
CoreSDLC

Product Summary

Intended Use
• ISDN D-Channel

• X.25 Networks

• Frame Relay Networks

• Custom Serial Interfaces

Key Features
• Based on Intel's 80C152 Global Serial Channel

Working in SDLC Mode

• Single and Double-Byte Address Recognition

• Address Filtering Enables Multicast and Broadcast
Addresses

• 16-bit (CRC-16) and 32-bit (CRC-32) Frame Check
Sequence

• NRZ and NRZI Data Encoding

• Automatic Bit Stuffing/Stripping

• 3-Byte Deep Internal Receive and Transmit FIFOs

• Full or Half-Duplex Operation

• Variable Baud Rate

• External or Internal Transmit and Receive Clocks

• Optional Preamble Generation

• Programmable Interframe Space

• Raw Transmit and Receive Testing Modes

• All Major Actel Device Families Supported

Supported Families
• Fusion

• ProASIC3/E

• ProASICPLUS

• Axcelerator

• SX-A

• RTSX-S

Core Deliverables
• Evaluation Version

– Compiled RTL Simulation Model Fully
Supported in Actel Libero® Integrated Design
Environment (IDE)

• Netlist Version

– Structural Verilog and VHDL Netlists (with and
without I/O pads) Compatible with Actel's
Designer Software Place-and-Route Tool

– Compiled RTL Simulation Model Fully
Supported in Actel Libero IDE

• RTL Version

– Verilog and VHDL Core Source Code

– Core Synthesis Scripts

• Testbench (Verilog and VHDL)

Synthesis and Simulation Support
• Synthesis: Synplicity®, Synopsys® (Design Compiler®

/ FPGA CompilerTM / FPGA ExpressTM), ExemplarTM

• Simulation: OVI-Compliant Verilog Simulators and
Vital-Compliant VHDL Simulators

Core Verification
• Comprehensive VHDL and Verilog Testbenches

• User can Modify Testbench Using Existing Format
to Add Custom Tests

Contents

General Description ... 1
CoreSDLC Device Requirements 3
CoreSDLC Verification .. 3
I/O Signal Descriptions ... 3
SDLC Protocol Overview .. 4
Data Encoding .. 7
Bit Stuffing ... 7
Special Function Registers ... 8
Modes of Operation .. 15
General Description of the Transmitter 16
General Description of the Receiver 17
Ordering Information .. 20
List of Changes ... 21
Datasheet Categories ... 21
December 2005 v4.0 1
© 2005 Actel Corporation

CoreSDLC
General Description
The CoreSDLC macro provides a high-speed synchronous
serial communication controller that utilizes the
synchronous data link control (SDLC) protocol. Operation
of the controller is similar to that used in the Intel
8XC152 Global Serial Channel (GSC) device working in
SDLC mode under CPU control. Communication with a
CPU is realized through the Special Function Register
(SFR) interface and three interrupt sources. This enables
interfacing CoreSDLC easily with any CPU.

CoreSDLC consists of three primary blocks, as shown in
Figure 1:

1. Receive logic – decodes and bit strips incoming
data stream, detects flags, checks CRC, and shifts
data into an internal three-byte deep receive FIFO.
The receive logic also performs address detection,
clock recovery, and frame sequencing.

2. Transmit logic – shifts data out of an internal
three-byte deep transmit FIFO, generates a CRC,
performs bit stuffing, flag insertion, and encoding
of the transmit data stream. The transmit logic
also performs frame sequencing.

3. SFR logic – provides a simple interface to an
external processor or controller.

CoreSDLC Device Requirements
CoreSDLC has been implemented in several of Actel's device families. A summary of the implementation data is listed in Table 1.

Figure 1 • CoreSDLC Block Diagram

Transmit

Receive

Shift Register

Shift Register

Address
Detection

CRC
Checker

CRC
Generator

Bit
Stripping

Bit
Stuffing

FIFO
 Receive Frame

Sequencer

 Transmit Frame
Sequencer

Data

txc

rxc

sfrdatai[7:0]

sfrdatao[7:0]

sfraddr[6:0]

sfrw

sfrr

tv

re

rv

FIFO

Flag
Insertion

Data

SFR

ptv

pre

prv

rxd

txd

den

Internal Signals

Data
Decoder

Data
Encoder

Clock
Recovery

Flag
Detection

Table 1 • CoreSDLC Device Utilization and Performance

Family

Cells or Tiles Utilization

PerformanceSequential Combinatorial Total Device Total

Fusion 408 878 1286 AFS600 10% 100 MHz

ProASIC3/E 408 878 1286 A3PE600-2 10% 100 MHz

ProASICPLUS 384 1337 1721 APA150-STD 28% 65 MHz

Axcelerator 400 537 577 AX125-3 47% 140 MHz

Note: Data in this table were achieved using typical synthesis and layout settings.
2 v4.0

CoreSDLC
CoreSDLC Verification
The comprehensive verification simulation testbench
(included with the Netlist and RTL versions of the core)
verifies correct operation of the CoreSDLC macro with
respect to the SDLC protocol.

The verification testbench applies over 90 tests to the
CoreSDLC macro, including:

• Receive valid in normal mode tests

• Receive valid in raw mode tests

• Receive with errors tests

• Receive clock recovery tests

• Transmit tests

Using the supplied user testbench as a guide, the user
can easily customize the verification of the core by
adding or removing tests.

I/O Signal Descriptions
The port signals for the CoreSDLC macro are defined in
Table 2 and illustrated in Figure 2 on page 4. All signals
are either “Input” (input-only) or “Output” (output-
only).

SX-A 403 580 983 A54SX32A-3 35% 120 MHz

RTSX-S 391 545 936 RT54SX32S-2 33% 75 MHz

Table 1 • CoreSDLC Device Utilization and Performance (Continued)

Family

Cells or Tiles Utilization

PerformanceSequential Combinatorial Total Device Total

Note: Data in this table were achieved using typical synthesis and layout settings.

Table 2 • CoreSDLC I/O Signal Descriptions

Name Type Description

nreset Input Active-low asynchronous reset

clk Input System Clock: reference clock for all internal logic

sfrdatai[7:0] Input SFR data bus input

sfrdatao[7:0] Output SFR data bus output

sfraddr[6:0] Input SFR address bus

sfrwe Input SFR write enable

sfrra Input SFR read acknowledge

rv Output Receive valid interrupt

re Output Receive error interrupt

tv Output Transmit valid interrupt

prv Output Receive valid interrupt priority

pre Output Receive error interrupt priority

ptv Output Transmit valid interrupt priority

rxd Input Receive input

txd Output Transmit output

rxc Input Receive clock

txc Input Transmit clock

den Output Active-low external driver enable

rdn Output Receive done interrupt

Note: All signals are active-high unless otherwise indicated.
v4.0 3

CoreSDLC
SDLC Protocol Overview
The SDLC protocol has two types of network nodes:
primary and secondary. There is always one primary node
in the network, but there may be one or more secondary
nodes. The primary node controls operation of the
secondary nodes and manages the network. Secondary
nodes can send information only if the primary node has
given them permission. This is accomplished by the
primary node polling the secondary nodes in a
predetermined order to see if they need to send
information.

As shown in Figure 3 on page 4, SDLC nodes are
connected in one of the three following configurations:

• Point-to-point, when there is one primary and
only one secondary node

• Multi-drop, when there is one primary and
multiple secondary nodes

• Ring, when all nodes are connected in a loop and
the output channel of one node is connected to
the input channel of the next node.

Figure 2 • CoreSDLC I/O Signal Diagram

nreset

clk

sfrdatai[7:0]

sfraddr[6:0]

tv

re

rv

rxd CoreSDLC

txc

den

rxc

txd

sfrdatao[7:0]

sfrwe

sfrra

ptv

pre

prv

rdn

Figure 3 • SDLC Network Configurations

Primary Secondary

Primary

Secondary Secondary Secondary

Primary

Secondary

Secondary

Secondary

a) Point-to-Point Network

b) Multi-Drop Network

c) Ring Network
4 v4.0

CoreSDLC
SDLC Frames
The SDLC frame consists of six fields. Table 3 shows the order of the fields in the SDLC frame.

BOF (Begin of Frame)
The BOF flag, which indicates the beginning of a frame,
is defined as the value 01111110. The controller's
hardware properly distinguishes normal data from the
BOF flag because of a process called bit stuffing, which is
described in "Bit Stuffing" on page 7. Bit stuffing,
performed by the transmit logic, is the process of
inserting a '0' after each five consecutive '1' values. The
receiver logic utilizes a process called bit stripping. Each
time a sequence of five '1' values followed by a '0' is
received, the controller automatically removes this '0'
from the incoming bitstream. BOF is one of two possible
bit combinations that consist of more than five
consecutive '1' values. The BOF marks the beginning of a
frame and also assures receive clock synchronization.

ADDRESS
In standard SDLC, an eight-bit field in the frame is used
to identify the target controller for which the frame is
intended. In CoreSDLC, this field may also be 16 bits in
length, extending the addressing capability. The address
length can be further extended by the user’s software;

however, the hardware address checking only works up
to 16-bit addresses. There is also one special address
defined in SDLC called "broadcast address," consisting of
all '1' values. All stations connected to the network
receive the frame containing the broadcast address.
CoreSDLC transmits the address field’s least significant
bit (LSB) first.

CONTROL
This field is used for initializing the system and managing
tasks, such as data acknowledge, identifying frame
sequence numbers, and indicating the end of the
message. CoreSDLC does not provide any functions for
managing the CONTROL field, so the user’s software is
responsible for insertion and interpretation.

There are three types of control fields, depending on the
type of SDLC frame used:

• Information frame (Table 4)

• Supervisory frame (Table 5)

• Nonsequenced (or unnumbered) frame (Table 6)

The CONTROL field of the information frame contains a
three-bit sending sequence number (the number of the
current frame) and a three-bit reception sequence
number (the expected number of the next frame). The
same reception sequence number is also part of the
control field in the supervisory frame. In both cases, it is
used for frame acknowledgement. If the receiving
station has no data to send, it acknowledges the received
frames by sending a supervisory frame in response.
However, if the receiving station wants to send data, the
response may be part of the information frame
(piggybacking). This allows for full-duplex operation in

which two continuous data streams are transmitted in
both directions without supervisory frame insertion.

Up to seven information frames can be sent without
acknowledgement. Due to this capability, continuous
transmission (continuous ARQ) is possible, which means
that the CoreSDLC transmitter does not need to wait for
an acknowledgement.

The poll/final bit in each control field is used for polling
secondary nodes by a primary node (poll) and for
indicating the end of the message (final).

Table 3 • SDLC Frame

BOF ADDRESS CONTROL INFO CRC EOF

Table 4 • Control Field – Information Format

Bit Position 7 6 5 4 3 2 1 0

Function Reception Sequence Poll /Final Sending Sequence 1

Table 5 • Control Field – Supervisory Format

Bit Position 7 6 5 4 3 2 1 0

Function Reception Sequence Poll / Final Mode 0 1

Table 6 • Control Field – Nonsequenced Format

Bit Position 7 6 5 4 3 2 1 0

Function Command / Response Poll / Final Command / Response 0 1
v4.0 5

CoreSDLC
The supervisory frame contains an additional two mode
bits, which affect the retransmission scheme. Although it
is possible for four modes to exist, three of them are
used in CoreSDLC:

• Receiver Ready (RR) – Indicates that the receive
line of this station is ready to accept frames

• Receiver Not Ready (RNR) – Indicates that the
receiver is not ready to accept frames (possible
FIFO overflow)

• Reject (REJ) – Indicates that the previously
received frame was rejected

The unnumbered (nonsequenced) frame contains five
bits that indicate commands or responses used for
initializing the network and eliminating errors. These
commands include:

• Unnumbered information (UI)

• Set initialization mode (SIM)

• Disconnect (DISC)

• Response optional (UP)

• Function descriptor in information field (CFGR)

• Identification in information field (XID)

• Test pattern in information field (TEST)

• Request for initialization (RIM)

• Frame reject (FRMR)

• Unnumbered acknowledgment (UA)

• Signal loss of input (BCN)

• Station wants to disconnect (RD)

• Station in disconnected mode (DM)

INFO
This field contains data that is transmitted by one device
to the other. It can be an arbitrary length, although it
must be byte-aligned (its length must be a multiple of
eight bits). It is possible that some frames may not
contain an INFO field. The INFO field is transmitted LSB
first.

CRC (Cyclic Redundancy Check)
This is the error checking sequence. It is a widely used
method for detecting errors in messages transmitted
over noisy channels. CoreSDLC offers two types of CRC:
16-bit CRC (often referred to as CRC-CCITT) and 32-bit
CRC.

CRC is generated in the transmitter over the ADDRESS,
CONTROL, and INFO fields before the bit-stuffing
process. First, the CRC shift register is preset with an all
'1' value. For each incoming data bit, the most significant
bit (MSB) of the current CRC remainder is XORed with
the data bit, and the remainder is shifted left with the
LSB set to '0'. If the result of the XOR is '1,' the remainder
is XORed with the generator polynomial.

For the 16-bit CRC, the polynomial is:

G(x) = x16 + x12 + x5 + 1

For the 32-bit CRC, the polynomial is:

G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 +
x7+ x5 + x4 + x2 + x + 1

After the last data bit has passed through the CRC
generator, the current CRC generator value is inverted
and sent to the receiver, MSB first.

The receiver operates exactly the same way as the
transmitter by generating the CRC remainder over the
incoming ADDRESS, CONTROL, INFO, and CRC fields.
After all data has passed through, the current CRC
remainder is checked. If no errors have occurred, this
remainder will be equal to the polynomial residual. For a
16-bit CRC, this residual is 00011101 00001111 (0x1D0F).
For a 32-bit CRC, it is 11000111 00000100 11011101
01111011 (0xC704DD7B). The CRC field is transmitted
MSB first.

End of Frame (EOF)
The EOF flag consists of the same bit pattern as the BOF
flag (01111110). EOF indicates when the transmission is
completed and also can serve as the BOF for the next
frame. Frames that share EOF and BOF flags are called
back-to-back frames.

Data Encoding
CoreSDLC employs NRZI (Non-Return to Zero Inverted)
data encoding when transmitting frames. In NRZI, a '1' is
represented by no change in the output signal level, and
a '0' is represented by a change in the level. A data
stream consisting of all '0' values causes the NRZI output
to toggle each bit time, while a stream of all '1' causes
no transitions.

Although NRZI is typical for SDLC networks, CoreSDLC
also performs NRZ (Non-Return to Zero) encoding. In this
encoding method, a '1' is represented by a high level and
a '0' by a low level.

Figure 4 shows an example of NRZ and NRZI encoding.

Figure 4 • NRZI and NRZ Data Encoding

0 0 1 1 0 1 1 1input data

NRZ

NRZI

bit time

1 0
6 v4.0

CoreSDLC
Bit Stuffing
CoreSDLC employs bit stuffing to ensure a minimum
number of signal transitions that are necessary for
"recovering" the receiver clock. Bit stuffing is the process
of inserting a '0' after every five consecutive '1' values in
a data stream to force a transition in a NRZI output data
stream. This guarantees that there will be at least one
transition every six bit times while transmitting data.

The receiver must recognize the inserted bits and remove
them from the data stream. This process is called bit
stripping. Bit stuffing and stripping are automatically
performed by CoreSDLC and are completely transparent
to the user. Figure 5 shows an example of bit stuffing
and bit stripping.

Special Function Registers

Special Function Registers Interface
The communication between CoreSDLC and the CPU is accomplished via the special function register (SFR) interface.
An SFR read cycle is shown in Figure 6, and an SFR write cycle is shown in Figure 7 on page 8.

Figure 5 • Bit Stuffing / Stripping

0 1 1 1 1 1 1 1 1 1 1 0 1 1 1input data

data after bit stuffing

data after bit stripping

bit time

1 1

inserted 0

Note: Sample – point of registering the state of the signal into an internal flip-flop.
Figure 6 • Special Function Register Read Cycle

clk

sfraddr

sfrwe

sfrra

sfrdatai

sfrdatao

Addr

Data

Sample
v4.0 7

CoreSDLC
External Special Function Register Read
Cycle
As shown in Figure 6 on page 7, the CPU reads an
internal register within CoreSDLC by placing the address
of the register on the sfraddr[6:0] input bus. The selected
register presents its data onto the sfrdatao[7:0] output
signals. The CPU acknowledges that data from the
sfrdatao[7:0] bus has been read by setting the sfrra input
signal.

External Special Function Register Write
Cycle
As shown in Figure 7, the CPU writes to an internal
register within CoreSDLC by placing the address of the
register on the sfraddr[6:0] input bus, placing the data to
be written on the sfrdatai[7:0] input bus, and by setting
the sfrwe input signal to a logic '1' value. CoreSDLC
samples the state of the sfrwe input signal. If sfrwe is
active, the data is read from sfrdatai[7:0] and written
into the selected register.

Special Function Register Map
The register map and reset values for each CPU-
accessible register within CoreSDLC are shown in Table 7.

Special Function Register Descriptions
Table 8 on page 9 through Table 29 on page 14 describe
the various CPU-accessible registers within CoreSDLC.
Unless otherwise stated, each register can be read and
written to by an external CPU.

Note: Sample – point of registering the state of the signal into an internal flip-flop.
Figure 7 • Special Function Register Write Cycle

clk

sfraddr

sfrwe

sfrra

sfrdatai

sfrdatao

Addr

Data

Sample

Table 7 • Special Function Register Map

Register Address Reset Value Description

pcon 0x07 0x00 Power Control

gmod 0x04 0x00 GSC Mode

tfifo 0x05 0x00 Transmit FIFO

baud 0x14 0x00 Baud Rate

adr0 0x15 0x00 Address 0

ifs 0x24 0x00 Interframe Space

adr1 0x25 0x00 Address 1

adr2 0x35 0x00 Address 2

adr3 0x45 0x00 Address 3

ien1 0x48 0xC0 Interrupt Enable

amsk0 0x55 0x00 Address Mask 0

tstat 0x58 0x04 Transmit Status

amsk1 0x65 0x00 Address Mask 1

rstat 0x68 0x00 Receive Status

rfifo 0x74 0x00 Receive FIFO

ipn1 0x78 0xC0 Interrupt Priority
8 v4.0

CoreSDLC
Power Control Register (pcon)

GSC Mode Register (gmod)

Table 8 • pcon Register

MSB LSB

– – – garen xrclk gfien – –

Table 9 • pcon Register Bit Functions

Bit Symbol Function

7:5 – Not used

4 garen Auxiliary receive enable

1– The reception of back-to-back frames is enabled. The receiver is not disabled after receiving the EOF
flag when this bit is set.

0 – Prevents reception of back-to-back frames. The receiver is disabled after receiving the EOF flag.

3 xrclk External receive clock

1 – External clock and NRZ encoding scheme used by receiver

0 – Internal clock generator and NRZI encoding used by receiver

2 gfien Flag idle enable

1 – Idle flags (01111110) are generated between transmitted frames representing the sequence
01111110 01111110. . .

0 – No idle flag generation

1:0 – Not used

Note: This register has unimplemented bits (–). Unless otherwise noted, if these bits are read they will return '0'. Writing to these bits has
no effect.

Table 10 • gmod Register

MSB LSB

xtclk m1 m0 a1 ct pl1 pl0 –

Table 11 • gmod Register Bit Functions

Bit Symbol Function

7 xtclk External transmit clock

1 – External clock and NRZ encoding used by transmitter

0 – Internal clock generator and NRZI encoding used by transmitter

6:5 m1

m0

Mode select

00 – normal

01 – raw transmit

10 – raw receive

11 – not allowed

4 a1 Address length

1 – 16-bit addressing is used

0 – 8-bit addressing is used

3 ct The CRC type

1 – 32-bit CRC is used

0 – 16-bit CRC (CRC-CCITT) is used
v4.0 9

CoreSDLC
Transmit FIFO Register (tfifo)

The tfifo register represents the three-byte deep
transmit FIFO. Writing a byte to this register loads data
into the transmit FIFO and automatically updates the

FIFO pointers. Setting the ten bit in the tstat register
clears the transmit FIFO. The tfifo is a write-only register
from the perspective of the CPU.

Receive FIFO Register (rfifo)

The rfifo register represents the three-byte deep receive
FIFO. Reading a byte from rfifo loads a value from the
receive FIFO and automatically updates the FIFO

pointers. Setting the gren bit in the rstat register clears
the receive FIFO. The rfifo is a read-only register from the
perspective of the CPU.

Baud Rate Register (baud)

The baud register is used to set the value of an internal
programmable baud rate generator. The baud rate
generator operates by down-counting the baud register.
When baud decrements to an all '0' value, it is reloaded.
Writing a value into baud stores the value in the reload
register. Reading it gives the current count value.

The baud rate can only be programmed in multiples of 1/8th

of the clk input frequency. This is accomplished by entering
the appropriate value into the baud register as shown in the
following formula:

baud rate = clk / ((baud + 1) x 8)

For example, if the clk input frequency is 20 MHz, and
the baud register is set to 0x01, the baud rate will be set
to 1.25 Mbps.

2:1 pl1

pl0

Preamble length

00 – 0 bit

01 – 8 bits

10 – 32 bits

11 – 64 bits

0 – Not used

Note: This register has unimplemented bits (–). Unless otherwise noted, if these bits are read they will return '0'. Writing to these bits has
no effect.

Table 11 • gmod Register Bit Functions (Continued)

Bit Symbol Function

Table 12 • tfifo Register

MSB LSB

tfifo.7 tfifo.6 tfifo.5 tfifo.4 tfifo.3 tfifo.2 tfifo.1 tfifo.0

Table 13 • rfifo Register

MSB LSB

rfifo.7 rfifo.6 rfifo.5 rfifo.4 rfifo.3 rfifo.2 rfifo.1 rfifo.0

Table 14 • baud Register

MSB LSB

baud.7 baud.6 baud.5 baud.4 baud.3 baud.2 baud.1 baud.0
10 v4.0

CoreSDLC
Address Match Registers

The address match registers contain values that are
compared with the address in received frames. In an
eight-bit addressing mode, the address match occurs
when one of these four address values match. In a 16-bit
addressing mode, address registers are combined into
two 16-bit registers: adr1:adr0 and adr3:adr2. An address

match occurs when one of these two 16-bit registers
trigger a match.

Address registers are used only in the receive operation.
When CoreSDLC transmits, the frame address is treated
as normal data. Therefore, the user’s software is
responsible to load the address bytes into the transmit
FIFO before other data.

Address Mask Registers (amsk0-1)

Bits in the address mask registers, amsk1 and amsk0,
correspond to bits in the registers adr1 and adr0,
respectively. Setting a mask register bit to '1' causes the
corresponding bit in the address register to be omitted
during the address matching process.

Table 15 • adr0 Register

MSB LSB

adr0.7 adr0.6 adr0.5 adr0.4 adr0.3 adr0.2 adr0.1 adr0.0

Table 16 • adr1 Register

MSB LSB

adr1.7 adr1.6 adr1.5 adr1.4 adr1.3 adr1.2 adr1.1 adr1.0

Table 17 • adr2 Register

MSB LSB

adr2.7 adr2.6 adr2.5 adr2.4 adr2.3 adr2.2 adr2.1 adr2.0

Table 18 • adr3 Register

MSB LSB

adr3.7 adr3.6 adr3.5 adr3.4 adr3.3 adr3.2 adr3.1 adr3.0

Table 19 • amsk0 Register

MSB LSB

amsk0.7 amsk0.6 amsk0.5 amsk0.4 amsk0.3 amsk0.2 amsk0.1 amsk0.0

Table 20 • amsk1 Register

MSB LSB

amsk1.7 amsk1.6 amsk1.5 amsk1.4 amsk1.3 amsk1.2 amsk1.1 amsk1.0
v4.0 11

CoreSDLC
Transmit Status Register (tstat)

All bits of the tstat register are read only, except for bit 1, which is read/write.

Receive Status Register (rstat)

Table 21 • tstat Register

MSB LSB

lni – – – tdn tfnf ten –

Table 22 • tstat Register Bit Functions

Bit Symbol Function

7 lni Line idle

1 – receive line is idle (15 consecutive '1' values are received on rxd)

0 – receive line is not idle

6:4 – Not used

3 tdn Transmit done

This bit is set after successful completion of a frame transmission and cleared after setting the ten bit.

2 tfnf Transmit FIFO not full

When set indicates that new data may be written into tfifo

1 ten Transmit enable

Setting this flag clears tdn and tfifo and enables transmission.

This bit is automatically cleared after the end of transmission.

If this bit is cleared to a '0' before the end of transmission, that transmission is aborted.

0 – Not used

Note: This register has unimplemented bits (–). Unless otherwise noted, if these bits are read they will return '0'. Writing to these bits has
no effect.

Table 23 • rstat Register

MSB LSB

ovr rcabt ae crce rdn rfne gren –

Table 24 • rstat Register Bit Functions

Bit Symbol Function

7 ovr Overrun error

If set, ovr indicates that receive FIFO was full when attempting to store new data. The user can clear the
ovr bit by setting the gren bit.

6 rcabt Abort detect

If set, rcabt indicates that seven consecutive '1’ values were received before the EOF flag but after data
had been loaded into rfifo. The user can clear the rcabt bit by setting the gren bit.

5 ae Alignment error

If set, ae indicates that a non byte-aligned flag was received after data had been loaded into rfifo. The
user can clear the ae bit by setting the gren bit.

4 crce The CRC error

If set, crce indicates that a frame was received with a mismatched CRC. The user can clear the crce bit by
setting the gren bit.
12 v4.0

CoreSDLC
All bits of the rstat register are read only, except for bit 1, which is read/write.

Interframe Space Register (ifs)

The ifs register determines the minimum number of bit
times that must elapse between two consecutive
transmitted frames. CoreSDLC only takes the seven most
significant bits of the written value (only even numbers
can be used) and computes the interframe space by

counting this seven-bit number down to an all '0' value
twice. When read by the user’s software, the seven most
significant bits of the ifs register show the current count
value, while the least significant bit is a '1' for first
counting and a '0' for the second.

Interrupt Enable Register (ien1)

3 rdn Receive done

When set, rdn indicates successful completion of a frame receive operation. The user can clear the rdn
bit by setting the gren bit.

2 rfne Receive FIFO not empty

When set, rfne indicates that new data can be read from rfifo

1 gren Receive enable

Setting this flag enables the receiver and clears the ovr, rcabt, ae, crce and rdn bits.

This bit is automatically cleared after the end of the receive operation.

0 – Not used

Note: This register has unimplemented bits (–). Unless otherwise noted, if these bits are read they will return '0'. Writing to these bits has
no effect.

Table 25 • ifs Register

MSB LSB

ifs.7 ifs.6 ifs.5 ifs.4 ifs.3 ifs.2 ifs.1 ifs.0

Table 24 • rstat Register Bit Functions (Continued)

Bit Symbol Function

Table 26 • ien1 Register

MSB LSB

– – – – egstv – egsre egsrv

Table 27 • ien1 Register Bit Functions

Bit Symbol Function

7:4 – Not used (fixed at 1100)

3 egstv Transmit valid interrupt enable

2 – Not used

1 egsre Receive error interrupt enable

0 egsrv Receive valid interrupt enable

Note: This register has unimplemented bits (–). Unless otherwise noted, if these bits are read they will return ‘0’. Writing to these bits has
no effect.
v4.0 13

CoreSDLC
Interrupt Priority Register (ipn1)

Modes of Operation
CoreSDLC provides three modes of operation: normal
mode, raw receive mode, and raw transmit mode. The
first is normally used in standard communications within
SDLC networks, while the others may be used for testing
the controller's operation or transmit user data, (not
necessarily SDLC-formatted). Information about all
operational modes, as well as a summary of options
available for each mode, are described in detail in the
following text and in Table 30 on page 15. Each of the
three modes of operation are selected by the CPU setting
the m1 and m0 bits in the gmod register, as listed in
Table 11 on page 9.

Normal Mode
In normal mode, data is transmitted in standard SDLC
format. After transmission is enabled by the CPU setting
the ten bit in the tstat register and loading the transmit
FIFO with data, CoreSDLC tests if the interframe space
(time from previous transmission) has expired. If this
condition is met, the den (external driver enable) output
is forced low. One bit time later, CoreSDLC begins
transmission by sending the appropriate number of
preamble bits and the BOF flag. Immediately after BOF is
sent, a byte from tfifo is loaded into the shift register. As
bits are shifted out of this register, they also pass
through the CRC generator, updating the current CRC
value. This process is performed as long as the transmit
FIFO contains data. If the FIFO is empty when the
transmitter is about to load the next byte, CoreSDLC
assumes "end of data." Transmission ends with sending
the current CRC generator value followed by the EOF
flag. All transmitted bits are encoded with NRZI (if the
internal clock generator is selected) or NRZ (if external
clock input is selected).

The receiver working in normal mode searches the input
for the BOF flag. Immediately after BOF is detected, the
frame's address field is checked if it matches the address
assigned with address registers addr3-0. When the
address does not match, that frame is ignored. If the
address matches, the receiver loads incoming bits
including ADDRESS, CONTROL, and INFO fields into the
shift register and then into the receive FIFO. The CRC is
not loaded into the receive FIFO.

Raw Transmit Mode
In raw transmit mode, the transmit output is internally
connected to the receive input. All data written to the
transmit FIFO are transmitted without preamble, BOF
and EOF flags, address, and CRC. Additionally, bit
stuffing is disabled. The receiver operates as normal in
this mode.

Raw transmit mode can be used for receiver testing or
for transmitting user data (not necessarily SDLC-
formatted).

Raw Receive Mode
In raw receive mode, the transmitter operates as in
normal mode.

The receiver also operates as normal except that all bytes
between the BOF and EOF flags are loaded into the
receive FIFO, including the CRC field. The receiver does
not check the CRC and no CRC error is set. In addition,
address matching is not performed, and therefore, all
frames are received.

To use raw receive as a test mode, the transmit output
should be externally connected to the receive input. This
allows most of the transmitter functions, as well as the
external transceiver, to be checked.

Table 28 • ipn1 Register

MSB LSB

– – – – pgstv – pgsre pgsrv

Table 29 • ipn1 Register Bit Functions

Bit Symbol Function

7:4 – Not used (fixed at 1100)

3 pgstv Transmit valid interrupt priority

2 – Not used

1 pgsre Receive error interrupt priority

0 pgsrv Receive valid interrupt priority

Note: This register has unimplemented bits (–). Unless otherwise noted, if these bits are read they will return ‘0’. Writing to these bits has
no effect.
14 v4.0

CoreSDLC
General Description of the Transmitter

Interframe Spacing
Interframe space is a period of time that must elapse
between two consecutive transmissions. It is measured in
bit times. Interframe space can be set by writing an
appropriate value (number of bit times) into the ifs
register. Note that only even numbers can be used (the
LSB must always be set to '0'), because only the seven
most significant bits are loaded into the ifs register. This
means that interframe space can be set from two bit
times to 256 bit times. A value of 0x02 written into ifs
corresponds to two bit times, 0xFE corresponds to 254 bit
times, while 0x00 corresponds to 256 bit times.

Preamble
The preamble is a series of toggling '1' and '0' values.
The length of preamble can be set to 0, 8, 32 or 64 bits by
writing appropriate values into pl1 and pl0 bits in the
gmod register. The preamble is not defined in the
standard SDLC protocol and thus it is not considered part
of the SDLC frame. The purpose of the preamble is only
for synchronization between stations in the network.

Note that if idle flags are used in conjunction with a
preamble, the addresses 0x00 and 0x55 should not be
assigned to the controller. Otherwise, a preamble
following the idle flags will be interpreted as a matching
address.

Sending an Abort Flag
An abort flag is the sequence of seven or more '1' values.
If the receiver detects an abort flag between EOF and
BOF, it immediately ends reception. There are three ways
to generate an abort flag using CoreSDLC:

• One method is to clear the ten bit in the tstat
register and wait at least seven bit times. In this
case, the delay necessary to transmit seven bits
must be measured by the user’s software.

• The second method is based on programmable
interframe space. The first step is to write into the
ifs register, a value greater than or equal to eight.
Then the user’s software must clear the ten bit,
which disables transmission and forces the output
to a high level. With this method, the ten bit can
be immediately re-enabled. The output will
remain at a high level until the interframe space
expires, which is accomplished automatically by
CoreSDLC.

• The third method is to use raw transmit mode.
Writing a value of 0xFF into tfifo generates a high
output for eight bit times. This is possible because
the transmitter does not use bit stuffing in raw
transmit mode.

Table 30 • Functions Available in Individual Modes

Function / Mode Normal (m1=0, m0=0) Raw Transmit (m1=0, m0=1) Raw Receive (m1=1, m0=0)

Transmit Receive Transmit Receive Transmit Receive

Preamble O NA N NA O NA

BOF and EOF Y Y N Y Y Y

Address Matching NA Y NA Y NA N

CRC check Y Y N Y Y N

Bit stuffing and stripping Y Y N Y Y Y

NRZ / NRZI Y Y Y Y Y Y

Notes:

1. m1, m0 – gmod register mode bits in Table 11 on page 9

2. Y – used

3. N – not used

4. O – optional

5. NA – not applicable
v4.0 15

CoreSDLC
External Driver Interface
CoreSDLC uses the den output for an external driver
interface. This output is activated one bit time before
transmission begins and remains active until the last bit
of the EOF is transmitted, or until the ten bit is cleared by
the user’s software.

Transmission with an External Clock
An external clock is selected by setting the xtclk bit in the
gmod register. When this bit is set, NRZI decoding is also
disabled. Data is transmitted with the NRZ decoding
scheme on the falling edge of the txc clock. Due to the
txc input synchronization with the global clock, there
can be a delay of up to two clock periods until the data
begins to transmit, as shown in Figure 8 and Table 31.

General Description of the Receiver

Receive Clock Recovery
In synchronous serial protocols like SDLC, data and clock
are both transmitted over the same medium. Receiver
clock recovery is the process of separating the clock
signal from the incoming data bitstream (Figure 9). The
receiver performs this action. In CoreSDLC, the receiver
input is always monitored at eight times the baud rate
frequency and searched for the level transitions. Every
transition causes the receiver to correct its own clock for
proper synchronization with the transmitter.
Additionally, CoreSDLC performs digital filtering by

ignoring input pulses shorter than four baud-rate
periods.

The only exception to this rule is when the xrclk bit in the
pcon register is set. In that case, an external receive clock
and NRZ decoding are used. Receive data input is then
sampled on the external clock rising edge. No clock
recovery and no digital filtering are performed in that
case.

Figure 8 • External Transmit Clock Timing

Table 31 • External Transmit Clock Timing

Symbol Parameter Minimum Value

ECL External clock low 2*(period of clk)

ECH External clock high 2*(period of clk)

ECDVT External clock to data valid transmit 1 to 2*(period of clk)

clk

txc

txd

ECDVT

ECL ECH

Sample

New Transmit Data

Figure 9 • Receive Clock Recovery

Ideal rxd

Actual rxd

Recovered Clock

Sample Rate

Noise
16 v4.0

CoreSDLC
Receive Error Conditions
CoreSDLC detects four kinds of receive errors
represented by bits in the rstat register (Table 32):

• crce – CRC error

• ae – alignment error

• rcabt – receive abort

• ovr – overrun in receive FIFO

The user’s software can read these bits, but only
CoreSDLC can write them in response to the various error
conditions that they represent. When an error occurs,
CoreSDLC sets one or more of these bits and also clears
the gren bit in the rstat register. When the user’s
software sets the gren bit re-enabling the receiver, all
error bits are cleared. This is the only method for clearing
error bits.

It is possible that multiple error bits get set in response to
certain errors:

• rcabt and ae can be set when receiving misaligned
abort flag

• ovr and crce can be set when an overrun error is
forced

• ae and crce can be set when an alignment error
occurs

In order to determine the correct cause of the receiver
error, the user’s software should poll error bits in the
following sequence:

1. rcabt

2. ovr

3. crce

4. ae

Receive Enable Bits
There are two receive enable bits: gren (receive enable,
in the rstat register) and garen (auxiliary receive enable,
in the pcon register). In order to enable the receiver, at
least one of these bits should be set. Although setting
only the garen bit enables the receiver, the rdn (receive
done, in the rstat register) bit, which indicates the end of
a valid reception, will only be set if the gren bit is set
(Figure 10 on page 18).

When the frame reception is in process, clearing both
gren and garen causes the receiver to end reception.
There will be a 0 to 1 bit time delay between clearing the
receive enable bits and end of reception.

Receive with External Clock
The external clock is selected by setting the xrclk bit in
the pcon register. When this bit is set, NRZI encoding is
also disabled. Data is received with NRZ decoding on the
rxc clock rising edge. Due to rxc input synchronization
with the global clock, as shown in Figure 11 on page 18
and listed in Table 33 on page 18, there is a maximum of
one clock period delay from rxc rising edge to receive
data (ECDR).

Table 32 • Receive Error Conditions

Error Bit Condition

crce This bit will be set if the CRC remainder after passing all ADDRESS, CONTROL, INFO and CRC fields through the CRC
generator is not equal to the polynomial residual. For a 16-bit CRC, this residual is 00011101 00001111, and for a
32-bit CRC it is 11000111 00000100 11011010 01111011.

This bit will also be set when alignment or overrun errors occur.

ae This bit will be set if the number of bits received between BOF and EOF flags are not a multiple of eight (INFO field is
not byte-aligned).

This bit will also be set when the abort flag is detected.

rcabt This bit will be set if the receiver detects an abort sequence (7 or more consecutive '1' values) in an incoming frame
between the BOF and EOF flags but after the first received data has already passed to the receive FIFO.

If the abort flag is detected before loading the first byte into the FIFO, the incoming frame is ignored and no error bits
are set.

ovr This flag will be set if the receiver gets new data and the receive FIFO is already full.
v4.0 17

CoreSDLC
Interrupt Structure
There are three interrupt sources in CoreSDLC: transmit
valid, receive valid, and receive error interrupt (Table 34).

The transmit valid interrupt flag is set when tfnf
(transmit FIFO not full) is set. End of frame transmission
is not indicated by an interrupt, so the user must poll the
tdn (transmit done) bit in order to know if transmission
has ended.

The receive valid interrupt flag is set when rfne (receive
FIFO not empty) is set. End of frame reception is not
indicated by an interrupt, so the user must poll the rdn
(receive done) bit in order to know if reception has
ended.

The receive error interrupt is set in response to a receive
error indicated by any of the error bits in the rstat
register. These error bits are: crce, ae, rcabt, and ovr.

Note: crce, ae, rcabt, ovr and gren are rstat special function register bits. The re interrupt is an external interrupt output pin. The "clear
gren" and "set rdn" actions are both taken automatically by CoreSDLC.

Figure 10 • Receive Error Logic

Figure 11 • External Receive Clock Timing

Table 33 • External Receive Clock Timing

Symbol Parameter Minimum Value

ECL External clock low 2*(period of clk)

ECH External clock high 2*(period of clk)

ECDR External clock to receive data sample 0 to 1*(period of clk)

crce
ae

rcabt
ovr

gren

EOF Detected

Clear gren

re Interrupt

Set rdn

clk

rxc

rxd

ECH ECL

Sample
ECDR

New Data

Table 34 • Interrupt Summary

Name Output Enable Bit
Priority

Bit Condition

Transmit Valid tv egstv pgstv This flag is set when tfnf is set (transmit FIFO is not full). Setting the ten bit
by the user’s software will clear this flag.

Receive Valid rv egsrv egstv This flag is set when rfne is set (receive FIFO is not empty). Setting the gren
bit by the user’s software will clear this flag.

Receive Error re egsre pgstv This flag is set when at least one of the error bits (crce, ae, rcabt, ovr) is set.
Setting the gren bit by the user’s software will clear this flag.
18 v4.0

CoreSDLC
Clock and Reset Control
CoreSDLC is fully synchronous with respect to the global
clock clk. In other words, there is only one clock domain
in the core. All internal registers operate synchronous to
the rising edge of clk. All input signals (except the reset
signal nreset) including txc and rxc, are sampled with the

rising edge of clk. The nreset input signal is asynchronous
with respect to the global clock clk. For proper
operation, nreset should be active for at least one global
clock period. When nreset is active, all registers return to
their default states.

Ordering Information
Order CoreSDLC through your local Actel sales
representative. Use the following numbering convention
when ordering: CoreSDLC-XX, where XX is listed in
Table 35.

Table 35 • Ordering Codes

XX Description

EV Evaluation Version

SN Netlist for single-use on Actel devices

AN Netlist for unlimited use on Actel devices

SR RTL for single-use on Actel devices

AR RTL for unlimited use on Actel devices

UR RTL for unlimited use and not restricted to Actel devices
v4.0 19

CoreSDLC
List of Changes
The following table lists critical changes that were made in the current version of the document.

Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," and "Production." The definition of these
categories are as follows:

Product Brief
The product brief is a summarized version of an advanced or production datasheet containing general product
information. This brief summarizes specific device and family information for unreleased products.

Advanced
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.

Unmarked (production)
This datasheet version contains information that is considered to be final.

Previous Version Changes in Current Version (v4.0) Page

v3.0 The "Supported Families" section was updated to include Fusion. 1

Table 1 was updated to include Fusion data. 2

v2.0 "Supported Families" section was updated to include ProASIC3/E. 1

Table 1 • CoreSDLC Device Utilization and Performance was updated to include ProASIC3/E data. 2
20 v4.0

51700016-2/12.05

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan
www.jp.actel.com

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488

www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.jp.actel.com
http://www.actel.com.cn
http://www.actel.com

