\text{CLK}}$) and the $\overline{\text{RESET}}$. Data is triggered on the positive edge of the positive clock (CLK), and the negative clock ($\overline{\text{CLK}}$) must be used to maintain noise margins. When $\overline{\text{RESET}}$ is low, all registers are reset and all outputs are low.

To ensure defined outputs from the register before a stable clock has been supplied, **RESET** must be held in the low state during power up.

Features

- Supports LVCMOS reset (RESET) input / SSTL_2 data (D) inputs and CLK input
- Differential SSTL_2 (Stub series terminated logic) CLK signal
- Flow through architecture optimizes PCB layout
- Ordering Information

Part Name	Package Type	Package Code	Package Abbreviation	Taping Abbreviation (Quantity)
HD74SSTV16857BTEL	TSSOP-48 pin	TTP-48DBV	Т	EL (1,000 pcs / Reel)
HD74SSTV16857BNEL	TVSOP-48 pin	TTP-48DEV	Ν	EL (1,000 pcs / Reel)

Note: Please consult the sales office for the above package availability.

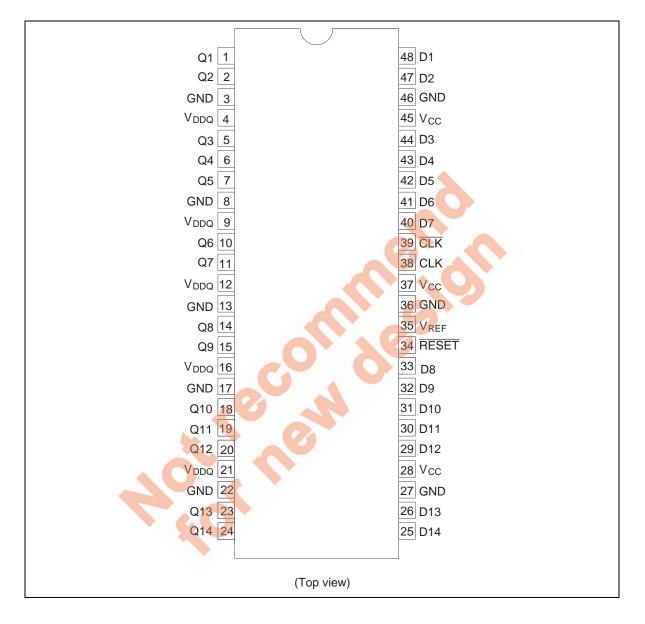
Function Table

Inputs				Output Q
RESET	CLK	CLK	D	
L	Х	Х	Х	L
Н	\downarrow	↑	Н	Н
Н	\downarrow	↑	L	L
Н	L or H	H or L	Х	Q ₀ *1

H: High level

L: Low level

X: Immaterial


 \uparrow : Low to high transition

 \downarrow : High to low transition

Note: 1. Output level before the indicated steady state input conditions were established.

Rev.1.00, Jun.03.2003, page 2 of 16

Pin Arrangement

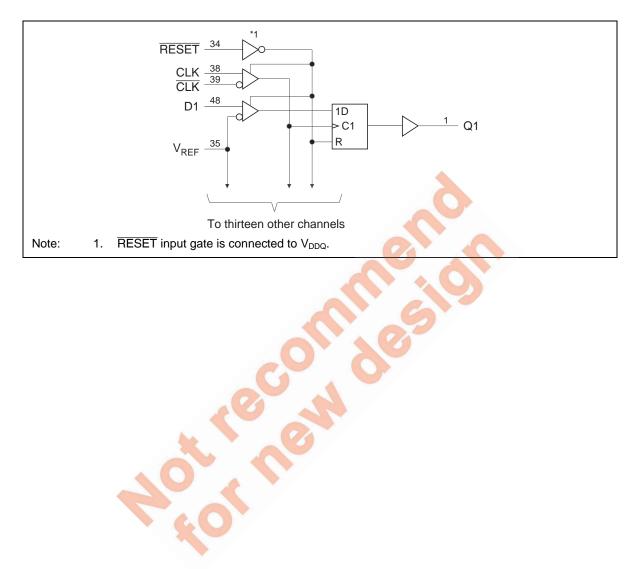
Item	Symbol	Ratings	Unit	Conditions
Supply voltage	$V_{\text{CC}} \text{ or } V_{\text{DDQ}}$	-0.5 to 3.6	V	
Input voltage *1	VI	–0.5 to V_{DDQ} +0.5	V	
Output voltage *1, 2	Vo	–0.5 to V_{DDQ} +0.5	V	
Input clamp current	I _{IK}	±50	mA	$V_I < 0 \text{ or } V_I > V_{CC}$
Output clamp current	l _{ок}	±50	mA	$V_{\rm O}$ < 0 or $V_{\rm O}$ > $V_{\rm DDQ}$
Continuous output current	lo	±50	mA	$V_{O} = 0$ to V_{DDQ}
V_{CC} , V_{DDQ} or GND current / pin	I_{CC} , I_{DDQ} or I_{GNE}) ±100	mA	
Package thermal impedance	θ _{JA}	115	°C / W	TSSOP
Storage temperature	Tstg	-65 to +150	°C	

Absolute Maximum Ratings

Notes: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

1. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

2. This current will flow only when the output is in the high state and $V_0 > V_{DDQ}$.


Recommended Operating Conditions

ltem		Symbol	Min	Тур	Мах	Unit	Conditions
Supply voltage		V _{CC}	V _{DDQ}	2.5	2.7	V	
Output supply v	voltage	V _{DDQ}	2.3	2.5	2.7	V	
Reference volta	age	V_{REF}	1.15	1.25	1.35	V	$V_{\text{REF}} = 0.5$ $\times V_{\text{DDQ}}$
Termination vo	Itage	VTT	V_{REF} –40 mV	V_{REF}	V_{REF} +40 mV	V	
Input voltage		VI	0	_	V _{CC}	V	
AC high level in	nput voltage	VIH	V_{REF} +310 mV	_	_	V	D
AC low level in	put voltage	VIL	_	_	V _{REF} -310 mV	V	D
DC high level in	nput voltage	V _{IH}	V_{REF} +150 mV	_	- 0	V	D
DC low level in	put voltage	VIL	_	-	V _{REF} -150 mV	V	D
High level input	t voltage	V _{IH}	1.7	- 6	V _{DDQ} +0.3	V	RESET
Low level input	voltage	VIL	-0.3	7	0.7	V	RESET
	Common mode range)	V _{CMR}	0.97		1.53	V	CLK, CLK
```	Minimum peak to eak input)	$V_{PP}$	360	-	6	mV	CLK, CLK
High level outp	ut current	I _{OH}	-	× 0	-20	mA	
Low level output	ut current	I _{OL}		-	20	mA	
Operating temp	perature	Та	0		70	°C	

Note: The RESET input of the device must be held at V_{DDQ} or GND to ensure proper device operation. The differential inputs must not be floating, unless RESET is low.

40° 1 1°

# Logic Diagram



# **Electrical Characteristics**

ltem		Symbol	V _{cc} (V)	Min	Тур	Max	Unit	Test Conditions
Input diode volta	ge	V _{IK}	2.3	_	_	-1.2	V	I _{IN} = -18 mA
Output voltage		V _{OH}	2.3 to 2.7	V _{CC} -0.2	—	_	V	I _{OH} = −100 μA
			2.3	1.95	_	$V_{\text{DDQ}}$	-	I _{OH} = -16 mA
		V _{OL}	2.3 to 2.7	_	_	0.2	-	I _{OL} = 100 μA
			2.3	0	_	0.35	-	I _{OL} = 16 mA
Input current	(All inputs)	I _{IN}	2.7		—	±5	μA	$V_{IN} = 2.7 V \text{ or } 0$
Quiescent supply	/ current	I _{CC} *2	2.7	_	25	45	mA	
Standby current		I _{CC (stdy)}	2.7	_	_	10	μA	RESET = GND
Dynamic operati	ng clock only	ICCD *2	2.7	_	38	45		$\label{eq:RESET} \begin{array}{l} RESET = V_{CC}, \\ V_{I} = V_{IH(AC)} \text{ or } V_{IL(AC)}, \\ \\ CLK \text{ and } \overline{CLK} \text{ switching } 50\% \\ \\ duty \ cycle \end{array}$
Dynamic operation data input	ng per each	I _{CCD} ^{*2}	2.7	51	11	15	clock MHz / data	$\label{eq:RESET} \begin{array}{l} \mbox{RESET} = V_{CC}, \\ V_i = V_{IH(AC)} \mbox{ or } V_{IL(AC)}, \\ \mbox{CLK and } \overline{CLK} \mbox{ switching } 50\% \\ \mbox{duty cycle. One data input} \\ \mbox{switching at half clock} \\ \mbox{frequency, } 50\% \mbox{ duty cycle.} \end{array}$
Output high *3		r _{он}	2.3 to 2.7	7		20 *4	Ω	I _{OH} = –20 mA
Output low *3		r _{OL}	2.3 to 2.7	7	-	20 *4	Ω	I _{OL} = 20 mA
$ \mathbf{r}_{OH} - \mathbf{r}_{OL} $ each separate bit ^{*3}		r _{O(∆)}	2.5	~	-	4	Ω	I _O = 20 mA, Ta = 25°C
•	Data inputs	CIN	2.5 *1	2.5	_	3.5	pF	$V_I = V_{REF} \pm 310 \text{ mV}$
capacitance	CLK and CLK			2.5	_	3.5	-	$V_{CMR}$ = 1.25 V, $V_{PP}$ = 360 mV
•	RESET			_	3.0	—	-	$V_I = V_{CC}$ or GND

Notes: 1. All typical values are at  $V_{CC} = 2.5$  V, Ta = 25°C.

2. Total  $I_{CC}$  (max) =  $I_{CC}$  + { $I_{CCD}$  (clock)×f(clock)} + { $I_{CCD}$  (Data)×1/2f(clock)×14}

3. This is effective in the case that it did terminate by resistance.

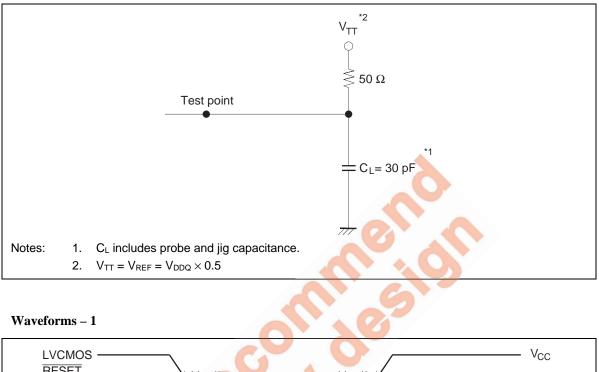
4. See figure. 1, 2.

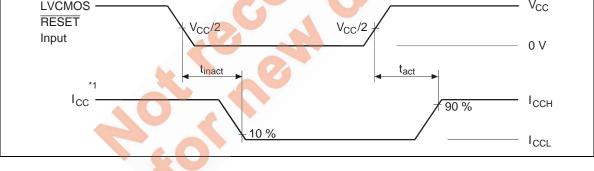
#### **Switching Characteristics**

ltem		Symbol	$V_{CC} = 2.5 \pm 0.2 V$		Unit	Test Condition	
			Min Max		_		
Clock frequency *1		f _{clock}	_	200	MHz		
Setup time	Fast slew rate *4, 6	t _{su}	0.75	_	ns	Data before CLK [↑] , CLK	
	Slow slew rate *5, 6	-	0.9	_			
Hold time	Fast slew rate *4, 6	t _h	0.75	_	ns	Data after CLK $\uparrow$ , $\overline{CLK}\downarrow$	
	Slow slew rate *5, 6	_	0.9	_			
Differential inputs active time		t _{act}	22	—	ns	Data inputs must be low after RESET high.	
Differential inputs inactive time		t _{inact}	22	-	ns	Data and clock inputs must be held at valid levels (not floating) after RESET low.	
Pulse width		tw	2.5	A	ns	CLK, CLK "H" or "L"	
Output slew *3		t _{SL}	1	4	volt/ns		

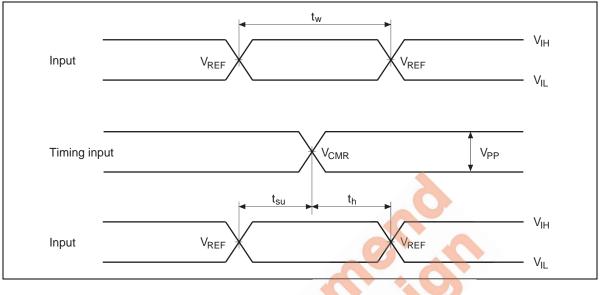
# $(C_L = 30 \text{ pF}, R_L = 50 \Omega, V_{REF} = V_{TT} = V_{DDQ} \times 0.5)$

Item	Symbol	$V_{\rm CC} = 2.5 \pm 0.2  \rm V$		Unit	FROM	то	
		Min	Тур	Max		(Input)	(Output)
Maximum clock frequency	f _{max}	200	1-	_	MHz		
Propagation delay time *2	t _{PLH} , t _{PHL}	1.1	-	2.8	ns	CLK, CLK	Q
	tPHL		-	5.0		RESET	Q

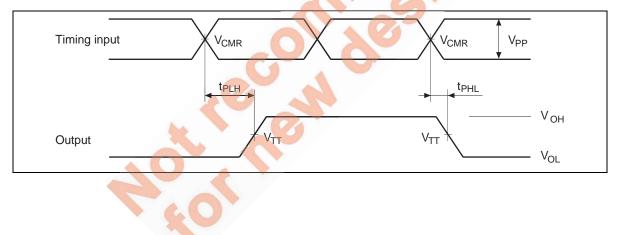

Notes: 1. Although the clock is differential, all timing is relative to CLK going high and CLK going low.


2. This timing relationship is specified into test load (see waveforms -3, 4) with all of the outputs switching.

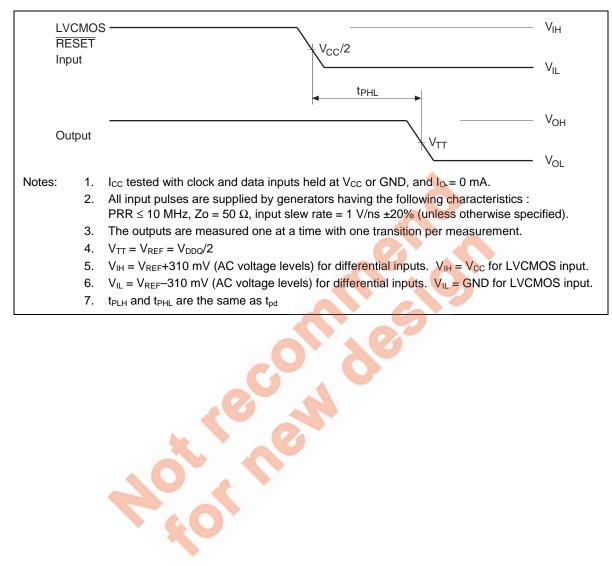
3. Assumes into an equivalent, distributed load to the address net structure defined in the application information provided in this specification.


- 4. For data signal input slew rate  $\geq$  1 V/ns.
- 5. For data signal input slew rate  $\geq$  0.5 V/ns and < 1 V/ns.
- 6. CLK,  $\overline{\text{CLK}}$  signals input slew rates are  $\geq$  1 V/ns.

## **Test Circuit**







#### Waveforms - 2



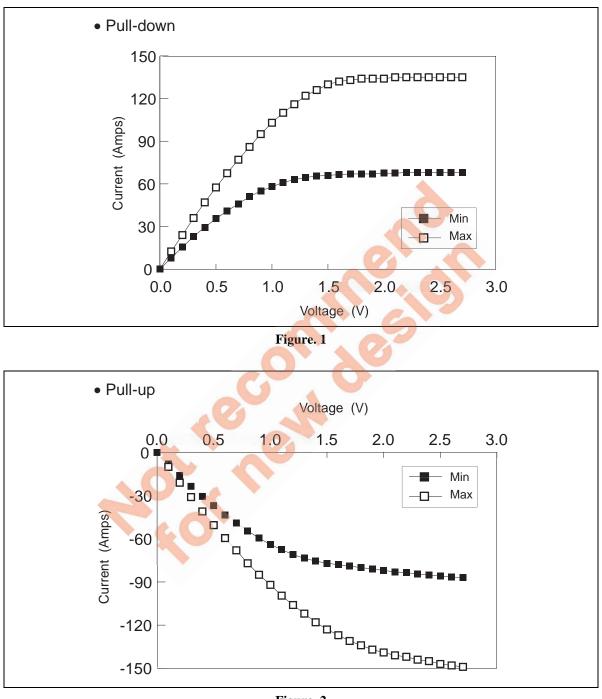
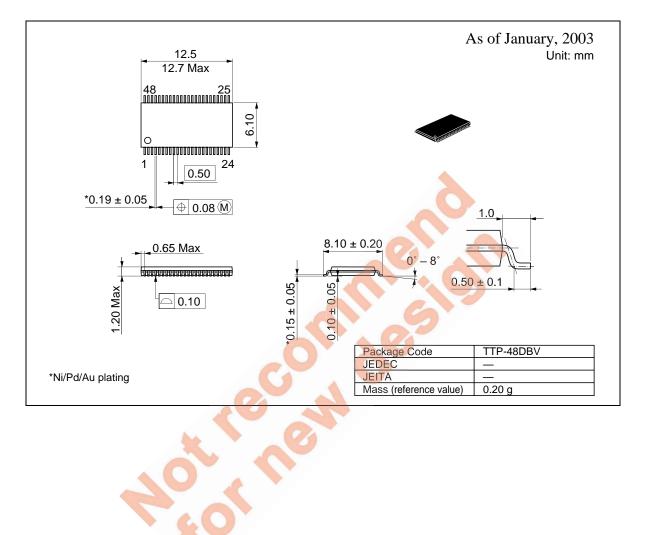
#### Waveforms - 3

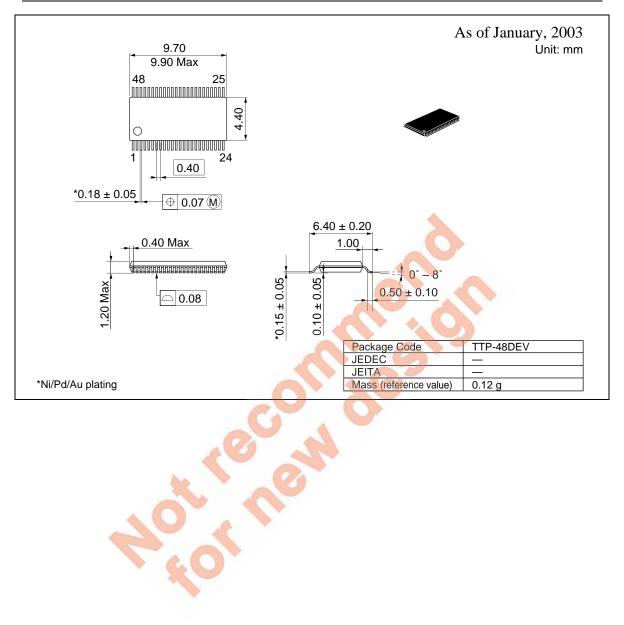






# **Application Data**



Figure. 2

# **Curve Data**

Voltage (V)	Pull-down		Pull-up	Pull-up			
	l (mA)	l (mA)	l (mA)	l (mA)			
	Min	Max	Min	Max			
0	0	0	0	0			
0.1	8	12.5	-8	-10			
0.2	15.5	24	-16	-21			
0.3	23	36	-23.5	-31			
0.4	29.5	47	-30.5	-41			
0.5	35.5	57.5	-37	-50.5			
0.6	41	67.5	-43.5	-59.5			
0.7	46	77	-49	-68			
0.8	51	86	-54.5	-77			
0.9	55	95	-59.5	-85			
1	58	103	-64	-92			
1.1	61	110	-67.5	-99.5			
1.2	63	116	-71	-106			
1.3	64.5	122	-73.5	-112			
1.4	65.5	126	-75.5	-118			
1.5	66	130	-77	-123			
1.6	66.5	132	-78	-127			
1.7	67	133	-79	–131			
1.8	67	134	-80	-134			
1.9	67	134	-81	–137			
2	67.5	134	-82	-139			
2.1	67.5	135	-83	-141			
2.2	68	135	-83.5	-142			
2.3	68	135	-84.5	-144			
2.4	68	135	-85	-145			
2.5	68	135	-86	-147			
2.6	68	135	-86.5	-148			
2.7	68	135	-87	-149			

# **Package Dimensions**





#### Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

The particle matching the properties of the prop

Notes regarding these materials

- Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product distributor for the latest product information before purchasing a product listed herein

- The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com)
- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
  Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially
- A release reduction semicology Corporation semicology and the designed of manufactured of use in a device of system that is used under circularities in which that man her spotential at stake. Please contact Renessa Technology Corporation or an authorized Renessa Technology Corporation or an authorized Renessa Technology Corporation at the spotential area device of system that is used under the considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
  The prior written approval of Renessa Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
  If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
  An udiverging a country other than the approved destination.

- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.



http://www.renesas.com

Copyright © 2003. Renesas Technology Corporation, All rights reserved. Printed in Japan. Colophon 0.0

nenon

