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Foreword

The TriMediall TM-1300 is a higher speed, functionally
enhanced version of the TM-1000 media processor.

TM-1300 contains an ultra-high performance Very Long
Instruction Word processor, as well as a complete intelli-
gent video and audio input/output subsystem. The pro-
cessor has an instruction set that is optimized for pro-
cessing audio, video and graphics. It includes powerful
SIMD multimedia operators for eight- and 16-bit signal
datatypes as well as a full complement of 32-bit IEEE
compatible floating point operations.

TM-1300 is intended as a multi-standard programmable
video, audio and graphics processor. It can either be
used standalone, or as an accelerator to a general pur-
pose processor.

The architecture of the TriMedia family came about as
the result of many years of effort of many dedicated indi-
viduals. Going back in history, the origin of TriMedia was
laid by the LIFE-1 VLIW processor, designed by Junien
Labrousse and myself in 1987. Work continued after-
wards in Philips Research Labs, Palo Alto. My special
thanks go to the entire Palo Alto research team: Mike
Ang, Uzi Bar-Gadda, Peter Donovan, Martin Freeman,
Eino Jacobs, Beomsup Kim, Bob Law, Yen Lee, Vijay
Mehra, Pieter van der Meulen, Ross Morley, Mariette
Parekh, Bill Sommer, Artur Sorkin and Pierre Uszynski.

The Palo Alto period matured the architecture—we port-
ed all video and audio algorithms that we could find to the
compiler/simulator and refined the operation set. In addi-
tion, we learned how to give the architecture a market di-
rection. In May 1994, Philips management—in particular
Cees-Jan Koomen, Eddy Odijk, Theo Claasen and Doug
Dunn—decided to develop TriMedia into a major Philips
Semiconductors product line.

Under the guidance of Keith Flagler, the TriMedia team
was built. All of them contributed to take this from a set
of interesting ideas to a reliable and competitive product
in a short period of time. The initial TriMedia team includ-
ed Fuad Abu Nofal, Karel Allen, Mike Ang, Robert Aqui-
no, Manju Asthana, Patrick de Bakker, Shiv Balakrish-
nan, Jai Bannur, Marc Berger, Sunil Bhandari, Rusty
Biesele, Ahmet Bindal, David Blakely, Hans Bouw-
meester, Steve Bowden, Robert Bradfield, Nancy
Breede, Shawn Brown, Sujay Chari, Catherine Chen,

Howen Chen, Yan-ming Chen, Yong Cho, Scott Clapper,
Matthew Clayson, Paul Coelho, Richard Dodds, Marc
Duranton, Darcia Eding, Aaron Emigh, Li Chi Feng, Keith
Flagler, Jean Gobert, Sergio Golombek, Mike Grim-
wood, Yudi Halim, Hari Hampapuram, Carl Hartshorn,
Judy Heider, Laura Hrenko, Jim Hsu, Eino Jacobs, Mar-
cel Janssens, Patricia Jones, Hann-Hwan Ju, Jayne Kei-
th, Bhushan Kerur, Ayub Khan, Keith Knowles, Mike
Kong, Ashok Krishnamurti, Yen Lee, Patrick Leong, Bill
Lin, Laura Ling, Chialun Lu, Naeem Maan, Nahid Man-
sipur, Mike Maynard, Vijay Mehra, Jun Mejia, Derek
Meyer, Prabir Mohanty, Saed Muhssin, Chris Nelson,
Stephen Ness, Keith Ngo, Francis Nguyen, Kathleen
Nguyen, Derek Noonburg, Ciaran O’Donnel, Sang-Ju
Park, Charles Peplinski, Gene Pinkston, Maryam Piray-
ou, Pardha Potana, Bill Price, Victor Ramamoorthy,
Babu Rao Kandamilla, Ehsan Rashid, Selliah Rathnam,
Margaret Redmond, Donna Richardson, Alan Rodgers,
Tilakray Roychoudhury, Hani Salloum, Chris Salzmann,
Bob Seltzer, Ravi Selvaraj, Jim Shimandle, Deepak
Singh, Bill Sommer, Juul van der Spek, Manoj Srivasta-
va, Renga Sundararajan, Ken-Sue Tan, Ray Ton, Steve
Tran, Cynthia Tripp, Ching-Yih Tseng, Allan Tzeng, Bar-
bara Vendelin, John Vivit, Rudy Wang, Rogier Wester,
Wayne Wonchoba, Anthony Wong, Sara Wu, David Wy-
land, Ken Xie, Vincent Xie, Bettina Yeung, Robert Yin,
Charles Young, Grace Yun, Elena Zelayeta and Vivian
Zhu.

Expert help and feedback was received from many. In
particular, I'd like to mention Kees van Zon of Philips
Eindhoven for the help with filtering-related issues, and
Craig Clapp of PictureTel for excellent feedback on all
aspects of the architecture.

My special thanks go to Joe Kostelec. He made me un-
derstand that my ambitions could better be realized in
California than in Europe. Furthermore, his vision and his
wisdom are credited with keeping this project alive and
growing until the ‘investment decision.’

The vision of a universal media accelerator is credited to
Jaap de Hoog. Jaap, | wish you were here to see it come
to fruition.

—Gerrit Slavenburg
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Pin List

Chapter 1

by Muhammad Hafeez, Naeem Maan, Thorwald Rabeler, Luis Lucas, Gert Slavenburg

1.1 TM1300 VERSUS TM1100

The following summarizes pinout differences between
TM1100 and TM1300:

TM1300 uses a BGA 27x27 package and is hence
not physically pin compatible with TM1100.

TM1300 no longer has the MM_MATCHOUT and
MM_MATCHIN pins, SDRAM read timing is now
internally derived.

TM1300 recommends different VDDQ/VSSQ board
circuitry. Refer to VDDQ, VSSQ description.

We recommend 50-ohm PCB traces for all SDRAM
memory signal routing, with minimal wire lengths for
143-MHz SDRAM operation.

1.2 BOUNDARY SCAN NOTICE

TM1300 implements full IEEE 1149.1 boundary scan. Any TM1300 pin designated “IN” only (from a functionality point
of view) can become an output during boundary scan.

1.3 1/O CIRCUIT SUMMARY

TM1300 has a total of 169 functional pins, excluding VDDQ, VSSQ, VREF_PCI and VREF_PERIPH and digital power/
ground. TM1300 uses the types of I/O circuits shown in the table below.

We recommend 27-33 ohm series terminating resis-
tors close to the TM1300 for all STRG3 and STRG5
I/O circuit pins used as outputs.

TM1300 has one new memory address pin
(MM_A13) to support 16-bit wide 64-Mbit SDRAM.
TM1300 has 4 distinct serial stereo audio outputs
(AO_SD1..4) instead of the single octal channel
audio output (AO_SD) of TM1100.

TM1300 introduces the SPDIF audio output pin,
SPDO.

TM1300 uses new /O pad types, with different
impedance/drive capabilities to ease board design.

Pad Type Pad Type Description

PCI PCI2.1 compliant I/O, capable of using 3.3-V or 5-V PCI signaling conventions.

PCIOD PCI2.1 compliant Open Drain 1/O, capable of using 3.3-V or 5-V PCI signaling conventions.

11COD Open drain 3.3-V or 5-V I2C I/O (for I2C pins).

STRG3 3.3-V only low impedance I/O. Requires board level 27-33 ohm series terminator resistor to match 50 ohm
PCB trace.

NORM3 | 3.3-V only I/O circuit with regular drive strength and board trace matched drive impedance.

STRG5 3.3-V low impedance output, combined with 5-V tolerant input. If used as output, it requires a board level
27-33 ohm series terminator resistor to match 50-ohm PCB trace.

WEAKS5 | 3.3-V regular impedance output, with slow rise/fall, combined with 5-V tolerant input.

For the pins with 5-V input capability, the special pins VREF_PCI or VREF_PERIPH determine 3.3- or 5-V input toler-
ance, as per the table in Section 1.6. The above pad types are used in the modes listed in the following table.

Modes Description
IN Input only, except during boundary scan
ouT Output only, except during boundary scan
oD Open drain output - active pull low, no active drive high, requires external pull-up
110 Output or input
/0D Open drain output with input - active pull low, no active drive high, requires external pull-up
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14  SIGNAL PIN LIST

In the table below, a pin hame ending in a ‘#' designates an active-low signal (the active state of the signal is a low
voltage level). All other signals have active-high polarity.

Pin Name BGA Pad Mode Description
Ball Type
Main Clock Interface

TRI_CLKIN L20 | NORM3 IN Main input clock. The SDRAM clock outputs (MM_CLKO and MM_CLK1) can be set to
2x or 3x this frequency. The on-chip DSPCPU clock (DSPCPU_CLK) can be set to 1x,
5/4, 4/3, 3/2 or 2x the SDRAM clock frequency. Maximum recommended ppm level is
+/- 100 ppm or lower to improve jitter on generated clocks. Duty cycle should not
exceed 30/70% asymmetry.

VDDQ K20 N/A PWR [ Quiet VDD for the PLL subsystem. This pin should be supplied from VDD through a
low-Q series inductor. It should be bypassed for AC to VSSQ, using a dual capacitor
bypass (hi and low frequency AC bypass).

VSSQ L19 N/A GND | Quiet VSS for the PLL subsystem. Should be AC bypassed to VDDQ, but should
otherwise be left DC floating. It is connected on-chip to VSS. No external coil or
other connection to board ground is needed, such connection would create a
ground loop .

Miscellaneous System Interface

TRI_RESET# G19 | WEAKS IN TM1300 RESET input. This pin can be tied to the PCI RST# signal in PCI bus sys-
tems. Upon receiving RESET, TM1300 initiates its boot protocol.

BOOT_CLK T20 | NORM3 IN Used for testing purposes. Must be connected to TRI_CLKIN for normal operation.

TESTMODE P19 | NORM3 IN Used for testing purposes. Must be connected to VSS for normal operation.

SCANCPU D20 | NORM3 IN Used for testing purposes. Must be connected to VSS for normal operation.

RESERVED1 E19 | NORM3 110 Reserved pin. Has to be left unconnected for normal operation.

RESERVED2 D19 | STRG5 110 Reserved pin. Has to be left unconnected for normal operation.

VREF_PCI F2 N/A PWR [ VREF_PCI determines the mode of operation of the PCI pins listed in Section 1.6.
VREF_PCI must be connected to 5V for use in a 5-V PCI signaling environment or to
VSS (0 V) for use in 3.3-V PCI signaling environment. The supply to this pin should be
AC bypassed and provide 40 mA of DC sink or source capability. Note that this pin
can not be directly connected to the PCI ‘I/O designated power pins’ in a dual
voltage PCI plug-in card. Board level conversion circuitry is required.

VREF_PERIPH C18 N/A PWR | VREF_PERIPH determines the mode of operation of the I/O pins listed in Section 1.6.
VREF_PERIPH should be connected to 5V if any of the listed 1/O pins provided should
be 5-V input voltage capable. VREF_PERIPH should be connected to VSS (0-V) if all
listed 1/0O pins are 3.3-V only inputs. The supply to this pin should be AC bypassed and
provide 40 mA of DC sink or source capability.

TRI_USERIRQ G20 | WEAKS IN General purpose level/edge interrupt input. Vectored interrupt source number 4.

TRI_TIMER_CLK | H19 | WEAK5 IN External general purpose clock source for timers. Max. 40 MHz.

Main Memory Interface
MM_CLKO Y10 | STRG3 | OUT | SDRAM output clock at 2x or 3x TRI_CLKIN frequency. Two identical outputs are pro-
MM_CLK1 W10 vided to reliably drive several small memory configurations without external glue.
A series terminating resistor close to TM1000 is recommended to reduce ringing.
For driving a 50-ohm trace, a resistor of 27 to 33 ohm is recommended. We recom-
mend against using higher impedance traces in the SDRAM signals.

MM_A00 W12 | NORM3 | OUT [ Main memory address bus; used for row and column addresses

MM_A01 Y12

MM_A02 w11

MM_A03 Y11

MM_A04 Y9

MM_AO05 W9

MM_A06 V9

MM_A07 Y8

MM_A08 w8

MM_A09 Y7

MM_A10 V12

MM_A11 Y13

MM_A12 w13 (was ‘RESERVED2' in TM1000 - also sometimes name MM_BA1)

MM_A13 Y14 (new in TM1300 - also hamed MM_64M_11 in some documents)
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Pin Name %C;ﬁ‘ .:_:;%de Mode Description
MM_DQO00 Y20 | NORM3 I/0 | 32-bit data I/O bus
MM_DQO1 V18
MM_DQO02 w19
MM_DQO03 W20
MM_DQO04 u1s
MM_DQO05 V19
MM_DQO06 V20
MM_DQO07 T18
MM_DQO08 wis
MM_DQO09 V17
MM_DQ10 Y18
MM_DQ11 w17
MM_DQ12 Y17
MM_DQ13 w16
MM_DQ14 Y16
MM_DQ15 V15
MM_DQ16 w7
MM_DQ17 Y6
MM_DQ18 W6
MM_DQ19 V6
MM_DQ20 Y5
MM_DQ21 W5
MM_DQ22 Y4
MM_DQ23 w4
MM_DQ24 V2
MM_DQ25 V3
MM_DQ26 w1
MM_DQ27 w2
MM_DQ28 Y1
MM_DQ29 Y2
MM_DQ30 W3
MM_DQ31 Y3
MM_CKEOQO Y19 | NORM3 | OUT | Clock enable output to SDRAMSs. Two identical outputs are provided in order to reliably
MM_CKE1 Ul drive several small memory configurations without external glue.
MM_CSO0# U2 | NORM3 | OUT | Chip select for DRAM rank n; active low
MM_CS1# u20
MM_CS2# us3
MM_CS3# u19
MM_RAS# W14 | NORM3 | OUT | Row address strobe; active low
MM_CAS# Y15 | NORM3 | OUT | Column address strobe; active low
MM_WE# W15 | NORM3 | OUT | Write enable; active low
MM_DQMO T19 | NORM3 | OUT | MM_DQ Mask Enable; these are byte enable signals for the 32-bit MM_DQ bus
MM_DQM1 R18
MM_DQM2 V1
MM_DQM3 V4
PCI Interface (Note: current buffer design allows drive/receive from either 3.3 or 5V PCI bus)
PCI_CLK T2 PCI IN All PCI input signals are sampled with respect to the rising edge of this clock. All PCI
outputs are generated based on this clock. Clock is required for normal operation of
the PCI block.
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. BGA Pad o
Pin Name Ball Type Mode Description

PCI_ADOO T1 PCI 1/0 | Multiplexed address and data.

PCI_ADO1 R3

PCI_ADO02 R2

PCI_ADO3 R1

PCI_ADO0O4 P2

PCI_ADO5 P1

PCI_ADO06 N2

PCI_ADO7 N1

PCI_ADO0O8 M2

PCI_ADO09 M1

PCI_AD10 L2

PCI_AD11 L1

PCI_AD12 K1

PCI_AD13 K2

PCI_AD14 J1

PCI_AD15 J2

PCI_AD16 D1

PCI_AD17 D3

PCI_AD18 C1

PCI_AD19 B2

PCI_AD20 Bl

PCI_AD21 Cc2

PCI_AD22 C3

PCI_AD23 Al

PCI_AD24 A3

PCI_AD25 C4

PCI_AD26 B4

PCI_AD27 A4

PCI_AD28 A5

PCI_AD29 C6

PCI_AD30 B6

PCI_AD31 A6

PCI_C/BE#0 M3 PCI 1/0 | Multiplexed bus commands and byte enables. High for command, low for byte enable.

PCI_C/BE#1 J3

PCI_C/BE#2 D2

PCI_C/BE#3 B3

PCI_PAR H1 PCI /0 | Even parity across AD and C/BE lines.

PCI_FRAME# E2 PCI I/0 | Sustained tri-state. Frame is driven by a master to indicate the beginning and duration
of an access.

PCI_IRDY# El PCI I/0 | Sustained tri-state. Initiator Ready indicates that the bus master is ready to complete
the current data phase.

PCI_TRDY# F3 PCI 1/0 | Sustained tri-state. Target Ready indicates that the bus target is ready to complete the
current data phase.

PCI_STOP# G2 PCI I/0 | Sustained tri-state. Indicates that the target is requesting that the master stop the cur-
rent transaction.

PCI_IDSEL A2 PCI IN Used as chip select during configuration read/write cycles.

PCI_DEVSEL# F1 PCI I/0 | Sustained tri-state. Indicates whether any device on the bus has been selected.

PCI_REQ# B7 PCI 1/0 | Driven by TM1300 as PCI bus master to request use of the PCI bus.

PCI_GNT# B5 PCI IN Indicates to TM1300 that access to the bus has been granted.

PCI_PERR# Gl PCI 110 Sustained tri-state. Parity error generated/received by TM1300.

PCI_SERR# H2 PCI OD | System error. This signal is asserted when operating as target and detecting an

address parity error.

1-4
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BGA

Pad

Pin Name Ball Type Mode Description

PCI_INTA# C9 | PCIOD | I/OD |+ Can operate as input (power up default) or output, as determined by direction con-

PCI_INTB# A8 PCI 1/0/0OD trol bits in PCI MMIO register INT_CTL.

PCI_INTC# B8 | PCIOD | I/OD |+ Asinput, a PCI_INT# pin can be used to receive PCI interrupt requests (normal

PCI_INTD# A7 PCIOD /0D PCI use is active low, level sensitive mode, but the VIC can be set to treat these as

positive edge triggered mode). As input, a PCI_INT# pin can also be used as a
general interrupt request pin if not needed for PCI.

¢ As output, the value of a PCI_INT# can be programmed through PCI MMIO regis-
ters to generate interrupts for other PCI masters.

« Whenever XIO bus functionality is active, PCI_INTB# is a push-pull CMOS 1/O pin.
When the XIO bus is not active and regular PCI bus functionality is activated, then
PCI_INTB# has a PCI compatible open drain output.

JTAG Interface (debug access port and 1149.1 boundary scan port)

JTAG_TDI F20 | WEAKS5 IN JTAG test data input

JTAG_TDO F18 | WEAKS5 /10 | JTAG test data output. This pin can either drive active low, high or float.

JTAG_TCK F19 | WEAKS5 IN JTAG test clock input

JTAG_TMS E20 | WEAKS IN JTAG test mode select input

Video In
VI_CLK C20 | STRG5 110 e If configured as input (power up default): a positive transition on this incoming video

clock pin samples all other VI_DATA input signals below if VI_DVALID is HIGH. If
VI_DVALID is LOW, VI_DATA is ignored. Clock and data rates of up to 81 MHz are
supported.

e If configured as output: programmable output clock to drive an external video A/D
converter. Can be programmed to emit integral dividers of DSPCPU_CLK.

If used as output, a board level 27-33 ohm series resistor is recommended to reduce

ringing.

VI_DVALID Al7 | WEAKS5 IN VI_DVALID indicates that valid data is present on the VI_DATA lines. If HIGH, VI_DATA
will be accepted on the next VI_CLK positive edge. If LOW, no VI_DATA will be sam-
pled.

VI_DATAO D18 | WEAK5 IN CCIR656 style YUV 4:2:2 data from a digital camera, or general purpose high speed

VI_DATA1 C19 data input pins. Sampled on VI_CLK if VI_DVALID HIGH.

VI_DATA2 B20

VI_DATA3 B19

VI_DATA4 A20

VI_DATA5 Al9

VI_DATA6 C17

VI_DATA7 B18

VI_DATA8 Al18 | WEAKS IN Extension high speed data input bits to allow use of 10 bit video A/D converters in

VI_DATA9 B17 raw10 modes. VI_DATA[8] serves as START and VI_DATA[9] as END message input
in message passing mode.Sampled on positive transitions of VI_CLK if VI_DVALID
HIGH.

1°C Interface
IIC_SDA R19 | IICOD I/OD | |2¢ serial data
IIC_SCL R20 | IICOD I/0OD | |2¢C clock
Video Out

VO_DATAO P20 | WEAKS5 | OUT | CCIR656 style YUV 4:2:2 digital output data, or general purpose high speed data out-

VO_DATA1 N19 put channel. Output changes on positive edge of VO_CLK.

VO_DATA2 N20

VO_DATA3 M18

VO_DATA4 M19

VO_DATA5 M20

VO_DATA6 K19

VO_DATA7 J20

VO_I01 J18 | WEAKS I/0 | This pin can function as HS output or as STMSG (Start Message) output.

« If set as HS output, it outputs the horizontal sync signal
* In message passing mode, this pin acts as STMSG output.
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Pin Name

BGA
Ball

Pad
Type

Mode

Description

VO_102

H20

WEAKS

/0

This pin can function as FS (frame sync) input, FS output or as ENDMSG output.

« If set as FS input, it can be set to respond to positive or negative edge transitions.

« If the Video Out (VO) unit operates in external sync mode and the selected transition
occurs, the VO unit sends two fields of video data. Note: this works only once after a
reset.

« In message passing mode, this pin acts as ENDMSG output.

VO_CLK

J19

STRG5

/0

The VO unit emits VO_DATA on a positive edge of VO_CLK. VO_CLK can be config-

ured as input (reset default) or output.

« If configured as input: VO_CLK is received from external display clock master cir-
cuitry.

« If configured as output, TM1300 emits a programmable clock frequency. The emitted
frequency can be set between approx. 4 and 81 MHz with a sub-Hertz resolution.
The clock generated is frequency accurate and has low jitter properties due to a
combination of an on-chip DDS (Direct Digital Synthesizer) and VCO/PLL.

If used as output, a board level 27-33 ohm series resistor is recommended to reduce

ringing.

Audio In (always acts as receiver, but can be master or slave for A/D timing)

Al_OSCLK

B15

STRG3

ouT

Over-sampling clock. This output can be programmed to emit any frequency up to 40
MHz with a sub-Hertz resolution. It is intended for use as the 256f5 or 384f5 over sam-

pling clock by external A/D subsystem. A board level 27-33 ohm series resistor is rec-
ommended to reduce ringing.

Al_SCK

Al16

STRG5

/0

*  When the Audio In (Al) unit is programmed as a serial-interface timing slave
(power-up default), Al_SCK is an input. Al_SCK receives the serial bit clock from
the external A/D subsystem. This clock is treated as fully asynchronous to the
TM1300 main clock.

*  When the Al unit is programmed as the serial-interface timing master, Al_SCK is an
output. Al_SCK drives the serial clock for the external A/D subsystem. The fre-
guency is a programmable integral divisors of the Al_OSCLK frequency.

Al_SCK is limited to 22 MHz. The sample rate of valid samples embedded within the

serial stream is variable. If used as output, a board level 27-33 ohm series resistor is

recommended to reduce ringing.

Al_SD

C15

WEAKS

Serial data from external A/D subsystem. Data on this pin is sampled on positive or
negative edges of Al_SCK as determined by the CLOCK_EDGE bit in the Al_SERIAL
register.

Al_WS

B16

WEAKS

/10

* When the Al unit is programmed as the serial-interface timing slave (power-up
default), AIl_WS acts as an input. Al_WS is sampled on the same edge as selected
for AI_SD.

e When Audio In is programmed as the serial-interface timing master, Al_WS acts as
an output. It is asserted on the opposite edge of the Al_SD sampling edge.

Al_WS is the word-select or frame-synchronization signal from/to the external A/D

subsystem.
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Pin Name

BGA
Ball

Pad
Type

Mode

Description

Audio Out (always a

cts as sender, but can be master or slave for D/A timing)

AO_OSCLK

B14

STRG3

ouT

Over sampling clock. This output can be programmed to emit any frequency up to 40
MHz, with a sub-Hertz resolution. It is intended for use as the 256 or 384f5 over sam-
pling clock by the external D/A conversion subsystem. A board level 27-33 ohm series
resistor is recommended to reduce ringing.

AO_SCK

Al4

STRG5

/0

* When the Audio Out (AO) unit is programmed to act as the serial interface timing
slave (power up default), AO_SCK acts as input. It receives the Serial Clock from
the external audio D/A subsystem. The clock is treated as fully asynchronous to the
TM1300 main clock.

*  When the AO unit is programmed to act as serial interface timing master, AO_SCK
acts as output. It drives the serial clock for the external audio D/A subsystem. The
clock frequency is a programmable integral divisor of the AO_OSCLK frequency.

AO_SCK is limited to 22 MHz. The sample rate of valid samples embedded within the

serial stream is variable. If used as output, a board level 27-33 ohm series resistor is

recommended to reduce ringing.

AO_SD1

B13

WEAKS

ouT

Serial data to external stereo audio D/A subsystem for first 2 of 8 channels. The timing
of transitions on this output is determined by the CLOCK_EDGE bit in the AO_SERIAL
register, and can be on positive or negative AO_SCK edges.

AO_SD2

Al3

WEAKS

ouT

Serial data.

AO_SD3

C12

WEAKS

ouT

Serial data.

AO_SD4

B12

WEAKS

ouT

Serial data.

AO_WS

A15

WEAKS

/10

* When the AO unit is programmed as the serial-interface timing slave (power-up
default), AO_WS acts as an input. AO_WS is sampled on the opposite AO_SCK
edge at which AO_SDx are asserted.

*  When the AO unit is programmed as serial-interface timing master, AO_WS acts as
an output. AO_WS is asserted on the same AO_SCK edge as AO_SDx.

AO_WS is the word-select or frame-synchronization signal from/to the external D/A

subsystem. Each audio channel receives 1 sample for every WS period.

S/PDIF Output (Output)

SPDO

Al12

STRG3

ouT

Self clocking serial data stream as per IEC958, with 1937 extensions. Note that the
low impedance output buffer requires a 27 to 33 ohm series terminator close to
TM1300 in order to match the board trace impedance. This series terminator can be/
must be part of the voltage divider needed to create the coaxial output through the AC
isolation transformer.

Synchronous Serial Interface (SSI) to an off-chip modem front-end

SSI_CLK

B11

WEAKS

IN

Clock signal of the synchronous serial interface to an off-chip modem analog frontend
or ISDN terminal adapter; provided by the receive channel of an external communica-
tion device.

SSI_RXFSX

A1l

WEAKS

Receive frame sync reference of the synchronous serial interface, provided by the
receive channel of an external communication device.

SSI_RXDATA

A10

WEAKS

Receive serial data input; provided by the receive channel of an external communica-
tion device.

SSI_TXDATA

B10

WEAKS

ouT

Transmit serial data output; sent to the transmit channel of the external communication
device.

SSI_l01

A9

WEAKS

/10

General purpose programmable 1/0O. Set to input on power up.

SSI_102

B9

WEAKS

/0

General purpose programmable I/O. Set to input on power up. Can also be pro-

grammed to function as the transmit channel frame synchronization reference output.
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VSS (ground) VCC (3.3V /O supply) VDD (2.5V core supply)

C5 H8 L9 Cc7 G17 R4 C8 H17 N17
C16 H9 L10 C10 G18 R17 C13 H18 N18
D4 H10 L11 Cc11 K3 u6 D8 J4 us
D5 H11 L12 C14 K4 u7 D9 Ji7 U9
D16 H12 L13 D6 K17 u10 D12 M4 ui12
D17 H13 M8 D7 K18 U1l D13 M17 u13
E3 J8 M9 D10 L3 ui4 H3 N3 V8
E4 J9 M10 D11 L4 (OXES H4 N4 V13
E17 J10 M11 D14 L17 V7

E18 J11 M12 D15 L18 V10

T3 J12 M13 F4 P3 V11

T4 J13 N8 F17 P4 V14

T17 K8 N9 G3 P17

U4 K9 N10 G4 P18

us K10 N11

u16 K11 N12

u17 K12 N13

V5 K13

V16 L8
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16 PINREFERENCE VOLTAGE

With the exception of Open Drain mode outputs, outputs always drive to a level determined by the 3.3-V I/O voltage.
VREF_PERIPH and VREF_PCI purely determine input voltage clamping, not input signal thresholds or output levels.

Inputs always in 3.3-V mode Output only pins
TRI_CLKIN VO_DATAO Al_OSCLK
BOOT_CLK VO_DATA1 AO_OSCLK
TESTMODE VO_DATA2 AO_SD1
SCANCPU VO_DATA3 AO_SD2
RESERVED1 VO_DATA4 AO_SD3
VO_DATA5 AO_SD4
VO_DATA6 SSI_TXDATA
VO_DATA7 SPDO
VREF_PCI determined mode VREF_PERIPH determined mode SDRAM i/f (always 3.3-Volt mode)
PCI_ADOO PCI_AD27 TRI_USERIRQ Al_SCK MM_CLKO MM_DQ13
PCI_ADO1 PCI_AD28 TRI_TIMER_CLK Al_SD MM_CLK1 MM_DQ14
PCI_ADO02 PCI_AD29 JTAG_TDI Al_WS MM_A00 MM_DQ15
PCI_ADO3 PCI_AD30 JTAG_TDO AO_SCK MM_A01 MM_DQ16
PCI_ADO04 PCI_AD31 JTAG_TCK AO_WS MM_A02 MM_DQ17
PCI_ADO05 PCI_CLK JTAG_TMS SSI_CLK MM_A03 MM_DQ18
PCI_ADO06 PCI_C/BE#0 VI_CLK SSI_RXFSX MM_A04 MM_DQ19
PCI_ADO7 PCI_C/BE#1 VI_DVALID SSI_RXDATA MM_A05 MM_DQ20
PCI_ADO08 PCI_C/BE#2 VI_DATAO SSI_I01 MM_A06 MM_DQ21
PCI_ADO09 PCI_C/BE#3 VI_DATA1 SSI_102 MM_A07 MM_DQ22
PCI_AD10 PCI_PAR VI_DATA2 RESERVED2 MM_A08 MM_DQ23
PCI_AD11 PCI_FRAME# VI_DATA3 MM_A09 MM_DQ24
PCI_AD12 PCI_IRDY# VI_DATA4 MM_A10 MM_DQ25
PCI_AD13 PCI_TRDY# VI_DATA5 MM_A11 MM_DQ26
PCI_AD14 PCI_STOP# VI_DATA6 MM_A12 MM_DQ27
PCI_AD15 PCI_IDSEL VI_DATA7 MM_A13 MM_DQ28
PCI_AD16 PCI_DEVSEL# VI_DATA8 MM_DQO00 MM_DQ29
PCI_AD17 PCI_REQ# VI_DATA9 MM_DQO01 MM_DQ30
PCI_AD18 PCI_GNT# IIC_SDA MM_DQ02 MM_DQ31
PCI_AD19 PCI_PERR# IIC_SCL MM_DQO03 MM_CKEO
PCI_AD20 PCI_SERR# VO_lIO1 MM_DQO04 MM_CKE1
PCI_AD21 PCI_INTA# VO_102 MM_DQO05 MM_CSO0#
PCI_AD22 PCI_INTB# VO_CLK MM_DQO06 MM_CS1#
PCI_AD23 PCI_INTC# MM_DQO07 MM_CS2#
PCI_AD24 PCI_INTD# MM_DQO08 MM_CS3#
PCI_AD25 TRI_RESET# MM_DQO09 MM_RAS#
PCI_AD26 MM_DQ10 MM_CAS#
MM_DQ11 MM_WE#
MM_DQ12 MM_DQMO
MM_DQM1
MM_DQM2
MM_DQM3
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1.7 PACKAGE
BGAZ292 ball grid array package; 256 balls + 36 center ground & thermal balls; body 27 x 27 x 1.55 mm.
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TOP VIEW
— R 0.625X3
/ - 3
h —
x| o
o o
: 7 5| &
o S N
n
[ee]
an
>\\.J
Y
J 8.50.10 Z17mm
4.0X45° 24 REF (Heat Slug)
CHAM .00 -
27.000.10
SIDE VIEW
Ln [Te) 9'
S 24.009 S oo NOTES
© : © o 1. Units in mm.
2 /\9\ 0 : 2. Ground pins to be connected
© to thermally conductive ground
1 plane.
0=30"5°
BOTTOM VIEW DETAIL "A"
2 4 6 _8 10 14 16 18 20
12305078910, M50, Solder Ball
7 \
———T0000000000[0000000000 | Y
{ w| 0000000000000 0000000 | W
—v1T00000000000000000000 |V 0.750.15
FOOOOOO0O000OOOOO00000 | U
1 T| 0000 0000 | T e}
~ R|[OOOO 0000 | R
o P| OOOO 0000 | P
n| N N|ooOO 0ooolpboo 0000 | N
N[ wMm|oooo ooolooo 0000 | M
8| L]loooo [eYeYo)(eYeYe] 0000 | L
o |5 k]oooo 000000 0000 [ K
o Jj| oooo 000lo00 0000 | J
o H| 0000 0oolooo 0000 | H
c| o000 0000 | G
F| o000 Q00 | F
E () o |E
00 0000000000000 0O0 D
C| 0000000000000 0000000 KNG
B| 00000000000000000000 Note 2
909 oooooooooooooooo A
A 2 «L—s 8 10 12 14 18
5 7 9 11 13 15 17 19
127 5413
27.000.10

1.8 ORDERING INFORMATION

To order 143-MHz v1.2 TM-1300 parts, refer to part number ‘PTM1300AEBEA’, 12 nc product code 9352 6691 7557.
To order 166-MHz v1.2 TM-1300 parts, refer to part number ‘PTM1300FBEA’, 12 nc product code 9352 6687 1557.
SOT number is 553AA1.
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19 PARAMETRIC CHARACTERISTICS
1.9.1  Operating Range and Thermal Characteristics
Functional operation, long-term reliability and AC/DC characteristics are guaranteed for the operating conditions below.
Symbol Parameter Minimum Typical Maximum Units
Vop Core supply voltage 2.375 2.50 2.625 \%
Vee 1/0 supply voltage 3.135 3.30 3.465 \%
Tcase Operating case temperature range 0 85 °’C
Wit junction to case thermal resistance 3.8 ‘CIw
Yja junction to ambient thermal resistance (natural convection) 15 °CIwW
1.9.2  Absolute Maximum Ratings
Permanent damage may occur if these conditions are exceeded
Symbol Parameter Min. Max Units Notes
Vop 2.5-V core supply voltage -0.5 3.5 \%
Vee 3.3-V I/O supply voltage -0.5 4.6 Y
V,5v DC input voltage on all 5-V pins -0.5 VX+0.5 \ 1
V,.33v DC input voltage on all 3.3-V pins -0.5 VDD+0.3 \
Tstg Storage temperature range -65 150 Deg. C
Tcase Operating case temperature range 0 120 Deg. C
Veso Electrostatic handling for all pins - *1500 \Y 2
Notes: 1. VX for a 5V mode pin is either VREF_PCI or VREF_PERIPH, see Section 1.6.
2. Equivalent to discharging a 150-pF capacitor through a 1.5-Kohm series resistor. *1000 V for TM1300 v 1.15 .
1.9.3 Power Supply Sequencing
Power application and power removal should obey the following rules:
* Vpp should never exceed V¢ by more than 0.5 V
* V¢ should never exceed Vpp by more than 1.2 V
Permanent damage may occur if these rules are not observed.
1.9.4  DC/AC Characteristics
Symbol Parameter Condition/Notes Min. Max Units
VoD Core supply voltage 2.375 2.625 \
Vcc I/O supply voltage 3.135 3.465 Y,
Iob Core supply current 166 MHz CPU operation (typ. application) 1200 mA
lcc I/O supply current 143 MHz SDRAM operation (typ. app.) 170 mA
IDD-pdn Core supply current CPU power down mode; 166 MHz 250 mA
lcc-pdn I/0 supply current CPU power down mode; 143 MHz 50 mA
Vinsy Input HIGH voltage for I/O-5 V Note 1. All I/O’s except 1ICOD 2.0 VX+0.5 \
V|H-3.3v Input HIGH voltage for I/0-3.3 V All I/Os except ICOD 20 |V..+03 \Y
V”__SV Input LOW voltage for I/0-5 V All 1/Os except IICOD -0.5 0.8 Y,
V”__3_3V Input LOW voltage for 1/0-3.3 V All I/Os except IICOD -0.3 0.8 Y,
ey Input leakage currentfor /0-5V | 0<V|y<2.7V -70 70 uA
e Input leakage current for I/0-3.3V |0 <V|y<2.7V -0 10 UA
CIN Input pin capacitance 8 pF
otes: 1. VXTiorab5V mode pinis either VREF_PCI or VREF_PERIPH, see Seciion 1.6.
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1.94.1 TM-1300 and DSPCPU Core Current and Power Consumption Details
TM1300-100:100 TM1300-143:143 TM1300-166:133 TM1300-180:144
Symbol Current/Notes Pwd |[Typ Max Rwd Jiyp Max Pwd Typ Mpx Pwd Typ Max Unjts
TM-1300 | Ipp 170 800 850 [ 220 | 1100 | 1200 | 250 | 1200 [ 1350 | 280 | 1300 | 1450 mA
(note 1) -2 40 | 140 [ 130 | 50 | 170 [ 190 | 45 | 165 | 185 | 50 | 170 | 190 | mA
Total Power Dissipation | 0.5 2.3 25 | 0.7 3.3 35| 07 35 3.8 | 0.8 3.8 4.1 W
Ipp » DSPCPU Only - 590 | 660 - 825 | 950 - 900 |1050| - 1000 | 1150 mA
lcc , DSPCPU Only - 50 40 - 65 50 - 63 50 - 65 50 mA
Power DSPCPU Only - 1.6 1.7 - 2.2 2.5 - 2.4 2.7 - 2.7 3.0 W
TM-1300 | Ipp , Standby - 400 - - 575 - - 630 - - 690 - mA
(;‘Ozt)e Power Standby 11| - | - |15 - | - |17 -] - 18] -] w
' Iob , Standby + bpwd - 300 - - 425 - - 450 - - 510 - mA
Power Standby + bpwd - 0.8 - - 1.2 - - 1.3 - - 14 - W
Notes: 1. Consumption for TM-1300 is organized in several categories. Typ. column presents current consumption for a typical appli-
cation with a CPI (Clocks Per Instruction) of 1.4 with all the peripherals units turned on (peripherals run on a random data
pattern and running at the specified frequencies, VO runs at 27 MHz). Max. column provides current consumption for an
application with a CPI of 1.1 with all the peripherals units turned on (peripherals run on a random data pattern and running
at the specified frequencies, VO runs at 27 MHz). This is a dedicated application that heavily uses the DSPCPU and that
does not reflect a real application but does indicate peak currents. Typ. measurements reflect real applications. Pwd. column
indicates current consumption when Global Powerdown mode is activated. See Chapter 21, “Power Management.”
2. TM-1300 Standby rows indicate current consumption when DSPCPU is maintained under RESET (See Section 11.7.5,
“BIU_CTL Register”) all peripherals turned off (i.e. not enabled) and all peripherals powered down (+ bpwd row).
3. Measurements accuracy is +/- 5%. Measurements are done with Vdd set to 2.5V and Vcc set to 3.3V.
4. Currents do not scale with frequency if the CPU:SDRAM ratio are different. Same ratio must be used.
1-12 PRODUCT SPECIFICATION
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1.9.4.2 TM-1300 Peripheral Current Consumption Details
TM1300-100:100 TM1300-143:143 TM1300-166:133 TM1300-180:144
Symbol Current/Notes Pwd [Typ Max HRwd [yp Max Pwd Typ Mpx PWwd Typ Max Unjts
VO Ipp » running raw mode 45 10 21 50 14 27 56 17 30 60 19 33 mA
2IMHz F e tunningrawmode | - | 15 | 20 | - | 23 | 3 | - | 22 [ 32| - | 25 | 35 | mA
VO Ipp » running raw mode - 21 51 - 28 68 - 35 73 - 37 75 mA
81MHz I - Hinningrawmode | - | 43 | 62 | - | 56 | 81 | - | 57 | 87 | - | 60 | 90 | mA
\ Ipp » running raw mode 4 7 9 4 9 15 5 12 21 7 13 23 mA
2T MHz F e inningrawmode | - | 12 | 2L | - | 18 | 3 | - | 17 [ 32 | - | 19 | 35 | mA
AO Ipp , Stereo 16-bit 1 2 2 2 2 2 3 2 3 3 3 4 mA
44KHz 1= Stereo 16-bit - T | 1| - T | 1| - 1 1| - T | 1 | mA
Al Ipp , stereo 16-bit 1 1 2 2 2 2 3 2 3 3 2 3 mA
44KHz 1 - Stereo 16-bit - T | 1| - R 1 1| - T | 1 | mA
SPDIF Ipp running PCM audio 1 2 2 2 2 2 3 3 4 3 4 4 mA
48KHz 1 - Tunning PCM audio | - T | 1| - 2 | 2 | - 2 | 2 | - 2 | 2 | mA
ICP Ipp » mem. block move 50 64 122 | 60 89 170 | 65 94 165 | 72 100 | 180 mA
Icc » mem. block move - 33 72 - 45 101 - 45 96 - 50 105 | mA
PCI Ipp » DMA transfer - 20 75 - 22 86 - 21 97 - 22 95 mA
83MHz 1%~ ""DMA transfer |67 |145| - | 75 |155| - | 72 |160| - | 75 | 155 | mA
VLD Iop 2 - - 3 - - 4 - - 6 - - mA
lcc - - - - - - - - - - - - mA
SsI Iob 2 - - 3 - - 5 - - 7 - - mA
10 MHz 17— - - - - - - - - - - - R ——y
DvDD Ibb 15 - - 20 - - 22 - - 25 - - mA
lcc - - - - - - - - - - - - mA
Notes: 1. Pwd. column for peripheral units indicates current savings when block powerdown is activated compared to when it is idle.

See Chapter 21, “Power Management” for block powerdown activation.
. Typ. column for peripheral units indicates current required when data pattern is random. The Max. column indicates current

ratings when data is switching from high to low level each cycle. Again that Max. column is to show peak current and does
not represent a real application. For both columns the current reported is the current required by the peripheral as well as
the internal bus and MMI to transfer the data to/from the peripheral unit.

. Some currents are not reported due to the difficulty to measure it or because they are not relevant. For example SSI current

is difficult to measure because it heavily involves the DSPCPU and thus makes it almost impossible to separate the current

consumed by the SSI or the DSPCPU.
. Measurements accuracy is +/- 5%. Measurements are done with Vdd set to 2.5V and Vcc set to 3.3V.
. Currents do not scale with frequency if the CPU:SDRAM ratio are different. Same ratio must be used.
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1.9.4.3 STRG3, STRG5 type I/O circuit
TM1300-143 TM1300-166/180
Symbol Parameter Condition/Notes Min. Nominal Max Min. Ngminal  Mpx. Units
VOH Output HIGH voltage IOUT =16.0 mA 0.9V 0.9V \%
VoL Output LOW voltage louT = -16.0 MA 0.1Vcc 0.1V \Y
ZOH Output AC impedance | HIGH level output state 11 8.5 ohm
ZOL Output AC impedance | LOW level output state 11 8.5 ohm
t, Output rise time Test load of Figure 1-1. 2.0 1.6 ns
t, Output fall time Test load of Figure 1-1. 2.0 1.6 ns
1.9.4.4 NORMS type I/O circuit
TM1300-143 TM1300-166/180
Symbol Parameter Condition/Notes Min.  Npminal Max. Min.  Ngminal  Max. Units
Von Output HIGH voltage lour = 8.0 MA 0.9Vcc 0.9Vcc \Y
VoL Output LOW voltage louT = -8.0 MA 0.1Vcce 0.1Vcc \
ZOH Output AC impedance | HIGH level output state 23 17 ohm
ZOL Output AC impedance | LOW level output state 23 17 ohm
t, Output rise time Test load of Figure 1-2. 4.0 3.0 ns
t, Output fall time Test load of Figure 1-2. 4.0 3.0 ns
1.9.45 WEAKS type 1/O circuit
TM1300-143 TM1300-166/180
Symbol Parameter Condition/Notes Min.  Npminal Max. Min.  Ngminal  Mpax. Units
Vou Output HIGH voltage louT = 6.0 MA 0.9V¢c 0.9V \Y
VoL Output LOW voltage lour = -6.0 MA 0.1Vce 0.1Vcc \
ZOH Output AC impedance | HIGH level output state 33 25 ohm
ZOL Output AC impedance | LOW level output state 33 25 ohm
t, Output rise time Test load of Figure 1-3. 4.0 3.0 ns
t, Output fall time Test load of Figure 1-3. 4.0 3.0 ns
1.9.4.6  1ICOD (I%c) type I/O circuit
Symbol Parameter Condition/Notes Min. Nominal Max. Units
V“__IIC Input LOW voltage -0.5 1.0 \Y
VlH_”C Input HIGH voltage 2.3 3.6 \%
VHYS Input Schmitt trigger hysteresis 0.25 \Y
VoL Output LOW voltage louT = -6.0 MA 0.6 \
t Output fall time 10 - 400 pF load 15 250 ns

1-14
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1.9.4.7 SDRAM interface timing
TM1300-143 | TM1300-166/180
Symbol Parameter Min. Max Min. Max Units Notes

fsprAM MM_CLK frequency 143 143 MHz 1
Tcs Skew between MM_CLKO, CLK1 0.1 0.1 ns 2
Tep Propagation delay of data, address, control 5.0 4.5 ns 3
ToH Output hold time of data, address and control 15 15 ns 3
Tsu Input data setup time 1.0 0.4 ns 4
TiH Input data hold time 15 15 ns 4

Notes: 1. For best high speed SDRAM operation, 50-ohm matched PCB traces are recommended for all MM_xxx signals.

Use 27-33 ohm series terminator resistors close to TM1300 in the MM_CLKO and MM_CLK1 line only.

2. Equal load circuit. MM_CLKO and MM_CLK1 are matched output buffers.

3. The center of the two rising edges on MM_CLKO, MM_CLK1 are used as the clock reference point.
Propagation delay guarantee is defined from 50% point of clock edge to 50% level on D/A/C.
Output hold time guarantee is defined from 50% point of clock edge to 50% level on D/A/C.

4. MM_CLKO is used as a reference clock.
Input setup time requirement is defined as data value 50% complete to 50% level on clock.
Input hold time requirement is defined as minimum time from 50% level on clock to 50% change on data.

19438 PCI Bus timing
The following specifications meet the PCI Specifications, Rev. 2.1 for 33-MHz bus operation.

Symbol Parameter Min. Max Units Notes
Tval-PCi (Bus) Clk to signal valid delay, bused signals 2 11 ns 1,2,3
Tval-pCI (ptp) Clk to signal valid delay, point-to-point signals 12 ns 12,3
Ton-pCI Float to active delay 2 ns 1
Toft-pcl Active to float delay 28 ns 1,7
Tsu-pci Input setup time to CLK - bused signals 7 ns 3,4
Tsu-pCl (ptp) Input setup time to CLK - point-to-point signals 12 ns 34
Th-pc Input hold time from CLK 0.22 ns 4
Tist-pcl Reset active time after power stable 1 ms 5
Tist-clk-PCI Reset active time after CLK stable 100 us 5
Tist-off-PCI Reset active to output float delay 40 ns 5,6,7

a. PCI Clock skew between two PCI devices must be lower than 1.8ns instead of 2ns as specified in PCI 2.1.

Notes: 1. See the timing measurement conditions in Figure 1-4.
2. Minimum times are measured at the package pin with the load circuit shown in Figure 1-8. Maximum times are measured

with the load circuit shown in Figure 1-6 and Figure 1-7.
. REG# and GNT# are point-to-point signals and have different input setup times. All other signals are bused.
. See the timing measurement conditions in Figure 1-5.
. RST# is asserted and de-asserted asynchronously with respect to CLK.
. All output drivers are floated when RST# is active.
. For the purpose of Active/Float timing measurements, the Hi-Z or ‘off’ state is defined to be when the total current delivered

~NOoO O~ W

through the component pin is less than or equal to the leakage current specification.
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1.9.4.9 JTAG 1/O timing
Symbol Parameter Min. Max Units Notes
f3TAG-CLK JTAG clock frequency 20 MHz
Tok-TO JTAG_TCK to JTAG_TDO valid delay 2 10 ns
Tsu-TcK Input setup time to JTAG_TCK 3 ns 2
Threk Input hold time from JTAG_TCK 7 ns 2
Notes: 1. See the timing measurement conditions in Figure 1-10.
2. See the timing measurement conditions in Figure 1-9.
1.9.4.10 I1?C I/O timing
Symbol Parameter Min. Max Units Notes
fscL SCL clock frequency 400 kHz 1
TeuE Bus free time 1 us 2
Tsu-sTA Start condition set up time 1 us 3
Th-sTA Start condition hold time 1 us 3
Tiow SCL LOW time 1 us 1
TH|GH SCL HIGH time 1 us 1
T¢ SCL and SDA fall time (Cb = 10-400 pF, from V| c t0 V|_.c) 20+0.1Cb 250 ns 1
Tsu-spa Data setup time 100 ns 4
Th-spa Data hold time 0 ns 4
Tdv-SDA SCL LOW to data out valid 0.5 us 5
Tav-sTO SCL HIGH to data out 1 ns 5
Notes: 1. See the timing measurement conditions in Figure 1-11.
2. See the timing measurement conditions in Figure 1-12.
3. See the timing measurement conditions in Figure 1-13.
4. See the timing measurement conditions in Figure 1-14.
5. See the timing measurement conditions in Figure 1-15.
1.9.4.11 Video In I/O Timing
Symbol Parameter Min. Max Units Notes
fyi-cLk Video In clock frequency 81 MHz
Tsu-cLK Input setup time to VI_CLK 2 ns 1
Th-cLk Input hold time from VI_CLK 2 ns 1
Notes: 1. See the timing measurement conditions in Figure 1-16.
1.9.4.12 Video Out I/O Timing
Symbol Parameter Min. Max Units Notes
fvo-cLk Video Out clock frequency 81 MHz
TcLk-pv VO_CLK to VO_DATA (or VO_IO*) out 3 8.5 ns 1,3
TeLK-DV VO_CLK to VO_DATA (or VO_IO*) out 3 8.5 ns 1,4
Tsu-cLK VO_|O* setup time to VO_CLK 10 ns 2
Th-cLk VO_|O* hold time from VO_CLK 3 ns 2
Notes: 1. See the timing measurement conditions in Figure 1-17.

2. See the timing measurement conditions in Figure 1-18.
3. CLKOUT asserted, i.e. the VO unit is the source of VO_CLK
4. CLKOUT negated, i.e. the external world is the source of VO_CLK
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1.9.4.13 Audioln I/O timing

Symbol Parameter Min. Max Units Notes
fal.sck Audio In AI_SCK clock frequency 22 MHz
Tsu-scK Input setup time to Al_SCK ns 12
Th-sck Input hold time from AI_SCK ns 12
Tsck-ws Al_SCK to AI_WS 10 ns 3
Notes: 1. See the timing measurement conditions in Figure 1-19.

2. The timing measurements are done with respect to the clock edge according to CLOCK_EDGE
3. SER_MASTER asserted, i.e. Audio In is the source of Al_WS. See the timing measurement condition in Figure 1-20.

1.9.4.14  Audio Out I/O timing

Symbol Parameter Min. Max Units Notes

fao-sck Audio Out AO_SCK clock frequency 22 MHz

Tsck-pv AO_SCK to AO_SDx valid 2 12 ns 134
Tsck-pv AO_SCK to AO_SDx valid 2 12 ns 1,35
Tsu-sck Input setup time to AO_SCK 4 ns 2,35
Th-sck Input hold time from AO_SCK 2 ns 2,35
Tsck-ws AO_SCK to AO_WS 10 ns 3,4,6

Notes: 1. See the timing measurement conditions in Figure 1-21.

2. See the timing measurement conditions in Figure 1-23.

3. The timing measurements are done with respect to the AO_SCK clock edge according to CLOCK_EDGE

4. TM-1 is the serial interface master, i.e. AO_SCK, AO_WS are outputs

5. TM-1 is serial interface slave, i.e. AO_SCK, AO_WS are inputs

6. See the timing measurement conditions in Figure 1-22.
1.9.4.15 SSI /O timing

Symbol Parameter Min. Max Units Notes

fssi-cLk SSI_CLK clock frequency 20 MHz 1
TcLkpv SSI_CLK to data valid 2 12 ns 2
Tsu-cLK Input setup time to SSI_CLK ns 3
Th-cLk Input hold time from SSI_CLK 2 ns 3
Notes: 1. Interrupt latency limits SSI to a practical use at a bit rate of 1.5 Mbit/sec.

2. See the timing measurement conditions in Figure 1-24.
3. See the timing measurement conditions in Figure 1-25.

tm21300 pin rise/fall test point

2" true length

30-ohm <—>\

e \ X

Buffer X ()  50-ohm X o
p

Figure 1-1. STRG3, STRGS test load circuit
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tm1300 pin rise/fall test point p
2" true length \ |e—{ 1/2 in. max
Output
st >>g——{ soom )= Buffer .
L 30 pF 25Q P

Figure 1-6. PCI T 4 (max) Rising Edge

Figure 1-2. NORM3 test load circuit

tm21300 pin 5 | rishe/fall test point pln\‘
" true lengt |e—>{1/2in. max
Outout \ - Output
utpu v <
| > soom ) ia Bulfer veo
| 15 pF
Figure 1-3. WEAKS test load circuit Figure 1-7. PCI T 4 (max) Falling Edge
pin
1/2 in. max
V_th Output
CLK —7m A Buffer J_ ° vee
10 pF
T fval 1K Q 1K Q
Output L
Delay V_tfall =
T_rval Figure 1-8. PCI T 4 (min) and Slew Rate
Delay V_trise
Tri-State
Output TCK \
— T on
T_off Th_tck
TDI, TMS

Figure 1-4. PCI Output Timing Measurement Con-

Figure 1-9. JTAG Input Timing

ditions
CLK V_th
V_tl
inputs
Input I vglid V_test # V_max

TCK

Tek_TDO

TDO

Figure 1-10. JTAG Output Timing

Figure 1-5. PCI Input Timing Measurement Condi-

tions
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THlGH o B TLOW o Vl_CLK
SCL
Tt —pf T,
VI_DATA, VI_IO

Figure 1-11. | °C /O Timing Figure 1-16. Videol n 1/O Timing

sct VO_CLK

Treur Teik pv

SDA ‘ VO_DATA valid
Figure 1-12. | 2c1/0 Timing Figure 1-17. Video Out I/O Timing

ScL VO_CLK

TSLLSTA Th_ST A
SDA VO_IO

Figure 1-13. 1 2C 1/O Timing

Figure 1-18. Video Out I/O Timing

SCL

SDA

Al_SCK

Al_SD, Al_WS

Figure 1-14. 1 °C /O Timing

Figure 1-19. Audio In I/O Timing

SCL

SDA

ALSCK

Tsck_ws

Al_WS valid

Figure 1-15. 1 2C 1/O Timing

Figure 1-20. Audio In I/O Timing
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AO_SCK S SSI_CLK

Tsck_pv Teik pv
AO_SDx valid SSII/0 valid
Figure 1-21. Audio Out I/O Timing Figure 1-24. SSI 1/O Timing
AO_SCK / SSI_CLK
Tsck_ws
AO_WS valid
Ssl 10
Figure 1-22. Audio Out I/O Timing Figure 1-25. SSI 1/O Timing

AO_SCK

AO_WS

Figure 1-23. Audio Out I/O Timing
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Chapter 2

21 INTRODUCTION

TM1300 is a successor to the TM1100 and TM1000 me-
dia processors. For those familiar with the TM1100, the
new features specific to the TM1300 are summarized in
Section 2.6. For those familiar with the TM1000, new
features for the TM1300 are summarized in Section 2.7.

2.2  TM1300 FUNDAMENTALS

TM1300 is a media processor for high-performance mul-
timedia applications that deal with high-quality video and
audio. These applications can range from low-cost, ded-
icated systems such as video phones, video editing, dig-
ital television, security systems or set-top boxes to repro-

by Gert Slavenburg

grammable, multipurpose plug-in cards for personal
computers. TM1300 easily implements popular multime-
dia standards such as MPEG-1 and MPEG-2, but its ori-
entation around a powerful general-purpose CPU (called
the DSPCPU) makes it capable of implementing a vari-
ety of multimedia algorithms, both open and proprietary.
TM1300 is also easily configured in multiple processor
configurations for very high-end applications.

More than just an integrated microprocessor with unusu-
al peripherals, the TM1300 is a fluid computer system
controlled by a small real-time OS kernel running on a
very-long instruction word (VLIW) processor core.
TM1300 contains a DSPCPU, a high-bandwidth internal
bus, and internal bus-mastering DMA peripherals.

SDRAM 32-bit data
up to 572 MB/sec

up to 81 MHz (40 Mpix/sec)

12S DC, up to 22 MHz Al_SCK

2/4/6/8 ch. digital audio

T M 1 3 O O Main Memory Huffman decoder
Interface Slice-at-a-time
MPEG-1 & 2
CCIR656 dig. video . VLD
YUV 4:22 T Video In Coprocessor

Stereo digital audi . .
e8and Ifels-bitagatlg —®  Audio In ——»  Video Out [

. CCIR656 digital video
YUV 4:2:2
up to 81 MHz (40 Mpix/sec)

16 and 32-bit data ¥ Audio Out
12S DC, up to 22 MHz AO_SCK

IEC958
up to 40 Mbit'sec “®¥—] SPDIF Out |

12C bus to

camera, otc. @ 12C Interface

i

32K |

vLiw | 1$

CPU  [16K |,
D$ |

> Timers
Synchronous
. : N Analog modem or ISDN
e Serial front end
Interface
DVvDD
Down & up scaling
YUV - RGB
Image 50 Mpix/sec
Coprocessor

Y

PCI-XIO Interface

External bus
- PCI2.1 (32 bits, 33-MHz)

+ glueless 24A/8D slaves

-

-

Figure 2-1. TM1300 block diagram.
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Software compatibility between current and future Trime-
dia processor family members is at the source-code and
library API level; binary compatibility between family
members is not guaranteed.

Defining software compatibility at the source-code level
gives Philips the freedom to strike the optimum balance
between cost and performance for all chips in the family.
A powerful compiler and software development environ-
ment ensure that programmers never need to resort to
non-portable assembler programming. Programmers
use the library APIs and multimedia operations from C
and C++ source code.

TM1300 is designed both for use as an accelerator in a
PC environment or as the sole CPU in cost-effective
standalone systems. In standalone system applications,
the TM1300 external bus allows for glueless connection
of 8-bit wide ROM, EEPROM, or Flash memory for code
storage. The external bus also allows intermixing of
PCI2.1 master/slave peripherals and 8-bit simple periph-
erals, such as UARTSs and other 8-bit microprocessor pe-
ripherals. This powerful external bus architecture gives
system designers a variety of options to configure low-
cost, high-performance system solutions.

Because it is based on a general-purpose CPU, TM1300
can also serve as a multifunctional PC enhancement ve-
hicle. Typically, a PC must deal with multistandard video
and audio streams; and applications require both decom-
pression and compression. While the CPU chips used in
PCs are becoming capable of low-resolution, real-time
video decompression, high-quality decompression—not
to mention compression—of studio-resolution video is
still out of reach. Further, users expect their systems to
handle live video and audio without sacrificing system re-
sponsiveness.

TM1300 enhances a PC system by providing real-time
multimedia with the advantages of a special-purpose,
embedded solution—low cost and chip count—and the
advantages of a general-purpose processor—repro-
grammability. For PC applications, TM1300 far surpass-
es the capabilities of fixed-function multimedia chips.

Future media processor family members will have differ-
ent sets of interfaces appropriate for their intended use.

2.3  TM1300 CHIP OVERVIEW

Key features of TM1300 include:

« A very powerful, general-purpose VLIW processor
core (the DSPCPU) that coordinates all on-chip
activities. In addition to implementing the non-trivial
parts of multimedia algorithms, the DSPCPU runs a
small real-time operating system driven by interrupts
from the other units.

* Independent DMA-driven multimedia 1/O units that
properly format data to make software media pro-
cessing efficient.

« DMA-driven multimedia coprocessors that operate
independently and in parallel with the DSPCPU to
perform operations specific to important multimedia
algorithms.
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Figure 2-2. TM1300 system connections. A minimal
TM1300 requires few supporting components.

* A high-performance bus and memory system that
provide communication between TM1300’s process-
ing units.

» Aflexible external bus interface.

Figure 2-1 shows a TM1300 block diagram. The bulk of
a TM1300 system consists of the TM1300 microproces-
sor itself, external synchronous DRAM (SDRAM), and
the external circuitry needed to interface to incoming
and/or outgoing video and audio data streams and com-
munication lines. TM1300’s external peripheral bus can
gluelessly interface to PC! 2.1 components and/or 8-bit
microprocessor peripherals.

Figure 2-2 shows a possible minimally configured
TM1300 system. A video input stream might come direct-
ly from a CCIR 656-compliant video camera chip in YUV
4:2:2 format through a glueless interface in this case. An
analog camera can be connected via a CCIR 656 inter-
face chip (such as the Philips SAA7113H). TM1300 out-
puts a CCIR656 video stream to drive a dedicated video
monitor. Stereo audio input and up to 8-channel audio
output require only low-cost external ADC and DAC. The
operation of the video and audio interface units is highly
customizable through programmable parameters.

The glueless PCl interface allows the TM1300 to display
video in a host PC’s video card. The Image Coprocessor
(ICP) provides display support for live video input an ar-
bitrary number of arbitrarily overlapped windows.

Finally, the Synchronous Serial Interface (SSI) requires
only an external ISDN or analog modem front-end chip
and phone line interface to provide remote communica-
tion support. It can be used to connect TM1300-based
systems for video phone or videoconferencing applica-
tions, or it can be used for general-purpose data commu-
nication in PC systems.

The TM1300 JTAG port allows a debugger on a host sys-
tem to access and control the state of a TM1300 in a tar-
get system. It also implements 1149.1 boundary scan
functionality.
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24  BRIEF EXAMPLES OF OPERATION

The key to understanding TM1300 operation is observ-
ing that the DSPCPU and peripherals are time-shared
and that communication between units is through
SDRAM memory. The DSPCPU switches from one task
to the next; first it decompresses a video frame, then it
decompresses a slice of the audio stream, then back to
video, etc. As necessary, the DSPCPU issues com-
mands to the peripheral function units to orchestrate their
operation.

The DSPCPU can enlist the ICP and other coprocessors
to help with some of the straightforward, tedious tasks
associated with video processing. The ICP is very well
suited for arbitrary size horizontal and vertical video re-
sizing and color space conversion.

The DSPCPU can enlist the input/output peripherals to
autonomously receive or transmit digital video and audio
data with minimal CPU supervision. The /O units have
been designed to interface to the outside world through
industry standard audio and video interfaces, while deliv-
ering or taking data in memory in formats suitable for
software processing.

24.1

An example TM-1300 implementation is as a video-de-
compression engine on a PCl card in a PC. In this case,
the PC does not need to know the TM1300 has a power-
ful, general-purpose CPU; rather, the PC just treats the
hardware on the PCI card as a ‘black-box’ engine.

Video Decompression in a PC

Video decompression begins when the PC operating
system hands the TM1300 a pointer to compressed vid-
eo data in the PC’s memory (the details of the communi-
cation protocol are handled by the software driver in-
stalled in the PC’s operating system).

The DSPCPU fetches data from the compressed video
stream via the PCI bus, decompresses frames from the
video stream, and places them into local SDRAM. De-
compression may be aided by the VLD (variable-length
decoder) coprocessor unit, which implements Huffman
decoding and is controlled by the DSPCPU.

When a frame is ready for display, the DSPCPU gives
the ICP a display command. The ICP then autonomously
fetches the decompressed frame data from SDRAM and
transfers it over the PCI bus to the frame buffer in the
PC’s video display card. Alternately, video can be sent to
the graphics card using the VO unit.

2.4.2

Another typical application for TM1300 is in video com-
pression. In this case, uncompressed video is usually
supplied directly to the TM1300 system via the Video In
(V1) unit. A camera chip connected directly to the VI unit
supplies YUV data in 8-bit, 4:2:2 format. The VI unit sam-
ples the data from the camera chip and demultiplexes
the raw video to SDRAM in three separate areas, one
each for Y, U, and V.

When a complete video frame has been read from the
camera chip by the VI unit, it interrupts the DSPCPU.

Video Compression

The DSPCPU compresses the video data in software
(using a set of powerful data-parallel multimedia opera-
tions) and writes the compressed data to a separate area
of SDRAM.

The compressed video data can now be transmitted or
stored in any of several ways. It can be sent to a host
system over the PCI bus for archival on local mass stor-
age, or the host can transfer the compressed video over
a network. The data can also be sent to a remote system
using the modem/ISDN interface to create, for example,
a video phone or videoconferencing system.

Since the powerful, general-purpose DSPCPU is avail-
able, the compressed data can be encrypted before be-
ing transferred for security.

2.5 INTRODUCTION TO TM1300 BLOCKS

The remainder of this chapter provides a brief introduc-
tion to the internal components of TM1300.

251

The internal bus (or data highway) connects all internal
blocks together and provides access to internal control/
status registers of each block, external SDRAM, and the
external bus peripheral chips. The internal bus consists
of separate 32-bit data and address buses. Transactions
on the bus use a block-transfer protocol. On-chip periph-
eral units and coprocessors can be masters or slaves on
the bus.

Access to the internal bus is controlled by a central arbi-
ter, which has a request line from each potential bus
master. The arbiter is programmable so that the arbitra-
tion algorithm can be tailored for different applications.
Peripheral units make requests to the arbiter for bus ac-
cess and, depending on the arbitration mode, bus band-
width is allocated to the units in different amounts. Each
mode allocates bandwidth differently, but each mode
guarantees each unit a minimum bandwidth and maxi-
mum service latency. All unused bandwidth is allocated
to the DSPCPU.

The bus allocation mechanism is one of the features of
TM1300 that makes it a true real-time system instead of
just a highly integrated microprocessor with unusual pe-
ripherals.

Internal ‘Data Highway’ Bus

2.5.2

The heart of TM1300 is a powerful 32-bit DSPCPU core.
The DSPCPU implements a 32-bit linear address space
and 128, fully general-purpose 32-bit registers. The reg-
isters are not separated into banks; any operation can
use any register for any operand.

VLIW Processor Core

The TM1300 core uses a VLIW instruction-set architec-
ture and is fully general-purpose. The VLIW instruction
length allows five simultaneous operations to be issued
every clock cycle. These operations can target any five
of the 27 functional units in the DSPCPU, including inte-
ger and floating-point arithmetic units and data-parallel
multimedia operation units.
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Although the processor core runs a real-time operating
system to coordinate all activities in the TM1300 system,
the core is not intended for true general-purpose comput-
er use. For example, the TM1300 processor core does
not implement demand-paged virtual memory, memory
address translation, or 64-bit floating point - all essential
features in a general-purpose computer system.

TM1300 uses a VLIW architecture to maximize proces-
sor throughput at the lowest possible cost. VLIW archi-
tectures have performance exceeding that of supersca-
lar general-purpose CPUs without the cost and
complexity of a superscalar CPU implementation. The
hardware saved by eliminating superscalar logic reduces
cost and allows the integration of multimedia-specific
features that enhance the power of the processor core.

The TM1300 operation set includes all traditional micro-
processor operations. In addition, multimedia operations
are included that dramatically accelerate standard video
and audio compression and decompression algorithms.
As just one of the five operations issued in a single
TM1300 instruction, a single ‘custom’ or ‘media’ opera-
tion can implement up to 11 traditional microprocessor
operations. These multimedia operations combined with
the VLIW architecture result in tremendous throughput
for multimedia applications.

The DSPCPU core is supported by separate 16-KB data
and 32-KB instruction caches. The data cache is dual-
ported to allow two simultaneous accesses; both caches
are 8-way set-associative with a 64-byte block size.

2.5.3 Video In Unit

The Video In (VI) unit interfaces directly to any CCIR
601/656-compliant device that outputs 8-bit parallel,
4:2:2 YUV time-multiplexed data. Such devices include
direct digital camera systems, which can connect glue-
lessly to TM1300 or through the standard CCIR 656 con-
nector with only the addition of ECL level converters. A
single chip external device can be used to convert to/
from serial D1 professional video. Non-CCIR-compliant
devices can use a digital video decoder chip, such as the
Philips SAA7113H, to interface to TM1300.

The VI unit demultiplexes the captured YUV data before
writing it into local TM1300 SDRAM. Separate planar
data structures are maintained for Y, U, and V.

The VI unit can be programmed to perform on-the-fly
horizontal resolution subsampling by a factor of two if
needed. Many camera systems capture a 640-pixel/line
or 720-pixel/line image. With subsampling, direct conver-
sion to a 320-pixel/line or a 360-pixel/line image can be
performed with no DSPCPU intervention. Performing
this function during video input reduces initial storage
and bus bandwidth requirements for applications requir-
ing reduced resolution.

254 Enhanced Video Out Unit

The Enhanced Video Out (EVO) unit essentially per-
forms the inverse function of the VI unit. EVO generates
an 8-bit, CCIR656 digital video data stream that contains
a composited video and graphics overlay image. The vid-

eo image is taken from separate Y, U, and V planar data
structures in SDRAM. The graphics overlay is taken from
a pixel-packed YUV data structure in SDRAM. Compos-
iting allows both alpha-blending and chroma keying.

The EVO unit can also upscale the video image horizon-
tally by a factor of two to convert from CIF/SIF to CCIR
601 resolution. The overlay image, if enabled, is always
in full-pixel resolution.

The EVO unit is capable of pixel emission rates up to 40
Mpix/sec and allows full programming of a horizontal and
vertical framef/field structure. It is thus capable of refresh-
ing both interlaced and non-interlaced (‘two f},") video dis-
plays with 4:3 or 16:9 or other aspect ratios.

The sample rate for EVO unit pixels is independently and
dynamically programmable. The high-quality, on-chip
sample clock generator circuit allows the programmer
subtle control over the sampling frequency so that audio
and video synchronization can be achieved in any sys-
tem configuration. When changing the sample frequen-
¢y, the instantaneous phase does not change, which al-
lows sample frequency manipulation without introducing
audio or video distortion.

255

The ICP off-loads common image scaling or filtering
tasks from the DSPCPU. Although these tasks can be
easily performed by the DSPCPU, they are a poor use of
the relatively expensive CPU resource. When performed
in parallel by the ICP, these tasks are performed effi-
ciently by simple hardware, which allows the DSPCPU to
continue with more complex tasks.

Image Coprocessor

The ICP can operate as either a memory-to-memory or
a memory-to-PCI coprocessor device.

In memory-to-memory mode, the ICP can perform either
horizontal or vertical image filtering and resizing. A high
quality algorithm is used (5-tap polyphase filter in each
direction). Filtering or scaling is done in either the hori-
zontal or vertical direction in one pass. Two invocations
of the ICP are required to filter or resize in both direc-
tions.

In memory-to-PCI mode, the ICP can perform horizontal
resizing followed by color-space conversion. For exam-
ple, assume an n x m pixel array is to be displayed in a
window on the PC video screen while the PC is running
a graphical user interface. The first step (if necessary)
would use the ICP in memory-to-memory mode to per-
form a vertical resizing. The second step would use the
ICP in memory-to-PCI mode to perform horizontal resiz-
ing and optional colorspace conversion from YUV to
RGB.

While sending the final, resampled and converted pixels
over the PCI bus to the video frame buffer, the ICP uses
a full, per-pixel occlusion bit mask—accessed in destina-
tion coordinates—to determine which pixels are actually
written to the graphics card frame buffer for display. Con-
ditioning the transfer with the bit mask allows TM1300 to
accommodate an arbitrary arrangement of overlapping
windows on the PC video screen.
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Figure 2-3. ICP - Windows on the PC screen and data structures in SDRAM for two live video windows.

Figure 2-3 illustrates a possible display situation and the
data structures in SDRAM that support ICP operation.
On the left, the PC video screen has four overlapping
windows. Two, Image 1 and Image 2, are being used to
display video generated by TM1300. The right side
shows a conceptual view of SDRAM contents. Two data
structures are present, one for Image 1 and the other for
Image 2. Figure 2-3 represents a point in time during
which the ICP is displaying Image 2.

When the ICP is displaying an image (i.e., copying it from
SDRAM to a frame buffer), it maintains four pointers to
the SDRAM data structures. Three pointers locate the Y,
U, and V data arrays, the fourth locates the per-pixel oc-
clusion bit map. The Y, U, and V arrays are indexed by
source coordinates while the occlusion bit map is ac-
cessed with screen coordinates.

As the ICP generates pixels for display, it performs hori-
zontal scaling and colorspace conversion. The final RGB
pixel value is then copied to the destination address in
the screen’s frame buffer only if the corresponding bit in
the occlusion bit map is a ‘1.

As shown in the conceptual diagram, the occlusion bit
map has a pattern of 1s and Os corresponding to the
shape of the visible area of the destination window in the
frame buffer. When the arrangement of windows on the
PC screen changes, modifications to the occlusion bit
map is performed by TM1300 or host resident software.

It is important to note that there is no preset limit on the
number and sizes of windows that can be handled by the
ICP. The only limit is the available bandwidth. Thus, the
ICP can handle a few large windows or many small win-
dows. The ICP can sustain a transfer rate of 50 megapix-
els per second, which is more than enough to saturate
PCI when transferring images to video frame buffers.

2.5.6  Variable-Length Decoder (VLD)

The variable-length decoder (VLD) relieves the
DSPCPU of decoding Huffman-encoded video data
streams. It can be used to help decode high bitrate
MPEG-1 and MPEG-2 video streams. The lower bitrate
of videoconferencing can be adequately handled by
DSPCPU software without coprocessor.

The VLD is a memory-to-memory coprocessor. The
DSPCPU hands the VLD a pointer to a Huffman-encod-
ed bit stream, and the VLD produces a tokenized bit
stream that is very convenient for the TM1300 image de-
compression software to use. The format of the output
token stream is optimized for the MPEG-2 decompres-
sion software so that communication between the
DSPCPU and VLD is minimized.

2.5.7 Audio In and Audio Out Units

The Audio In (Al) and Audio Out (AO) units are similar to
the video units. They connect to most serial ADC and
DAC chips, and are programmable enough to handle
most serial bit protocols. These units can transfer MSB
or LSB first and left or right channel first.

The audio sampling clock is driven by TM1300 and is
software programmable within a wide range. Like the VO
unit, Al and AO sample rates are separately and dynam-
ically programmable. The high-quality on-chip sample
clock generator circuits allows the programmer subtle
control over the sampling frequency so that audio and
video synchronization can be achieved in any system
configuration. When changing the sample frequency, the
instantaneous phase does not change, which allows
sample frequency manipulation without introducing au-
dio or video distortion.
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As with the video units, the audio-in and audio-out units
buffer incoming and outgoing audio data in SDRAM. The
audio-in unit buffers samples in either 8- or 16-bit format,
mono or stereo. The audio-out unit transfers 16- or 32-bit
sample data for mono, stereo or up to 8 audio channels
from memory to the external DACs. Any manipulation or
mixing of sound data is performed by the DSPCPU since
this processing will require only a small fraction of its pro-
cessing capacity.

2.5.8  S/PDIF Out Unit

The Sony/Philips Digital Interface Out (SPDO) unit al-
lows output of a 1-bit high-speed serial data stream. The
primary application is output of digital audio data in Sony/
Philips Digital Interface (S/PDIF) format to an external
electrically isolated transformer. The SPDO unit can also
be used as a general purpose high-speed data stream
output device such as a UART.

The SPDO unit supports 2-channel PCM audio, one or
more Dolby Digital six-channel data streams, or one or
more MPEG-1 or MPEG-2 audio streams (embedded
per Project 1937). It supports arbitrary programmable
sample rates independent of and asynchronous to the
AO unit sample rate.

2.5.9

The on-chip synchronous serial interface (SSI) is spe-
cially designed to interface to high integration analog mo-
dem frontends or ISDN frontend devices. In the analog
modem case, all of the modem signal processing is per-
formed in the TM1300 DSPCPU.

Synchronous Serial Interface

2.5.10 I2C Interface

The I°C bus is a 2-wire multi-master, multi-slave inter-
face capable of transmitting up to 400 kbit/sec. TM1300
implements an 1°C master for use in single master envi-
ronments only. This interface allows TM1300 to config-
ure and inspect the status of 1°C peripheral devices, such
as video decoders, video encoders and some camera

types.

26 NEW IN TM1300 (VERSUS TM1100)

TM1300 offers significant improvements over the
TM1100:

« DSPCPU and coprocessor speed of up to 166 MHz

e Support for 64-Mbit organized in x8 (limited to 32
MBytes), x16, x32 and 128 Mbit organized in x16
(limited to 32 MB). See Chapter 12, “SDRAM Mem-
ory System.”

« SDRAM speed up to 143 MHz and no external
MATCHOUT to MATCHIN delay line.

» Video output speed improvement: up to 81 MHz.
» Video input speed improvement: up to 81 MHz.

» Prefetcheable SDRAM aperture to increase perfor-
mance. See Chapter 11, “PCI Interface.”

« Individual powerdown capability for each coproces-
sor (e.g. ICP, EVO, etc.).

» New AO coprocessor with four separate channels
and support of 16 or 32-bit samples. 8-bit samples
are no longer supported.

 New SPDO coprocessor (for output of SPDIF and
other 1-bit high-speed serial data streams)

2.7  NEW IN TM1300 (VERSUS TM1000)

lin addition to the features described in Section 2.6
TM1300 offers also the following improvements over the
TM1000:

* New DSPCPU instructions. See Appendix A,
“DSPCPU Operations for TM1300.”

« Video Output unit improvements (8-bit alpha blend-
ing, chroma keying, genlock). See Chapter 7,
“Enhanced Video Out”

» Capability to intermix PCI2.1 and 8-bit peripherals or
ROM/Flash memories on the external bus. See
Chapter 22, “PCI-XIO External I/O Bus.”

* An on-chip DVD authentication/descrambling copro-
cessor. Information available to DVD product devel-
opers on special request.

* Full 1149.1 boundary scan.

* Improved PCI DMA read performance. See
Section 11.1.

» Improved clock generation with new DDS blocks.
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Chapter 3

3.1 BASIC ARCHITECTURE CONCEPTS

This section documents the system programmer or
‘bare-machine’ view of the TM1300 CPU (or DSPCPU).

3.1.1 New in TM1300

Default reset value of PCSW register is 0x800. This new
reset value allows Audio Out and SPDIF Out timestamp
registers to be in phase with CCCOUNT (lower 32 bits).

3.1.2

Figure 3-1 shows the DSPCPU’s 128 general purpose
registers, r0...r127. In addition to the hardware program
counter, PC, there are 4 user-accessible special purpose
registers, PCSW, DPC (destination program counter),
SPC (source program counter), and CCCOUNT.
Table 3-1 lists the registers and their purposes.

Register Model

Register r0 always contains the integer value '0', corre-
sponding to the boolean value 'FALSE' or the single-pre-
cision floating point value +0.0. Register rl always con-
tains the integer value '1' (TRUE'). The programmer is
NOT allowed to write to rO or rl.

Note: Writing to rO or r1 may cause reads from rO or
rl scheduled in adjacent clock cycles to return unpre-
dictable values. The standard assembler prevents/for-
bids the use of r0 or r1 as a destination register.

by Gert Slavenburg, Marcel Janssens

Registers r2 through r127 are true general purpose reg-
isters; the hardware does not imply their use in any way,
though compiler or programmer conventions may assign
particular roles to particular registers. The DPC and SPC
relate to interrupt and exception handling and are treated
in Section 3.1.5, “SPC and DPC—Source and Destina-
tion Program Counter.” The PCSW (Program Control
and Status Word) register is treated in Section 3.1.4,
“PCSW Overview.” CCCOUNT, the 64-bit clock cycle
counter is treated in Section 3.1.6, “CCCOUNT—Clock
Cycle Counter.”

Table 3-1. DSPCPU registers

Register Size Details
0] 32 bits | Always reads as 0x0; must not be used
as destination of operations
rl 32 bits | Always reads as 0x1; must not be used

as destination of operations

r2—r127 | 32 bits [ 126 general-purpose registers
PC 32 bits | Program counter
PCSwW 32 bits | Program control & status word
DPC 32 bits | Destination program counter; latches
target of taken branch that is interrupted
SPC 32 bits | Source program counter; latches target

of taken branch that is not interrupted

CCCOUNT | 64 bits | Counts clock cycles since reset

31 23 15 7 0
000000000000000000000OOOOOOOOOOOI’O
0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘O‘O‘O‘O‘O‘O‘O‘O‘O‘O‘O‘O‘O‘O 1| rl
128 General-Purpose Registers B L L R L I LI [P
* 10 & r1 fixed .
e r2—r127 variable .
L I
31 23 15 0
| | PC
System Status & Control Registers | | PCSW
T ppc
T spc
63 55 47 39
| | | cccount

Figure 3-1. TM1300 registers.
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3.1.3 Basic DSPCPU Execution Model

The DSPCPU issues one ‘long instruction’ every clock
cycle. Each instruction consists of several operations
(five operations for the TM1300 microprocessor). Each
operation is comparable to a RISC machine instruction,
except that the execution of an operation is conditional
upon the content of a general purpose register. Exam-
ples of operations are:

IF rl0iadd r11r12 - rl3

(if r10 true, add r11 and r12 and write sum in r13)
IF r10 1d32d(4) r15 - rlé

(if r10 true, load 32 bits from mem[r15+4] into r16)
IF r20 jmpf r21 r22

(if r20 true and r21 false, jump to address in r22)

Each operation has a specific, known execution latency
in clock cycles. For example, iadd takes 1 cycle; thus the
result of an iadd operation started in clock cycle iis avail-
able for use as an argument to operations issued in cycle
i+1 or later. The other operations issued in cycle i cannot
use the result of iadd. The 1d32d operation has a latency
of 3 cycles. The result of an 1d32d operation started in cy-
cle jis available for use by other operations issued in cy-
cle j+3 or later. Branches, such as the jmpf example
above have three delay slots. This means that if a branch
operation in cycle kis taken, all operations in the instruc-
tions in cycle k+1, k+2 and k+3 are still executed.

In the above examples, r10 and r20 control conditional
execution of the operations. Also known as ‘guarding’,
here r10 and r20 contain the operation ‘guard’. See Sec-
tion 3.2.1, “Guarding (Conditional Execution).”

Certain restrictions exist in the choice of what operations
can be packed into an instruction. For example, the
DSPCPU in TM1300 allows no more than two load/store
class operations to be packed into a single instruction.
Also, no more than five results (of previously started op-
erations) can be written during any one cycle. The pack-
ing of operations is not normally done by the program-
mer. Instead, the instruction scheduler (See Philips
TriMedia SDE Reference Manual) takes care of convert-
ing the parallel intermediate format code into packed in-
structions ready for the assembler. The rules are formally
described in the machine description file used by the in-
struction scheduler and other tools.

3.14 PCSW Overview

Figure 3-2 shows the PCSW register. The TM1300 value
of PCSW on reset is 0. For compatibility, any undefined
PCSW fields should never be modified.

Note that the DSPCPU architecture has no condition
codes or integer arithmetic status flags. Integer opera-
tions that generate out-of-range results deliver an opera-
tion specific bit pattern. For example, see dspiadd in Ap-
pendix A, “DSPCPU Operations for TM1300.” Predicate
operations exist that take the place of integer status flags
in a classical architecture. Multiword arithmetic is sup-
ported by the ‘carry’ operation which generates a ‘0’ or ‘1’
depending on the carry that would be generated if its ar-
guments were summed.

FP-Related Fields. The IEEE mode field determines the
IEEE rounding mode of all floating point operations, with
the exception of a few floating point conversion opera-
tions that use fixed rounding mode. For example, see if-
ixrz, ifloatrz, ifixrz, ifloatrz in Appendix A, “DSPCPU Op-
erations for TM1300.”

The FP exception flags are ‘sticky bits’ that are set as a
side effect of floating-point computations. Each floating
point operation can set one or more of the flags if it incurs
the corresponding exception. The flags can only be reset
by direct software manipulation of the PCSW (using the
writepcsw operation). The bits have the meanings shown
in Table 3-2.

The FP exception trap enable bits determine which FP
exception flags invoke CPU exception handling. An ex-
ception is requested if the intersection of the exception
flags and trap enable flags is non-zero. The acceptance
and handling of exceptions is described in Section 3.5,
“Special Event Handling.”

BSX (Bytesex). The DSPCPU has a switchable bytesex.
The BSX flag in the PCSW can be written by software.
Load/store operations observe little- or big-endian byte
ordering based on the current setting of BSX.

IEN (Interrupt Enable). The IEN flag disables or enables
interrupt processing for most interrupt sources. Only NMI
(non-maskable interrupt) bypasses IEN. The acceptance
and handling of interrupts is described in Section 3.5.3,
“INT and NMI (Maskable and Non-Maskable Interrupts).”

15 14 13 12 11 10

9

8 7 6 5 4 3 2 1 0
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PCSW = 0x800
after RESET

19
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MSE

TRP
WBE
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PCSW([31:16] TRP

TFE

UNDEF

TRP | TRP | TRP | TRP | TRP | TRP | TRP
OFZ | IFZ | INV | OVF | UNF | INX | DBZ

UNDEFINED

Misaligned store |
exception trap enable

\
J Reserved exception
Write back error trap enable

trap enable

LTrap on first exit

L—FpP exception trap-enable bits ———

Figure 3-2. TM1300 PCSW (Program Control and Status Word) register format.
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Table 3-2. PCSW FP exception flag definitions

Flag Function

INV | Standard IEEE invalid flag

OVF | Standard IEEE overflow flag

UNF | Standard IEEE underflow flag
INX | Standard IEEE inexact flag

DBZ | Standard IEEE divide-by-zero flag

OFZ | ‘Output flushed to zero’ set if an operation caused a
denormalized result

IFZ | ‘Input flushed to zero’ set if an operation was applied to
one or more denormalized operands

CS (Count Stalls). The CS flag determines the mode of
CCCOUNT, the 64-bit clock cycle counter. If CS =‘1’, the
cycle counter increments on all clock cycles. If CS = ‘0’,
the clock cycle counter only increments on non-stall cy-
cles. See also Section 3.1.6, “CCCOUNT—Clock Cycle
Counter.” After RESET, CSis setto ‘1.

MSE and TRPMSE (Misaligned-Store Exception). The
MSE bit will be set when the processor detects a store
operation to an address that is not aligned. For example,
a 32-bit store executed with an address that is not a mul-
tiple of four will cause MSE to be set. The TRPMSE bit
enables the DSPCPU to raise misaligned address ex-
ceptions. An exception is requested if the intersection of
MSE and TRPMSE is non-zero. The acceptance and
handling of exceptions is described in Section 3.5, “Spe-
cial Event Handling.”

Unaligned load operations do not cause an exception,
because load operations can be speculative (i.e. their re-
sult is thrown away).

When the DSPCPU generates an unaligned address,
the low order address bit(s) (one bit in the case of a 16-
bit load, two bits for a 32-bit load) are forced to zero and
the load/store is executed from this aligned address.

WBE and TRPWBE (Write Back Error). The WBE flag
will be set whenever a program attempts to write back
more than 5 results simultaneously. This is indicative of
a programming error, likely caused by the scheduler or
assembler. The TRPWBE bit enables the corresponding
exception.

RSE, TRPRSE (Reserved Exception). RSE and TR-
PRSE are reserved for diagnostic purposes and not de-
scribed here.

TFE (Trap on First Exit). The TFE bit is a support bit for
the debugger. The TFE bit is set by the debugger prior to
taking a (non-interruptible) jump to the application pro-
gram. On the next interruptible jump (the first interrupt-
ible jump in the application being debugged), an excep-
tion is requested because the TFE bit is set. The
acceptance and handling of exception processing is de-
scribed in Section 3.5, “Special Event Handling.” Itis the
responsibility of the exception handler software to clear
the TFE bit. The hardware does not clear or set TFE.

Corner-case note: Whenever a hardware update (e.g. an
exception being raised) and a software update (through
writepcsw) of the PCSW coincide, the new value of the

PCSW will be the value that is written by the writepcsw
instruction, except for those bits that the hardware is cur-
rently updating (which will reflect the hardware value).
3.1.5 SPC and DPC—Source and
Destination Program Counter

The SPC and DPC registers are support registers for ex-
ception processing. The DPC is updated during every in-
terruptible jump with the target address of that interrupt-
ible jump. If an exception is taken at an interruptible
jump, the value in the DPC register can be used by the
exception handling routine as the return address to re-
sume the program at the place of interruption.

The SPC register is updated during every interruptible
jump that is not interrupted by an exception. Thus on an
interrupted interruptible jump, the SPC register is not up-
dated. The SPC register allows the exception handling
routine to determine the start address of the decision tree
(a block of uninterruptible, scheduled TM1300 code) that
was executing when the exception was taken (see also
Section 3.5, “Special Event Handling”).

Corner-case note: Whenever a hardware update (during
an interruptible jump) and a software update (through
writedpc or writespc) coincide, the software update takes
precedence.

3.1.6 CCCOUNT—Clock Cycle Counter

CCCOUNT is a 64-bit counter that counts clock cycles
since RESET. Cycle counting can occur in two modes,
depending on PCSW.CS. If PCSW.CS = ‘1’, the cycle
count increments on every CPU clock cycle. If PCSW.CS
='0’, the clock cycle count only increments on non-stall
CPU cycles.

CCCOUNT is implemented as a master counter/slave
register pair. The master 64-bit counter gets updated
continuously. The value of the CCCOUNT slave register
is updated with the current master cycle count during
successful interruptible jumps only. The cycles and hicy-
cles DSPCPU operations return the content of the 32
LSBs and 32 MSBs, respectively, of the slave register.
This ensures that the value returned by hicycles and cy-
cles is coherent, as long as there is no intervening inter-
ruptible jump, which makes these operations suitable for
64-bit high resolution timing from C source code pro-
grams. The curcycles DSPCPU operation returns the 32
LSBs of the master counter. The latter operation can be
used for instruction cycle precise timing. When used, it
must be precisely placed, probably at the assembly code
level.

3.1.7

The bit pattern generated by boolean valued operations
(ileq, fleq etc.) is '00...00' (FALSE) or '00...01' (TRUE).
When interpreting a bit pattern as a boolean value, only
the LSB is taken into account, i.e. 'xx..x0' is interpreted
as FALSE and 'xx..x1' is interpreted as TRUE. In partic-
ular, wherever a general purpose register is used as a
‘guard’, the LSB determines whether execution of the
guarded operation takes place.

Boolean Representation
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3.1.8

The architecture supports the notion of 'unsigned inte-
gers' and 'signed integers.' Signed integers use the stan-
dard two’s-complement representation.

Integer Representation

Arithmetic on integers does not generate traps. If a result
is not representable, the bit pattern returned is operation
specific, as defined in the individual operation descrip-
tion section. The typical cases are:

*  Wrap around for regular add- and subtract-type oper-
ations.

» Clamping against the minimum or maximum repre-
sentable value for DSP-type operations.

» Returning the least significant 32-bit value of a 64-bit
result (e.g., integer/unsigned multiply).

3.1.9

The TM1300 architecture supports single precision (32-
bit) IEEE-754 floating point arithmetic.

All arithmetic conforms to the IEEE-754 standard in
flush-to-zero mode.

Floating Point Representation

All floating point compute operations round according to
the current setting of the PCSW IEEE mode field. The
current setting of the field determines result rounding (to
nearest, to zero, to positive infinity, to negative infinity).
Conversions from float to integer/unsigned are available
in two forms: a PCSW rounding-mode-observing form
and an ANSI-C-specific-rounding form. The ANSI-C-
specific form forces round to zero regardless of the
PCSW IEEE rounding mode. Conversion from integer/
unsigned to float always observes the IEEE rounding
mode.

Floating point exceptions are supported with two mecha-
nisms. Each individual floating point operation (e.g. fadd)
has a counterpart operation (faddflags) that computes
the exception flag values. These og)erations can be used
for precise exception identification™. The second mecha-
nism uses the ‘sticky’ exception bits in the PCSW that
collect aggregate exception events. The PCSW excep-
tion bits can selectively invoke CPU exception handling.
See Section 3.5.2, “EXC (Exceptions).”

Table 3-3 shows the representation choices that were
made in TM1300'’s floating point implementation.

3.1.10 Addressing Modes

The addressing modes shown in Table 3-4 are support-
ed by the DSPCPU architecture (store operations allow

onlydisptacementmodey

1. This mechanism allows precise exception identification
in the context of our multi-issue microprocessor core—
where many floating point operations may issue simul-
taneously—at the expense of additional operations
generated by the compiler. It also allows the compiler to
issue compute operations speculatively and compute
exceptions precisely.

Table 3-3. Special Float Value Representation

Item Representation

+inf 0x7f800000
-inf 0xff800000
self generated qNaN | Oxffffffff

result of operation argument | 0x00400000 (forcing the
on any NaN argu- NaN to be quiet)
ment

signalling NaN never generated by TM1300, accepted

as per IEEE-754

Table 3-4. Addressing Modes

Mode Suffix Applies to Name
R[i] + scaled(#) d Load & Store | Displacement
R[i] + R[K] r Load only Index
R[i] + scaled(R[K]) X Load only Scaled index

In these addressing modes, R([i] indicates one of the gen-
eral purpose registers. The scale factor applied (1/2/4) is

Table 3-5. Minimum values for implementation-
dependent addressing mode components

Parameter Minimum Range

‘iand 'k’ | 0..127 (i.e., each implementation has at least 128

registers)

g -64..63 (i.e., displacements will be at least 7 bits

long and signed)

equal to the size of the item loaded or stored, i.e. 1 for a
byte operation, two for a 16-bit operation and four for a
32-bit operation. The range of valid ', '} and 'k' values
may differ between implementations of the architecture;
the minimum values for implementation-dependent char-
acteristics are shown in Table 3-5.

Note that the assembly code specifies the true displace-
ment, and not the value to be scaled. For example,
‘I1d32d(-8) r3’ loads a 32-bit value from address (r3 — 8).
This is encoded in the binary operation pattern as a -2 in
the seven-bit field by the assembler. At runtime, the
scale factor four is applied to reconstruct the intended
displacement of —8.

3.1.11 Software Compatibility

The DSPCPU architecture expressly does not support
binary compatibility between family members. The ANSI
C compiler ensures that all family members are compat-
ible at the source-code level.
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3.2 INSTRUCTION SET OVERVIEW

3.2.1

In the TM1300 architecture, all operations can be option-
ally 'guarded'. A guarded operation executes conditional-
ly, depending on the value in the ‘guard' register. For ex-
ample, a guarded add is written as:

IF R23 iadd R14 R10 - R13
This should be taken to mean
if R23 then R13 ~ R14 + R10.

The 'if R23' clause controls the execution of the opera-
tion based on the LSB of R23. Hence, depending on the
LSB of R23, R13 is either unchanged or set to contain
the integer sum of R14 and R10.

Guarding applies to all DSPCPU operations, except iimm
and uimm (load-immediate). It controls the effect on all
programmer-visible states of the system, i.e. register val-
ues, memory content, exception raising and device state.

Guarding (Conditional Execution)

3.2.2

Memory is byte addressable. Loads and stores must be
‘naturally aligned’, i.e. a 16-bit load or store must target
an address that is a multiple of 2. A 32-bit load or store
must target an address that is a multiple of 4. The BSX
bit in the PCSW determines the byte order of loads and
stores. For example, see 1d32 and st32 in Appendix A,
“DSPCPU Operations for TM1300.”

Only 32-bit load and store operations are allowed to ac-
cess MMIO registers in the MMIO address aperture (see
Section 3.4, “Memory and MMIQ”). The results are unde-
fined for other loads and stores. A load from a non-exis-
tent MMIO register returns an undefined result. A store to
a non-existent MMIO register times out and then does
not happen. There are no other side effects of an access
to a nonexistent MMIO register. The state of the BSX bit
has no effect on the result of MMIO accesses.

Load and Store Operations

Loads are allowed to be issued speculatively. Loads out-
side the range of valid data memory addresses for the
active process return an implementation-dependent val-
ue and do not generate an exception. Misaligned loads
also return an implementation dependent value and do
not generate an exception.

If a pair of memory operations involves one or more com-
mon bytes in memory, the effect on the common bytes is
as defined in Table 3-6.

Table 3-4 shows the supported addressing modes. The
minimum values of implementation-dependent address-
ing-mode components are shown in Table 3-5.

Note: The index and scaled-index modes are not
allowed with store opcodes, due to the hardware

Table 3-6. Behavior of loads and stores with
coincident addresses

Condition Behavior

If a store is issued before a load, the value
loaded contains the new bytes.

Tstore < Tload

If a load is issued before a store, the value
loaded contains the old bytes.

Tload < Tstore

Tstore1 < Tstore2 | If storel is issued before store2, the result-
ing value contains the bytes of store2.

If a load and store are issued in the same
clock cycle, the result is UNDEFINED.

Tstore = Tioad

Tstore1 = Tstore2 | If two stores are issued in the same clock
cycle, the resulting stored value is unde-
fined.

restriction that each operation have at most 2 source
operand registers and 1 condition register. Stores
use 1 operand register for the value to be stored
leaving only 1 register to form an address.

The scale factor applied (1/2/4) in the scaled addressing
modes is equal to the size of the item loaded or stored,
i.e. 1 for a byte operation, 2 for a 16-bit operation and 4
for a 32-bit operation.

Table 3-7 lists the available load and store mnemonics
for the three addressing modes.

Table 3-7. Load and store mnemonics

Operation Displacement [Index Sli?jlgg'

8-bit signed load ild8d ild8r —

8-bit unsigned load uld8d uld8r —

16-bit signed load ild16d ild16r ild16x
16-bit unsigned load | uld16d uld16r | uld16x
32-bit load Id32d Id32r 1d32x
8-bit store st8d — —

16-bit store stl6d — —

32-bit store st32d — —

Example usage of load and store operations:

IF r10ild16d(12) r12 - rl3
If the LSB of r10 is set, load 16 bits starting at
address (r12+12) using the byte ordering indicated
in PCSW.BSX, sign-extend the value to 32 bits and
store the result in r13.

IF r10 st32d(40) r12 r13
If the LSB of r10 is set, store the 32-bit value from
ri13 to the address (r12+40) using the byte ordering
indicated in PCSW.BSX.
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3.2.3

Compute operations are register-to-register operations.
The specified operation is performed on one or two
source registers and the result is written to the destina-
tion reqister.

Compute Operations

Immediate Operations. Immediate operations load an
immediate constant (specified in the opcode) and pro-
duce a result in the destination register.

Floating-Point Compute Operations. Floating-point
compute operations are register-to-register operations.
The specified operation is performed on one or two
source registers and the result is written to the destina-
tion register. Unless otherwise mentioned all floating
point operations observe the rounding mode bits defined
in the PCSW register. All floating-point operations not
ending in ‘flags’ update the PCSW exception flags. All
operations ending in ‘flags’ compute the exception flags
as if the operation were executed and return the flag val-
ues (in the same format as in the PCSW); the exception
flags in the PCSW itself remain unchanged.

Multimedia Operations. These special compute opera-
tions are like normal compute operations, but the speci-
fied operations are not usually found in general purpose
CPUs. These operations provide special support for mul-
timedia applications.

3.24

Special register operations operate on the special regis-
ters: PCSW, DPC, SPC and CCCOUNT.

Special-Register Operations

3.25

Control-flow operations change the value of the program
counter. Conditional jumps test the value in a register
and, based on this value, change the program counter to
the address contained in a second register or continue
execution with the next instruction. Unconditional jumps
always change the program counter to the specified im-
mediate address.

Control-Flow Operations

Control-flow operations can be interruptible or non-inter-
ruptible. Execution of an interruptible jump is the only oc-
casion where TM1300 allows special event handling to
take place (see Section 3.5, “Special Event Handling”).

3.3 TM1300 INSTRUCTION ISSUE RULES

The TM1300 VLIW CPU allows issue of 5 operations in
each clock cycle according to a set of specific issue
rules. The issue rules impose issue time constraints and
a result writeback constraint. Any set of operations that
meets all constraints constitutes a legal TM1300 instruc-
tion. A more extensive description and a few special case
issue rules and limitations can be found in the Philips Tri-
Media SDE documentation.

Issue time constraints:

» an operation implies a need for a functional unit type
(as documented in Appendix A, “DSPCPU Opera-
tions for TM1300.")

« each operation requires an issue slot that has an
instance of the appropriate functional unit type
attached

issue slot 1 issue slot 2 issue slot 3 issue slot 4 issue slot 5
| CONST | | CONST | CONST | | CONST | | CONST |
| ALU | ALU | ALU | ALU | ALU |
| SHIFTER | | SHIFTER | FCOMP | DMEM DMEM
FALU DSPMUL DSPMUL FALU DMEMSPEC
BRANCH BRANCH BRANCH
IFMUL IFMUL
DSPALU FTOUGH DSPALU
(latency 17,
recovery 16)

Figure 3-3. TM1300 issue slots, functional units, and latency.

3-6

PRODUCT SPECIFICATION



Philips Semiconductors

DSPCPU Architecture

» functional units should be ‘recovered’ from any prior
operation issues

Writeback constraint:

* No more than 5 results should be simultaneously
written to the register file at any point in time (write-
back occurs ‘latency’ cycles after issue)

Figure 3-3 shows all functional units of TM1300, includ-
ing the relation to issue slots, and each functional unit’s
latency (e.g. 1 for CONST, 3 for FALU, etc.). With the ex-
ception of FTOUGH, each functional unit can accept an
operation every clock cycle, i.e. has a recovery time of 1.
The binding of operations to functional unit types is sum-
marized in Table 3-8. In Appendix A, “DSPCPU Opera-
tions for TM1300”, each operation lists the precise func-
tional unit and unit latency.

Table 3-8. Functional unit operations

unit type operation category
const immediate operations
alu 32-bit arithmetic, logical, pack/unpack
dspalu dual 16-bit, quad 8-bit multimedia arithmetic
dspmul dual 16-bit and quad 8-bit multimedia multiplies
dmem loads/stores
dmemspec | cache coherency, cache control, prefetch
shifter multi-bit shift
branch control flow
falu floating point arithmetic & conversions
ifmul 32-bit integer and floating point multiplies
fcomp single cycle floating point compares
ftough iterative floating point square root and division

34 MEMORY AND MMIO

TM1300 defines four apertures in its 32-bit address
space: the memory hole, the DRAM aperture, the MMIO
aperture and the PCI apertures (See Figure 3-4).The
memory hole covers addresses 0..0xff. The DRAM and
MMIO apertures are defined by the values in MMIO reg-
isters; the PCI apertures consist of every address that
does not fall in the other three apertures.

34.1

DRAM is mapped into an aperture extending from the
address in DRAM BASE to the address in
DRAM_LIMIT. The maximum DRAM aperture size is 64
MB.

The MMIO aperture is located at address MMIO_BASE
and is a fixed 2-MB size.

Memory Map

In the default operating mode, all memory accesses not
going to either the hole, DRAM or MMIO space are inter-
preted as PCl accesses. This behavior can be overrid-
den as described in Section 5.3.8, “Memory Hole and
PCI Aperture Disable.”

The MMIO aperture and the DRAM aperture can be at
any naturally aligned location, in any order, but should

not overlap; if they do, the consequences are undefined.
The values of DRAM_BASE, DRAM_LIMIT, and
MMIO_BASE are set during the boot process. In the
case of a PCI host assisted boot, the values are deter-
mined by the host BIOS. In case of standalone boot (i.e.,
TM1300 is the PCI host), the values are taken from the
boot ROM. Refer to Chapter 13, “System Boot” for de-
tails. DSPCPU update of DRAM_BASE and
MMIO_BASE is possible, but not recommended, see
Section 11.7.3, “MMIO/DRAM_BASE updates.”

3.4.2

The memory hole from address 0 to Oxff serves to protect
the system from performance loss due to speculative
loads. Due to the nature of C program references, most
speculative loads issued by the DSPCPU fall in the
range covered by the hole. Activated by default upon RE-
SET, the hole serves to ensure that these speculative
loads do NOT cause PCI read accesses and slow down
the system. The value returned by any data load from the
hole is 0. The hole only protects loads. Store operations
in the hole do cause writes to PCI, SDRAM or MMIO as
determined by the aperture base address values. If the
SDRAM aperture overlaps the memory hole, the memory
hole is ignored.

The Memory Hole

The hole can be temporarily disabled through the
DC_LOCK_CTL register. This is described in Section
5.3.8, “Memory Hole and PCI Aperture Disable.”

3.4.3 MMIO Memory Map

Devices are controlled through memory-mapped device
registers, referred to as MMIO registers. To ensure com-
patibility with future devices, any undefined MMIO bits
should be ignored when read, and written as ‘0’'s. Some
devices can autonomously access data memory (DMA)
and most devices can cause CPU interrupts.

The 2-MB MMIO aperture is initially located at address
OXEFEOO0000 on RESET; it is relocated by the PCI BIOS

OXFFFF FFFFF

PCI
A
2MB
MMIO Aperture
MMIO_BASE| ¥
PCI
DRAM_LIMIT| A
1MB - 64 MB
DRAM Aperture
DRAM_BASE| ¥

PCI

0x0000 0000|_$256byte_hole

Figure 3-4. TM1300 memory map.
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for PC-hosted TM1300 boards; its final location is deter-
mined by the boot EEPROM for standalone systems.
See Chapter 13, “System Boot” for more information.
Figure 3-5 gives a detailed overview of the MMIO mem-
ory map (addresses used are offsets with respect to the
MMIO base). The operating system on TM1300 can
change MMIO_BASE by writing to the MMIO_BASE
MMIO location. User programs should not attempt this.
Refer to the TriMedia SDE Reference Manual for the
standard method to access the device registers from C
language device drivers.

Only 32-bit load and store operations are allowed to ac-
cess MMIO registers in the MMIO address aperture. The
results are undefined for other loads and stores. Reads
from non-existent MMIO registers return undefined val-
ues. Writes to nonexistent MMIO registers time out.
There are no side effects of accesses to nonexistent
MMIO registers. The state of the PCSW BSX bit has no
effect on the result of MMIO accesses.

The Icache tag and LRU bit access aperture give the
DSPCPU read-only access to the Icache status. Refer to
Section 5.4.8, “Reading Tags and Cache Status” for de-
tails.

The EXCVEC MMIO location is explained in Section
3.5.2, “EXC (Exceptions).” Section 3.5.3, “INT and NMI
(Maskable and Non-Maskable Interrupts),” describes
the locations that deal with the setup and handling of in-

terrupts: ISETTING, IPENDING, ICLEAR, IMASK and
the interrupt vectors. The timer MMIO locations are de-
scribed in Section 3.8, “Timers.” The instruction and
data breakpoint are described in Section 3.9, “Debug
Support.” The MMIO locations of each device are treat-
ed in the respective device chapters.

3.5 SPECIAL EVENT HANDLING

The TM1300 microprocessor responds to the special
events shown in Table 3-9, ordered by priority.

With the exception of RESET, which is enabled at all
times, the architecture of the DSPCPU allows special
event handling to begin only during an interruptible jump
operation (ijmpt, ijmpf or ijmpi) that succeeds (i.e., is a
taken jump). EXC, NMI and INT handling can be initiated
during handling of an EXC or an INT, but only during suc-
cessful interruptible jumps.

Table 3-9. Special Events and Event Vectors

Ox1F FFFFF
Reserved
for

Future Use
0x10 3800 JTAG interface
0x10 3400 I°C interface
0x10 3000 PCl interface
0x10 2C00 SSl interface
0x10 2800 VLD coprocessor
0x10 2400 Image coprocessor
0x10 2000 Audio Out
0x10 1C00 Audio In
0x10 1800 Video Out
0x10 1400 Video In
0x10 1000 Debug support
0x10 0C00 Timers
0x10 0800| Vectored interrupt controller
0x10 0400 MMIO base
0x10 0000| Main memory, cache control

Reserved

for

Future Use
0x01 0000
0x00 0000 Icache tags & LRU (r/o)

Event Vector
RESET | (Highest priority) vector to DRAM_BASE
EXC | (All exceptions) vector to EXCVEC (programmable)
NMI, | (Non-maskable interrupt, maskable interrupt) use
INT the programmed vector (one of 32 vectors depend-
ing on the interrupt source)
0x10 1200 data breakpoints
0x10 1000 instruction breakpoints
0x10 0C60 systimer
0x10 0C40 timer3
0x10 0C20 timer2
0x10 0C00 timerl
0x10 08Fc intvec31
0x10 08F8 intvec30
0x10 0888 intvec2
0x10 0884 intvecl
0x10 0880 intvecO
0x10 0828 imask
0x10 0824 iclear
0x10 0820 ipending
0x10 081C isetting3
0x10 0818 isetting2
0x10 0814 isettingl
0x10 0810 isetting0
0x10 0800 excvec
0x10 0400 MMIO_BASE
0x10 0004 DRAM_LIMIT
0x10 0000 DRAM_BASE

Figure 3-5. Memory map of MMIO address space (addresses are offset from MMIO_BASE).
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The instruction scheduler uses interruptible jumps exclu-
sively for inter-decision tree jumps. Hence, within a deci-
sion tree, no special-event processing can be initiated. If
a tree-to-tree jump is taken, special-event processing is
allowed. Since the only registers live at this point (i.e.,
that contain useful data) are the global registers allocat-
ed by the ANSI C compiler, only a subset of the registers
needs to be preserved by the event handlers. Refer to
the TriMedia SDE Reference Manual for details on which
registers can be in use. The DSPCPU register state can
be described by the contents of this subset of general
purpose registers and the contents of the PCSW and the
DPC value (the target of the inter-tree jump).

The priority resolution mechanism built into the DSPCPU
hardware dispatches the highest-priority, non-masked
special-event request at the time of a successful inter-
ruptible jump operation. In view of the simple, real-time-
oriented nature of the mechanisms provided, only limited
nesting of events should be allowed.

3.5.1 RESET

RESET is the highest priority special event. Itis asserted
by external hardware or by the host CPU. TM1300 will
respond to it at any time.

External hardware reset through the TRI_RESET# pin
initiates boot protocol execution as described in Chapter
13, “System Boot.” This causes the current PC value to
be lost and instruction execution to start from address
DRAM_BASE.

A PCI host CPU can perform a TM1300 DSPCPU-only
reset by an MMIO write to the BIU_CTL.SR and CR bits.
Such a reset does not cause a full boot, instead the
DSPCPU resumes execution from DRAM_BASE.

3.5.2 EXC (Exceptions)

The DSPCPU enters EXC special-event processing un-
der the following conditions:
1. RESET is de-asserted.

2. The intersection PCSW[15,6:0] & PCSW[31,22:16] is
non-empty or PCSW.TFE is set.

3. A successful interruptible jump is in the final jump ex-
ecution stage.

DSPCPU hardware takes the following actions on the ini-
tiation of EXC processing:

1. DPC is assigned the intended destination address of
the successful jump.

2. Instruction processing starts at EXCVEC.

All other actions are the responsibility of the EXC handler
software. Note that no other special event processing will
take place until the handler decides to execute an inter-
ruptible jump that succeeds.

3.5.3 INT and NMI (Maskable and Non-

Maskable Interrupts)

The on-chip Vectored Interrupt Controller (VIC) provides
32 INT request input hardware lines. The interrupt con-
troller prioritizes and maps attention requests from sev-
eral different peripherals onto successive INT requests
to the DSPCPU.

INT special event processing will occur under the follow-
ing conditions:

1. RESET is de-asserted.

2. The intersection PCSW[15,6:0] & PCSW[31,22:16] is
empty and PCSW.TFE is not set.

3. The intersection of IPENDING and IMASK is non-
empty.
4. The interrupt is at level NMI or PCSW.IEN = 1.

5. A successful interruptible jump is in the final jump ex-
ecution stage.

DSPCPU hardware takes the following actions on the ini-
tiation of NMI or INT processing:

1. DPC gets assigned the intended destination address
of the successful jump.

2. Instruction processing starts at the appropriate inter-
rupt vector.

All other actions are the responsibility of the INT handler
software. Note that no other special event processing will
take place until the handler decides to execute an inter-
ruptible jump that succeeds.

3.53.1

Each of the 32 interrupt sources can be assigned an ar-
bitrary interrupt vector (the address of the first instruction
of the interrupt handler). A vector is setup by writing the
address to one of the MMIO locations shown in
Figure 3-6. The state of the MMIO vector locations is un-
defined after RESET. (Addresses of the MMIO vector
registers are offset with respect to MMIO_BASE.)

Interrupt vectors

T T T T T T T
Source 31 vector
T T T T T T T

Source 30 vector

T T
Source 2 vector
T T T T T T T

MMIO_BASE

offset: 31

0x10 08FC INTVEC31 (rfw)

0x10 08F8 INTVEC30 () | T
0x10 0888 INTVEC2 (r/w)

0x10 0884 INTVECL (riw) T
0x10 0880 INTVECO (r/iw) T

Source 1 vector
T T T T T T T
Source 0 vector

Figure 3-6. Interrupt vector locations in MMIO address space.
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Programmer’s note: See the Philips TriMedia Cookbook
(Book 2 of TriMedia SDE documentation) for information
on writing interrupt handlers.

3.5.3.2

DSPCPU interrupt sources can be programmed to oper-
ate in either level-sensitive or edge-triggered mode. Op-
eration in edge-triggered or level-sensitive mode is de-
termined by a bit in the ISETTING MMIO locations
corresponding to the source, as defined in Figure 3-7.
On RESET, all ISETTING registers are cleared.

In edge-triggered mode, the leading edge of the signal
on the device interrupt request line causes the VIC (Vec-
tored Interrupt Controller) to set the interrupt pending flag
corresponding to the device source number. Note that,
for active high signals, the leading edge is the positive
edge, whereas for active low request signals (such as
PCI INTA#), the negative edge is the leading edge. The
interrupt remains pending until one of two events occurs:

Interrupt modes

* The VIC successfully dispatches the vector corre-
sponding to the source to the TM1300 CPU, or

« TM1300 CPU software clears the interrupt-pending
flag by a direct write to the ICLEAR location.

No interrupt acknowledge to ICLEAR is needed for de-
vices operating in edge-triggered mode, since the vector
dispatch clears the IPENDING request. The device itself
may however need a device-specific interrupt acknowl-
edge to clear the requesting condition. Edge-triggered
mode is not recommended for devices that can signal
multiple simultaneous interrupt conditions. The on-chip
timers must be operated in edge triggered mode.

In level-sensitive mode, the device requests an interrupt
by asserting the VIC source request line. The device
holds the request until the device interrupt handler per-
forms a device interrupt acknowledge. It is highly recom-
mendedthat all off-chip and on-chip sources, with the ex-
ception of the timers, operate in level-sensitive mode.

3.5.3.3

All devices capable of generating level-triggered inter-
rupts have interrupt acknowledge bits in their memory
mapped control registers for this purpose. An interrupt
acknowledge is performed by a store to such control reg-

Device interrupt acknowledge

ister, with a ‘1’ in the bit position(s) corresponding to the
desired acknowledge flags.

Programmers note: the store operation that performs the
interrupt acknowledge should be issued at least 2 cycles
before the (interruptible) jump that ends an interrupt han-
dler. This ensures that the same interrupt is not dis-
patched twice due to request de-assertion clock delays.

3.5.34

Each interrupt source can be programmed to request
one out of eight levels of priorities. The highest priority
level (level 7) corresponds to requesting an NMIl—an in-
terrupt that cannot be masked by the DSPCPU PC-
SW.IEN bit. The other levels request regular interrupts,
that can be masked as a group by the PCSW.IEN flag.
Level six represents the highest priority normal interrupt
level and level zero represents the lowest. Refer to
Figure 3-7 for details of programming the priority level.

Interrupt priorities

The VIC arbitrates the highest-priority pending interrupt
requestor. Sources programmed to request at the same
level are treated with a fixed priority, from source number
0 (highest) to 31 (lowest). At such time as the DSPCPU
is willing to process special events, the vector of highest
priority NMI source will be dispatched. If no NMI is pend-
ing, and the DSPCPU allows regular interrupts (PC-
SW.IEN is asserted), the vector of the highest priority
regular source is dispatched. Once a vector is dis-
patched, the corresponding interrupt pending flag is de-
asserted (edge triggered mode sources only).

3.5.3.5 Interrupt masking

A single MMIO register (IMASK in Figure 3-8) allows
masking of an arbitrary subset of the interrupt sources.
Masking applies to both regular as well as NMI level re-
guestors. Masking is used by software to disable unused
devices and/or to implement nested interrupt handling. In
the latter case, each interrupt handler can stack the old
IMASK content for later restoration and insert a new
mask that only allows the interrupts it is willing to handle.
For level-triggered device handlers, IMASK should also
exclude the device itself to prevent repeated handler ac-
tivation.

Each interrupt source device typically has its own inter-
rupt enable flag(s) that determine whether certain key

MMIO_BASE
offset: CT R S a9 a5 w7 3 0
0x10081C  ISETTING3 (w) | MP31 | MP30 | MP29 | MP28 | MP27 | MP26 | MP25 | MP24 |
0x100818  ISETTING2 (w) | MP23 | MP22 | MP21 | MP20 | MP19 | MP18 | MP17 | MP16 |
0x10 0814  ISETTINGL (w) | MP15 | MP14 | MP13 | MP12 | MP11 | MP10 | MP9 | MP8 |
0x100810  ISETTINGO ("w) | MP7 | MP6 | MP5 | MP4 | MP3 | MP2 | MP1 | MPO |
Each MP Field: Each MP Field:

Oxxx source operates in edge-triggered mode
1xxx source operates in level-sensitive mode

x111 NMI (highest) priority
x110 maskable level 6

x000 maskable level 0

Figure 3-7. Interrupt mode and priority MMIO locations and formats.
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device events lead to the request of an interrupt. In addi-
tion, the PCSW.IEN flag determines whether the
DSPCPU is willing to handle regular interrupts. Non
maskable interrupts ignore the state of this flag.

All three mechanisms are necessary: the PCSW.IEN flag
is used to implement critical sections of code during
which the RTOS (real-time operating system) is unable
to handle regular interrupts. The IMASK is used to allow
full control over interrupt handler nesting. The device in-
terrupt flags set the operational mode of the device.

When RESET is asserted, IPENDING, ICLEAR, and
IMASK are set to all zeroes. (MMIO register addresses
shown in Figure 3-8 are offset addresses with respect to
MMIO_BASE.)

3.5.3.6 Software interrupts and

acknowledgment

The IPENDING register shown in Figure 3-8 can be read
to observe the currently pending interrupts. Each bit read
depends on the mode of the source:

» For a level-sensitive source, a bit value corresponds
to the current state of the device interrupt request
line.

« For an edge-triggered interrupt, a ‘1’ is read if and
only if an interrupt request occurred and the corre-
sponding vector has not yet been dispatched.

Software can request an interrupt for sources operating
in edge-triggered mode. Writes to the IPENDING register
assert an interrupt request for all sources where a 1 oc-
curred in the bit position of the written value. The state of
sources where a 0 occurred in the written value is un-
changed. Writes have no effect on level-sensitive mode
sources. The interrupt request, if not masked, will occur
at the next successful interruptible jump. This differs from
the conventional software interrupt-like semantics of
many architectures. Any of the 32 sources can be re-
quested in software. In normal operation however, soft-
ware-requested interrupts should be limited to source
vectors not allocated for hardware devices. Note that an-
other PCI master can request interrupts by manipulating
the IPENDING location in the MMIO aperture. This is
useful for inter-processor communication.

The ICLEAR register reads the same as the IPENDING
register. Writes to the ICLEAR register serve to clear
pending flags for edge-triggered mode sources. All IP-
ENDING flags corresponding to bit positions in which ‘1’s
are written are cleared. IPENDING flags corresponding
to bit positions in which ‘0’s are written are not affected.
Writes have no effect on level-sensitive mode sources.
When a pending interrupt bit is being cleared through a
write to the ICLEAR register at the same time that the
hardware is trying to set that interrupt bit, the hardware
takes precedence.

3.5.3.7

In most applications, it is desirable not to nest NMIs. The
NMI interrupt handler can accomplish this by saving the
old IMASK content and clearing IMASK before the first
interruptible jump is executed by the NMI handler.

NMI sequentialization

3.5.3.8

Table 3-10 shows the assignment of devices to interrupt
source numbers, as well as the recommended operating
mode (edge or level triggered). Note that there are a total
of 5 external pins available to assert interrupt requests.
The PCI INTA to INTD requests are asserted by active
low signal conventions, i.e. a zero level or a negative
edge asserts a request. The USERIRQ pin operates with
active high signalling conventions.

Interrupt source assignment

3.6 TM1300 TO HOST INTERRUPTS

In systems where TM1300 is operating in the presence
of a host CPU on PCI, TM1300 can generate interrupts
to the host, using any combination of the four PCI INTA#
to INTD# pins. In a typical host system, only one of these
pins needs to be wired to the PCI bus interrupt request
lines. Any unused pins of this group are then available for
use as software programmable 1/O pins.

The INT_CTL register (see Figure 3-9) IEx bits, when
set, enable the open collector driver of the four
INTD#..INTA# pins. The INTx bits determine the output
value generated (if enabled). A ‘1’ in INTx causes the
corresponding PCI interrupt pin to be asserted (low IN-
Tx# pin). The I1Sx bits are read-only and reflect the cur-

MMI%)_BASE
oavoezs  wascem ([ [ [ [ [ [ [ [T TTT T[T TTTTI[[[[I]
Each IMASK(i) bit:
On read or write, 0 0 disallow source i interrupt request
On read or write, 1 0 allow source i interrupt request
oxt00824  dctEaR(w) [ [ [ [ [ [[[[TT[[[[IP[ITTIPIITTII[T]]
Each ICLEARC(i) bit:
On read, same as IPENDING(i)
On write, 1 O clear source i interrupt request
oxt00820  weNoING@w) [ [ [ [ [ [ [[[ T [[[[TT[[[TT[[[TTII[T]]

Each IPENDING(i) bit:
Onread, 1 O source i interrupt request is pending
On write, 1 O software source i interrupt request

Figure 3-8. Interrupt controller request, clear, and mask MMIO registers.

PRODUCT SPECIFICATION 3-11



TM1300 Data Book

Philips Semiconductors

MMIO_BASE
offset: 31 27 23 19 15 11 7 0
0x10 3038 INT_CTL (r/w) It
IS[D:A]———————
IE[D:A]
INT[D:A]

Figure 3-9. Host interrupt control register

Table 3-10. Interrupt source assignments

S(NDXIGEE SSS/I MODE| SOURCE DESCRIPTION

PCI INTA 0 level PCI_INTA# pin signal

PCI INTB 1 level PCI_INTB# pin signal

PCI INTC 2 level | PCI_INTC# pin signal

PCI INTD 3 level | PCI_INTD# pin signal

TRI_USERIRQ 4 either [ external general-purpose
pin

TIMER1 5 edge [ general-purpose timer

TIMER2 6 edge [ general-purpose timer

TIMER3 7 edge [ general-purpose timer

SYSTIMER 8 edge | reserved for debugger

VIDEOIN 9 level | video in block

VIDEOOUT 10 level | video out block

AUDIOIN 11 level | audio in block

AUDIOOUT 12 level | audio out block

ICP 13 level image coprocessor

VLD 14 |level |[VLD coprocessor

SSi 15 level | SSl interface

PCI 16 level PCI BIU (DMA, etc.; see
Table 11-14 for possible
interrupt causes)

1nc 17 |level | |2¢ interface

JTAG 18 level | JTAG interface

t.b.d. 19..24 reserved for future devices

SPDO 25 level | SPDO block

t.b.d. 26..27 reserved for future devices

HOSTCOM 28 |edge | (software) host communica-
tion

APP 29 |edge | (software) application

DEBUGGER 30 |edge | (software) debugger

RTOS 31 |edge | (software) RTOS

rent actual state of the pins. Note that the pins have neg-
ative logic (active low) polarity and are of the open
collector output type. Hence the pin voltage is low (ac-
tive) when the logical value set or seen in the INT_CTL
registerisa ‘1’

The assertion and de-assertion of host interrupts is the
responsibility of TM1300 software.

See also Section 11.7.17, “INT_CTL Register.”

3.7 HOST TO TM1300 INTERRUPTS

A host CPU can generate an interrupt to TM1300 in sev-
eral ways:

« by a PCI MMIO write to IPENDING to assert the
HOSTCOMM interrupt (bit 28)

« by a hardware circuit that asserts one of the interrupt
request pins TRI_USERIRQ, or INTA..INTD.

The first and most common method requires no circuitry
and leaves the interrupt pins available for other purposes.

38 TIMERS

The DSPCPU contains four programmable timer/
counters, all with the same function. The first three
(TIMER1, TIMERZ2, TIMER3) are intended for general
use. The fourth timer/counter (SYSTIMER) is reserved
for use by the system software and should not be used
by applications.

Each timer has three registers as shown in Figure 3-10.
The MMIO register addresses shown are offset address-
es with respect to the timer’s base address.

Each timer/counter can be set to count one of the event
types specified in Table 3-12. Note that the
DATABREAK event is special, in that the timer/counter
may increment by zero, one or two in each clock cycle.
For all other event types, increments are by zero or one.
The CACHE1 and CACHE2 events serve as cache per-
formance monitoring support. The actual event selected
for CACHE1 and CACHE2 is determined by the
MEM_EVENTS MMIO register, see Section 5.7, “Perfor-
mance Evaluation Support.” If a TM1300 pin signal (VI-
CLK, etc.) is selected as an event, positive-going edges
on the signal are counted.

Each timer increments its value until the modulus is
reached. On the clock cycle where the incremented val-
ue would equal or exceed the modulus, the value wraps
around to zero or one (in the case of an increment by
two), and an interrupt is generated as defined in
Table 3-10. The timer interrupt source mode should be
set as edge-sensitive. No software interrupt acknowl-
edge to the timer device is necessary.

Counting starts and continues as long as the run bit is
set.

Loading a new modulus does not affect the contents of
the value register. If a store operation to either the mod-
ulus or value register results in value and modulus being
the same, no interrupt will be generated. If the run bit is
set, the next value will be modulus+1 or modulus+2, and
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Tlmer base Oﬁset 31 T T 27\ T 23 T 19\ T T T 15\ T T 11 T T 7 T T 3 T T 0
0 TMODULUS (rhw) | MODULUS |
4 TVALUE (r/w) | " VALUE | \
8 TCTL (I’/W) ’ T l PR‘ES‘CA‘LE t l S‘OU‘RC‘E l T l R ‘
“PRESCALE”™: | “RUN" bit; ——

Prescale value is
2"PRESCALE, i.e.,
in the range [1..32768]

0 Timer stopped

“SOURCE" select: 1 Timer running

see table Table 3-12

Figure 3-10. Timer register definitions.
Table 3-11. Timer base MMIO address

TIMER1 MMIO_BASE+0x10,0C00
TIMER2 MMIO_BASE+0x10,0C20
TIMER3 MMIO_BASE+0x10,0C40
SYSTIMER MMIO_BASE+0x10,0C60

Table 3-12. Timer source selections

Source
Source Name Bits Source Description
Value
CLOCK 0 CPU clock
PRESCALE 1 prescaled CPU clock
TRI_TIMER_CLK 2 external clock pin
DATABREAK 3 data breakpoints
INSTBREAK 4 instruction breakpoints
CACHE1 5 cache event 1
CACHE2 6 cache event 2
VI_CLK 7 video in clock pin
VO_CLK 8 video out clock pin
Al_WS 9 audio in word strobe pin
AO_WS 10 audio out word strobe pin
SSI_RXFSX 11 SSI receive frame sync pin
SSI_102 12 SSI transmit frame sync pin
— 13-15 undefined

the counter will have to loop around before an interrupt is
generated.

A modulus value of zero causes a wrap-around as if the
modulus value was 232,

On RESET, the TCTL registers are cleared, and the val-
ue of the TMODULUS and TVALUE registers is unde-
fined.

3.9 DEBUG SUPPORT

This section describes the special debug support offered
by the DSPCPU. Instruction and data breakpoints can be
defined through a set of registers in the MMIO register
space. When a breakpoint is matched, an event is gen-
erated that can be used as a timer source (see Section
3.8, “Timers”). The timer TMODULUS has to be set to
generate a DSPCPU interrupt after the desired number
of breakpoint matches.

3.9.1

The instruction-breakpoint control register is shown in
Figure 3-11. On RESET, the BICTL register is cleared.
(MMIO-register addresses shown are offset with respect
to MMIO_BASE.)

The instruction-breakpoint address-range registers are
shown in Figure 3-12. After RESET, the value of these
registers is undefined. (MMIO-register addresses shown
are offset with respect to MMIO_BASE.)

When the IC bit in the breakpoint control register is set to
‘1", instruction breakpoints are activated. Any instruction
address issued by the TM1300 chip is compared against
the low and high address-range values. The IAC bit in
the breakpoint control register determines whether the
instruction address needs to be inside or outside of the
range defined by the low and high address-range regis-
ters. A successful comparison takes place when either:

e |AC ='0" and low < iaddr < high, or
* 1AC ='1" and iaddr < low or iaddr > high.

On a successful comparison, an instruction breakpoint
event is generated, which can be used as a clock input
to a timer. After counting the programmed number of in-
struction breakpoint events, the timer will generate an in-
terrupt request.

Instruction Breakpoints

MMIO_BASE
offset: 31 27

0x10 1000  BICTL (r/w)

‘|AC’ Instruction address control:
0 Breakpoint if address inside range
1 Breakpoint if address outside range

| ]
‘IC’ Instruction control bit:

0 Disable instruction breakpoints
1 Enable instruction breakpoints

Figure 3-11. Instruction-breakpoint control register.

PRODUCT SPECIFICATION 3-13



TM1300 Data Book

Philips Semiconductors

23 19 15 11 7 3 0

Address Range Start

MMIO_BASE
offset: 31 27,
0x10 1004  BINSTLOW (rw) |
0x10 1008  BINSTHIGH (r/w) |

Address Range End ‘

Figure 3-12. Instruction-breakpoint address-range registers.

23 , 19 15 11 7 3 0

‘Address Range Start_ - o

‘ Aadr‘es‘s R‘an‘ge‘ Eﬁd ‘

Data Breakpoint Value

MMIO_BASE
offset: 81 27,
0x10 1030  BDATAALOW (rw) |
0x10 1034  BDATAAHIGH (r/w) |
0x10 1038  BDATAVAL (r/w) \
0x10 103C  BDATAMASK (riw) |

Data Breakpoint Value Mask

Figure 3-13. Data-breakpoint address-range and value-compare registers.

3.9.2

The data-breakpoint address-range and compare-value
registers are shown in Figure 3-13. After RESET, the val-
ue of the data breakpoint registers is undefined. (MMIO-
register addresses shown are offset with respect to
MMIO_BASE.)

The data-breakpoint control register is shown in
Figure 3-14. On RESET, the BDCTL register is cleared.
(The register address shown is offset with respect to
MMIO_BASE.)

When the DC bits in the data breakpoint control register
are not set to ‘0’, data breakpoints are activated. When
the value of the DC bits is ‘1’ or ‘3’, any data address from
load operations (if the BL bit is set) and/or store opera-
tions (if the BS bit is set) issued by the DSPCPU is com-
pared against the low and high address-range values.
The DAC bit in the breakpoint control register determines
whether data addresses need to be inside or outside of
the range defined by the low and high address-range
registers. A successful comparison occurs when either:

Data Breakpoints

e« DAC ='0’ and low < daddr < high, or
e DAC ='1" and daddr < low or daddr > high.

Note that this comparison works for all addresses re-
gardless of the aperture to which they belong. When the
value of the DC bits is ‘2’ or ‘3’, any data value from load
operations (if the BL bit is set) and/or store operations (if
the BS bit is set) issued by the TM1300 CPU is compared
against the value in the BDATAVAL register. Only the
bits for which the corresponding BDATAMASK register
bits are set to ‘1’ will be used in the comparison. The
DVC bit in the breakpoint control register determines
whether the data value needs to be equal or not equal to
the comparison value. A successful comparison occurs
when either of the following are true:

* DVC =0’ and (data & BDATAMASK) = (BDATAVAL &

MMIO_BASE
offset: 31

BDATAMASK).
» DVC ='1"and (data & BDATAMASK) != (BDATAVAL &
BDATAMASK).
23 19 15 11

0x10 1020  BDCTL (r/w)

‘DVC’ Data Value Control:

0 Breakpoint if data equal
1 Breakpoint if data not equal

‘BS’ Break on Store:

S
‘DAC’ Data Address Control:

0 Breakpoint if address inside range
1 Breakpoint if address outside range

0 Don't check data stores
1 Do check data stores

‘DC’ Data Control:

‘BL’ Break on Load:

0 Don't check data loads
1 Do check data loads

0 No checking
1 Check data addresses
2 Check data values

3 Check data value and addresses

Figure 3-14. Data-breakpoint control register.
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Note: use a nonzero datamask or the result is undefined.

When a successful comparison has taken place, a data
breakpoint event is generated, which can be used as a
clock input to a timer. After counting the set number of
data breakpoint events, the timer will generate an inter-
rupt request.

When the value of the DC bits is ‘3’, a data breakpoint
event is generated if and only if a successful comparison
occurs on both address and data simultaneously.

Note that up to two data breakpoint events can occur per
clock cycle, due to the dual load/store capability of the
CPU and data cache.
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Custom Operations for Multimedia

Chapter 4

by Gert Slavenburg, Pieter v.d. Meulen, Yong Cho, Sang-Ju Park

41  CUSTOM OPERATIONS OVERVIEW

Custom operations in the TM1300 DSPCPU architecture
are specialized, high-function operations designed to
dramatically improve performance in important multime-
dia applications. When properly incorporated into appli-
cation source code, custom operations enable an appli-
cation to take advantage of the highly parallel TM1300
microprocessor implementation. Achieving a similar per-
formance increase through other means—e.g., execut-
ing a higher number of traditional microprocessor in-
structions per cycle—would be prohibitively expensive
for TM1300’s low-cost target applications.

Custom operations are simple to understand and consis-
tent in their definition, but their unusual functions make it
difficult for automatic code generation algorithms to use
them effectively. Consequently, custom operations are
inserted into source code by the programmer. To make
this process as painless as possible, custom operation
syntax is consistent with the C programming language,
and, just as with all other operations generated by the
compiler, the scheduler takes care of register allocation,
operation packing, and flow analysis.

41.1

For both general-purpose and embedded microproces-
sor-based applications, programming in a high-level lan-
guage is desirable. To effectively support optimizing
compilers and a simple programming model, certain mi-
croprocessor architecture features are needed, such as
alarge, linear address space, general-purpose registers,
and register-to-register operations that directly support
the manipulation of linear address pointers. A common
choice in microprocessor architectures is 32-bit linear
addresses, 32-bit registers, and 32-bit integer opera-
tions. TM1300 is such a microprocessor architecture.

Custom Operation Motivation

For the data manipulation in many algorithms, however,
32-bit data and operations are wasteful of expensive sil-
icon resources. Important multimedia applications, such
as the decompression of MPEG video streams, spend
significant amounts of execution time dealing with eight-
bit data items. Using 32-bit operations to manipulate
small data items makes inefficient use of 32-bit execution
hardware in the implementation. If these 32-bit resources
could be used instead to operate on four eight-bit data
items simultaneously, performance would be improved
by a significant factor with only a tiny increase in imple-
mentation cost.

Getting the highest execution rate from standard micro-
processor resources is one of the motivations behind
custom operations in TM1300. A range of custom opera-
tions is provided that each processes—simultaneously—
four 8-bit or two 16-bit data items. There is little cost dif-
ference between a standard 32-bit ALU and one that can
process either one pair of 32-bit operands or four pairs of
eight-bit operands, but there is a big performance differ-
ence for TM1300's target applications.

TM1300’s custom operations go beyond simply making
the best use of standard resources. Some custom oper-
ations combine several simple operations. These combi-
nations are tailored specifically to the needs of important
multimedia applications. Some high-function custom op-
erations eliminate conditional branches, which helps the
scheduler make effective use of all five operation slots in
each TM1300 instruction. Filling up all five slots is espe-
cially important in the inner loops of computational inten-
sive multimedia applications.

In short, custom operations help TM1300 reach its goals
of extremely high multimedia performance at the lowest
possible cost.

41.2

Table 4-1 and Table 4-2 contain two listings of the cus-
tom operations available in the TM1300 architecture.
Table 4-1 groups the custom operations by type of func-
tion while Table 4-2 lists the operations by operand size.
For more detailed information about the custom opera-
tions, Appendix A, “DSPCPU Operations for TM1300.”

Some operations exist in several versions that differ in
the treatment of their operands and results, and the mne-
monics for these versions make it easy to select the ap-
propriate operation. For example, the sum of products
operations all have “fir” in their mnemonics; the prefix
and suffix of the mnemonic expresses the treatment of
the operands and result. The ifir8ii operation treats both
of its operands as signed (ifir8ii) and produces a signed
result (ifir8ii). The ifir8iu operation treats its first operand
as signed (ifir8iu), the second as unsigned (ifir8iu), and
produces a signed result (ifir8iu). The ume8ii operation
implements an eight-bit motion-estimation; it treats both
operands as signed but produces an unsigned result.

Introduction to Custom Operations

The operations beginning with “dsp” implement a clip-
ping (sometimes called saturating) function before stor-
ing the result(s) in the destination register. Otherwise,
their naming follows the rules given above where appro-
priate. For example, the dspuquadaddui operation imple-
ments four 8-bit additions; it treats the first operand of
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Table 4-1. Key Multimedia Custom Operations Listed
by Function Type

each addition as unsigned, the second operand as
signed, and produces an unsigned result for each addi-
tion. Each result, which is computed with no loss of pre-

Function | Custom Op Description cision, is clipped into the representable range of a byte
0..255).
DSP dspiabs Clipped signed 32-bit absolute ( )
absolute value . . . .
value dspidualabs Dual dlipped absolute values of Table 4-2. Key Multimedia Custom Operations Listed
signed 16-bit halfwords by Operand Size
Shift dualasr dual-16 arithmetic shift right ) L
- — — - Op. Size Custom Op Description
Clip dualiclipi dual-16 clip signed to signed . . . . .
dualuclipi dual-16 clip signed to unsigned 32-bit dspiabs Clipped signed 32-bit abs value
Min,max | quadumax Unsigned bytewise quad max dspiadd Cl?pped S|gn'ed 32-bit édd
quadumin Unsigned bytewise quad min dspyadd Cl?pped u.n5|gned Sz_'b't agd
DSP add | dspiadd Clipped signed 32-bit add dspimul Clipped signed 32-bit multiply
dspuadd Clipped unsigned 32-bit add dspumul Clllpped unsigned 32-bit multi-
- - - ply
dspidualadd E#ﬁ;fgﬁ?ﬁg add of signed 16- dspisub Clipped signed 32-bit subtract
dspuquadaddui | Quad clipped add of unsigned/ dspusub t(r:ggfed unsigned 32-bit sub-
signed bytes
DSP dspimul Clipped signed 32-bit multiply 16-bit mergeduall6lsb | Merge dual-16 least-significant
. bytes
multiply ; ; i -
dspumul ;I;/pped unsigned 32-bit multi dualasr dual-16 arithmetic shift right
dspidualmul Dual clipped multiply of signed dualiclipi dual-16 clip signed to signed
16-bit halfwords dualuclipi dual-16 clip signed to unsigned
DSP dspisub Clipped signed 32-bit subtract dspidualmul Dual clipped multiply of signed
subtract  ["4spusub Clipped unsigned 32-hit sub- 16-bit halfwords
tract dspidualabs Dual clipped absolute values of
dspidualsub Dual clipped subtract of signed signed 16-bit halfwords
16-bit halfwords dspidualadd Dual clipped add of signed 16-
Sum of ifirl6 Signed sum of products of bit halfwords
products signed 16-bit halfwords dspidualsub Dual clipped subtract of signed
ifir8ii Signed sum of products of 16-bit halfwords
signed bytes ifirl6 Signed sum of products of
ifir8iu Signed sum of products of signed 16-bit halfwords
signed/unsigned bytes ufirle Unsigned sum of products of
ufirl6 Unsigned sum of products of unsigned 16-bit halfwords
unsigned 16-bit halfwords pack16lsb Pack least-significant 16-bit
ufir8uu Unsigned sum of products of halfwords
unsigned bytes packl6msb Pack most-significant 16-bit
Merge, mergeduall6lsb | Merge dual-16 least-significant halfwords
pack bytes
mergelsb Merge least-significant bytes
mergemsb Merge most-significant bytes
packl16lsb Pack least-significant 16-bit
halfwords
packl16msb Pack most-significant 16-bit
halfwords
packbytes Pack least-significant bytes
Byte guadavg Unsigned byte-wise quad aver-
averages age
Byte guadumulmsb | Unsigned quad 8-bit multiply
multiplies most significant
Motion umesii Unsigned sum of absolute val-
estima- ues of signed 8-bit differences
tion umesuu Unsigned sum of absolute val-
ues of unsigned 8-bit differ-
ences
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Table 4-2. Key Multimedia Custom Operations Listed
by Operand Size

Op. Size Custom Op Description
8-bit quadumax Unsigned bytewise quad max

quadumin Unsigned bytewise quad min

dspuquadaddui | Quad clipped add of unsigned/
signed bytes

ifir8ii Signed sum of products of
signed bytes

ifir8iu Signed sum of products of
signed/unsigned bytes

ufirBuu Unsigned sum of products of
unsigned bytes

mergelsb Merge least-significant bytes

mergemsb Merge most-significant bytes

packbytes Pack least-significant bytes

guadavg Unsigned byte-wise quad aver-
age

guadumulmsb Unsigned quad 8-bit multiply
most significant

umesii Unsigned sum of absolute val-
ues of signed 8-bit differences

ume8uu Unsigned sum of absolute val-
ues of unsigned 8-bit differ-
ences

4.1.3 Example Uses of Custom Ops

The next three sections illustrate the advantages of using
custom operations. Also, the more complex examples il-
lustrate how custom operations can be integrated into
application code by providing listings of C-language pro-
gram fragments. The examples progress in complexity
from simple to intricate; the most interesting examples
are taken from actual multimedia codes, such as MPEG
decompression.

42 EXAMPLE 1: BYTE-MATRIX
TRANSPOSITION

The goal of this example is to provide a simple, introduc-
tory illustration of how custom operations can significant-
ly increase processing speed in small kernels of applica-
tions. As in most uses of custom operations, the power
of custom operations in this case comes from their ability
to operate on multiple data items in parallel.

Imagine that our task is to transpose a packed, 4-by-4
matrix of bytes in memory; the matrix might, for example,
contain 8-bit pixel values. Figure 4-1 illustrates both the
organization of the matrix in memory and the task to be
performed in standard mathematical notation.

Performing this operation with traditional microprocessor
instructions is straight forward but time consuming. One
way to perform the manipulation is to perform 12 load-
byte instructions (since only 12 of the 16 bytes need to
be repositioned) and 12 store-byte instructions that place
the bytes back in memory in their new positions. Another
way would be to perform four load-word instructions, re-

Memory

Location
31 : 0 31 : 0

nt0:la b c d a e i m

n+4: e‘f‘g‘h Transpose b‘f‘j‘n

n+8: i‘j‘k‘| c‘g‘k‘o

n+12: m‘n‘o‘p d‘h‘l‘p
Row Major Column Major
abocd aeim
e f g h Transpose b f j n
i j ok cgko
mn o p dhiIlop

Figure 4-1. Byte-matrix transposition. Top shows
byte matrices packed into memory words; bottom
shows mathematical matrix representation.

position the bytes in registers, and then perform four
store-word instructions. Unfortunately, repositioning the
bytes in registers would require a large number of in-
structions to properly shift and mask the bytes. Perform-
ing the 24 loads and stores makes implicit use of the
shifting and masking hardware in the load/store units and
thus yields a shorter instruction sequence.

The problem with performing 24 loads and stores is that
loads and stores are inherently slow operations because
they must access at least the cache and possibly slower
layers in the memory hierarchy. Further, performing byte
loads and stores when 32-bit word-wide accesses run
just as fast wastes the power of the cache/memory inter-
face. We would prefer a fast algorithm that takes full ad-
vantage of cache/memory bandwidth while not requiring
an inordinate number of byte-manipulation instructions.

TM1300 has instructions that merge and pack bytes and
16-bit halfwords directly and in parallel. Four of these in-
structions can be applied in this case to speed up the ma-
nipulation of bytes that are packed into words.

Figure 4-2 shows the application of these instructions to
the byte-matrix transposition problem, and the left side of
Figure 4-3 shows a list of the operations needed to im-
plement the matrix transpose. When assembled into ac-
tual TM1300 instructions, these custom operations
would be packed as tightly as dependencies allow, up to
five operations per instruction.

Note that a programmer would not need to program at
this level (TM1300 assembler). The matrix transpose
would be expressed just as efficiently in C-language
source code, as shown on the right side of Figure 4-3.
The low-level code is shown here for illustration purpos-
es only.

The first sequence of four load-word operations in
Figure 4-3 brings the packed words of the input matrix
into registers R10, R11, R12, and R13. The next se-
guence of four merge operations produces intermediate
results into registers R14, R15, R16, and R17. The next
sequence of four pack operations could then replace the
original operands or place the transposed matrix in sep-
arate registers if the original matrix operands were need-
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Id32d(0) r100 - rlo0
|d32d(4) r100 -rll
Id32d(8) r100 - ri2
Id32d(12) r100 - rl3

mergemsb r10 r1l -
mergemsb r12 r13 -
mergelsb r10 r11 - rlé
mergelsb r12 r13 -
packl6msb r14 r15 -
packl6lsb r14 r15 -
packl16msb rl16 r17 - 120
packl6lsb r16 r17 -

st32d(0) r101 r18
st32d(4) r101 r19
st32d(8) r101 r20
st32d(12) r101 r21

char matrix[4][4];

int *m = (int *) matrix;

temp0 = MERGEMSB(m[0], m[1]);
templ = MERGEMSB(m[2], m[3]);
temp2 = MERGELSB(m[0], m[1]);
temp3 = MERGELSB(m[2], m[3]);
m[0] = PACK16MSB(temp0, temp1l);
m[1] = PACK16LSB(temp0, temp1l);
m[2] = PACK16MSB(temp2, temp3);
m[3] = PACK16LSB(temp2, temp3);

Figure 4-3. On the left is a complete list of operations to perform the byte-matrix transposition of

Figure 4-1

and Figure 4-2 . On the left is an equivalent C-language fragment.

ed for further computations (the TM1300 optimizing C
compiler performs this analysis automatically). In this ex-
ample, the transpose matrix is placed in registers R18,
R19, R20, and R21. The final four store-word operations
put the transposed matrix back into memory.

Thus, using the TM1300 custom operations, the byte-
matrix transposition requires four load-word operations
and four store-word operations (the minimum possible)
and eight register-to-register data-manipulation opera-
tions. The result is 16 operations, or byte-matrix transpo-
sition at the rate of one operation per byte.

While the advantage of the custom-operation-based al-
gorithm over the brute-force code that uses 24 load- and
store-byte instruction seems to be only eight operations
(a 33% reduction), the advantage is actually much great-
er. First, using custom operations, the number of memo-
ry references is reduced from 24 to eight (a factor of
three). Since memory references are slower than regis-
ter-to-register operations (such as the custom operations
in this example), the reduction in memory references is
significant.

Further, the ability of the TM1300 VLIW compilation sys-
tem to exploit the performance potential of the TM1300
microprocessor hardware is enhanced by the custom-
operation-based code. This is because it is easier for the
compilation system to produce an optimal schedule (ar-
rangement) of the code when the number of memory ref-
erences is in balance with the number of register-to-reg-
ister operations. The TM1300 CPU (like all high-
performance microprocessors) has a limit on the number

of memory references that can be processed in a single
cycle (two is the current limit). A long sequence of code
that contains only memory references can result in emp-
ty operation slots in the long TM1300 instructions. Empty
operation slots waste the performance potential of the
TM1300 hardware.

As this example has shown, careful use of custom oper-
ations has the potential to not only reduce the absolute
number of operations needed to perform a computation
but can also help the compilation system produce code
that fully exploits the performance potential of the
TM1300 CPU.

43 EXAMPLE 2: MPEG IMAGE
RECONSTRUCTION

The complete MPEG video decoding algorithm is com-
posed of many different phases, each with computational
intensive kernels. One important kernel deals with recon-
structing a single image frame given that the forward-
and backward-predicted frames and the inverse discrete
cosine transform (IDCT) results have already been com-
puted. This kernel provides an excellent opportunity to il-
lustrate of the power of TM1300’s specialized custom op-
erators.

In the code fragments that follow, the backward-predict-
ed block is assumed to have been computed into an ar-
ray back[], the forward-predicted block is assumed to
have been computed into forward[], and the IDCT results
are assumed to have been computed into idct][].

Row Major Column Major
abcd mergemsb —»[a eb f:| packlémsb —»|a e i m
e fgh b fjn
ij k| mergemsb —»[i m j n:| pack16lsb / cgko
mnop / dh !l p
mergelsb —»[c g d h:| packl16msb /
mergelsb —»[k o | p] pack16lsb

Figure 4-2. Application of merge and pack instructions to the byte-matrix transposition of

Figure 4-1.
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void reconstruct (unsigned char *back,
unsigned char *forward,
char *idct,
unsigned char *destination)

inti, temp;

for(i=0;i<64;i+=1)

if (temp > 255)
temp = 255;
else if (temp < 0)

temp = 0;

destination[i] = temp;
}
}

temp = ((back]i] + forward[i] + 1) >> 1) + idct[i];

Figure 4-4. Straightforward code for MPEG frame reconstruction.

A straightforward coding of the reconstruction algorithm
might look as shown in Figure 4-4. This implementation
shares many of the undesirable properties of the first ex-
ample of byte-matrix transposition. The code accesses
memory a byte at a time instead of a word at a time,
which wastes 75% of the available bandwidth. Also, in
light of the many quad-byte-parallel operations intro-
duced in Section 4.1.2, “Introduction to Custom Opera-
tions,” it seems inefficient to spend three separate addi-
tions and one shift to process a single eight-bit pixel.
Perhaps even more unfortunate for a VLIW processor
like TM1300 is the branch-intensive code that performs
the saturation testing; eliminating these branches could
reap a significant performance gain.

Since MPEG decoding is the kind of task for which
TM1300 was created, there are two custom operations—
quadavg and dspuquadaddui—that exactly fit this impor-
tant MPEG kernel (and other kernels). These custom op-
erations process four pairs of 8-bit pixel values in paral-
lel. In addition, dspuquadaddui performs saturation tests
in hardware, which eliminates any need to execute ex-
plicit tests and branches.

For readers familiar with the details of MPEG algorithms,
the use of eight-bit IDCT values later in this example may
be confusing. The standard MPEG implementation calls
for nine-bit IDCT values, but extensive analysis has
shown that values outside the range [-128..127] occur
so rarely that they can be considered unimportant. Pur-
suant to this observation, the IDCT values are clipped
into the eight-bit range [-128..127] with saturating arith-
metic before the frame reconstruction code runs. The as-
sumption that this saturation occurs permits some of
TM1300’s custom operations to have clean, simple defi-
nitions.

The first step in seeing how custom operations can be of
value in this case, is to unroll the loop by a factor of four.
The unrolled code is shown in Figure 4-5. This creates
code that is parallel with respect to the four pixel compu-
tations. As it is easily seen in the code, the four groups of
computations (one group per pixel) do not depend on
each other.

After some experience is gained with custom operations,
it is not necessary to unroll loops to discover situations
where custom operations are useful. Often, a good pro-
grammer with knowledge of the function of the custom
operations can see by simple inspection opportunities to
exploit custom operations.

To understand how quadavg and dspuquadaddui can be
used in this code, we examine the function of these cus-
tom operations.

The quadavg custom operation performs pixel averaging
on four pairs of pixels in parallel. Formally, the operation
of quadavg is as follows:

guadavg rscrl rsrc2 -> rdest

takes arguments in registers rsrcl and rsrc2, and it com-
putes a result into register rdest. rsrcl = [abcd], rsrc2 =
[wxyz], and rdest = [pgrs] where a, b, ¢, d, w, X, Yy, z, p, q,
r, and s are all unsigned eight-bit values. Then, quadavg
computes the output vector [pgrs] as follows:

p=(a+w+1)>>1

g=(b+x+1)>>1

r=(c+y+1)>>1

s=(d+z+1)>>1
The pixel averaging in Figure 4-5 is evident in the first
statement of each of the four groups of statements. The
rest of the code—adding idct[i] value and performing the
saturation test—can be performed by the dspuquadad-
dui operation. Formally, its function is as follows:

dspuquadaddui rsrcl rsrc2 -> rdest

takes arguments in registers rsrcl and rsrc2, and it com-
putes a result into register rdest. rsrcl = [efgh], rsrc2 =
[stuv], and rdest = [ijkl]] where e, f, g, h, i, j, k, and | are
unsigned 8-bit values; s, t, u, and v are signed 8-bit val-
ues. Then, dspuquadaddui computes the output vector
[ijkI] as follows:

i = uclipi(e + s, 255)

j = uclipi(f + t, 255)

k = uclipi(g + u, 255)

| = uclipi(h + v, 255)
The uclipi operation is defined in this case as it is for the
separate TM1300 operation of the same name described
in Appendix A, “DSPCPU Operations for TM1300,”. Its
definition is as follows:
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void reconstruct (unsigned char *back,
unsigned char *forward,
char *idct,
unsigned char *destination)

inti, temp;

for (i=0;i<64;i+=4)

if (temp > 255) temp = 255;
else if (temp < 0) temp = 0;
destination[i+0] = temp;

if (temp > 255) temp = 255;
else if (temp < 0) temp = 0;
destination[i+1] = temp;

if (temp > 255) temp = 255;
else if (temp < 0) temp = 0;
destination[i+2] = temp;

if (temp > 255) temp = 255;
else if (temp < 0) temp = 0;
destination[i+3] = temp;
}
}

temp = ((back[i+0] + forward[i+0] + 1) >> 1) + idct[i+0];

temp = ((back[i+1] + forward[i+1] + 1) >> 1) + idct[i+1];

temp = ((back[i+2] + forward[i+2] + 1) >> 1) + idct[i+2];

temp = ((back[i+3] + forward[i+3] + 1) >> 1) + idct[i+3];

Figure 4-5. MPEG frame reconstruction code using TM1300 custom operations; compare with

uclipi (m, n)

if (m < 0) return O;
else if (m > n) return n;
else return m;

To make is easier to see how these operations can sub-
sume all the code in Figure 4-5, Figure 4-6 shows the
same code rearranged to group the related functions.
Now it should be clear that the quadavg operation can re-
place the first four lines of the loop assuming that we can
get the individual 8-bit elements of the back[] and for-
ward[] arrays positioned correctly into the bytes of a 32-
bit word. That, of course, is easy: simply align the byte ar-
rays on word boundaries and access them with word (in-
teger) pointers.

Similarly, it should now be clear that the dspuquadaddui
operation can replace the remaining code (except, of
course, for storing the result into the destination[] array)
assuming, as above, that the 8-bit elements are aligned
and packed into 32-bit words.

Figure 4-7 shows the new code. The arrays are now ac-
cessed in 32-bit (int-sized) chunks, the loop iteration con-
trol has been modified to reflect the ‘four-at-a-time’ oper-
ations, and the quadavg and dspuquadaddui operations
have replaced the bulk of the loop code. Finally,
Figure 4-8 shows a more compact expression of the loop
code, eliminating the temporary variable. Note that
TM100 C compiler does the optimization by itself.

Again, note that the code in Figure 4-7 and Figure 4-8
assumes that the character arrays are 32-bit word

Figure 4-4 .

aligned and padded if necessary to fill an integral number
of 32-bit words.

The original code required three additions, one shift, two
tests, three loads, and one store per pixel. The new code
using custom operations requires only two custom oper-
ations, three loads, and one store for four pixels, which is
more than a factor of six improvement. The actual perfor-
mance improvement can be even greater depending on
how well the compiler is able to deal with the branches in
the original version of the code, which depends in part on
the surrounding code. Reducing the number of branches
almost always improves the chances of realizing maxi-
mum performance on the TM1300 CPU.

The code in Figure 4-8 illustrates several aspects of us-
ing custom operations in C-language source code. First,
the custom operations require no special declarations or
syntax; they appear to be simple function calls. Second,
there is no need to explicitly specify register assignments
for sources, destinations, and intermediate results; the
compiler and scheduler assign registers for custom oper-
ations just as they would for built-in language operations
such as integer addition. Third, the scheduler packs cus-
tom operations into TM1300 VLIW instructions as effec-
tively as it packs operations generated by the compiler
for native language constructs.

Thus, although the burden of making effective use of
custom operations falls on the programmer, that burden
consists only of discovering the opportunities for exploit-
ing the operations and then coding them using standard
C-language notation. The compiler and scheduler take
care of the rest.
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void reconstruct (unsigned char *back,
unsigned char *forward,
char *idct,
unsigned char *destination)

int i, temp0, templ, temp2, temp3;

for (i=0;i<64;i+=4)
tempO = ((back[i+0] + forward[i+0] + 1) >> 1);
templ = ((backli+1] + forward[i+1] + 1) >> 1);

temp2 = ((backli+2] + forward[i+2] + 1) >> 1);
temp3 = ((back[i+3] + forward[i+3] + 1) >> 1);

tempO += idct[i+0];
if (temp0 > 255) temp0 = 255;
else if (temp0 < 0) tempO0 = O;

templ += idct[i+1];
if (templ > 255) templ = 255;
else if (templ < 0) templ = 0;

temp2 += idct[i+2];
if (temp2 > 255) temp2 = 255;
else if (temp2 < 0) temp2 = 0O;

temp3 += idct[i+3];
if (temp3 > 255) temp3 = 255;
else if (temp3 < 0) temp3 = 0;

destination[i+0] = tempO;
destination[i+1] = temp1;
destination[i+2] = temp2;
destination[i+3] = temp3;
}
}

Figure 4-6. Re-grouped code of Figure 4-5.

char *idct,

inti, temp;
int*i_back = (int *) back;

int *i_forward = (int *) forward,;
int*i_idct = (int *) idct;

int *i_dest

for(i=0;i<16;i+=1)

i_dest[i] = temp;
}

void reconstruct (unsigned char *back,
unsigned char *forward,

unsigned char *destination)

= (int *) destination;

temp = QUADAVG(i_back]i], i_forward]i]);
temp = DSPUQUADADDUI(temp, i_idct][i]);

Figure 4-7. Using the custom operation dspquadaddui to speed up the loop of

44  EXAMPLE 3: MOTION-ESTIMATION

KERNEL

Another part of the MPEG coding algorithm is motion es-
timation. The purpose of motion estimation is to reduce
the cost of storing a frame of video by expressing the
contents of the frame in terms of adjacent frames. A giv-
en frame is reduced to small blocks, and a subsequent
frame is represented by specifying how these small
blocks change position and appearance; usually, storing
the difference information is cheaper than storing a

Figure 4-6 .

whole block. For example, in a video sequence where
the camera pans across a static scene, some frames can
be expressed simply as displaced versions of their pre-
decessor frames. To create a subsequent frame, most
blocks are simply displaced relative to the output screen.

The code in this example is for a match-cost calculation,
a small kernel of the complete motion-estimation code.
As with the previous example, this code provides an ex-
cellent example of how to transform source code to make
the best use of TM1300’s custom operations.

PRODUCT SPECIFICATION 4-7



TM1300 Data Book

Philips Semiconductors

void reconstruct (unsigned char *back,
unsigned char *forward,
char *idct,
unsigned char *destination)

t
Inti;
int *i_back = (int *) back;
int *i_forward = (int *) forward;
int *i_idct = (int *) idct;
int *i_dest = (int *) destination;

for (i=0;i<16;i+= 1)

i_dest[i] = DSPUQUADADDUI(QUADAVG(i_back(il, i_forward[il), i_idct[i]);

Figure 4-8. Final version of the frame-reconstruction code.

unsigned char A[16][16];
unsigned char B[16][16];

for (réw =0; row < 16; row += 1)

for (col = 0; col < 16; col += 1)
cost += abs(A[row][col] — B[row][col]);

Figure 4-9. Match-cost loop for MPEG motion estimation.

unsigned char A[16][16];
unsigned char B[16][16];

for (réw =0; row < 16; row +=1)

for (col = 0; col < 16; col += 4)

cost += abs(A[row][col+0] — B[row][col+0]);
cost += abs(A[row][col+1] — B[row][col+1]);
cost += abs(A[row][col+2] — B[row][col+2]);
cost += abs(A[row][col+3] — B[row][col+3]);

Figure 4-10. Unrolled, but not parallel, version of the loop from

Figure 4-9 shows the original source code for the match-
cost loop. Unlike the previous example, the code is not a
self-contained function. Somewhere early in the code,
the arrays A[l[] and B[][] are declared; somewhere be-
tween those declarations and the loop of interest, the ar-
rays are filled with data.

441

First, we will look at the simplest way to use a TM1300
custom operation.

A Simple Transformation

We start by noticing that the computation in the loop of
Figure 4-9 involves the absolute value of the difference
of two unsigned characters (bytes). By now, we are fa-
miliar with the fact that TM1300 includes a number of op-
erations that process all four bytes in a 32-bit word simul-
taneously. Since the match-cost calculation is
fundamental to the MPEG algorithm, it is not surprising

Figure 4-9.

to find a custom operation—ume8uu—that implements
this operation exactly.

To understand how ume8uu can be used in this case, we
need to transform the code as in the previous example.
Though the steps are presented here in detail, a pro-
grammer with a even a little experience can often per-
form these transformations by visual inspection.

To use a custom operation that processes 4 pixel values
simultaneously, we first need to create 4 parallel pixel
computations. Figure 4-10 shows the loop of Figure 4-9
unrolled by a factor of 4. Unfortunately, the code in the
unrolled loop is not parallel because each line depends
on the one above it. Figure 4-11 shows a more parallel
version of the code from Figure 4-10. By simply giving
each computation its own cost variable and then sum-
ming the costs all at once, each cost computation is com-
pletely independent.
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unsigned char A[16][16];
unsigned char B[16][16];

for (réw =0; row < 16; row += 1)

for (col = 0; col < 16; col +=4)

cost += cost0 + costl + cost2 + cost3;

cost0 = abs(A[row][col+0] — B[row][col+0]);
costl = abs(A[row][col+1] — B[row][col+1]);
cost2 = abs(A[row][col+2] — B[row][col+2]);
cost3 = abs(A[row][col+3] — B[row][col+3]);

Figure 4-11. Parallel version of  Figure 4-10.

unsigned char A[16][16];
unsigned char B[16][16];

unsig'ned char *CA = A,
unsigned char *CB = B;

for (row = 0; row < 16; row += 1)
int rowoffset = row * 16;

for (col = 0; col < 16; col +=4)

cost += cost0 + costl + cost2 + cost3;

cost0 = abs(CA[rowoffset + col+0] — CB[rowoffset + col+0]);
costl = abs(CA[rowoffset + col+1] — CB[rowoffset + col+1]);
cost2 = abs(CA[rowoffset + col+2] — CB[rowoffset + col+2]);
cost3 = abs(CA[rowoffset + col+3] — CB[rowoffset + col+3]);

Figure 4-13. The loop of Figure 4-11 recoded with one-dimensional array accesses.

Excluding the array accesses, the loop body in
Figure 4-11 is now recognizable as the function per-
formed by the ume8uu custom operation: the sum of 4
absolute values of 4 differences. To use the ume8uu op-
eration, however, the code must access the arrays with
32-bit word pointers instead of with 8-bit byte pointers.

Figure 4-13 shows the loop recoded to access A[][] and
B[]I[] as one-dimensional instead of two-dimensional ar-
rays. We take advantage of our knowledge of C-lan-
guage array storage conventions to perform this code
transformation. Recoding to use one-dimensional arrays
prepares the code for transformation to 32-bit array ac-
cesses.

(From here on, until the final code is shown, the declara-
tions of the A and B arrays will be omitted from the code
fragments for the sake of brevity.)

unsigned int *IA = (unsigned int *) A,
unsigned int *IB = (unsigned int *) B;

for(i=0;i<64;i+=1)
cost += UMESUU(IA[I], 1B[i]);

Figure 4-12. The loop of Figure 4-14 with the inner
loop eliminated.

Figure 4-14 shows the loop of Figure 4-13 recoded to
use ume8uu. Once again taking advantage of our knowl-
edge of the C-language array storage conventions, the
one-dimensional byte array is now accessed as a one-di-
mensional 32-bit-word array. The declarations of the
pointers A and IB as pointers to integers is the key, but
also notice that the multiplier in the expression for row
offset has been scaled from 16 to 4 to account for the fact
that there are 4 bytes in a 32-bit word.

Of course, since we are now using one-dimensional ar-
rays to access the pixel data, it is natural to use a single
for loop instead of two. Figure 4-12 shows this stream-
lined version of the code without the inner loop. Since C-
language arrays are stored as a linear vector of values,
we can simply increase the number of iterations of the
outer loop from 16 to 64 to traverse the entire array.

The recoding and use of the ume8uu operation has re-
sulted in a substantial improvement in the performance
of the match-cost loop. In the original version, the code
executed 1280 operations (including loads, adds, sub-
tracts, and absolute values); in the restructured version,
there are only 256 operations—128 loads, 64 ume8uu
operations, and 64 additions. This is a factor of five re-
duction in the number of operations executed. Also, the

PRODUCT SPECIFICATION 4-9



TM1300 Data Book

Philips Semiconductors

unsigned int *IA = (unsigned int *) A,;
unsigned int *IB = (unsigned int *) B;

for (row = 0; row < 16; row += 1)
int rowoffset = row * 4;

for (col4 = 0; col4 < 4; cold +=1)

cost += UMEBUU(IA[rowoffset + col4], IB[rowoffset + col4]);

Figure 4-14. The loop of Figure 4-13 recoded with 32-bit array accesses and the ume8uu custom operation.

overhead of the inner loop has been eliminated, further
increasing the performance advantage.

4.4.2

The code transformations of the previous section
achieved impressive performance improvements, but
given the VLIW nature of the TM1300 CPU, more can be
done to exploit TM1300’s parallelism.

More Unrolling

The code in Figure 4-12 has a loop containing only 4 op-
erations (excluding loop overhead). Since TM1300’s
branches have a 3-instruction delay and each instruction
can contain up to 5 operations, a fully utilized minimum-
sized loop can contain 16 operations (20 minus loop
overhead).

The TM1300 compilation system performs a wide variety
of powerful code transformation and scheduling optimi-
zations to ensure that the VLIW capabilities of the CPU
are exploited. It is still wise, however, to make program
parallelism explicit in source code when possible. Explicit
parallelism can only help the compiler produce a fast run-
ning program.

To this end, we can unroll the loop of Figure 4-12 some
number of times to create explicit parallelism and help
the compiler create a fast running loop. In this case,
where the number of iterations is a power-of-two, it
makes sense to unroll by a factor that is a power-of-two
to create clean code.

Figure 4-15 shows the loop unrolled by a factor of eight.
The compiler can apply common sub-expression elimi-
nation and other optimizations to eliminate extraneous
operations in the array indexing, but, again, improve-
ments in the source code can only help the compiler pro-
duce the best possible code and fastest-running pro-
gram.

Figure 4-16 shows one way to modify the code for sim-
pler array indexing.

unsigned int *IA = (unsigned int *) A,
unsigned int *IB = (unsigned int *) B;

for(i=0;i<64;i+=8)

{
cost0 = UMESUU(IA[i+0], IB[i+0]);
costl = UMESUU(IA[i+1], IB[i+1]);
cost2 = UMESUU(IA[i+2], IB[i+2]);
cost3 = UMESUU(IA[i+3], IB[i+3]);
cost4 = UMESUU(IA[i+4], I1B[i+4]);
cost5 = UMESUU(IA[i+5], IB[i+5]);
costé = UMEBSUU(IA[i+6], IB[i+6]);
cost7 = UMESUU(IA[i+7], IB[i+7]);

cost += cost0 + costl + cost2 +
cost3 + cost4 + cost5 +
cost6 + cost7;

}

Figure 4-15. Unrolled version of  Figure 4-12 . This
code makes good use of TM1300'’s VLIW capabili-
ties.

unsigned char A[16][16];
unsigned char B[16][16];

unsiglned int *IA = (unsigned int *) A;
unsigned int *IB = (unsigned int *) B;

for (i=0;i<64i+=8, IA+=8, IB +=

8)

{
cost0 = UMESUU(IA[0], IB[O]);
costl = UMESUU(IA[1], IB[1]);
cost2 = UMESUU(IA[2], IB[2]):;
cost3 = UMESUU(IA[3], IB[3]):;
cost4 = UMESUU(IA[4], IB[4]);
cost5 = UMESUU(IA[5], IB[5]);
cost6 = UMESUU(IA[6], IB[6]):
cost7 = UMESUU(IA[7], IB[7]);

cost += costO + costl + cost2 +
cost3 + cost4 + cost5 +
cost6 + cost7;

}

Figure 4-16. Code from Figure 4-15 with simplified
array index calculations.
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Chapter 5

51 MEMORY SYSTEM OVERVIEW

The high-performance video and audio throughput of
TM1300 is implemented by its DSPCPU and autono-
mous I/O and co-processing units, but the foundation of
this processing is the TM1300 memory hierarchy. To get
the full potential of the chip’s processing units, the mem-
ory hierarchy must read and write data (and DSP CPU
instructions) fast enough to keep the units busy.

To meet the requirements of its target applications,
TM1300's memory hierarchy must satisfy the conflicting
goals of low cost, simple system design (e.g., low parts
count), and high performance. Since multimedia video
streams can require relatively large temporary storage, a
significant amount of external DRAM is required. Mini-
mizing the cost of bulk memory is important.

TM1300’s memory system achieves a good compromise
between cost and performance by coupling substantial
on-chip caches with a glueless interface to synchronous
DRAM (SDRAM). SDRAM provides higher bandwidth
than standard DRAM for only a small cost premium. A
block diagram of the memory system is shown in
Figure 5-1. SDRAM permits TM1300 to use a narrower
and simpler interface than would be required to achieve
similar performance with standard DRAM.

The separate on-chip data and instruction caches serve
only the DSPCPU since the data access patterns of the
autonomous I/O and graphics units exhibit little or no lo-

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Three sets, each has address,

by Eino Jacobs

cality of reference (they access each piece of the multi-
media data stream only once in each operation).

Without the caches, the CPU would not be able to
achieve its performance potential. SDRAM has enough
bandwidth to handle serial streams of multimedia data,
but its bandwidth and latency are insufficient to satisfy
the CPU’s high rate of random data accesses and re-
peated instruction accesses.

Table 5-1. 100-MHz TM1300 memory bandwidth
parameters

Magnitude Use
2800 MB/s Instruction bandwidth (224 bits/instruction)
800 MB/s Data bandwidth (two 32-bit memory ports)
400 MB/s Main-memory bandwidth (one 32-bit port)

///: opcode, condition, and guard
Three

Table 5-1 shows bandwidth parameters for the TM1300
DSPCPU and the main-memory interface. Although 400
MB/s is a lot of bandwidth, it is clear that the SDRAM
alone cannot keep up with the CPU’s maximum require-
ments for instructions and data. Luckily, multimedia algo-
rithms resemble other computer programs in terms of lo-
cality of reference, so the on-chip caches typically supply
the majority of instructions and data to the DSPCPU. The
wide paths to the caches are matched to the bandwidth
requirements of the DSPCPU.

Internal data highway:
32-bit address, 32-bit
/ data

Main SDRAM
Memory Main
Memory

Two sets, each has a guard,
opcode, data, and two
address components

: — Branch 32KB, 8-way
' — Units Instruction

w Cache

| < — e COMpPressor

: VLIW N 224 bits of decompressed

! CPU instruction

‘ ) Two 16KB, 8-way
! Memory Data

| TN Units Cache

Main-memory bus:
glueless, SDRAM

control with 32-bit

data

To on-chip

I

I

Interface w

I

peripherals ‘

,,,,,,,,,,,,,,,,,,,

Figure 5-1. The main components of the TM1300 memory system.
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Table 5-2. Summary of memory system
characteristics

Unit Description

Branch units | Branch units execute branch operations. Up to
three branch operations can be executed in
parallel, but the program must guarantee that

only one branch is taken.

Decompres- | Instructions are stored in memory and in the

sion unit instruction cache in a space-saving, com-
pressed format. The decompression unit
expands instructions to their full, 28-byte size
before they are issued to the CPU.

Instruction The instruction cache holds 32 KB, is 8-way

cache set-associative, and has a 64-byte block size.
A miss in a block causes the entire block to be
read from SDRAM. The cache can sustain an
issue rate of one instruction per cycle on
cache hits.

Memory units | Memory units execute load and store opera-
tions. The data cache is dual ported to allow
the memory units to operate concurrently.

Data cache The data cache holds 16 KB, is 8-way set-
associative, has a 64-byte block size, and
implements a copyback, allocate-on-write pol-
icy. A miss in a block causes the entire block
to be read from SDRAM. The cache supports
memory-mapped I/O through non-cacheable

address regions.

Data highway | The on-chip data highway bus serves all on-
chip units. The highway has separate 32-bit
data and address buses. Bus bandwidth is
allocated by the highway arbiter according to
one of several modes.

Main-memory | The main-memory interface contains the data-
interface highway access arbiter, the SDRAM control-
ler, and MMIO logic.

SDRAM main | External SDRAM connects gluelessly to

memory TM1300 over the 32-bit main-memory bus.

To improve cache behavior and thus program perfor-
mance, the caches have a locking mechanism. In addi-
tion, the instruction cache is coupled with an instruction
decompression unit. The compressed instruction format
improves the cache hit rate and reduces the bus band-
width required between main memory and cache. In-
structions in main memory and cache use the com-
pressed format.

TM1300's processing units access the external SDRAM
through the on-chip central “data highway” bus. The

highway consists of separate 32-bit address and data
buses, and use of the bus is mediated by the main-mem-
ory interface unit. The main-memory interface contains
the SDRAM controller and a central arbiter that deter-
mines how much of the available SDRAM memory band-
width is allocated to each unit. Unused bandwidth is al-
ways made available to the VLIW CPU for cache refill
and memory accesses that bypass the caches.

Table 5-2 gives a summary description of each compo-
nent of TM1300’s memory system.

52 DRAMAPERTURE

TM1300 implements a 32-bit linear address space of
bytes. Within that address space, TM1300 supports sev-
eral different apertures for specific purposes. The DRAM
aperture describes the part of the address space into
which the external SDRAM is mapped. SDRAM must
consist of a single, contiguous region of memory, which
is the most practical configuration for TM1300 systems.

The location and size of the DRAM aperture is defined by
two registers, DRAM_BASE and DRAM_LIMIT. These
registers are both readable and writeable as MMIO reg-
isters and as PCI configuration space registers. The view
of the registers in MMIO space is shown in Figure 5-2.
The view of the registers in PCI configuration space is
described in Chapter 11, “PClI Interface.” In normal oper-
ation, the base address registers are assigned once dur-
ing boot and not changed when the DSPCPU is running.
Refer to Chapter 11, “PCI Interface,” and Chapter 13,
“System Boot,” for a description of this process.

DRAM_LIMIT must be set equal to DRAM_BASE plus
the actual size of SDRAM present. The amount of the
SDRAM is not required to be a power of 2, but it must be
a multiple of 64 KB. Note that the size of the aperture as
set in the PCI configuration space can be larger, be-
cause it must be a power of 2.

A memory operation will access SDRAM if its address
satisfies:

[DRAM_BASE] < address < [DRAM_LIMIT]
Any address outside this range cannot access SDRAM.

When TM1300 is reset, DRAM_BASE_FIELD is set to
0x0 and DRAM_LIMIT is set to 0x0010 0000 (1-MB
DRAM aperture starting at address 0x0). The boot pro-
cess described in Chapter 13, “System Boot,” overrides
these initial settings.

MMIO_BASE
offset:

0x10 0000

, . . ‘27‘ . ‘23‘ . . 19 15 11 7 3 4]
DRAM_BASE (riw) | DRAM_BASE_FIELD [o[o]o[o]o]o[o]o]o]o]o]o]o]o]o]o]o]o]o]0]

0x10 0004  DRAM_LIMIT (r/w)

T T T T T T T T
‘ DRAM_LIMIT_FIELD

~ lofo]o]o]o[o[o[o[o]o]o]0]o]0]o[o]

Figure 5-2. Formats of the DRAM_BASE and DRAM_LIMIT registers.
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5.3 DATA CACHE

The data cache serves only the DSPCPU and is con-
trolled by two memory units that execute the load and
store operations issued by the DSPCPU. The following
sections describe the data cache and its operation;
Table 5-3 summarizes the important characteristics for
easy reference.

Table 5-3. Summary of data cache characteristics

Characteristic TM1300 Implementation

Cache size 16 KB

Cache associativity | 8-way set-associative

Block size 64 bytes

Valid bits One valid bit per 64-byte block

Dirty bits One dirty bit per 64-byte block

Miss transfer order | Miss transfers begin with the critical
word first

Replacement poli- | Copyback, allocate on write, hierarchical

cies LRU

Endianness Either little- or big-endian, determined
by PCSW bit

Ports The cache is quasi dual ported; two
accesses can proceed concurrently if
they reference different banks (deter-
mined by bits [4:2] of the computed
addresses)

Alignment Access must be naturally aligned (32-bit

words on 32-bit boundaries, 16-bit half-
words on 16-bit boundaries); the appro-
priate number of LSBs of un-naturally
aligned addresses are set to zero.

For misaligned stores, PCSW.MSE is
asserted to generate an exception

Partial word opera- | The cache implements 8-bit and 16-bit

53.1

The TM1300 data cache is 16 KB in size with a 64-byte
block size. Thus, it contains 256 blocks each with its own
address tag. The cache is 8-way set-associative, so
there are 32 sets, each containing 8 tags. A single valid
bit is associated with a block, so each block and associ-
ated address tag is either entirely valid in the cache or in-
valid. On a cache miss, 64 bytes are read from SDRAM
to make the entire block valid.

General Cache Parameters

Each block also contains a dirty bit, which is set whenev-
er a write to the block occurs. Each set contains 10 bits
to support the hierarchical LRU replacement policy.

The geometry of the data cache is available to software
by reading the MMIO register DC_PARAMS. Figure 5-3
shows the format of the DC_PARAMS register;
Table 5-4 lists its field values. The product of block size,
associativity, and number of sets gives the total cache
size (16 KB in this case).

Table 5-4. DC_PARAMS field values

Field Name Value
BLOCK SIZE 64
ASSOCIATIVITY 8
NUMBER_OF_SETS 32

53.2

TM1300 data addresses are mapped onto the data
cache storage structure as shown in Figure 5-4. A data
address is partitioned into four fields as described in
Table 5-5.

Address Mapping

Table 5-5. Data address field partitioning

tions accesses with the same performance as
32-bit accesses Field Adgirtiss Purpose
Operation latency | Three cycles for both load and store
operations Byte 1.0 Byte offset within a word for byte or half-
Coherency enforce- | Software uses special operations to word accesses
ment enforce cache coherency Word 5.2 Selects one of the words in a set (one of
Cache locking Up to 1/2 (four out of 8 blocks of each 16 words in the case of TM1300)
set) of the cache contents can be Set 10..6 | Selects one of the sets in the cache (one
locked; granularity is 64-byte of 32 in the case of TM1300)
Non-cacheable One non-cacheable aperture in the Tag 31..11 | Compared against address tags of set
region DRAM address space is supported. members
MMIO_BASE
OffSEt: 31 T T I27I 23\ T T \19\ 15\ T T \11 T T 7\ T T T 3\ T T 0
0x10 001C DC_PARAMS (r/o) | | BLOCKSIZE ASSOCIATIVITY] NUMBER_OF_SETS
Figure 5-3. Format of the DC_PARAMS register.
31\ T T \11 10\ T T T T T T 2 1 T 0
Data Cache Address ‘ Tag Set Word ‘ Byte ‘

Figure 5-4. Data cache address partitioning.
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5.3.3

When a miss occurs, the data cache fills the block con-
taining the requested word from the critical word first.
The CPU is stalled until the first word is transferred. The
block is then filled up while the CPU keeps running.

Miss Processing Order

534

The cache implements a copyback replacement policy
with one dirty bit per 64-byte block. Thus, when a miss
occurs and the block selected for replacement has its
dirty bit set, the dirty block must be written to main mem-
ory to preserve its modified contents. On TM1300, the
dirty block is written to memory before the needed block
is fetched.

Replacement Policies, Coherency

Coherency is not maintained in any way by hardware be-
tween the data cache, the instruction cache, and main
memory. Special operations are available to implement
cache coherency in software. See Section 5.6, “Cache
Coherency,” for a discussion of coherency issues.

Write misses are handled with an allocate-on-write poli-
cy—the write that caused the miss stores its data in the
cache after the missing block is fetched into the cache.

The cache implements a hierarchical LRU replacement
algorithm to determine which of the eight elements
(blocks) in a set is replaced. The algorithm partitions the
eight set elements into four groups, each group with two
elements. The hierarchical LRU replacement victim is
determined by selecting the least-recently used group of
two elements and then selecting the least-recently used
element in that group. This hierarchical algorithm yields
performance close to full LRU but is simpler to imple-
ment.

See Section 5.5, “LRU Algorithm,” for a full discussion of
the LRU algorithm.

5.3.5  Alignment, Partial-Word Transfers,

Endian-ness

The cache implements 32-bit word, 16-bit half-word, and
8-bit byte transfers. All transfers, however, must be to
addresses that are naturally aligned; that is, 32-bit words
must be aligned on 32-bit boundaries, and 16-bit half-
words must be aligned on 16-bit boundaries.

Like other TM1300 processing units, the CPU has the
capability to use either big- or little-endian byte order. It
is recommended that all units and the CPU run with the
same endian-ness. Detailed endian-ness description
can be found in Appendix C, “Endian-ness.”

5.3.6

To allow two accesses to proceed in parallel, the data
cache is quasi-dual ported. The cache is implemented as
eight banks of single-ported memory, but the hardware
allows each bank to operate independently. Thus, when
the addresses of two simultaneous accesses select two
different banks, both accesses can complete simulta-
neously. Bank selection is determined by the three low-
order address bits [4..2] of each address. Thus, the

Dual Ports

words in a 64-byte cache block are distributed among the
eight blocks, which prevents conflicts between two simul-
taneously issued accesses to adjacent words in a cache
block. The TM1300 compiling system attempts to avoid
bank conflicts as much as possible.

The dual-ported cache can execute the load and store
opcodes (ild8d, uld8d, ild16d, uld16d, 1d32d, h_st8d,
h_st16d, h_st32d, ild8r, uld8r, ild16r, uldl6r, 1d32r,
ild16x, uld16x, 1d32x) in either or both of the two ports.

The special opcodes alloc, dcb, dinvalid, pref, rdtag and
rdstatus can only be executed in the second port, not in
the first port. Whenever any of these special opcodes is
issued in the second port, there should not be a concur-
rent load or store operation in the first. This is a special
scheduling constraint.

5.3.7

The data cache allows the contents of up to one-half of
its blocks to be locked. Thus, on TM1300, up to 8 KB of
the cache can be used as a high-speed local data mem-
ory. Only four out of eight blocks in any set can be
locked.

Cache Locking

A locked block is never chosen as a victim by the re-
placement algorithm; its contents remain undisturbed
until either (1) the block’s locked status is changed ex-
plicitly by software, or (2) a dinvalid operation is executed
that targets the locked block.

Cache locking occurs only for the data in the address
range  described by the MMIO  registers
DC_LOCK_ADDR and DC_LOCK_SIZE. The granulari-
ty of the address range is one 64-byte cache block. The
MMIO register DC_LOCK_CTL contains the cache-lock-
ing enable bit DC_LOCK_ENABLE. Figure 5-5 shows
the layout of the data-cache lock registers. Locking will
occur for an address if locking is enabled and both of the
following are true:

1. The address is greater than or equal to the value in
DC_LOCK_ADDR.

2. The address is less than the sum of the values in
DC _LOCK_ADDR and DC_LOCK_SIZE.

Programmers (or compilers) must combine all data that
needs to be locked into this single linear address range.

Setting DC_LOCK_ENABLE to ‘1’ causes the following
sequence of events:

1. All blocks that are in cache locations that will be used
for locking are copied back to main memory (if they
are dirty) and removed from the cache.

2. All blocks in the lock range are fetched from main
memory into the cache. If any block in the lock range
was already in the cache, it's first copied back into
main memory (if it's dirty) and invalidated.

3. The LRU status of any set that contains locked blocks
is set to the initialization value.

4. Cache locking is activated so that the locked blocks
cannot be victims of the replacement algorithm.

This sequence of events is triggered by writing ‘1’ to
DC_LOCK_ENABLE even if the enable is already set to
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MMIO_BASE
offset:

APERTURE_CONTROL

31 27 23 19 15 11 7
0x100010  DC_LOCK CTL(w) [o]o[o]o[o]o[o]o[o]o[o]o]o]o[o]o]o]o[o]o]o]o]0]o]0

3

5 3 0
T T T
‘ reserved ‘ ‘

DC_LOCK_ENABLE—

0x10 0014  DC_LOCK_ADDR (r/w) |

DC_LOCK_ADDRESS

[ofofo]ofoo]o[o[o[o[o]o]o]o]

0x10 0018  DC_LOCK_SIZE (r/w)

lo[o]o]o[o]o]o[o[o]o]o]o]o[o]0]o]o]o]0] Dc Lock size [o]o]o]o[o]o]

Figure 5-5. Formats of the registers in charge of data-cache locking.

‘1. Setting DC_LOCK_ENABLE to ‘0’ causes no action
except to allow the previously locked blocks to be re-
placement victims.

To program a new lock range, the following sequence of
operations is used:

1. Disable cache locking by writing ‘0’ to
DC_LOCK_ENABLE.

2. Define a new lock range by writing to
DC _LOCK_ADDR and DC_LOCK_SIZE.

3. Enable cache locking by writing ‘1’ to
DC_LOCK_ENABLE.

Dirty locked blocks can be written back to main memory
while locking is enabled by executing copyback opera-
tions in software.

Programmer’s note: Software should not execute din-
valid operations on a locked block. If it does, the block
will be removed from the cache, creating a ‘hole’ in the
lock range (and the data cache) that cannot be reused
until locking is deactivated.

Cache locking is disabled by default when TM1300 is re-
set.

The RESERVED field in DC_LOCK_CTL should be ig-
nored on reads and written as all zeroes.

Locking should not be enabled by PCI accesses to the
MMIO registers.

5.3.8 Memory Hole and PCI Aperture

Disable

Bits 6 and 5 in DC_LOCK CTL comprise the
APERTURE_CONTROL field. This field can be used to
change the memory map as seen by the DSPCPU. The
hardware RESET value of the field corresponds to the
memory map as described in Section 3.4.1, “Memory
Map.”

Table 5-6. Aperture control field

Value Memory map properties

00 (RESET) | Normal operation memory map (Section 3.4.1):

« loads to 0..0xff always return O and cause no
PCI read (memory hole is enabled)

« PCI aperture(s) are enabled

01 * |oads to address 0..0xff cause a PClread, i.e.
the memory hole is disabled
* PCI aperture(s) are enabled

10 PCI apertures are disabled for loads
¢ loads return a 0 and cause no PCl read
11 RESERVED for future extensions
5.3.9 Non-cacheable Region

The data cache supports one non-cacheable address re-
gion within the DRAM address space aperture. The base
address of this region is determined by the value in the
DRAM_CACHEABLE_LIMIT MMIO register, which is
shown in Figure 5-6. Since uncached memory opera-
tions always incur many stall cycles, the non-cacheable
region should be used sparingly.

A memory operation is non-cacheable if its target ad-
dress satisfies:

[dram_cacheable_limit] <= address < [dram_limit]

Thus, the non-cacheable region is at the high end of the
DRAM aperture. The format of the
DRAM_CACHEABLE_LIMIT register forces the size of
the non-cacheable region to be a multiple of 64 KB.

When TM1300 is reset, DRAM_CACHEABLE_LIMIT is
set equal to DRAM_LIMIT, which results in a zero-length
non-cacheable region.

Programmer’s note: When DRAM_CACHEABLE_LIMIT
is changed to enlarge the region that is non-cacheable,
software must ensure coherency. This is accomplished
by explicitly copying back dirty data (using dcb opera-
tions) and invalidating (using dinvalid operations) the
cache blocks in the previously unlocked region.

MMIO_BASE
OffSEt 31 , , , , 27‘ , , , 23‘ , , , 19‘ , , 15 11 7 3 0
0x10 0008 DRAM_CACHEABLE_LIMIT | DRAM_CACHEABLE_LIMIT_FIELD [o[o]o]o[o]o]o]o]o]o]o]o]o]o]0]0]

(r/w)

Figure 5-6 Formats of the DRAM_CACHEABLE_LIMIT register.
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5.3.10 Special Data Cache Operations

A program can exercise some control over the operation
of the data cache by executing special operations. The
special operations can cause the data cache to initiate
the copyback or invalidation of a block in the cache.
These operations are typically used by software to keep
the cache coherent with main memory.

In addition, there are special operations that allow a pro-
gram to read tag and status information from the data
cache.

Special data cache operations are always executed on
the memory port associated with issue slot 5.
5.3.10.1

The data cache controller recognizes a copyback and an
invalidate operation as shown in Table 5-7.

Copyback and invalidate operations

Table 5-7. Copyback and invalidate operations

Mnemonic Description

dcb(offset) rsrc1 Data-cache copyback block. Causes
the block that contains the target
address to be copied back to main

memory if the block is valid and dirty.

dinvalid(offset) rsrc1 | Data-cache invalidate block. Causes
the block that contains the target
address to be invalidated. No copy-
back occurs even if the block is dirty.

The dcb and dinvalid operations both compute a target
word address that is the sum of a register and seven-bit
offset. The offset can be in the range [-256..252] and
must be divisible by four.

dcb operation. The dcb operation computes the target
address, and if the block containing the address is found
in the data cache, its contents are written back to main
memory if the block is both valid and dirty. If the block is
not present, not valid, or not dirty, no action results from
the dcb operation. If the dcb causes a copyback to occur,
the CPU is stalled until the copyback completes. If the
block is not in cache, the operation causes no stall cy-
cles. If the block is in cache but not dirty, the operation
causes 4 stall cycles. If the block is dirty, the dcb opera-
tion causes a writeback and takes at least 19 stall cycles.

The dcb operation clears the dirty bit but leaves a valid
copy of the written-back block in the cache.

dinvalid operation. The dinvalid operation computes
the target address, and if the block containing the ad-
dress is found in the data cache, its valid and dirty bits

are cleared. No copyback operation will occur even if the
block is valid and dirty prior to executing the dinvalid op-
eration. The CPU is stalled for 2 cycles, if the target block
is in the cache; otherwise, no stall cycles occur.

A dinvalid or dcb operation updates the LRU information
to least recently used in its set.

Programmer’s note: Software should not execute din-
valid operations on locked blocks; otherwise, a ‘hole’ is
created that cannot be reused until locking is deactivated.
5.3.10.2 Data cache tag and status
operations

The data cache controller recognizes two DSPCPU op-
erations for reading cache status as shown in Table 5-8.

The rdtag and rdstatus operations both compute a target
word address that is the sum of a register and scaled
seven-bit offset. The offset must be divisible by four and
in the range [-256..252].

Table 5-8. Cache read-status operations

Mnemonic Description

rdtag(offset) rsrc1 Read data-cache tag. The target
address selects a data-cache block
directly; the operation returns a 32-bit
result containing the 21-bit cache tag

and the valid bit.

rdstatus(offset) rsrc1 | Read data-cache status. The target
address selects a data-cache set
directly; the operation returns a 32-bit
result containing the set’s eight dirty
bits and ten LRU bits.

rdtag operation. The target address computed by rdtag
selects the data cache block by specifying the cache set
and set element directly. Address bits [10..6] specify the
cache set (one of 32), and bits [13..11] specify the set el-
ement (one of eight). All other target address bits are ig-
nored. This operation causes no CPU stall cycles.

The result of the rdtag operation is a full 32-bit word with
the format shown in Figure 5-7.

rdstatus operation. The target address computed by rd-
status selects the data cache set by specifying the set
number directly. Address bits [10..6] specify the cache
set (one of 32); all other target address bits are ignored.
This operation causes 1 CPU stall cycle.

The result of the rdstatus operation is a full 32-bit word
with the format shown in Figure 5-7. See Section 5.6.7,
“LRU Bit Definitions,” for a description of the LRU bits.

9
T T T T

31 27 23 .
rdtag Result Format ‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘ ‘

L—vALD

rdstatus Result Format \o\o\0\0\0\0\0\0\0\0\0\0\0\0\

T T T
DIRTY

Figure 5-7. Result formats for rdtag and rdstatus operations.
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5.3.10.3

The data cache controller recognizes allocation opera-
tions as shown in Table 5-9. The allocation operations al-
locate a block and set the status of this block to valid. No
data is fetched from main memory. The allocated block
is undefined after this operation. The programmer has to
fill it with valid data by store operations. Allocation oper-
ations to apertures other than cacheable DRAM will be
discarded. Allocation of a non-dirty block causes 3 stall
cycles. Allocation of a dirty block will cause writeback of
this block to the SDRAM and take at least 11 stall cycles.

Data cache allocation operation

Table 5-9. Data cache allocation operations

Mnemonic Description

Data-cache allocate block with dis-
placement. Causes the block with
address (rsrcl+offset) &
(~(cache_block_size - 1)) to be allo-
cated and set valid.

allocd(offset) rsrcl

Data-cache allocate block with index.
Causes the block with address
(rsrcl+rsrc2) & (~(cache_block_size -
1)) to be allocated and set valid.

Data-cache allocate block with scaled
index. Causes the block with address
(rsrcl + 4 *rsrc2) &
(~(cache_block_size - 1)) to be allo-
cated and set valid.

allocr rsrcl rsrc2

allocx rsrcl rsrc2

5.3.10.4

The data cache controller recognizes prefetch opera-
tions as shown in Table 5-10. The prefetch operations
load a full cache block from memory concurrently with
other computation. If the prefetched block is already in
cache, no data is fetched from main memory. Prefetch
operations to other apertures than cacheable DRAM are
discarded. This operation is not guaranteed to execute,
it will not execute if the cache is already occupied with
two cache misses when the operation is issued. The
prefetch operations cause 3 stall cycles if there is no
copyback of a dirty block. If a dirty block is the target of
the prefetch, the dirty block will be written back to
SDRAM, and at least 11 stall cycles are taken.

Data cache prefetch operation

53.11

The TM1300 memory system implements traditional or-
dering for memory operations that are issued in different
clock cycles. That is, the effects of a memory operation
issued in cycle j occur before the effects of a memory op-
eration issued in cycle j+1.

Memory Operation Ordering

For memory operations issued in the same cycle, how-
ever, it is not possible to execute memory operations in
a traditional order. So long as the simultaneous memory
operations access different addresses (aliasing is not
possible in TM1300), no problems can occur. If two si-
multaneous operations do access the same address,
however, TM1300 behavior is undefined. Specifically,
two cases are possible:

Table 5-10. Data cache prefetch operations

Mnemonic Description

prefd(offset) rsrc1 Data-cache prefetch block with dis-
placement. Causes the block with
address (rsrcl+offset) &
(~(cache_block_size - 1)) to be

prefetched

prefr rsrcl rsrc2 Data-cache prefetch block with index.
Causes the block with address
(rsrcl+rsrc2) & (~(cache_block_size -

1)) to be prefetched.

prefléx rsrcl rsrc2 Data-cache prefetch block with scaled
16-bit index. Causes the block with
address (rsrcl + 2 * rsrc2) &
(~(cache_block_size - 1)) to be

prefetched.

pref32x rsrcl rsrc2 Data-cache prefetch block with scaled
32-bit index. Causes the block with
address (rsrcl + 4 * rsrc2) &

(~(cache_block_size - 1)) to be

prefetched.

1. When multiple values are written to the same address
in the same cycle, the resulting value in memory is un-
defined.

2. When a read and a write occur to the same address
in the same clock cycle, the value returned by the
read is undefined.

The behavior of simultaneous accesses to the same ad-
dress is undefined regardless of whether one or both
memory operations hit in the cache.

Hidden Memory System Concurrency . Some cache
operations may be overlapped with CPU execution. In
general, a program cannot determine in what order
cache misses will complete nor can a program determine
when and in what order copyback operations will com-
plete. A program can, however, enforce the completion
of copyback transactions to main memory because copy-
back and invalidate operations can complete only if
pending copyback transactions for the same block have
completed. Thus, a program can synchronize to the com-
pletion of a copyback operation by dirtying a block, issu-
ing a copyback operation for the block, and then issuing
an invalidate operation for the block.

Ordering Of Special Memory Operations.  The follow-

ing are special memory operations:

1. Loads or stores to MMIO addresses.

2. Non-cached loads or stores.

3. Any copyback or invalidate operation.

4. Loads or stores that cause a PCl-bus access.

The CPU is stalled until these special memory opera-
tions are completed; there is no overlap of CPU execu-
tion with these special memory operations. Thus, a pro-
grammer can assume that traditional memory operation
ordering applies to special memory operations. Note,
however, that ordering is undefined for two special mem-
ory operations issued in the same cycle.
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5.3.12 Operation Latency

Load and store operations have an operation latency of
three cycles, regardless of the size of the data transfer.

5.3.13 MMIO Register References

Memory operations that reference MMIO registers are
not cached, and the CPU is stalled until the MMIO refer-
ence completes. A MMIO register reference occurs when
an address is in the range:

[MMIO_BASE] < address < ([MMIO_BASE] + 0x200000)
The size of the MMIO aperture is hardwired at 2 MB.

5.3.14 PCI Bus References

Any CPU memory operation that references an address
outside the SDRAM and MMIO address apertures is as-
sumed to reference a device or memory on the PCI bus.
PCl-bus data transfers are not cached, and the CPU is
stalled until the PCI transfer completes.

5.3.15 CPU Stall Conditions

The data cache causes the CPU to stall when:

1. Any cache miss occurs.

2. Two simultaneously issued, cacheable memory oper-
ations need to access the same cache bank (bank
conflict).

3. An access that references an address in the MMIO
aperture is issued.

4. An access to the PCI bus is issued.

5. A non-trivial copyback or invalidate operation is is-
sued.

6. An access to the non-cacheable region in the DRAM
aperture is issued.

5.3.16 Data Cache Initialization

When TM1300 is reset, the data cache executes an ini-
tialization sequence. The cache asserts the CPU stall
signal while it sequentially resets all valid and dirty bits.
The cache de-asserts the stall signal after completing the
initialization sequence.

54  INSTRUCTION CACHE

The instruction cache stores compressed CPU instruc-
tions; instructions are decompressed before being deliv-
ered to the CPU. The following sections describe the in-
struction cache and its operation; Table 5-11
summarizes instruction-cache characteristics.

Table 5-11. Instruction cache characteristics

Characteristic TM1300 Implementation
Cache size 32 KB
Cache associativity | 8-way set-associative
Block size 64 bytes
Valid bits One valid bit per 64-byte block

Replacement policy | Hierarchical LRU (least-recently used)
among the eight blocks in a set

Branch delay is three cycles

Coherency enforce- | Software uses a special operation to
ment enforce cache coherency

Cache locking

Operation latency

Up to 1/2 (four out of eight blocks of
each set) of the cache contents can be
locked; granularity is 64 bytes

54.1 General Cache Parameters

The TM1300 instruction cache is 32 KB in size with a 64-
byte block size. Thus, the cache contains 512 blocks
each with its own address tag. The cache is 8-way set-
associative, so there are 64 sets, each containing 8 tags.
A single valid bit is associated with a block, so each block
and associated address tag is either entirely valid or in-
valid; on a cache miss, 64 bytes are read from SDRAM
to make the entire block valid.

The geometry of the instruction cache is available to soft-
ware by reading the MMIO register IC_PARAMS.
Figure 5-8 shows the format of the IC_PARAMS register;
Table 5-12 lists its field values.

The product of the block size, associativity, and humber
of sets gives the total cache size (32 KB in this case).

Table 5-12. IC_PARAMS field values

Field Name Value
BLOCKSIZE 64
ASSOCIATIVITY 8
NUMBER_OF_SETS 64

54.2

TM1300 instruction addresses are mapped onto the data
cache storage structure as shown in Figure 5-9. An in-
struction address is partitioned into three fields as de-
scribed in Table 5-13

Address Mapping

MMIO_BASE
Offset: 31 T T T 27| T T T T 19\ 15\ T T T 11 T T T 7 T T T T 3 T T T 0
0x10 0020 IC_PARAMS (/o) | \ BLOCKSIZE ASSOCIATVITY] NUMBER_OF SETS

Figure 5-8. Format of the instruction-cache parameters register.
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Table 5-13. Instruction Address Field Partitioning

. Address
Field Bits Purpose
Offset 5..0 Byte offset into a set
Set 11..6 Selects one of the sets in the cache (one
of 64 in the case of TM1300)
Tag 31..12 | Compared against address tags of set
members

543

When a miss occurs, the instruction cache starts filling
the requested block from the beginning of the block. The
DSPCPU is stalled until the entire block is fetched and
stored in the cache.

Miss Processing Order

544

The hierarchical LRU replacement policy implemented
by the instruction cache is identical to that implemented
by the data cache. See Section 5.3.4, “Replacement Pol-
icies, Coherency,” for a description of the hierarchical
LRU algorithm.

Replacement Policy

545

All program code must first be loaded into SDRAM. The
instruction cache cannot fetch instructions from other
memories or devices. In particular, the cache cannot
fetch code from on-chip devices or over the PCI bus.

Location of Program Code

5.4.6

The instruction cache is closely coupled to three branch
units. Each unit can accept a branch independently, so
three branches can be processed simultaneously in the
same cycle.

Branch Units

Branches in TM1300 are called ‘delayed branches’ be-
cause the effect of a successful (taken) branch is not
seen in the flow of control until some number of cycles af-
ter the successful branch is executed. The number of cy-
cles of latency is called the branch delay. On TM1300,
the branch delay is three cycles.

Although three branches can be executed simultaneous-
ly, correct operation of the DSPCPU requires that only
one branch be successful (taken) in any one cycle.
DSPCPU operation is undefined if more than one con-
current branch operation is successful.

Each branch unit takes four inputs from the DSPCPU:
the branch opcode, a guard bit, a branch condition, and
a branch target address. A branch is deemed successful
if and only if the opcode is a branch opcode, the guard bit
is TRUE (i.e., = 1), and the condition (determined by the
opcode) is satisfied.

5.4.7

A program can exercise some control over the operation
of the instruction cache by executing the special iclr op-
eration. This operation causes the instruction cache to
clear the valid bits for all blocks in the cache, including
locked blocks. The LRU replacement status of all blocks
is reset to its initial value. The CPU is stalled while iclr is
executing.

Coherency: Special iclr Operation

See Section 5.6, “Cache Coherency,” for further discus-
sion of coherency issues.

54.8

The instruction cache supports read access to its tag and
status bits, but not through special operations as with the
data cache. Since the instruction cache and branch units
can execute only resultless operations, access to the in-
struction-cache tags and status bits is implemented us-
ing normal load operations executed by the DSPCPU
that reference a special region in the MMIO address ap-
erture. The region is 64 KB long and starts at
MMIO_BASE. Instruction cache tags and status bits are
read-only; store operations to this region have no effect.
MMIO operations to this special region are only allowed
by the DSPCPU, not by any other masters of the on-chip
data highway, such as external PCl initiators.

Reading Tags and Cache Status

Programmer’s note: Tag and status information cannot
be read by PCI access, but only by DSPCPU access.
Tag and status read cannot be scheduled in the same
cycle with or one cycle after an iclr operation.

Reading A Tag And Valid Bit. To read the tag and valid
bit for a block in the instruction cache, a program can ex-
ecute a |d32 operation directed at the instruction-cache
region in the MMIO aperture. The top of Figure 5-10
shows the required format for the target address. The
most-significant 16 bits must be equal to MMIO_BASE,
the least-significant 15 bits select the block (by naming
the set and set member), and bit 15 must be set to zero
to perform a tag read. Note that in TM1300, valid set
numbers range from 0 to 63. Space to encode set num-
bers 64 to 511 is provided for future extensions.

A 1d32 with an address as specified above returns a 32-
bit result with the format shown at the top of Figure 5-11.
Bit 20 contains the state of the valid bit, and the least-sig-
nificant 20 bits contain the tag for the block addressed by
the 1d32.

Reading The LRU Bits. To read the LRU bits for a setin
the instruction cache, a program can execute a 1d32 op-
eration as above but using the address format shown at
the bottom of Figure 5-10. In this format, bit 15 is set to
one to perform the read of the LRU bits, and the
tag_i_mux field is set to zeros because it is not needed.

31

Instruction Cache w —
Address Tag

Figure 5-9. Instruction-cache address partitioning.
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Reading the LRU bits produces a 32-bit result with the
format shown at the bottom of Figure 5-11. The least-sig-
nificant ten bits contain the state of the LRU bits when the
Id32 was executed. See Section 5.6.7, “LRU Bit Defini-
tions,” for a description of the LRU bits.

Note that the tag_i_mux and set fields in the address for-
mats of Figure 5-10 are larger than necessary for the in-
struction cache in TM1300. These fields will allow future
implementations with larger instruction caches to use a
compatible mechanism for reading instruction cache in-
formation. The tag_i_mux field can accommodate a
cache of up to 16-way set-associativity, and the set field
can accommodate a cache with up to 512 sets. For
TM1300, the following constraints of the values of these
fields must be observed:

1. 0<tag i mux<7
2. 0<set<63

54.9

Like the data cache, the instruction cache allows up to
one-half of its blocks to be locked. A locked block is nev-
er chosen as a victim by the replacement algorithm; its
contents remain undisturbed until the locked status is
changed explicitly by software. Thus, on TM1300, up to
16 KB of the cache can be used as a high-speed instruc-
tion ‘ROM.” Only four out of eight blocks in any set can
be locked.

The MMIO registers IC_LOCK_ADDR, IC_LOCK_SIZE,
and IC_LOCK_CTL—shown in Figure 5-12—are used to
define and enable instruction locking in the same way
that the similarly named data-cache locking registers are
used. Section 5.3.7, “Cache Locking,” describes the de-
tails of cache locking; they are not repeated here.

Cache Locking

Setting the IC_LOCK_ENABLE bit (in IC_LOCK_CTL) to
‘1’ causes the following sequence of events:

1. The instruction cache invalidates all blocks in the
cache.

2. The instruction cache fetches all blocks in the lock
range (defined by IC_LOCK_ADDR and
IC_LOCK_SIZE) from main memory into the cache.

3. Cache locking is activated so that the locked blocks
cannot be victims of the replacement algorithm.

The only difference between this sequence and the ini-
tialization sequence for data-cache locking is that dirty
blocks (which cannot exist in the instruction cache) are
not written back first.

Programmer’s note: Programmers (or compilers) must
combine all instructions that need to be locked into the
single linear instruction-locking address range.

The special iclr operation also removes locked blocks
from the cache. If blocks are locked in the instruction
cache, then instruction cache locking should be disabled
in software (by writing ‘0’ to IC_LOCK_CTL) before an
iclr operation is issued.

Locking should not be enabled by PCI accesses to the
MMIO register.

5.4.10 Instruction Cache Initialization and
Boot Sequence

When TM1300 is reset, the instruction cache executes
an initialization and processor boot sequence. While re-
set is asserted, the instruction cache forces NOP opera-
tion to the DSPCPU, and the program counter is set to
the default value reset_vector. When reset is deassert-
ed, the initialization and boot sequence is as follows.

31‘ ‘27‘ , , , , , 19‘ 15 , , ‘11 , , , , 3‘ )

To Read Tag & Valid Bit \ MMIO_BASE \ 0 ‘TAG_I_MUX‘ SET \ 0 \ 0 \

To Read LRU Bits | MMIO. BASE [1]o0]0]o]0] SET [o]o]

Figure 5-10. Required address format for reading instruction-cache tags and status.
31 27 23 19‘ ‘15‘ ‘11‘ . . ‘7‘ ‘3‘ ‘O
I-CacheTag-ReadResuItFormat‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘ ‘ TAG ‘
L—vALID

I-CacheStatus-ReadResuItFormat\o\o\o\o\o\o\o\o\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ "LRU \

Figure 5-11. Result formats for reads from the instruction-cache region of the MMIO aperture.

MMIO_BASE
offset:

31 27 23 19 15 11 7 ‘3‘ : )
0x10 0210 IC_LOCK_CTL (w) |o0]o]o]o]o]o]o]o]o]olo]o]o]o]o]o]o[o]o]o]o]o]o]o]o]o]o] reserved | |

IC_LOCK_ENABLE —/

0x10 0214 IC_LOCK_ADDR (r/w) |

IC_LOCK_ADDRESS

[o[ofofo]o[o[o]o[o[o[o[o]o]o]o]

0x10 0218 IC_LOCK_SIZE (r/w)

o]ofo]o]o[oo[o[o[o[o]o]o]0]0]0]o[o]

ic_Lock_size  |o]o]oo]o]0]

Figure 5-12. Formats of the registers that control instruction-cache locking.
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1. The stall signal is asserted to prevent activity in the
DSPCPU and data cache.

2. The valid bits for all blocks in the instruction cache are
reset.

3. At the completion of the block invalidation scan, the
stall signal to the DSPCPU and data cache are deas-
serted.

4. The DSPCPU begins normal operation with an in-
struction fetch from the address reset_vector.

The initialization process takes 512 clock cycles. Reset
sets reset_vector equal to DRAM_BASE so that program
execution starts at the initial value of DRAM_BASE. The
initial value of DRAM_BASE is determined as described
in Section 5.2, “DRAM Aperture.”

55 LRUALGORITHM

When a cache miss occurs, the block containing the re-
guested data must be brought into the cache to replace
an existing cache block. The LRU algorithm is responsi-
ble for selecting the replacement victim by selecting the
least-recently-used block.

The 8-way set-associative caches implement a hierar-
chical LRU replacement algorithm as follows. Eight sets
are partitioned into four groups of two elements each. To
select the LRU element:

» First, the LRU pair is selected out of the four pairs
using a four-way LRU algorithm.

« Second, the LRU element of the pair is selected
using a two-way LRU algorithm.

551

The two-way LRU requires an administration of one bit
per pair of elements. On every cache hit to one of the two
blocks, the cache writes once to this bit (just a write, not
a read-modify-write). If the even-numbered block is ac-
cessed, the LRU bit is set to ‘1’; if the odd-numbered
block is accessed, the LRU bit is set to ‘0. On a miss, the
cache replaces the LRU element, i.e. if the LRU bit is ‘0’,
the even numbered element will be replaced; if the LRU
bit is ‘1’, the odd numbered element will be replaced.

Two-Way Algorithm

56 CACHE COHERENCY

The TM1300 hardware does not implement coherency
between the caches and main memory. Generalized co-
herency is the responsibility of software, which can use
the special operations dcb, dinvalid, and iclr to enforce
cache/memory synchronization.

5.6.1 Example 1: Data-Cache/Input-Unit

Coherency

Before the CPU commands the video-in unit to capture a
video frame, the CPU must be sure that the data cache
contains no blocks that are in the address region that the
video-in unit will use to store the input frame. If the video-
in unit performs its input function to an address region

and the data cache does hold one or more blocks from
that region, any of the following may happen:

« A miss in the data cache may cause a dirty block to
be copied back to the address region being used by
the video-in unit. If the video-in unit already stored
data in the block, the write-back will corrupt the frame
data.

* The CPU will read stale data from the cache instead
of from the block in main memory. Even though the
video-in unit stored new video data in the block in
main memory, the cache contents will be used
instead because it is still valid in the cache.

To prevent erroneous copybacks or the use of stale data,
the CPU must use dinvalid operations to invalidate all
blocks in the address region that will be used by the VI
unit.

5.6.2 Example 2: Data-Cache/Output-Unit

Coherency

Before the CPU commands the video-out unit to send a
frame of video, the CPU must be sure that all the data for
the frame has been written from the data cache to the re-
gion of main memory that the video-out unit will output.
Explicit action is necessary because the data cache—
with its copyback write policy—will hold an exclusive
copy of the data until it is either replaced by the LRU al-
gorithm or the CPU explicitly forces it to be copied back
to main memory.

Before an output command is issued to the video-out
unit, the CPU must execute dcb operations to force co-
herency between cache contents and main memory.

5.6.3 Example 3: Instruction-Cache/Data-

Cache Coherency

If code prepared by a program running on the CPU must
be subsequently executed, coherency between the in-
struction and data caches must be enforced. This is ac-
complished by a two-step process:

1. Coherency between the data cache and main memo-
ry must be enforced since the instruction cache can
fetch instructions only from main memory.

2. Coherency between the instruction cache and main
memory is enforced by executing an iclr operation.

The CPU will now be able to fetch and execute the new
instructions.

5.6.4 Example 4: Instruction-Cache/Input-
Unit Coherency

When an input unit is used to load program code into
main memory, the iclr operation must be issued before
attempting to execute the new code.

5.6.5

For administration of the four-way algorithm, the cache
maintains an upper-left triangular matrix ‘R’ of 1-bit ele-
ments without the diagonal. R contains six bits (in gener-

Four-Way Algorithm
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LRU bit 9 LRU bit 8 LRU bit 7 LRU bit 6 LRU bit5

LRU bit 4 LRU bit 3 LRU bit 2 LRU bit 1 LRU bit 0

‘ 2_wayl[3] ‘ 2_way[2] ‘ 2_way[1]

‘Z_Way[O]\ R[1,0] \ R[2,1]

R[2,0] \ RI[3,2] \ R[3,1] R[3,0] \

Figure 5-13. LRU bit definitions; 2_way[K] is the two-way LRU bit of pair k = (j div 2) for set element j.

MMIO_BASE
offset:

0x10 000C MEM_EVENTS (r/w)

31 27 23 19 15 11 7‘ — , —
[o]o]o]oo]o]o]o]o]o]o]o]o]o]o]o]o]o]o]o]o]o]o]o] Evenz | Event

Figure 5-14. Format of the memory_events MMIO register.

al, nx(n—1)/2 bits for n-way LRU). If set element k is ref-
erenced, the cache sets row k to ‘1’ and column k to ‘0":

R[k, 0..n-1] « 1,
R[0..n-1,K] — O

The LRU element is the one for which the entire row is ‘0’
(or empty) and the entire column is ‘1’ (or empty):

R[k, 0..n—=1] =0 and R[0..n-1, k] =1

For a 4-way set-associative cache, this algorithm re-
quires six bits per set of four cache blocks. On every
cache hit, the LRU info is updated by setting three of the
six bits to ‘0’ or ‘1’, depending on the set element that
was accessed. The bits need only be written, no read-
modify-write is necessary. On a miss, the cache reads
the six LRU bits to determine the replacement block.

TM1300 combines the two-way and four-way algorithms
into an 8-way hierarchical LRU algorithm. A total of ten
administration bits are required: six to maintain the four-
way LRU plus four bits maintain the four two-way LRUSs.

The hierarchical algorithm has performance close to full
eight-way LRU, but it requires far fewer bits—ten instead
of 28 bits—and is much simpler to implement.

To update the LRU bits on a cache hit to element j (with
0 <=j <=7), the cache applies m = (j div 2) to the four-
way LRU administration and (j mod 2) is applied to the
two-way administration of pair m. To select a replace-
ment victim, the cache first determines the pair p from
the four-way LRU and then retrieves the LRU bit g of pair
p. The overall LRU element is the px2+q.

5.6.6

Reset causes the LRU administration bits to initialized to
a legal state:

R[1,0] -« R[2,0] « R[3,0] « 1

R[2,1] <« R[3,1] « R[3,2] « O

2 _way[3] « 2_way[2] « 2_way[l] - 2_way[0] - O

LRU Initialization

5.6.7 LRU Bit Definitions

The ten LRU bits per set are mapped as shown in
Figure 5-13. This is the format of the LRU field as re-
turned by the special operation rdstatus for the data
cache and a 1d32 from MMIO space (see Section 5.4.8,
“Reading Tags and Cache Status”) for the instruction
cache.

5.6.8 LRU for the Dual-Ported Cache

For the TM1300 dual-ported data cache, two memory
operations to the same set are possible in a single clock
cycle. To support this concurrency, two updates of the
LRU bits of a single set must be possible.

The following rules are used by TM1300:

1. LRU bits that are changed by exactly one port receive
the value according to the algorithm described above.

2. LRU bits that are changed by both ports receive a val-
ue as if the algorithm were first applied for the access
in port zero and then for the access in port one.

5.7 PERFORMANCE EVALUATION
SUPPORT

The caches implement support for performance evalua-
tion. Several events that occur in the caches can be
counted using the TM1300 timer/counters, by selecting
the source CACHEL and/or CACHEZ2, as described in
Section 3.8, “Timers.” Two different events can be
tracked simultaneously by using 2 timers.

The MMIO register MEM_EVENTS determines which
events are counted. See Figure 5-14 for the format of
MEM_EVENTS. Table 5-14 lists the events that can be
tracked and the corresponding values for the
MEM_EVENTS fields. Eventl selects the actual source
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for the TIMER CACHE1l source. Event2 selects the
source for TIMER CACHE2.

Table 5-14. Trackable cache-performance events

after the read of the missing line is done and thus
does not add extra stall cycles.

Prefetch delay is the same as read data cache if
memory bus is available. As a reminder the prefetch
may be discarded if the data cache state machine is
“full’, and there is a 3 stall cycle penalty when the
prefetch is issued.

5.8 MMIO REGISTER SUMMARY

Table 5-15 lists the MMIO registers that pertain to the op-
eration of TM1300'’s instruction and data caches.

Table 5-15. MMIO register summary

Name Description
DRAM_BASE Sets location of the DRAM aperture
DRAM_LIMIT Sets size of the DRAM aperture

DRAM_CACHEABLE
_LIMIT

Divides DRAM aperture into cache-
able and non-cacheable portions

MEM_EVENTS Selects which two events will be
counted by timer/counters
DC_LOCK_CTL Data-cache locking enable and aper-

ture control

DC_LOCK_ADDR

Sets low address of the data-cache
address lock aperture

Encoding Event

0 No event counted

1 Instruction-cache misses

2 Instruction-cache stall cycles (including data-
cache stall cycles if both instruction-cache and
data-cache are stalled simultaneously)

3 Data-cache bank conflicts

4 Data-cache read misses

5 Data-cache write misses

6 Data-cache stall cycles (that are not also instruc-
tion-cache stall cycles)
Data-cache copyback to SDRAM
Copyback buffer full

9 Data-cache write miss with all fetch units occu-
pied

10 Data cache stream miss

11 Prefetch operation started and not discarded

12 Prefetch operation discarded (because it hits in
the cache or there is no fetch unit available)

13 Prefetch operation discarded (because it hits in
the cache)

14-15 Reserved

If the memory bus is available:

On read data cache miss the minimum waiting time is
12 SDRAM clock cycles, if critical word first is
granted by the Main Memory Interface (MMI). If not,
then data cache waits from 12 to 18 SDRAM cycles
(16 SDRAM cycles are required to fetch 64 bytes
from SDRAM.

On write data cache miss, the missing line needs to
be fetched, thus it implies the same SDRAM cycles
as a read data cache miss. If the victimized cache
line is dirty, the cache line is copied back to memory

DC_LOCK_SIZE

Sets size of the data-cache address
lock aperture

DC_PARAMS Read-only register with data-cache
parameter information

IC_PARAMS Read-only register with instruction-
cache parameter information

IC_LOCK_CTL Instruction-cache locking enable

IC_LOCK_ADDR

Sets low address of the instruction-
cache address lock aperture

IC_LOCK_SIZE Sets size of the instruction-cache
address lock aperture
MMIO_BASE Sets location of the MMIO aperture

PRODUCT SPECIFICATION
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Chapter 6

6.1 VIDEO IN OVERVIEW

The Video In (VI) unit provides the following functions:

» Digital video input from a digital camera or analog
camera (using a video decoder).

» High-bandwidth (81 MB/sec) raw input data channel.

* Direct 8-10 bit interface for video A/D converters at
up to 81-MHz sample rate.

* Receiver port for TM1300-to-TM1300 unidirectional
message passing

The VI unit operates in one of the modes per Table 6-1.

Table 6-1. VI unit mode selection.

Mode Function Explanation

0000 | fullres capture YUV 4:2:2 capture, no decimation

0001 | halfres capture YUV 4:2:2 capture, decimate by 2

0010 | raw8 capture raw 8-bit data capture, pack 4

bytes to a word

0011 | rawl0Os capture raw 10-bit data capture, sign

extend to 16 bits, pack 2 to a word

0100 | rawl1Ou capture raw 10-bit data capture, zero-

extend to 16 bits, pack 2 to a word

0101 | message passing | message reception from EVO

0110 | Reserved

1111

Digital video input is in YUV 4:2:2 with 8-bit resolution
multiplexed in CCIR656 format! from a digital camera or
CCIR656-capable video decoder (such as the Philips
SAA7111 or SAA7113), across an 8-bit-wide interface.
Resolutions up to CCIR601 are accepted at 50 or 60
fields per second. A programmable rectangular image is
captured from a video frame and written in planar format
to TM1300 SDRAM. The video camera or decoder can
be programmed using the TM1300 I12C bus. In fullres
capture mode, luminance (Y) and chrominance (U, V)
pass unmodified. In halfres capture mode, luminance
and chrominance are horizontally decimated by a factor
of two to convert to CIF-like resolution with YUV 4:2:2 or

1. Referto CCIR recommendation 656: interfaces for dig-
ital component video signals in 525-line and 625-line
television systems. Recommendation 656 is included in
the Philips Desktop Video Data Handbook.

by Gert Slavenburg

MPEG sampling rules. If vertical subsampling on chromi-
nance is desired, it can be performed by software on the
DSPCPU or by the on-chip image coprocessor (ICP).

When operating as raw input data channel, VI accepts 8-
bit-wide data. The operation mode is raw8 capture. No
data selection or data interpretation is done. Data is writ-
ten in packed form, four bytes to a word, to local SDRAM.
There is no hardware control over the rate at which the
source sends data. Instead, VI maintains two pointer/
counter registers to ensure that no data is lost when the
local SDRAM memory buffer fills. Data is accepted at the
clock of the sender. If desired, VI_CLK can be pro-
grammed as an output to drive the data transfer at a pro-
grammable rate.

VI can accept raw data from up to 10-bit A/D converters,
at sampling rates up to 81 MHz. VI can operate in raw8,
rawl0u, or rawl0s capture mode for eight-bit, unsigned
10-bit or signed 10-bit data. In the 10-bit modes, data is
zero- or sign-extended to 16 bits and stored in packed
form in local SDRAM. As with the raw8-capture mode, VI
maintains two pointer/counter registers to ensure that no
data is lost when the local SDRAM memory buffer fills.
Data is accepted at the externally set sampling rate. If
desired, VI_CLK can be programmed as an output to
serve as a programmable sampling clock.

VI can act as receiver from the Enhanced Video Out
(EVO) unit of another TM1300. One EVO unit can broad-
cast to multiple receiving VIs. In this message passing
mode, no data selection or data interpretation is done.
Each message of the sender is written as byte-packed
data to a separate local SDRAM memory buffer. Mes-
sage start and end is indicated by the sender. The re-
ceiving VI will accept data until the sender indicates mes-
sage end or until the current memory buffer is full. If the
memory buffer fills before message end is encountered,
the received data is truncated and an error condition is
raised.

6.1.1

Besides the VI-specific pins in Table 6-2, the TM1300
12C interface is typically used to control the external cam-
era or video decoder.

Interface

Figure 6-1 through Figure 6-4 illustrate typical connec-
tions for commonly used external sources. Note that
VI_DVALID is only used in special circumstances, e.g.
when sending data through a channel that results in
clock periods both with and without data transfers.
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Table 6-2. VI unit interface pins

VI_CLK I/O-5 | « If configured as input (power up
default): a positive transition on this
incoming video clock pin samples
all other VI_DATA input signals
below if VI_DVALID is HIGH. If
VI_DVALID is LOW, VI_DATA is
ignored. Clock and data rates of up
to 81 MHz are supported.

¢ If configured as output: programma-
ble output clock to drive an external
video A/D converter. Can be pro-
grammed to emit integral dividers of
DSPCPU_CLK.

¢ See Section 6.2 for clock program-
ming details.

VI_DVALID IN-5 | VI_DVALID indicates that valid data is
present on the VI_DATA lines. If HIGH,
VI_DATA will be accepted on the next
VI_CLK positive edge. If LOW, no
VI_DATA will be sampled.

VI_DATA[7:0] | IN-5 | CCIR656 style YUV 4:2:2 data from a
digital camera, or general purpose
high speed data input pins. Sampled
on positive transitions of VI_CLK if
VI_DVALID HIGH.

VI_DATA[9:8] | IN-5 | Extension high speed data input bits to
allow use of 10-bit video A/D convert-
ers in rawl10 modes. VI_DATA[8]
serves as START and VI_DATA[9] as
END message input in message pass-
ing mode.Sampled on positive transi-

tions of VI_CLK if VI_DVALID HIGH.

6.1.2

The VI logic can be set to operate in diagnostic mode,
which connects the inputs of VI to the outputs of the EVO
unit. This mode provides boot diagnostics with the ability
to verify major operational aspects of the chip before
handing control to an operating system.

Diagnostic Mode

Diagnostic mode is entered by writing a control word with
a ‘1’ in the DIAGMODE bit position to the VI_CTL register
(see Figure 6-11). The EVO unit has to be setup to pro-

vide a clock before starting DIAGMODE. After a VI soft-
ware reset, the DIAGMODE bit has to be set back to ‘1.
In diagnostic mode, the VI signals are exactly as shown
in Figure 6-2, except that the inputs come from the on-
chip EVO unit. Note that the inputs are truly taken from
the TM1300 EVO external pins, i.e. if an external (board
level) source is driving EVO pins, diagnostic mode is not
capable of testing the EVO unit.

Note that the diagnostic mode only controls an input mul-
tiplexer. VI can be programmed and operated in all usual
modes. The raw modes are patrticularly attractive for di-
agnostics purposes, since they allow VI to operate al-
most as an on-chip logic analyzer.

6.1.3

The VI unit enters power down state whenever TM1300
is put in global power down mode, except if the SLEEP-
LESS bit in VI_CTL is set. In the latter case, the block
continues DMA operation and will wake up the DSPCPU
whenever an interrupt is generated.

Power Down and Sleepless

The EVO block can be separately powered down by set-
ting a bit in the BLOCK_POWER_DOWN register. Refer
to Chapter 21, “Power Management.”

It is recommended that the EVO unit be stopped (by ne-
gating VI_CTL.CAPTURE_ENABLE) before block-level
power down is started, or that SLEEPLESS mode be
used when global power down is activated.

6.1.4

Video In is reset by a TM1300 hardware reset (pin
TRI_RESET#) or by a VI software reset. The latter is ac-
complished by writing a control word of 0x00080000 to
the VI_CTL register. After a software reset, allow for 5
video clock cycles delay before enabling VI capture.
Upon hardware or software reset, the VI_CTL,
VI_STATUS, and VI_CLOCK registers are set to all '0’s.
The state of the other registers after RESET is unde-
fined. Note that the VI clock has to be present while ap-
plying the software reset.

Hardware and Software Reset

Termination & TM1300
Receivers
,,,,,,,,,,,,,,,,,, GND—=| VI_DATA[9:8]
DATA[7:0] ——— — w VI_DATA[7:0]
| | | ' logic ‘1'—= VI_DVALID
CLOCK —— — ——|> VI_CLK
1 | 1 |
SDA, SCL  GND \ Cable | . Connector
1 | | |
12 | ! 1 ! 2
C bus : — SDA, SCL

,,,,,,,,,,,,,,,,,,

Figure 6-1. VI connected to an 8-bit CCIR656 digital camera.
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TM1300 1 TM1300 2
VO_DATA[7:0] VI_DATA[7:0]
(STMSG) VO_IO1 VI_DATA[8]
(ENDMSG) VO_102 VI_DATA[9]
VO_CLK VI_CLK
logic ‘1'—= VI_DVALID
Figure 6-2. VI unit connected to an EVO unit of another TM1300.
[. 24.576 MHz TM1300
GND——={ VI_DATA[9:8]
Analog video — VPO[15:8] VI_DATA[7:0]
1-2S-VHSYIC — "] e logic ‘' —— x:_gl\_/lﬁLlD
1-4 CVBS 7 SAA7111 _
2,
scL rcbus liC_ScL
SDA IIC_SDA
To other 12C devices
Figure 6-3. VI unit connected to a video decoder.
TM1300
Analog video 10-bit Video A/D VI_DATA[9:0]

logic ‘1'——= VI_DVALID

VI_CLK

Figure 6-4. VI connected to a 10-bit video A/D converter.

6.2 CLOCK GENERATOR

The VI block can operate in two distinct clocking modes,
as controlled by the VI_CLOCK control register (see
Figure 6-11).

SELFCLOCK = 0: ‘External clocking mode’.  This is
the most common mode of operation. In this mode, the
VI_CLK pin is an asynchronous clock input. All other in-
puts are sampled on positive edges of the VI_CLK clock
signal. On-chip synchronizers ensure reliable asynchro-
nous capture. This mode can be combined with DIAG-
MODE, in which case the EVO clock acts as the asyn-
chronous clock source. In external clocking mode, the
value of DIVIDER is ignored.

SELFCLOCK = 1: ‘Internal clocking mode”. This
mode is typically intended for use with external A/D con-
verters or other sources that require a clock. In this
mode, VI_CLK is an output pin. Positive edges of
VI_CLK are used to sample all other inputs. The gener-
ated clock frequency can be programmed using the DI-
VIDER field in the VI_CLOCK register.

f — fDSPCPU
VICLK = DIVIDER

On RESET, VI_CLOCK is set to zero, i.e. external clock-
ing mode is the default with DIVIDER ignored.
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6.3 FULLRES CAPTURE MODE

In fullres capture mode, the VI unit receives all three vid-
eo components Y, U, and V, as well as synchronization
information (SAV and EAV codes) on the VI_DATA[7:0]
pins in CCIR656 format. See Figure 6-8. The three video
components Y, U, and V are separated into three differ-
ent streams. Each component is written in packed form
into separate Y, U, and V buffers in the SDRAM. This is
commonly called a planar format! (see Figure 6-10).

pable of chrominance resampling, and can produce sam-
ples in memory in two ways:

VI_CTL.SC=0. ‘Co-sited sampling’ places luminance
and chrominance samples in memory without any modi-
fication. Hence, a planar format results with sampling po-
sitions as per co-sited luminance and chrominance YUV
4:2:2 convention.

The CCIR656 standard specifies that the camera has to 1. The planar format is most suitable as input to software
obey the sampling rules illustrated in Figure 6-5. Vlis ca- compression algorithms.
DOPOPOPYPOPOPOHPOPOPOPOPOPO
DOPOPOPYPOPOPOHPOPOPOPOPOPO
HOPOPOPOPOYPOYPOYPOYPOYPOPOHO
Chrominance (U,V) Luminance
samples samples

Figure 6-5. Camera YUV 4:2:2 sampling (co-sited luminance/chrominance).

a b c d e
YUV 4:2:2 CCIR656
input samples @ O @ O @
Resampled sample
values

Focpdpdodpdp

obododo
-

g Y

g

Ugs= (_Uc+ 13Ue+5Ug_Ui)/16

Vo= (-V+13V, 45V —V))/16

Figure 6-6. Chrominance re-sampling to achieve interspersed sampling.

O@O@O@O@O-“@O@O@O@ poo

zS zt zZu zv ZW ZX Zy 2Z ZYy ZIX ZW

Active area

O@Q@

Figure 6-7. Filtering at the edge of the active area.
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Timing reference code

Preamble

[a]2]a]a[1[1]1] [o]o]o[o[o[o]o]o] \0\0\0\0\0\0\0\0\ \1\F\V\H\P\P\P\P\

V = 1 during field blanking

Protection bits

F = 0 during field 1 §
(error correction)

F =1 during field 2

IT
II II

V =0 elsewhere

Figure 6-8. Format of CCIR656 SAV and EAV timing reference codes.

Pixel 0

Pixel M—1

START_Y

Line 0

START_X
|

Captured Image

HEIGHT

WIDTH

Line N-1

Figure 6-9. VI capture parameters.

VI_CTL.SC=1: ‘Interspersed sampling’ serves to gen-
erate a sampling structure in memory where chromi-
nance samples are spatially midway between luminance
samples, as shown in Figure 6-6. This ‘interspersed’ for-
mat is suitable for use in MPEG-1 encoding.

The VI hardware applies a (-1 13 5 —1)/16 filter as illus-
trated in Figure 6-6 to the chrominance samples before
writing them to memory. This filter computes chromi-
nance values at sample points midway between lumi-
nance samples!. Computed video data is clamped to
01h if the filter result is less than 01h and clamped to FFh
if greater than FFh. Interspersed data format is preferred
by some video compression standards. The MPEG-1
standard, for example, requires YUV 4:2:0 data with
chrominance sampling positions horizontally and verti-
cally midway between luminance samples. This can be
achieved from the horizontally interspersed sampling for-
mat by vertical subsampling with a (1 1) / 2 or more so-
phisticated filter. Vertical filtering can be performed in
software using the DSPCPU's efficient multimedia oper-
ations or by hardware in the on-chip ICP.

The filtering process exercises special care at the left
and right edges of the active area of the CCIR656 data
stream, as defined by the SAV, EAV code positions. See
Figure 6-7. Since no pixels exist to the left of the first pix-
el or to the right of the last pixel, filtering can result in ar-
tifacts. To minimize artifacts, the image is extended by
mirroring pixels around the left-most and right-most pixel.
Note that the image is mirrored around pixel ‘a’, the first
pixel after the SAV code and around pixel ‘zz’, the last
pixel before the EAV? code. Pixel ‘a’ in Figure 6-7 is the

1. All filters perform full precision intermediate computa-
tions and saturation upon generating the result bits.

(chroma, luma) pair defined by the first three camera
bytes of the UYVYUYVY... stream after SAV.

Refer to Figure 6-11 for an overview of the memory
mapped 1/0 (MMIO) registers that are used to control
and observe the operation of VI in fullres capture mode.
To ensure compatibility with future devices, any unde-
fined MMIO bits should be ignored when read and written
as’O’s.

Upon hardware or software reset (Section 6.1.4, “Hard-
ware and Software Reset”), the VI_CTL, VI_STATUS,
and VI_CLOCK registers are set to all zeros.

At any point in time, the VI_STATUS register fields (see
Figure 6-11) indicate the current camera status:

* CUR_X: The pixel index (0 to M-1) of the most
recently received camera pixel. CUR_X gets set to
zero for the first pixel following receipt of a SAV
code®, and incremented on every valid Y sample
recelved thereafter.

e CURLY: The line index (0 to N-1) within the current
field of the camera line that is currently being
received. CUR_Y gets set to zero upon receipt of a
negative edge of V, i.e., upon the first SAV code con-
taining V=0 after one or more SAV codes containing
V=1. This is equivalent to the first line after the end of
vertical retrace. CUR_Y gets incremented upon
every successive SAV code.

2. EAV codes with multiple bit errors are accepted and en-
able the mirroring function.

3. Note that VI uses the SAV protection bits to implement
single error correction and double error detection. An
SAV code with double error is ignored.

PRODUCT SPECIFICATION 6-5



TM1300 Data Book

Philips Semiconductors

* FIELD2: Indicates whether the field currently being
received is a field1 or 2. This flag gets updated based
on the F field of every received SAV code. Note that
fieldl is the ‘top’ field, i.e. the field containing the top-
most visible line. Fieldl contains lines 1,3,5 etc.
Field2 contains lines 2,4,6,8 etc.

Table 6-3 illustrates common digital camera standards
and the number of active pixels per line, lines per field,
and fields per second. Note that any source is accept-
able to VI, as long as the maximum VI_CLK rate is not
exceeded.

Table 6-3. Common video source parameters.

M N Field
Video Source (# active pixels) | (# active lines) TSS
CCIR601 720 288 50
50 Hz/625 lines
CCIR601 720 240 60
60 Hz/525 lines
square pixel 768 288 50
50 Hz/625 lines
square pixel 640 240 60
60 Hz/525 lines

Figure 6-9 shows the details of an incoming field and the
captured image. The incoming field consists of N hori-
zontal lines, each line having M pixels labeled 0 through
M-1. Lines are numbered from 0 through N-1. The cap-
tured image is a subset of the incoming image. It is de-
fined by the capture parameters (START_X, START_Y,
WIDTH, HEIGHT) held in the VI_CAP_START and
VI_CAP_SIZE MMIO registers (see Figure 6-11).

« START_X: defines the starting pixel number (X-coor-
dinate of the starting pixel). START_X must be even,
and greater than or equal to ‘0'.

» START_Y: defines the starting line number (Y-coordi-
nate of the starting pixel). START_Y must be greater
than or equal to ‘0'.

» WIDTH: Defines the width of the captured image in
pixels. WIDTH must be even.

« HEIGHT: Defines the height of the captured image in
lines.

Image capture starts after the following conditions are
met:
* VI_CTL.CAPTURE ENABLE is asserted.

e VI_STATUS.CAPTURE COMPLETE is de-asserted,
indicating that any previously captured image has
been acknowledged.

¢ CURLY = START_Y occurs.

Once image capture is started, HEIGHT ‘lines’ are cap-
tured. Each line capture starts if:

» The previous line capture, if any, is completed.
+ CUR_X = START X

Once line capture starts, it continues for 2*WIDTH pixel
clocks! in which VI_DVALID is asserted, irrespective of
the presence of one or more EAV codes.

Note that capture continues regardless of any horizontal
or vertical retrace and associated CUR_Y or CUR_X re-
set. This provides special applications with the ability to
capture information embedded inside the horizontal or
vertical blanking interval. If it is desirable to capture pix-
els in the horizontal blanking interval, a minimum time
separation of 1 us is required between the last pixel cap-
tured on line y and the first pixel captured on line y+1. An
exception to this rule is allowed if and only if the storage
parameters below are chosen such that the last and first
pixel end up in adjacent memory locations. Note that
blanking information capture only makes sense in fullres
mode with co-sited sampling. All other modes apply filter-
ing, which will distort the numeric sample values.

The captured image is stored in SDRAM at a location de-
fined by the storage parameters in MMIO registers
(Y_BASE_ADR, Y_DELTA, U _BASE_ADR, U_DELTA,
V_BASE_ADR, V_DELTA). Note that the base-address
registers force alignment to 64-byte boundaries (six
LSBs are always zero). The default memory packing is
big-endian although little-endian packing is also support-
ed by setting the LITTLE_ENDIAN bit in the VI_CTL reg-
ister.

 Y_BASE_ADR: The desired starting (byte) address
in SDRAM memory where the first Y (luminance)
sample of the captured image will be stored. This
address is forced to be 64-byte aligned (six LSBs
always ‘0").

« Y_DELTA: The desired address difference between
the last sample of a line and the address of the first
sample on the next line. Note that the value of
Y_DELTA must be chosen so that all line-start
addresses are 64-byte aligned.

« U_BASE_ADR, U_DELTA, V_BASE_ADR,
V_DELTA: Same functions and alignment restrictions
as above, but for chrominance-component samples.

Horizontally-adjacent samples are stored at successive
byte addresses, resulting in a packed form (four 8-bit
samples are packed into one 32-bit word). Upon horizon-
tal retrace, pixel storage addresses are incremented by
the corresponding DELTA to compute the starting byte
address for the next line. Note that DELTA is a 16-bit un-
signed quantity. This process continues until HEIGHT
lines of WIDTH samples have been stored in memory for
luminance (Y). For chrominance, HEIGHT lines of half
the WIDTH are stored?. See Figure 6-10.

Modifications to Y_BASE_ADR, U BASE_ADR and
V_BASE_ADR have no effect until the start of next cap-
ture, i.e. VI hardware maintains a separate pointer to
track the current address. Modifications to Y_DELTA,

1. Four clocks for each Cy,,Y,C,,Y group representing two
luminance pixels

2. Note that consecutive pixel components of each line
are stored in consecutive memory addresses but con-
secutive lines need not be in consecutive memory ad-
dresses
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WIDTH pixels

wolmawa]

pix
W-1

Y_DELTA L
-

HEIGHT lines

« WIDTH/2 pixels

woToa] -

U_DELTA L
-

(Repeated for V_BASE_ADDR,
V_DELTA)

HEIGHT lines

Figure 6-10. VI YUV 4:2:2 planar memory format.

U_DELTA and V_DELTA do affect the next horizontal re-
trace. Hence, under normal circumstances, the DELTA
variables should not be changed during capture.

When capture is complete, i.e. any internal VI buffers
have been flushed and the entire captured image is in lo-
cal SDRAM, VI raises the STATUS register flag CAP-
TURE COMPLETE. If enabled in the VI_CTL register,
this event causes a DSPCPU interrupt to be requested.

The programmer can determine whether the captured
image is a field1 or field2 by inspection of the FIELD2
flag in VI_STATUS. Note that the FIELD2 flag changes
at the start of the vertical blanking interval of the next
field.

The CAPTURE COMPLETE flag is cleared by writing a
word to VI_CTL with a ‘1’ in the CAPTURE COMPLETE
ACK bit position. This action has the following effect:

e it tells the hardware that a new Y,U, and V DMA
buffer is available (or the old one has been copied)

» it clears the CAPTURE COMPLETE flag
« ittells VI to capture the next image

The user can program the Y_THRESHOLD field to gen-
erate pre-completion (or post-completion) interrupts.
Whenever CUR_Y reaches Y_THRESHOLD, the
THRESHOLD REACHED flag in the STATUS register is
set. If enabled in the VI_CTL register, this event causes
a DSPCPU interrupt request. The THRESHOLD
REACHED flag is cleared by writing a word to VI_CTL
with a ‘1’ in the THRESHOLD REACHED ACK bit posi-
tion. Note that, due to internal buffering in the VI unit, it is
NOT guaranteed that all samples from lines up to and in-
cluding CUR_Y have been written to local SDRAM upon
THRESHOLD REACHED. The implementation guaran-
tees a fixed maximum time of 2 us between raising the
interrupt and completion of all writes to SDRAM. The

THRESHOLD interrupt mechanism works regardless of
CAPTURE ENABLE. Hence, it can also be used to skip
a desired number of fields without constant DSPCPU
polling of VI_STATUS.

If VI internal buffers overflow due to insufficient internal
data-highway bandwidth allocation, the HIGHWAY
BANDWIDTH ERROR condition is raised in the
VI_STATUS register. If enabled, this causes assertion of
a VI interrupt request. Capture continues at the correct
memory address as soon as the internal buffers can be
written to memory, but one or more pixels may have
been lost, and the corresponding memory locations are
not written. The HBE condition can be cleared by writing
a ‘1’ to the HIGHWAY BANDWIDTH ERROR ACK bit in
VI_CTL. Refer to Section 6.7, “Highway Latency and
HBE” for more information.

Any interrupt event of VI (CAPTURE COMPLETE,
THRESHOLD REACHED, HIGHWAY BANDWIDTH ER-
ROR) leads to the assertion of a single VI interrupt
(SOURCE 9) to the TM1300 Vectored Interrupt Control-
ler. The interrupt handler routine should check the STA-
TUS register to determine the set of VI events associated
with the request. The vectored interrupt controller should
always be set to have VI (SOURCE 9) operate in level
sensitive mode. This ensures that each event is handled.

VI asserts the interrupt request line as long as one or
more enabled events are asserted. The interrupt handler
clears one or more selected events by writing a ‘1’ to the
corresponding ACK field in VI_CTL. The clearing of the
last event leads to immediate (next DSPCPU clock edge)
de-assertion of the interrupt request line to the Vectored
Interrupt Controller. See Section 3.5.3, “INT and NMI
(Maskable and Non-Maskable Interrupts),” for informa-
tion on how to program interrupt handler routines.
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MMIO_base
Oﬁset: 31\ T \27\ T T \23\ 19\ \15\ T T \11\ 7\ 3\ 0
0x10 1400 VI_STATUS (1) | CUR Y(12) | CUR X(12) BEEEREER
. ) |
HBE (highway bandwidth error)
FIELDZQ
Threshold reached
HBE INT enable—‘ Capture complete
0x10 1404 VI_CTL (riw) Y THRESHOLD MODE HEREEE
software RESET—J
Threshold reached
DIAGMODE INT enable
Highway bandwidth error ACK SLEEPLESS Capture complete
ghway Capture enable INT enable

Threshold reached ACK

Little endian (write ‘1" to ACK)
SCO(Sa?;plmtg gonventlons) Capture complete ACK——
hRESERVED 10 Inct)eflsp(?ersed
0x10 1408 VI_CLOCK (r/w) [T T° 1 ‘ DIVIDER |
L seLrcLock
0x10 140C VI_CAP_START (riw) | " START Y 'START X | |
0x10 1410 VI_CAP_SIZE (rw) | " WIDTH | "HEIGHT | y |
0x10 1414 VI_Y_BASE_ADR (riw) | T T T T BASE ADR " " Jolololo]o]o]
0x10 1418 VI_U_BASE_ADR (t/w) | ‘ " "U' BASE ADR loJoJo]o]o]o]
0x10 141C  VI_V_BASE_ADR (r/w) | ‘ " "V BASE ADR loJoJo]o]o]o]

U DELTA(16)

'V DELTAQE) |

0x10 1420 VI_UV_DELTA (r/w)

0x10 1424 VI_Y_DELTA (tiw) | " 'Y DELTA(6)

Figure 6-11. YUV capture view of VI MMIO registers.

WIDTH/2 pixels

I e I

Y_DELTA L
e

HEIGHT lines

« WIDTH/4 pixels

e
U_DELTA L
[

HEIGHT lines

V_DELTA)

(Repeated for V_BASE_ADDR,

Figure 6-12. VI halfres planar memory format.
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a b c
YUV 4:2:2 CCIR656 O
input samples
Halfres capture
sample results

d e
of
O

= O-

Yh': (—3Ye+19Yg+32Yh+ 19YI-—3Yk)/64

Uf= (-3U, +19U+19U, ~3U))/32

Vf'= (_3VC+19V6+19\/g—3vi)/32

Figure 6-13. Halfres co-sited sample capture.

@0@5@5
O

Halfres capture O
sample results

YUV 4:2:2 CCIR656
input samples

ododho
OH

O

Y 3Yd+19Yf+32Yg+19Yh_3Y)/64

Uf= (-3U,+19U,+19U  -3U,)/32

V= (-3V +19V +19V -3V,)/32

Figure 6-14. Halfres interspersed sample capture.

64 HALFRES CAPTURE MODE

Halfres capture mode is identical in operation to fullres
capture mode except that horizontal resolution is re-
duced by a factor of two on both luminance and chromi-
nance data.

Referring to Figure 6-9 and Figure 6-11, if VI is pro-
grammed to capture HEIGHT lines of WIDTH pixels in
halfres mode, the resulting captured planar data is as
shown in Figure 6-12. Note that WIDTH/2 luminance and
WIDTH/4 chrominance samples are captured. In this
mode, START_X and WIDTH must be a multiple of four.

Horizontal-resolution reduction is performed as shown in
Figure 6-13 or Figure 6-14. The spatial sampling con-
ventions of the pixels in memory depends on the SC
(sampling convention) bit in the VI_CTL register. Assum-
ing that the camera sampling positions obey the conven-
tions shown in Figure 6-5, two possible spatial formats
are supported in memory:

e If SC=0, co-sited luminance and chrominance sam-
ples result as shown in Figure 6-13. This corre-
sponds to the standard YUV 4:2:2 sampling
conventions.

e If SC=1, interspersed chrominance samples result,
as shown in Figure 6-14. This form is (after vertical

subsampling of the chroma components) identical to
the MPEG-1 sampling conventions. If vertical sub-
sampling is desired, it can either be performed in
software on the DSPCPU or in hardware by the ICP.

The filtering process applies mirroring at the edge of the
active video area, as per Figure 6-7.

For both filters, computed video data is clamped to O1h if
result of the filter is less than 01h and clamped to FFh if
greater than FFh.

6.5 RAW CAPTURE MODES

All raw capture modes (raw8, raw10s and raw10u) be-
have similarly. VI_DATA information is captured at the
rate of the sender’s clock, without any interpretation or
start/stop of capture on the basis of the data values. Any
clock cycle in which VI_DVALID is asserted leads to the
capture of one data sample. Samples are 8 or 10 bits
long (raw8 versus raw1l0 modes). For the 8-bit capture
mode, four samples are packed to a word. For the 10-bit
capture modes, two 16-bit samples are packed to a
word. The extension from 10 to 16 bits uses sign exten-
sion (rawl10s) or zero extension (raw10u).

For 8-bit and 16-bit capture, successive captured values
are written to increasing memory addresses. For 16-bit
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MMIO_BASE
Oﬁset: 31‘ ‘27‘ 23‘ ‘19‘ ‘15‘ ‘11‘ 7 . 3 4]
0x10 1400 VI_STATUS (r) | | ‘ ‘ ‘ ‘ ‘ ‘ ‘
Highway bandwidth error ‘ J
BUFLACTIVE
OVERRUN
OVERFLOW
(message mode only)
Highway bandwidth error BUFZFULL
INT enable BUF1FULL
0x10 1404 VI_CTL (hw) [ [T TT T T Tmooe [TTTTTTT]
software RESET:JJ
DIAGMODE
Highway bandwidth error ACK SLEEPLESS
Capture enable OVR
Little endian OVF
Interrupt enables BUF2FULL
BUFLFULL
ACK_OVR—
ACK_OVF—
’—RESERVED ACAKégi
0x101408  VI_CLOCK (w) | | | DIVIDER ]
L seLrcLock
0x10 1414  VI_BASEL (r/w) | BASEL lolololo]o]o]
0x10 1418  VI_BASE2 (r/w) | ' BASE2 lololololo]o]
0x10 141C  VI_SIZE (riw) | SIZE (in samples) | lololololo]o]

Figure 6-15. Raw and message passing modes view of VI MMIO registers.

capture, the byte order with which the 16-bit data is writ-
ten to memory is governed by the LITTLE ENDIAN bit.
The VILITTLE ENDIAN bit should be set the same as the
DSPCPU endianness (PCSW.BSX). This ensures that
the DSPCPU sees correct 16-bit data.

Figure 6-15 illustrates the ‘raw-mode’ view of the VI
MMIO registers. Figure 6-16 shows the major VI states
associated with raw-mode capture. The initial state is
reached on software or hardware reset as described in
Section 6.1.4, “Hardware and Software Reset”. Upon re-
set, all status and control bits are set to ‘0’. In particular,
CAPTURE_ENABLE is set to ‘0’ and no capture takes
place.

Once the software has programmed BASE1 and BASE2
(with the start addresses of two SDRAM buffer areas?)
and SIZE (in number of samples), it is safe to enable cap-
ture by setting CAPTURE_ENABLE. Note that SIZE is in
samples and must be a multiple of 64, hence setting a
minimum buffer size of 64 bytes for raw8 mode and 128
bytes for raw10 modes. At this point, bufferl is the active
capture buffer. Data is captured in bufferl until capture is
disabled or until SIZE samples have been captured. After
every sample, a running address pointer is incremented
by the sample size (one or two bytes). If SIZE samples
have been captured, capture continues (without missing
a sample) in buffer2. At the same time, BUF1FULL is as-
serted. This causes an interrupt on the DSPCPU, if en-
abled by BUF1FULL INTERRUPT ENABLE.

1. SDRAM buffers must start on a 64-byte boundary.

Buffer2 is now the active capture buffer and behaves as
described above. In normal operation, the DSPCPU will
respond to the BUF1FULL event by assigning a new
BASEL1 and (optionally) SIZE and performing an ACK1.
If the DSPCPU fails to assign a new bufferl and per-
forms an ACK1 before buffer2 also fills up, the OVER-
RUN condition is raised and capture stops. Capture con-
tinues upon receipt of an ACK1, ACK2, or both,
regardless of the OVERRUN state. The buffer in which
capture resumes is as indicated in Figure 6-16. The
OVERRUN condition is ‘sticky’ and can only be cleared
by software, by writing a ‘1’ to the ACK_OVR bit in the
VI_CTL register.

If insufficient bandwidth is allocated from the internal
data highway, the VI internal buffers may overflow. This
leads to assertion of the HIGHWAY BANDWIDTH ER-
ROR condition. One or more data samples are lost. Cap-
ture resumes at the correct memory address as soon as
the internal buffer is written to memory. The HBE error
condition is sticky. It remains asserted until it is cleared
by writing a ‘1’ to HIGHWAY BANDWIDTH ERROR
ACK. Refer to Section 6.7, “Highway Latency and HBE.”

Note that VI hardware uses copies of the BASE and
SIZE registers once capture has started. Modifications of
BASE or SIZE, therefore, have no effect until the start of
the next use of the corresponding buffer.

Note also that the VI_BASE1 and VI_BASE2 addresses
must be 64-byte aligned (the six LSBs are always ‘0’).
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RESETﬂ

Bufferl
Full

BUF1FULL

ACK2

Buffer2
Full

ACTIVE = BUF2

ACTIVE = BUF1
BUF2FULL

ACK1 & ACK2

BUF1FULL
BUF2FULL
raise OVERRUN*

ACK1 & ~ACK2

* OVERRUN is a sticky flag. Itis set but does not af-
fect operation. It can only be cleared by software, by
writing a ‘1’ to ACK_OVR.

(See text in Section 6.5)

Figure 6-16. VI raw mode major states.

VI_DATA[7:0] XX DO D‘l X b2 X b3 X pa X s X pe X b1 X xx X xx
VI_DATA[8] Start of :
message |
VI_DATA[9] | End of
message
VI_CLK [ S I S I

Figure 6-17. VI message passing signal example.
6.6 MESSAGE-PASSING MODE

In this mode, VI receives 8-bit message data over the
VI_DATA[7:0] pins. The message data is written in
packed form (four 8-bit message bytes per 32-bit word)
to SDRAM. Message data capture starts on receipt of a
START event on VI_DATAJ[8]. Message data is received
until EndOfMessage (EOM) is received on VI_DATA[9]
or the receive buffer is full. Note that the VI_SIZE MMIO
register determines the buffer size, and hence maximum
message length. It should not be changed without a VI
(soft) reset.

Figure 6-17 illustrates an example of an 8-byte message
transfer. The first byte (DO) is sampled on the rising edge
of the VI_CLK clock after a valid START was sampled on
the preceding rising clock edge. The last byte (D7) is
sampled on the rising clock edge where EOM is sampled
asserted.

The message passing mode view of the VI MMIO regis-
ters is shown in Figure 6-15. The major states are shown

in Figure 6-18. The operation is almost identical to the
operation in raw-capture mode, except that transitions to
another active buffer occur upon receipt of EOM rather
than on buffer full. OVERRUN is raised if the second
buffer receives a complete message before a new buffer
is assigned by the DSPCPU.

OVERFLOW is raised if a buffer is full and no EOM has
been received. If enabled, it causes a DSPCPU interrupt.
Since digital interconnection between devices is reliable,
overflow is indicative of a protocol error between the two
TM1300s involved in the exchange (failure to agree on
message size). Detection of overflow leads to total halt of
capture of this message. Capture resumes in the next
buffer upon receipt of the next START event on
VI_DATAJ8]. The OVERFLOW flag is sticky and can only
be cleared by writing a ‘1’ to ACK_OVF.

Highway bandwidth error behavior in message passing
mode is identical to that of raw mode.
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RESETﬁ‘

No EOM O raise OVERFLOW* EOM

(See text in Section 6.6)

BUF1FULL

ACK2

No EOM [ raise OVERFLOW* EOM

(See text in Section 6.6)

ACTIVE = BU
BUF2FULL

ACTIVE = BUF2

ACK1 & ACK2

BUF1FULL
BUF2FULL
raise OVERRUN*

F1 ACK1 & ~ACK2

* OVERRUN and OVERFLOW are sticky flags. They are set,
but do not affect operation. They can only be cleared by soft-
ware, by writing a ‘1’ to ACK_OVR or ACK_OVF.

(See text in Section 6.6)

Figure 6-18. VI message passing mode major states.

6.7 HIGHWAY LATENCY AND HBE

Refer to Chapter 20, “Arbiter,” for a description of the ar-
biter terminology used here. The VI unit uses internal
buffering before writing data to SDRAM. There are two
internal buffers, each 16 entries of 32 bits.

In fullres mode, each internal buffer is used for 128 Y
samples, 64 U samples, and 64 V samples. Once the
first internal buffer is filled, 4 highway transactions must
occur before the second buffer fills completely. Hence,
the requirement for not losing samples is:

4 requests must be served within 256 VI clock cycles.

For the typical CCIR601-resolution NTSC or PAL 27-
MHz VI clock rate, the latency requirement is 4 requests
in 9481 ns (25600/27). This can be used as one request
every 2370 ns or, with a TM1300 SDRAM clock speed of
100 MHz, every 237 SDRAM clock cycles. The one re-
quest latency is used to define the priority raising value
(see Section 20.6.3 on page 20-8).

In halfres mode, the Y, U, and V decimation by 2 takes
place before writing to the internal buffers. So, the re-
quirement for not loosing samples is:

4 requests served within 512 VI clock cycles.

For halfres subsampling, NTSC or PAL 27-MHz VI clock
rate and TM1300 SDRAM clock speed of 100 MHz, la-
tency is 4 requests in 51200/27 = 18962 ns (1896 high-
way clock cycles) or one request every 4740 ns (474
SDRAM clock cycles).

For raw8 capture and message passing modes, each in-
ternal buffer stores 64 samples at the incoming VI clock
rate. The latency requirement is one request served ev-
ery 64 VI clock cycles.

For the raw10 capture modes, each internal buffer stores
32 samples. Hence, the requirement for not losing sam-
ples is one request served every 32 VI clock cycles.

For a 38-MHz data rate on the incoming 10-bit samples
and a TM1300 SDRAM clock speed of 100 MHz, high-
way latency should be set to guarantee less than 3200/
38 = 842 ns (84 SDRAM clock cycles) per clock cycle.
This cannot be met if any other peripherals are enabled.

Table 6-4 summarizes the maximum allowed highway
latency (in SDRAM clock cycles) needed to guarantee
that no samples are lost. The general formula uses ‘F’ to
represent the VI clock frequency (in MHz).

Table 6-4. VI highway latency requirements (27-MHz
data rate, 100-MHz TM1300 highway clock)

vode | Nexaeney g | Formuia
fullres capture 237 6,400/F
halfres capture 474 12,800/F
raw8 237 6,400/F
raw10s 118 3,200/F
rawl0u 118 3,200/F
message passing 237 6,400/F
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In fullres mode, bandwidth requirements (in bytes) per
video line with active image for VI is:

* By = ceil(WIDTH*2/256) * 4 * 64

ceil(X) function is the least integral value greater than or
equal to X.

In halfres mode, the bandwidth is:
* B = ceil(WIDTH*2/512) * 4 * 64

Raw8 mode and message passing mode bandwidth de-
pends only on VI clock speed. For raw10 mode each 10-
bit value counts as 2 bytes for bandwidth computations.
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Enhanced Video Out

Chapter 7

by Marc Duranton, Dave Wyland, Gert Slavenburg

7.1  ENHANCED VIDEO OUT SUMMARY

The TM1300 Enhanced Video Out (EVO) improves on
the design of the TM1000 Video Out (VO) unit while
maintaining binary-compatibility. TM1300 EVO is fully
backward compatible with TM1100, and has been ex-
tended to support byte data rates up to 81-MHz and im-
prove the Genlock mode. The summary of new EVO fea-
tures versus TM1000 includes:

» Internal clock generator (DDS) has reduced jitter
» Full alpha blending supports 129-levels
» Chroma keying

» Frame synchronization can be internally or externally
generated (Genlock mode)

» External frame sync. follows the field number gener-
ated in the EAV/SAV code

« Programmable YUYV output clipping
» Data-valid signal generated in data-streaming mode

* In message passing mode, message length can
range from one word (4 bytes) up to 16 MB.

7.2  ABOUT THIS DOCUMENT

This chapter describes the TM1300 EVO unit which ex-
tends and improves the design of the TM1000 VO unit,
and consolidates the changes introduced in the TM1100.
Please refer to the TM1000 databook for a description of
the VO unit’s functionality.

7.3 BACKWARD COMPATIBILITY

The EVO is functionally compatible with the TM1000 VO
unit. All TM1000 VO features are supported exactly in
the same fashion by the TM1300 EVO. Software written
for the TM1000 VO can control the TM1300 EVO without
modification (with the exception of the Genlock mode
which now requires EVO_CTL.GENLOCK to be set to 1
in addition to VO_CTL.SYNC_MASTER = 0).

All new features and improvements are selectively en-
abled by setting bits in the new EVO_CTL MMIO regis-
ter, described in Section 7.16.4. A method to determine
the existence of new EVO registers is given in
Section 7.16.1.

The new TM1300 EVO features are disabled on hard-
ware reset in order to remain hardware-compatible with
the TM1000 VO. So it is assumed throughout this chap-
ter that all new functions controlled by EVO_CTL are en-

abled by software. Any new software should use the new
EVO modes. Please refer to the TM1000 databook for a
description of the VO unit’s funtionality.

74  FUNCTION SUMMARY

The TM1300 EVO generates and transmits continuous
digital video images. It can connect to an off-chip video
subsystem such as a digital video encoder chip (e.g., the
Philips SAA7125 DENC digital encoder), a digital video
recorder, or the video input of another TM1300 through
a CCIR 656-compatible byte-parallel video interface.
See Figure 7-1, Figure 7-1, and Figure 7-2.

The EVO can either supply video pixel clock and syn-
chronization signals to the external interface or synchro-
nize to signals received from the external interface (Gen-
lock mode).

PAL, NTSC, 16:9 and other video formats including dou-
ble pixel-rate, non-interlaced video formats are support-
ed through programmable registers which control pixel
clock frequency and video field or frame format.

The EVO can combine a background video image from
SDRAM with an optional foreground graphics overlay im-
age from SDRAM using 129-level, per-pixel alpha blend-
ing. The composite result is sent out as continuous vid-
eo. Video image data is taken from a planar memory
format, with separate Y, U and V planes in memory in
YUV 4:2:2 or 4:2:0 format. The optional graphics overlay
is taken from a pixel-packed YUV 4:2:2+a data structure
in memory.

The EVO can also be used to stream continuous data
(data-streaming mode) or send unidirectional messages
(message-passing mode) from one TM1300 to another.

In data-streaming mode, the EVO generates a continu-
ous stream of arbitrary byte data using internal or exter-
nal clocking. Dual buffers allow continuous data stream-
ing in this mode by allowing the DSPCPU to set up a
buffer while another is being emptied by the EVO. Data-
valid signals are generated on VO_|O1 and VO_|O2 to
synchronize data streaming to other TM1300 data re-
ceivers.

In message-passing mode, unidirectional messages can
be sent to the Video In (VI) port(s) of one or more
TM1300s. Start and end-of-message signals are provid-
ed to synchronize message passing to other TM1300
message receivers.
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7.4.1
The EVO provides the following key functions.

Detailed Feature Descriptions

» Continuous digital video output of PAL or NTSC for-
mat data according to CCIR 601.

« Transmission of YUV 4:2:2 co-sited pixel data across
a standard 8-bit parallel CCIR 656 interface.
Embedded SAV and EAV synchronization codes and
separate sync control signals compatible with Philips
DENC encoders are available.

e Supports the nominal PAL/NTSC data rate of 27
MB/sec (13.5 Mpix/sec), or any byte data rate up to
an 81-MHz EVO clock.

* Custom video formats can be programmed with
frames or fields of up to 4095 lines of up to 4095 pix-
els, subject only to the data rate limitation above.

» Support for video images in planar YUV 4:2:2 co-
sited, planar YUV 4:2:2 interspersed, or planar YUV
4:2:0 memory formats.

« Optional 129-level alpha blending. Graphics overlay
image is in pixel-packed YUV 4:2:2+a format, and is
alpha blended on top of the video image. Each pixel
has a 1-bit alpha, which selects one of two global 8-
bit alpha values which provide 129 layers of transpar-
ency. With overlay enabled, the output byte data rate
is limited to 45% of the SDRAM clock, or up to an 81-
MHz EVO clock, whichever is smaller.

» Optional horizontal 2X upscaling of the video image
for display. The overlay is always in display format.

* In data-streaming mode, the EVO acts as a high
bandwidth continuous-output data channel. The byte
data rate is limited to an 81-MHz EVO clock.

* In message-passing mode, the EVO can send mes-
sages from 1 word (4 bytes) up to 16 MB. The byte
data rate is limited to an 81-MHz EVO clock.

« For diagnostic purposes, EVO output data can be
internally looped back to the VI port. This is con-
trolled by the VI DIAGMODE bit.

7.4.2

The EVO normally supplies continuous video data to its
outputs. The EVO is programmed and started by the
TM1300 DSPCPU. The EVO issues an interrupt to the
DSPCPU at the end of each transmitted field, and/or at a
programmable vertical position in the field. The DSPCPU
updates the EVO video image data pointers with pointers
to the next field during the vertical blanking interval so as
to maintain continuous video output. During video output,
the EVO supplies embedded CCIR 656 SAV (Start Ac-

Summary of Operation

1. Referto CCIR recommendation 656: Interfaces for dig-
ital component video signals in 525 line and 625 line
television systems. Recommendation 656 is included in
the Philips Desktop Video Data Handbook.

tive Video) and EAV (End Active Video) sync codes and
optionally supplies horizontal and frame sync signals.
The EVO can either supply pixel clock and horizontal and
frame timing signals or it can lock to external timing sig-
nals such as those supplied by a Philips SAA7125 DENC
digital encoder or similar sync source.

75 INTERFACE

Table 7-1 lists the interface pins of the EVO unit.
Figure 7-1, Figure 7-1, and Figure 7-2 illustrate typical
connections for commonly-used external devices that in-
terface to the EVO.

The most common way to generate analog video is
shown in Figure 7-1. In this setup, an SAA7125 Digital
Encoder (DENC) can be programmed to derive sync ei-
ther from the VO_DATA stream EAV/SAV codes, or from
its RCV1/2 pins.

TM1300

VO_DATA[7:0]——— [MP[7:0]
(HS)VO_1I01——— s |RCVL
(FS)VO_102—— s |RCV2

SAA7125

VO_CLKp———[LLC

Figure 7-1. EVO connected to a digital video encod-
er (DENC).

Figure 7-2 illustrates how a byte-parallel ECL-level stan-
dard CCIR 656 interface can be created. In certain pro-
fessional applications, serial D1 video is also used. In
that case, the EVO can be connected to a Gennum
GS9022 Digital Video Serializer or similar part (not
shown).

CCIR 656
Subminiature
“D” Connector

8 l> 16
TTL to ECL

1 2
VO_CLK l>

TM1300

VO_DATA[7:0] Data A,B[7:0]

Clock A,B

Figure 7-2. EVO connected to a CCIR 656 video-
output connector.

Figure 7-3 shows the EVO unit of one TM1300 connect-
ed to the VI unit of a second TM1300.
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TM1300 A TM1300 B
VO_DATA[7:0)———— & |VI_DATA[7:0]
(STMSG)VO_I01|—— & |VI_DATA[8]
(ENDMSG)VO_102—— 4 |vI_DATA[9]

VOCIKH———— .V CLK

logic ‘1—= |VI_DVALID

Figure 7-3. EVO unit connected to the VI unit of a
second TM1300.

Table 7-1. EVO unit interface pins

Signal Name |Type Description

VO_DATA[7:0] | OUT [ CCIR 656-style YUV 4:2:2 digital out-
put data, or general-purpose high
speed data output channel. Output
changes on positive edge of VO_CLK.

VO_I01 I/O-5 | Horizontal Sync (HS) output or Start
Message (STMSG) output. See
Figure 7-18.

VO_102 I/O-5 | Frame Sync (FS) input, FS output or

ENDMSG output.

« If set as FS input, it can be set to
respond to positive or negative edge
transitions.

« If the EVO operates in Genlock mode
and the selected transition occurs,
the EVO sends two fields of video
data.

* In message-passing mode, this pin
acts as the ENDMSG output. See
Figure 7-18.

VO_CLK I/O-5 | The EVO unit emits VO_DATA on a
positive edge of VO_CLK. VO_CLK
can be configured as an input (the
hardware reset default) or output.

« If configured as an input, VO_CLK is
received from external display-clock
master circuitry.

« If configured as output, the TM1300
emits a low-jitter clock frequency
programmable between approx. 4
and 81 MHz.

7.6 BLOCK DIAGRAM

Figure 7-4 shows a block diagram of the EVO unit. It con-
sists of a clock generator, a video frame timing generator
and an image or data generator. The image generator
produces either a CCIR 656 digital video data stream
with optional YUV overlay or a continuous-data or mes-
sage-data stream. It also performs optional format con-
version and optional 2:1 horizontal scaling.

The frame timing generator provides programmable im-
age timing including horizontal and vertical blanking,

VO_CLK
‘ VO_lo1
; Video Frame | = (HS, Start Msg, or
z Video Clock — Timi valid data pulse)
g Generator Iming
= Generator |«—= VO_I02
T (VS, End Msg, or
2 l valid data level)
&
o
%]

Image Generator
— Overlay Generator
Message/Data Generator

——— VO_DATA[0:7]

Figure 7-4. EVO unit block diagram.

SAV and EAV code insertion, overlay start and end tim-
ing, and horizontal and frame timing pulses. It also sup-
plies data-valid timing signals in data-streaming mode
and start-of-message and end-of-message timing sig-
nals in message-passing mode. The sync timing pulses
can be generated by the frame timing unit, or the frame
timing unit can be driven by externally-supplied sync tim-
ing pulses, when VO_CTL.SYNC_MASTER = 0 and
EVO_CTL.GENLOCK =1.

The video clock generator produces a programmable
video clock. The video clock generator can supply the
video clock for the frame timing generator and external
devices, or it can be driven by an external clock signal.

7.7 CLOCK SYSTEM

Positive edges of VO_CLK drive all EVO output events.
A block diagram of the EVO clock system is shown in
Figure 7-5. The EVO clock is either supplied externally or
internally generated by the EVO, as controlled by the
VO_CTL.CLKOUT bit. When CLKOUT =0, the EVO
clock is supplied by an external source through the
VO_CLK pin as an input. This is the default mode, en-
tered at hardware reset. When CLKOUT =1, an internal
clock generator supplies the EVO clock and drives the
VO_CLK pin as an output.

ffffffffffffffffffffffff

PLL

Square-Wave DDS  |—+ Filter

T T T T T T T T
| FREQUENCY |

,,,,,,,,,,,,,,,,,,,,,,,,

VO_CLK Internal
(to Frame Timing Gen.)

Figure 7-5. EVO clock system.

The internal clock generator system is a square wave Di-
rect Digital Synthesizer (DDS) which can be pro-
grammed to emit frequencies from 1 Hz to 50 MHz. The
output of the DDS is sent to a phase-locked loop filter
(PLL) which removes clock jitter from the DDS output
signal. The PLL can also be used to divide or double the
DDS frequency. The PLL VCO operates from 8-MHz to
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90 MHz. The PLL is enabled and programmed as de-
scribed in Section 7.18.

DDS clock rate is set by the VO_CLOCK.FREQUENCY
field according to the equation shown in Figure 7-6. The
VO_CLK frequency can be a divider or multiplier of fpps,
as determined by the PLL subsystem settings.

32
fDDS (2

31
FREQUENCY= 27"+
90 pspcru

Figure 7-6. DDS low-jitter oscillator frequency.

Low-jitter clock mode is automatically entered whenever
FREQUENCYI[31] = 1. If FREQUENCYI[31] = 0, the DDS
operates at 1/3 the rate (for compatibility with TM1000
code), and FREQUENCY must be set as shown in
Figure 7-7.

32

f
FREQUENCY= —2P3

3 |:thSPCPU

Figure 7-7. DDS slow speed oscillator frequency

7.8 IMAGE TIMING

The EVO emits a serial byte-data stream used by
CCIR 656 devices to generate a displayed image.
Figure 7-8 shows an NTSC-compatible, 525-line inter-
laced image. The field and line numbers are shown for
reference.

Interlaced images are generated by the display hardware
by controlling the vertical retrace timing. For reference,

Figure 7-9 shows a timing diagram of NTSC-compatible
interlaced frame timing illustrating the analog vertical re-
trace signal. The vertical retrace signal for the second
field begins in the middle of the horizontal line that ends
the first field. This causes the first line of the second field
to begin halfway across the display screen and the lines
of the second field to be scanned between the lines of
the first field, resulting in an interlaced display.

The analog timing required to generate the interlaced
signal is supplied by the display device. The CCIR 656
digital video signals generated by the EVO use frame
synchronization timing and do not generate any vertical
retrace timing.

7.8.1 CCIR 656 Pixel Timing

The EVO generates pixels according to CCIR 656 timing
in YUV 4:2:2 co-sited format and outputs these pixels as
shown in Figure 7-10. Pixels are generated in groups of
two, with four bytes per two pixels. Each pair of pixels
has two luminance bytes (YO, Y1) and one pair of
chrominance bytes (U0, VO) arranged in the sequence
shown. The chrominance samples U0 and VO are sam-
pled spatially co-sited with luminance sample YO. For
PAL or NTSC video, pixels are generated at a nominal
rate of 13.5 Mpix/sec (27 MB/sec). Pixels are clocked out
on the positive edge of VO_CLK.

7.8.2 CCIR 656 Line Timing

The CCIR 656 line timing is shown in Figure 7-11. Each
line begins with an EAV code, a blanking interval and an
SAV code, followed by the line of active video. The EAV
code indicates end of active video for the previous line,
and the SAV code indicates start of active video for the
current line.

Field 1

Displayed Image

Field 2

Line 20—~

«~— Line 283

Line 262—1-
Line 263 — - 1 e oo

Scan Direction

~T— Line 525

Figure 7-8. Interlaced display: 525-line, 60-Hz image.
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One Frame
Field 1 Field 2
One Line
Video 1 19|20 \ 262 263 282 525(1
Lines |||||||||||||||||||||||||||||
\Slgrr]t(izcal Blanking Active Video | Blanking | Active Video |_
1/2 Line Interlace Offset |k — |k
Figure 7-9. Interlaced timing—NTSC analog sync. signals.
Byte O
VO_DATA[0:7] uo YO VO Y1 I U2 Y2 V2 Y3 I U4 Y4
| Line Scan @ 27 MHz = 13.5 Mpix/sec ‘
voceww L [ L [~ L 7 [/ °/ [T L

Figure 7-10. CCIR 656 pixel timing.

ﬁ SAV, EAV Codes T\

Ve YUV 4:2:2 pixels

el [ I Is[ P LT TP lel [l st TP PT T 1]][e

Blanking ‘ Active Video

Blanking ‘

Active Video

Line i

Line i+1

Figure 7-11. CCIR 656 line timing.

Timing reference code

Preamble

|2[a[1[s[s]2]s] [o[o[o[o]o]o[o]o] [o]o[o]o]o[o[o[o] [s]¢]v]

T

F = 0 during Field 1

F =1 during Field 2

V = 1 during field blanking

tProtection bits

(error correction)

V =0 elsewhere

Figure 7-12. Format of SAV and EAV timing codes.

7.8.3 SAV and EAV Codes

The End Active Video (EAV) and Start Active Video
(SAV) codes are issued at the start of each video line.
EAV and SAV codes have a fixed format: a 3-byte pre-
amble of OxFF, 0x00, 0x00 followed by the SAV or EAV
code byte. The EAV and SAV code byte format is shown
in Figure 7-12 for reference. The EAV and SAV codes
define the start and end of the horizontal blanking inter-
val, and they also indicate the current field number and
the vertical blanking interval.

The SAV and EAV codes have a 4-bit protection field to
ensure valid codes. The EVO generates these protection

bits as part of the SAV and EAV codes as defined by
CCIR 656. There are 8 possible valid SAV and EAV
codes shown with their correct protection bits in
Table 7-2. The EVO generates SAV and EAV sync
codes and inserts them into the video out data stream
according to the CCIR 656 specification under all condi-
tions, whether it is generating or receiving horizontal and
frame timing information.

7.8.4  Video Clipping

SAV and EAV codes are identified by a 3-byte preamble
of OxFF, 0x00 and 0x00. This combination must be
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Table 7-2. SAV and EAV codes

Code Binary Value Field Vertical Blanking
SAV 1000 0000 1

EAV 1001 1101 1

SAV 1010 1011 1 X

EAV 1011 0110 1 X

SAV 1100 0111 2

EAV 1101 1010 2

SAV 1110 1100 2 X

EAV 1111 0001 2 X

avoided in the video data output by the EVO to prevent
accidental generation of an invalid sync code. The EVO
provides programmable maximum and minimum value
clipping on the video data to prevent this possibility. If
clipping is enabled, the EVO automatically clips the re-
sulting image data as described in Section 7.15.3.

7.8.5 CCIR 656 Frame Timing

The interlaced frame timing defined by CCIR 656 is
shown in Table 7-3. Lines are numbered from 1 to 525
for 525-line, 60-Hz systems and from 1 to 625 for 625-
line, 50-Hz systems. The Field and Vertical Blanking col-
umns indicate whether the field and vertical blanking bits,
respectively, are set in the SAV and EAV codes for the
indicated lines. The 525 and 625 formats have similar
timing but differ in their line numbering.

Table 7-3. CCIR 656 frame timing

Line Number

F bit | V bit Comments

525/60 625/50
1-3 624-625 1 1

Vertical blanking for
Field 1, SAV/EAV
code still indicates
Field 2

Vertical blanking for
Field 1, change
SAV/EAV code to
Field 1

Active video, Field 1

Vertical blanking for
Field 2, SAV/EAV
code still indicates
Field 1

Vertical blanking for
Field 2, change
SAV/EAV code to
Field 2

Active video, Field 2

4-19 1-22 0 1

20-263
264-265

23-310 0
311-312 0 1

266-282 | 313-335 1 1

283-525 | 336623 1 0

7.9 ENHANCED VIDEO OUT TIMING
GENERATION

The EVO generates timing for frames, active video areas
within frames, images within the active video area, and
overlays within the image area. The relationship between
these four is shown in Figure 7-13. The frame includes
the timing for both interlaced fields. Progressive scan, or
non-interlaced video, is accomplished by setting the tim-
ing parameters such that two identical successive fields
are generated.

7.9.1

Shown in Figure 7-13, the active video area begins after
the horizontal and vertical blanking intervals and repre-
sents the pixels visible on the screen. The image area is
the actual displayed image within the active video area.
It can be slightly smaller than the active video area to
avoid edge effects at the top, bottom and sides of the im-
age. The overlay area is within the image area.

Active Video Area

The EVO uses counters to generate and control image
timing. The Frame Line Counter and Frame Pixel
Counter control the overall timing for the frame and de-
fine the total number of pixels per line, lines per frame,
and interlace timing, including horizontal and vertical
blanking intervals.

Note that the Frame Line Counter has a starting value of
one, not zero, and it counts from 1 to 525 or 625, consis-
tent with CCIR 656 line numbering. The Image Line

Frame
Vertical Blanking, Field 1
. Active Video Area
[Image V Offset
= = Image Area, Field1 5
c2| g T
NX [ O Overlay )
& | T g
Im | & . Image Width E
I )
E
Vertical Blanking, Field 2
R Active Video Area
Ilmage V Offset
- = Image Area, Field 2 |Start
g o| @ g ILlne
£ B
I 2 | O |, startPixel  |Overlay
= o
o® @
Im %
E

Figure 7-13. Active Video Area and Image Area in re-
lation to vertical and horizontal blanking intervals.
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Counter and Image Pixel Counter define the visible im-
age within the field.

The geometry of the active video area is defined by the
contents of several MMIO registers shown in
Figure 7-29. The VO_FRAME.FIELD_2_ START field
defines the start line of Field 2. Field 2 is active when the
Field Line Counter contents equal or exceed this value.
The active video area is defined by the F1_VIDEO_LINE
and F2_VIDEO_LINE fields of the VO_FIELD register for
each field of the frame, and by the
VIDEO_PIXEL_START field of the VO_LINE register for
each line of the frame. The active video area begins
when the contents of the Frame Line Counter and Frame
Pixel Counter equals or exceeds these values.

7.9.2 SAV and EAV Overlap Period

The CCIR 656-compliant 525/60 and 625/50 timing
specifications define an overlap period where the field
number in the SAV and EAV codes from Field 1 persists
into the vertical blanking interval for Field 2, and the
codes for Field 2 persist into the vertical blanking interval
for Field 1. The F1_OLAP and F2_OLAP fields of the
VO_FIELD register define these overlap intervals.

F1_OLAP and F2_OLAP are small two's complement
values in the range -8... +7. A positive value indicates
that the overlap extends into the current field, while a
negative value indicates that it extends backward into the
previous field. See Figure 7-30 for the effect of negative
and positive values.

During the overlap interval, the vertical blanking for the
next field has begun; however, the field number flag in
the SAV and EAV codes still shows the field number for
the previous field. The field number is updated to the cor-
rect field value at the end of the overlap interval.

F1_OLAP defines the overlap from Field 1 to Field 2.
This overlap occurs during the beginning of vertical
blanking for Field 2. The SAV and EAV codes continue
to show Field 1 during this overlap interval, and they
change to Field 2 at the end of the interval.

F2_OLAP defines the overlap from Field 2 to Field 1.
This overlap occurs during the beginning of vertical
blanking for Field 1. The SAV and EAV codes continue
to show Field 2 during this overlap interval, and they
change to Field 1 at the end of the interval.

7.9.3

The frame and image counters have different start and
stop points. The frame counters begin in the vertical
blanking interval of the first field and the horizontal blank-
ing interval of the first line. They stop counting when they
reach the height and width values of the frame. When the
EVO generates frame timing, the frame counters are re-
set to their start values when they reach their stop val-
ues. When the EVO receives frame timing signals, the

Control of Frame and Image Counters

frame counters continue counting until reset by the exter-
nal signals.

The image area is defined by VO_YTHR register fields
IMAGE_VOFF and IMAGE_HOFF. These values are
added to the F1_VIDEO_LINE or F2_VIDEO_LINE and
VIDEO_PIXEL_START values to define the starting line
and pixel, respectively, of the image area. The image
area is active when the contents of the Frame Line
Counter and Frame Pixel Counter equal or exceed these
values.

The Image Line Counter and Image Pixel Counter start
counting at the first active pixel in the image area and the
first active line in the image area, respectively. The im-
age counters start at zero and stop counting when they
reach their image height and width values. The image
counters are reset by frame counter values indicating the
start of the image pixel in a line and the start of the image
line in a field.

The image counters define the active image area of the
frame, the area of interest for image processing. This al-
lows the overlay start address to be defined relative to
the active image area, for example. When the EVO is not
sending out active pixels from the image area, it sends
out blanking codes. The blanking codes are 0x80, 0x10,
0x80, and 0x10 for each 2-pixel group in YUV 4:2:2 im-
age data format, as defined by CCIR 656 and shown in
Figure 7-10.

7.9.4

The EVO can supply horizontal and frame timing signals
or receive a frame timing signal from an external source.
When VO_CTL.SYNC_MASTER =1, the EVO gener-
ates horizontal and frame timing for the external video
device. When SYNC_MASTER = 0, the EVO operates in
Genlock mode and an external device, such as a DENC,
must provide frame sync. This section describes EVO
operation when it is sync master. See Section 7.10 for a
description of Genlock mode.

If SYNC_MASTER =1, the VO_IO1 signal generates a
horizontal timing signal, and the VO_|O2 signal gener-
ates a frame timing signal. When EVO_ENABLE = 1 and
FIELD_SYNC = 1, the VO_IO2 signal indicates the field
number (low = Field 1, high = Field 2), according to the
SAV/EAV field indication (bit[6]) as shown in Figure 7-14.
The VO_l0O2 signal toggles just before the first byte of
the preamble that protects the EAV code and after the
SAV code. Non-interlaced output can be simulated by
programming the EVO to generate fields equivalent to
the desired frames. In this case, VO _102 indicates odd
or even frames.

Horizontal and Frame Timing Signals

The horizontal timing signal VO_IO1, shown in
Figure 7-15, corresponds to the horizontal-blanking in-
terval. It is active low from the EAV code at the start of
the line to the SAV code at the start of active video for the
line.
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One Frame
Field 1 Field 2
Video One Line
Lines
NTSC |4 19|20 263|264 265|266 282283 5251 3|4
PAL 1 22123 310(311 312|313 335|336 623) 624 625| 1
Blanking Active Video Blanking Blanking Active Video  |Blanking
Vertical
Sync
VO_102 I_
Figure 7-14. EVO VO_I02 timing in FIELD_SYNC mode.
Field Width, Pixels
| | Image Width, Pixels |
Image Data| Blanking | Image Line: Image Width | Blanking
’]EAV SAv|:1 ’:l EAV
VO_|O1

Figure 7-15. EVO VO_IO1 timing in FIELD_SYNC mode.

7.10 GENLOCK MODE

In Genlock mode, the EVO is not synchronization master
but receives frame timing signals on VO_102. The EVO
operates in Genlock mode when SYNC_MASTER = 0,
EVO _CTL.EVO _ENABLE = 1 and EVO_CTL.GEN-
LOCK =1.

The active edge can be programmed using the
VO_CTL.VO_lO2_POS bit. The initial transition of the
frame timing signal on VO_IO2 causes the Frame Line
Counter to be set to the wvalue in
VO_FRAME.FRAME_PRESET. After reaching
FRAME_LENGTH, the Frame Line Counter starts count-
ing again from 1.

EVO_SLVDLY.SLAVE_DLY is typically used to compen-
sate for any delay in the frame timing source or internal
pipeline synchronization anywhere in a line. Internally,
the active edge of VO_IO2 is delayed by SLAVE_DLY
VO_CLK clock cycles. Typically, it will allow FRAME_
PRESET to be loaded at the beginning of a new line.

With  correct values of SLAVE DLY and
FRAME_PRESET loaded, the TM1300 can generate
frames totally synchronized with the active edge of
VO_l02. All the internal MMIO registers (except of
course VO_CTL) should be programmed with the same
values as for SYNC_MASTER mode. See Figure 7-16.

In Genlock mode, the EVO is free-running according to
the values programmed in its internal registers before the
initial VO_102 active edge. Just after receiving the active
edge that will synchronize the EVO, output values may

be erroneous for several VO_CLK cycles, but it is guar-
anteed that the next frame will be correct.

After the first synchronizing edge, if the next one hap-
pens according to the values programmed in the EVO
MMIO registers, no change will appear in the output tim-
ing of the EVO. If the active edge of VO_OI2 does not
match the programmed value, a new synchronization
phase is performed.

Typically, this is programmed as follows: SLAVE_DLY is
loaded with the number of clock cycles for one video line
minus the number of delay cycles used by the EVO to
synchronize itself. FRAME_PRESET is programmed
with the value 2. With this programming, the active edge
of VO_102 will happen just before the first byte (pream-
ble) of the first line.

The first active edge of VO_l02 is delayed internally by
SLAVE_DLY VO_CLK cycles so that it appears internally
just before the start of the second line minus the internal
EVO pipeline delay. After this internal pipeline delay, the
line counter is loaded by FRAME_PRESET, (‘2'), and the
EVO starts sending data for line 2.

For the next frame, if the internal EVO programming
matches the VO _102 timing, the EVO will appear to start
the first byte of the first line just after the VO_l102 active
signal.

7.11 DATA TRANSFER TIMING

In data-streaming and message-passing modes, the
EVO supplies a stream of 8-bit data. No data selection or
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VO_102 | [ 1 |

Delay SLAVE_DLY in VO_CLK cycles }—* //

Line counter loaded by FRAME_PRESET

Figure 7-16. Genlock mode.
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Figure 7-17. Data-streaming valid data signals.

VO_DATA[7:0] XX DO p1 X b2 X b3 X pa X ps X s D7 xx X xx
VO_I01 "Start of
R message
VO 102 End of
| message [N¥——
VO_CLK [ e O o

Figure 7-18. Message-passing START and END signals.

data interpretation is done, and data is transferred at the
rate of one byte per VO_CLK. Data is clocked out on the
positive edge of VO_CLK.

When data-streaming mode is enabled and
EVO_ENABLE =1 and SYNC_STREAMING =1, the
VO_102 signal indicates a data-valid condition. This sig-
nal is asserted when the EVO starts outputting valid data
(that is, data-streaming mode is enabled and video out is
running), and is de-asserted when data-streaming mode
is disabled. As shown in Figure 7-17, the data-valid sig-
nal on VO_IO2 is asserted just before the first valid byte
is present on VO_DATA[7:0], and is de-asserted just af-
ter the last valid byte was sent, or if an HBE error is sig-
naled. All transitions of VO_102 occur on the rising edge
of VO_CLK. The VO_IOL1 signal generates a pulse one
VO_CLK cycle before the first valid data is sent. The
transitions of VO_IO1 occur on the rising edge of
VO_CLK and last for one VO_CLK cycle.

In message-passing mode, the EVO issues signals on
VO_101 and VO_IO2 to indicate the start and end of
messages.

When message passing is started by setting
VO_CTL.VO_ENABLE, the EVO sends a Start condition

on VO_l01. When the EVO has transferred the contents
of the buffer, it sends an End condition on VO_I02, sets
BFR1_EMPTY, and interrupts the DSPCPU. The EVO
stops, and no further operation takes place until the
DSPCPU sets VO_ENABLE again to start another mes-
sage, or until the DSCPU initiates other EVO operation.
The timing for these signals is shown in Figure 7-18.

7.12 IMAGE DATA MEMORY FORMATS

7.12.1 Video Image Formats

The EVO accepts memory-resident video image data in
three formats: YUV 4:2:2 co-sited, YUV 4:2:2 inter-
spersed, and YUV 4:2:0. These formats are shown in
Figure 7-19 through Figure 7-21.

7.12.2 Planar Storage of Video Image Data in
Memory

Video image data is stored in memory with one table for
each of the Y, U and V components. This is called planar
format. This is shown in Figure 7-22 for YUV 4:2:2 image
data. The EVO merges bytes from each of the three ta-
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Chrominance (U,V) Luminance
l l samples samples i i
» o b o o b o h o hp O
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Figure 7-19. YUV 4:2:2 co-sited format.
Chrominance (U,V) Luminance
samples samples i
oo oJo oo oJo ofJo oo
oo oo oJo oJo olJo oo
Figure 7-20. YUV 4:2:2 interspersed format.
Chrominance (U,V) Luminance
samples samples i i
O ’ o O [ o o o o o O O O O
o o o o o O o o o o O O
o o o o o O o o o O O O
o o o o o O o o o o O O
Figure 7-21. YUV 4:2:0 format.
bles to generate the CCIR 656-compatible output data.
The U and V tables have the same number of lines but .
half the number of pixels per line as the Y table. The YUV 4:2:2+a
transfer is the same for YUV 4:2:0 format except the U Y0 ‘ 0o ‘q‘ vi ‘ vo ‘a‘
and V tables will be 1/4 the size of the Y table. The U and N 7 P -
V tables have the half the number of lines and half the N /’ 7 _ -7
AN -

number of pixels per line as the Y table.

7.12.3 Graphics Overlay Image Format

Graphics overlay image data is stored in a pixel-packed
format in SDRAM. Graphics images are stored in YUV
4:2:2+alpha format. Figure 7-23 shows this format. The
YUV overlay area is always within the image output res-
olution. The EVO does not upscale the graphics overlay
image. If the EVO is upscaling the video image by 2x, the
graphics overlay must be provided in upscaled format.
Pixel data is a 16-bit data and follows endian-ness con-
ventions based on 16-bit data. Refer to Appendix C, “En-
dian-ness” for details.

~ ~
/ —~
/ “ OVERLAY_WIDTH pixels

ya

pix0 ‘ pix1 ‘ pix2 ‘ . . . VCE(1

OL_OFFSET

OVERLAY_HEIGHT lines

|

Figure 7-23. YUV 4:2:2+alpha overlay format.
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Figure 7-24. YUV interspersed to co-sited conversion.
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Output Pixels: YUV’ 4:2:2
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T T Co- ed ominance Output:
UV’ =(-1,513,-1)/16xU,V

Figure 7-25. YUV 4:2:0 to YUV 4:2:2 co-sited conversion.

7.13 VIDEO IMAGE CONVERSION
ALGORITHMS

The memory video image data formats are converted to
the output YUV 4:2:2 co-sited format and optionally up-
scaled 2x horizontally. The conversion algorithms are
detailed below.

7.13.1 YUV 4:2:2 Interspersed to YUV 4:2:2
Co-sited Conversion

The EVO accepts data from SDRAM in either YUV 4:2:2
co-sited, YUV 4:2:2 interspersed, or YUV 4:2:0 inter-
spersed formats. If the input data is in YUV 4:2:2 or YUV
4:2:0 interspersed format, interspersed-to-co-sited con-
version is performed to generate co-sited output. The
EVO uses a 4-tap, (-1, 5, 13, —1)/16 filter to perform this

conversion on the U and V chroma data. Figure 7-24
shows an example of interspersed to co-sited conversion.

7.13.2 YUV 4:2:0to YUV 4:2:2 Co-sited
Conversion

YUV 4:2:0 to YUV 4:2:2 conversion is a variation of YUV
4:2:2 interspersed-to-co-sited conversion. The YUV
4:2:0 format has the U and V pixels positioned between
lines as well as between pixels within each line. It also
has half the number of U and V pixels compared to YUV
4:2:2 formats. The EVO converts YUV4:2:0 to YUV 4:2:2
co-sited by using the U and V chrominance pixel values
for both surrounding lines and converting the resulting U
and V pixels from interspersed to co-sited format. This is
shown in Figure 7-25. For true vertical re-sampling of U
and V, the TM1300 ICP unit can be invoked on U and V
to convert from YUV 4:2:0 to YUV 4:2:2 interspersed.
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Figure 7-22. Image storage in planar memory format
for YUV 4:2:2.

7.13.3 YUV-2x Upscaling

In the YUV-2x modes, the EVO performs 2x horizontal
upscaling of the YUV data from SDRAM. No vertical up-
scaling is performed. The width of the result image
(IMAGE_WIDTH) should be an even number. Upscaling
is performed by 4-tap filtering. For all 3 memory formats,
Y luminance data is upscaled using a (-3,19,19,-3)/32
filter to generate the missing output pixels. Output pixels
at the same location as the input pixels use the corre-
sponding input pixel values, as shown in Figure 7-26.

The U and V chrominance values are generated in the
same way as the Y luminance signal for 2x upscaling,
assuming that both the input and output use YUV 4:2:2
co-sited chrominance coding. The U and V output pixels

at the same location as the U and V input pixels use the
corresponding input pixel values. The U and V output
pixels between the U and V input pixels are generated
using the (-3,19,19,-3)/32 filter, as shown in Figure 7-26.

If the input chroma is interspersed, a (-1,13,5,-1)/16 fil-
ter is used to generate the U and V output pixels that are
displaced by half a Y pixel from the U and V input pixels,
and a (-1,5,13,-1)/16 filter is used to generate the addi-
tional upscaled U and V output pixels that are displaced
by 1.5 pixels from the U and V input pixels. This is shown
in Figure 7-27.

7.13.4 Pixel Mirroring for Four-tap Filters

The EVO uses a 4-tap filter for upscaling and for convert-
ing from interspersed to co-sited format. One extra pixel
is needed at the beginning and two at the end of each
line processed by this filter. These pixels are supplied
automatically by mirroring the first and last pixels of each
line. For example:

« Output pixel 1 uses input pixel 1 to generate its value.
(same location, no filtering).

« Output pixel 2 uses pixels 1,1, 2 and 3 to generate its
value.

« Output pixel 3 uses pixel 2 to generate its value.
« Output pixel 4 pixel uses pixels 1, 2, 3 and 4, etc.

« Output pixel 2N-2 uses pixels N-2, N-1, N, and N-1
to generate its value.

» Output pixel 2N-1 uses pixel N to generate its value.

» Output pixel 2N uses pixels N-1, N, N, and N-1 to
generate its value.

Figure 7-28 shows an example of six pixels upscaled to
12 pixels.

samples

Chrominance (U,V)

Input Pixels: YUV @ O @) O @) O @ Samges @ g @ g
Output Pixels: Y'U'V’ m@@@@@@@@@@@@@@@@ @Q

Output Location Same
As Input Pixel: Y'U'V' = YUV

Luminance

Upscaled Chrominance Output Between
I Input Pixels: U,V = (-3,19,19,-3)/32 x U,V

Upscaled Luminance Output Between
Input Pixels: Y’ = (-3,19,19,-3)/32xY

Figure 7-26. 2x upscaling of Y pixels.

samples

Upscaled Luminance Output Between
Input Pixels: Y’ = (-3,19,19,-3)/32 x Y

Output Pixels: Y'U'V’

Co-sited Chrominance Output
UV’ =(-1,5,13,-1)/16xU,V

Chrominance (U,V)

Input Pixels: YOV () ﬁ O O ﬁ O O H O O H O O H (l) O H (l)

@Odﬁ@@@@OjP %4}04}04}0@0@0@0

Luminance
samples

Upscaled Luminance Output Same
As Input Pixel: Y' =Y

Co-sited Chrominance Output
UV’ =(-1,13,5,-1)/16xU,V

Figure 7-27. 2x upscaling of U and V with interspersed to co-sited conversion.
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1 2 3
Input Pixels: Y O O O
1 2 3 4 5
Output Pixels: Y’ O O O O O
= Y'=Y2 Y'=Y3

Y’=F(Y1,Y1,Y2,Y3)

Y'=F(Y1,Y2,Y3,Y4)

4 5 6
O O O
7 8 9 10 11 12
o o O O O O O
Y'=Y4 Y'=Y5 2N-1:
Y'=Y6

Y’=F(Y2,Y3,Y4,Y5)

Y’=F(Y4,Y5,Y6,Y6)

Y’=F(Y3,Y4,Y5,Y6) 2N:
Y’=F(Y5,Y6,Y6,Y5)

Figure 7-28. Mirroring pixels in 2x upscaling.

7.14 EVO OPERATING MODES

EVO operating modes belong to two groups as follows:

* Video-refresh modes
» Data-transfer modes

Data-transfer modes are further broken down into data-
streaming mode and message-passing mode.

The operating mode is set by the VO_CTL.MODE field
and the VO_CTL.OL_EN (overlay enable) control bit.
The VO_CTL.MODE field determines video-refresh,
message-passing or data-streaming mode. It further de-
fines the video image format and whether or not 2x hori-
zontal upscaling takes place. The OL_EN bit determines
whether a video-refresh mode has a graphics overlay
present. The modes are shown in Table 7-4.

Table 7-4. EVO Operating Modes

Mode Function Explanation

Video-refresh modes

0 YUV 4:2:2C-1x | YUV 4:2:2 co-sited, no scaling

1 YUV 4:2:21-1x | YUV 4:2:2 interspersed, no scaling

2 YUV 4:2:0-1x | YUV 4:2:0, no scaling

3 Reserved

4 YUV 4:2:2C-2x | YUV 4:2:2 co-sited, horizontal 2x
upscaling

5 YUV 4:2:21-2x | YUV 4:2:2 interspersed, horizontal
2x upscaling

6 YUV 4:2:0-2x | YUV 4:2:0, horizontal 2x upscaling

Reserved

Data-transfer modes

8 data
streaming

continuous transmission of raw 8-bit
data with valid data pulse and level
timing signals

transmission of raw 8-bit data with
STMSG and ENDMSG timing sig-
nals

9 message
passing

OxA Reserved

OxF

7.15 VIDEO PROCESSING

If enabled, the TM1300 implements new functions for
chroma keying, alpha blending and programmable clip-
ping, as described in this section.

7.15.1 Alpha Blending

If enabled by setting EVO _ENABLE=1 and
FULL_BLENDING =1, the EVO provides full 129-layer
alpha blending of a background video image with a fore-
ground graphics overlay image. If either bit is 0, the EVO
implements the cruder 25% step alpha blending resolu-
tion of the TM1000. Alpha blending can operate in con-
junction with chroma keying, as described in
Section 7.15.2.

Alpha blending combines a graphics overlay image with
the video image according to an alpha value provided
with each overlay pixel. The graphics overlay is taken
from a pixel-packed YUV 4:2:2+a data structure in mem-
ory. In the YUV 4:2:2+a format, each pixel has a single
o-bit supplied as the LSB of the U and V pixels. The U
byte LSB corresponds to the alpha for pixel YO, the V
byte LSB for pixel Y1, respectively. When the a-bit is ‘0’,
the ALPHA_ZERO register supplies the actual 8-bit a
value. When the a-bit is ‘1’, the ALPHA_ONE register
supplies the 8-bit a value. In the YUV 4:2:2 format, only
one set of U and V values is supplied for the two Y pixels,
Y0 and Y1. In this case, the alpha bit in UO determines
the alpha value for U, YO and V. The alpha blend bit in
VO only sets the alpha value for Y1 and does not affect
the U or V values.

The EVO uses the 8-bit content of the selected alpha
blending register (ALPHA_ZERO or ALPHA_ONE) to
determine the amount by which the overlay plane is
merged with the image plane as follows. The least-signif-
icant 7 bits of the selected blending register encode 128
blending levels from 0 to 0x7F. The MSB is used to turn
on blending (MSB = ‘0’) or to select the overlay plane as
the only output (MSB = ‘1"), so all values between 0x80
and OxFF select 100% overlay. Therefore, the total num-
ber of blending levels is 129: 128 variable blending val-
ues from 0 to OX7F plus one ‘blending’ value from 0x80
to OXFF for 100% overlay. An alpha value of 0 selects
100% image plane and 0% overlay. Similarly, a value of
0x40 selects 50% image and 50% overlay blending.
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The equations for the blending are illustrated below.

if alpha[7] = 1 then
output[7:0] = overlay[7:0]
else

(or)

output[7:0] = (alpha[6:0] - overlay[7:0] + (alpha[6:0] + 1) - image[7:0]) >> 7

output[7:0] = (alpha[6:0] - (overlay[7:0] — image[7:0]) >> 7) + image[7:0]

7.15.2 Chroma Keying

If the EVO_ENABLE and KEY_ENABLE bits are set to
‘1’ in EVO_CTL the TM1300 activates chroma keying.
The graphics overlay is taken from a pixel-packed YUV
4:2:2+a data structure in memory. The EVO_KEY regis-
ter provides the value which signifies full transparency
for the overlay. The overlay values (Y, U and V) are com-
pared to the values stored in bit-fields of the EVO_KEY
register. EVO_KEY has three 8-bit fields: KEY_Y,
KEY_U and KEY_V, which store the values to be com-
pared to the Y, U, and V components, respectively, of the
overlay for chroma keying. Bits that correspond to bits
set in MASK_Y and MASK_UV are ignored for the com-
parison. When there is an exact match between the pixel
value and the value in EVO_KEY (disregarding any bits
masked by MASK_Y and MASK_UV), then the overlay
value is not present in the output stream, resulting in full
transparency.

The mask bits in EVO_MASK provide for varying de-
grees of precision in the chroma-key matching process.
The EVO_MASK.MASK_Y field can mask from 0 to 4
LSBs of the overlay Y component during the chroma key
process. For example, setting MASK_Y =1 eliminates
the influence of the LSB of KEY_Y in the keying process.
This can be used to widen the range of key matching to
account for irregularities in the chroma-key video signal.
Likewise, EVO_MASK.MASK_UV is used to mask from
zero to four LSBs of the overlay U and V components
during the chroma key process. For example, setting
MASK_UV =1 eliminates the influence of the LSB of
KEY_U and KEY_V in the keying process.

7.15.3 Programmable Clipping

If EVO_CTL.CLIPPING_ENABLE = 1 the EVO performs
fully-compliant programmable clipping. Clipping is per-
formed as the last step of the video pipeline, after chro-
ma keying and alpha blending. It is applied only on the
image areas (Fieldl and Field2) defined by
IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_VOFF and
IMAGE_HOFF inside the Active Video Area. Blanking
values are not clipped.

The EVO_CLIP MMIO register stores four 8-bit fields
used to clip output components. The Y output compo-
nent is clipped between the values stored in
LOWER_CLIPY and HIGHER_CLIPY. A value less than
or equal to LOWER_CLIPY is forced to LOWER_CLIPY
and a value greater than or equal to HIGHER_CLIPY is
forced to HIGHER_CLIPY.

unit by clearing the HBE bit then reading

The same behavior is implemented for U and V with the
values stored in the LOWER_CLIPUV and
HIGHER_CLIPUYV fields.

This mode allows fully-compliant 16 to 235 Y clipping
and 16 to 240 Cb and Cr clipping to be programmed.
These are the default values of the EVO_CLIP register
after reset.

If CLIPPING_ENABLE = 0, the EVO clips Y, U and V be-
tween the default values 16 and 240, as it is implement-
ed in the TM1000. When LOWER_CLIP{Y,UV} registers
are set to ‘0’ and HIGHER_CLIP{Y,UV} registers are set
to ‘255, no clipping is performed.

7.16 MMIO REGISTERS

The MMIO registers are in two groups:

* VO registers — control basic VO functions (those
shared with the TM1000 VO unit)

» EVO registers — control new EVO unit functions
(those new to TM1100/TM1300)

VO MMIO registers are shown in Figure 7-29. VO MMIO
register names are prefixed with “VO_". Generally, their
functionality is unchanged except where noted in the text
(see for instance, Section 7.16.1). The register fields are
described in Table 7-5, Table 7-6 and Table 7-7. They
are discussed in sections 7.16.1 through 7.16.3.2.

EVO MMIO registers are shown in Figure 7-31. EVO
MMIO register names are prefixed with “EVO_". The
EVO_CTL register selectively enables new TM1300
functions. Other EVO-related registers support new
TM1300 functions. The register fields are described in
Table 7-8 and Table 7-9. They are discussed in
sections 7.16.4 and 7.16.5.

To ensure compatibility with future devices, any unde-
fined MMIO bits should be ignored when read, and writ-
ten as ‘O’s.

7.16.1 VO Status Register (VO_STATUS)

The VO_STATUS register is a read-only register that
shows the current status of the EVO. Its fields are shown
in Figure 7-29 and Table 7-5.

VO_STATUS[4] is now hard-wired to ‘1". This allows soft-
ware to determine if the unit is an EVO unit (containing
extra MMIO registers) or a TM1000 VO unit, as follows.
In the TM1000, this bit is a copy of the HBE flag
(VO_STATUSI5]). In the EVO unit, it is hard-wired to ‘1.
Software can use this bit to determine the type of (E)VO

VO_STATUSI[4]. If the bit remains ‘1’, the unit is an EVO.
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MMIO_BASE Indicates EVO functionality —‘
Oﬂset: 31 T T 27\ T T T 23\ T T 19\ T 15\ T T T 11 T T T 7 3 0
0x101800 VO_STATUS (1) | CUR Y(12) CUR X(12) T T[]
BFR:I._EMPTY4
BFR2_EMPTY
HBE
URUN
YTR
FIELD2
VBLANK
31 27‘ ‘23‘ 19 15‘ . . 11 7 3 0
0x101804  VO_CTL (r/w) R \ [ [Tl Iwmooe [TTTTTTTTTTT]]
RESET4 BFR]._ACKJ J
SLEEPLESS BFR2_ACK
CLOCK_SELECT HBE_ACK
PLL_S BFRL_INTEN
PLL T BFR2_INTE
CLKOUT HBE_INTEN
SYNC_MASTER URUN INTEN
VO_|01_POS— YTR_INTEN
VO_I02_POS UT?UN_ACK
OL_EN YTR_ACK
LTL_END
VO_ENABLE
31\ T 27\ T 23\ T 19\ T T T 15\ T T T 11\ T 7\ T 3\ T o
0x101808 VO_CLOCK (riw) | FREQUENCY |
0x10 180C  VO_FRAME (w) | FRAME PRESET | FIELD 2 START | FRAME_LENGTH \
0x101810  VO_FIELD (r/w) [F2_ OLAP|F1 OLAP] F2 VIDEO LINE | F1 VIDEO LINE |
0x10 1814  VO_LINE (r/w) [~ " 77" "1 VIDEO PIXEL START | FRAME WIDTH \
0x101818  VO_IMAGE (riw) | | © " IMAGE HEIGHT | IMAGE WIDTH |
0x10 181C  VO_YTHR (r/w) | Y THRESHOLD | reserved| IMAGE VOEF | IMAGE HOFE |
0x10 1820  VO_OLSTART (riw) | OL START LINE | "OL START PIXEL | GLOBALALPHA1 |
0x101824 VO_OLHW (w) |  OVERLAY HEIGHT |  OVERLAY WIDTH | GLOBAL ALPHA 0 |
31\ \27\ \23\ T T \19\ T T \15\ T T \11\ T T T 7\ T 3\ \0
0x10 1828  VO_YADD (r/w) | Y BASE ADR or BFR1BASE ADR |
0x10 182C  VO_UADD (r/w) | ' U BASE_ADR or BFR2BASE ADR |
0x10 1830  VO_VADD (r/w) | " " "V BASE ADRoOrSIZEL | |
0x101834  VO_OLADD (W) | 'OL BASE ADR or SIZE2 |
0x10 1838  VO_VUF (r/w) \ ‘U oFrFseTds) | " 'V OFFSET(16) \
0x10 183C  VO_YOLF (r/w) | OL OFFSET(16) \ 'y OFFSET(16) \

Figure 7-29. EVO MMIO registers.

7.16.2 VO Control Register (VO_CTL)

The VO_CTL register sets the operating mode, enables
interrupts, clears interrupt flags, and initiates EVO oper-
ations. Its fields are unchanged from the TM1000, as
shown in Figure 7-29 and Table 7-6, however the pre-
cise functionality implemented by a field may be changed
if TM1300 functionality is enabled by software. Its hard-
ware reset value is 0x32400000 which sets
CLOCK_SELECT =3, PLL S=1 and PLL T=1, and

all other bits to ‘0. To ensure compatibility with future de-
vices, any undefined MMIO bits should be ignored when
read, and written as ‘O’s.

7.16.3 VO-Related Registers

The VO-related registers and their fields are shown in
Table 7-7. Their fields are unchanged from the TM1000,
however their function may vary depending upon the
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Table 7-5. VO_STATUS — status register fields

Field

Description

CUR_Y

Current Y.

Image line index of the current line in the current field being output by the EVO. CUR_Y reflects the current state of
the Image Line Counter. CUR_X and CUR_Y form a single 24-bit output data byte counter (CUR_X is the counter
LSBs) when the EVO is in data-streaming or message-passing mode. This counter reflects the status of the SIZE
counter for the currently active buffer. The two LSBs of this counter are not valid for reading during transfers; only
the upper 22 bits (the word count) are valid.

CUR_X

Current X.
Image pixel index of the most-recently-output pixel. CUR_X reflects the current state of the Image Pixel Counter.

BFR1_EMPTY
BFR2_EMPTY

Buffers 1 and 2 Empty.

These bits are valid in video-refresh, data-streaming and message-passing modes.

« Invideo-refresh modes, only Buffer 1 is used. BFR1_EMPTY indicates that the last byte of a field has been
transferred. It is actually raised at the completion of the transmission of the Overlap area of the field, as shown in
Figure 7-30. At this point, software should assign a new field of imagery to {Y,U,V} BASE_ADR and perform a
BFR1_ACK. If BFR1_EMPTY is not cleared by BFR1_ACK before the active video area of the next field starts to
be emitted, the EVO sets the URUN bit.

¢ In data-streaming mode, BFR1_EMPTY and BFR2_EMPTY indicate that the last byte in their corresponding
buffer has been transferred. When BFR1_EMPTY or BFR2_EMPTY is set, transfer stops from the corresponding
buffer.

« In message passing mode, BFR1_EMPTY signals completion of message transmission.

These bits cause an interrupt if their interrupt-enable bits are set. One interrupt per buffer is signaled.

HBE

Highway Bandwidth Error.

HBE is set when the highway fails to respond in time to a highway read request and data was not ready in time to be
set on EVO data lines. HBE can be set in both image- and data-transfer modes. HBE indicates insufficient band-
width was requested from the highway arbiter.

EVO unit indicator.

This bit allows software to determine if the unit is an EVO (containing extra MMIO registers) or a TM1000 VO unit.
In the TM1000, this bit is a copy of the HBE flag. In the EVO unit, it is hard-wired to ‘1’. Software can easily deter-
mine the type of video output unit by clearing the HBE bit then reading this bit.

YTR

Y threshold.
In video-refresh modes, YTR indicates that the Image Line Counter value is equal to the Y_THRESHOLD value in
VO_YTHR. The Y_THRESHOLD value can be set to provide an interrupt on any line in the valid image area.

URUN

Underrun.

In video-refresh and data-streaming mode, this bit indicates that the CPU did not perform an acknowledge to indi-

cate updated address pointers for the next field or buffer in time for continuous image or data transfer. URUN

causes an interrupt if the corresponding interrupt-enable condition is set.

¢ Invideo-refresh modes, URUN indicates that the SAV code marking beginning of active video has been gener-
ated without BFR1_ACK being set by the CPU. (Setting BFR1_ACK to ‘1’ clears BFR1_EMPTY). In this case,
video refresh continues with previous address pointers.

¢ In data-streaming mode, URUN indicates the last byte in the active buffer was transferred, and no BFR1_ACK or
BFR2_ACK occurred to enable the next buffer. In this case, transfer continues with previous address pointers.

FIELD2

Field 2 or Buffer 2 active.

« In data-streaming mode, FIELD2 = 0 when Buffer 1 is active; FIELD2 = 1 when Buffer 2 is active.

¢ Invideo-refresh modes, FIELD2 indicates that the EVO is actively sending out a video image for Field 2, as
defined by Figure 7-30.

VBLANK

Vertical blanking.
Indicates that the EVO is in a vertical-blanking interval. VBLANK is asserted only in video-refresh modes.

new TM1300 features that are selectively enabled by
EVO_CTL (see Section 7.16.4).

7.16.3.1

The frame timing for 525/60 and 625/50 timing cases is
shown pictorially in Figure 7-30. CCIR 656 line defini-
tions are used.

Frame and field timing control

7.16.3.2 Recommended values for timing

registers

The recommended values for the various fields of the
timing registers are shown in Table 7-10 for 525/60 and
625/50 timing cases. The FREQUENCY field value
shown is for 27 MHz assuming a DSPCPU clock of
143 MHz.

7.16.4 EVO Control Register (EVO_CTL)
New TM1300 EVO features are enabled by setting the

appropriate fields of the EVO_CTL register shown in
Figure 7-26. The register fields are described in
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525 Line / 60 Hz 625 Line / 50 Hz
1 . . 1
Blanking: Field 2 Overlap : :
- Blanking: Field 1
4
Blanking: Field 1 23
20
Video Image: Field 1
Video Image: Field 1
311 Blanking: Field 1 Overlap
264 . . 313
Blanking: Field 1 Overla . :
- 9 P Blanking: Field 2
266
Blanking: Field 2 336
283
Video Image: Field 2
Video Image: Field 2
623
624 -
525 625 Blanking: Field 2 Overlap
Figure 7-30. EVO frame timing.
Table 7-6. VO_CTL register fields
Field Description
RESET Software reset of the EVO.
The recommended software reset procedure is as follows.
« Write the desired VO_CTL state with the RESET bit set to ‘1".
« Write the desired VO_CTL state word, this time with the RESET bit cleared to ‘0’. Both writes should have
VO_ENABLE set to 0.
¢ Finally, enable the newly selected mode by setting VO_ENABLE. This step should be done last, as a separate
transaction.
After a software reset, 5 VO_CLK clock cycles are required to stabilize the internal circuitry (before enabling EVO).
Note: A hardware reset clears the CLKOUT and SYNC_MASTER bits and puts VO_CLK, VO _101, and VO_102 in
the input state. This results in a VO_CTL value of 0x32400000. In contrast, a software reset does not change
device registers. So a software reset results in a state as specified by the VO_CTL word value written during the
above-described procedure.
SLEEPLESS Disable power management.

If SLEEPLESS = 1, power-down of the EVO is prevented during global TM1300 power-down.

CLOCK_SELECT

Clock select.

00 — Select PLL VCO output as the VO_CLK source.

01 — Select PLL feedback loop divider output as VO_CLK source.

10 — Select PLL input divider output as VO_CLK source.

11 — Select DDS output directly as VO_CLK source, bypassing the PLL altogether. (Hardware reset default.)

PLL_S PLL input divider division ratio.

A value of k selects division by k+1. The hardware reset default = 1, causing division by 2.
PLL_T PLL feedback loop divider division ratio.

A value of k selects division by k+1. The hardware reset default = 1, causing division by 2.
CLKOUT Clock output.

*« When CLKOUT =1, the EVO clock generator is enabled, and VO_CLK is an output.
¢« When CLKOUT =0, VO_CLK is an input, and EVO clock is provided by the external device. (Hardware reset
default.)
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Table 7-6. VO_CTL register fields

Field Description

SYNC_MASTER |Sync master.

¢ When set, VO_IO1 and VO_IO2 are outputs. In video-refresh modes, the EVO generates horizontal and frame
timing signals on VO_l01 and VO_102 respectively. In message-passing mode and data-streaming mode, this
bit should always be set so that VO_101 and VO_102 generate START and END message signals respectively.

e When zero, VO_102 is an input. (Hardware reset default.) In video-refresh modes, VO_102 serves as the frame
time reference. The active edge is selected by VO_I02_POS.

VO_l01_POS Polarity of VO_IOx_POS.

VO_102_POS VO_101_POS currently has no function.

VO_102_POS determines the input polarity of VO_102.

« When ‘0, the corresponding input triggers on the negative (high-to-low) transition of the input signal.
* When ‘1’, the input triggers on the positive (low-to-high) transition.

OL_EN Overlay Enable.
Enables the YUV overlay function in video-refresh modes.
MODE Major operating mode.
Defines the video output major operating mode, as listed in Table 7-4 on page 7-13.
BFR1_ACK Buffer 1 and Buffer 2 acknowledge.
BFR2_ACK When active in data-transfer modes, writing a ‘1’ to BFR1_ACK clears BFR1_EMPTY and enables Buffer 1 for

transfer until BFR1_EMPTY is set. Writing a ‘0’ to BFR1_ACK has no effect. BRF2_ACK operates similarly for
Buffer 2. Writing a ‘1’ to VO_ENABLE in data-streaming mode is the same as writing a ‘1’ to both BFR1_ACK and
BFR2_ACK, and enables both buffers 1 and 2 for transfer. Writing a ‘1’ to VO_ENABLE in message-passing mode
is the same as writing a ‘1’ to BFR1_ACK, and enables Buffer 1 for transfer. BFR2_ACK is not used in message-
passing mode, since only Buffer 1 is used.

HBE_ACK Acknowledge HBE or URUN.
URUN_ACK Writing a ‘1’ to these bits clears the HBE or URUN flags and resets their corresponding interrupt conditions.
YTR_ACK Acknowledge Y threshold.

Writing a 1’ to this bit clears the YTR flag and resets its interrupt condition. YTR signals the CPU to set new point-
ers for the next field. If YTR_ACK is not received by the time the active image area for the next field starts, the
URUN flag is set. Data transfer continues with the old pointer values.

BFR1_INTEN Enable interrupt conditions.

BFR2_INTEN Enable corresponding interrupts to be generated when the BFR1_EMPTY, BFR2_EMPTY, HBE, URUN (under-
HBE_INTEN run/end of transfer), and YTR (end of field/buffer) flags are set, respectively.

URUN_INTEN Note: BFR2_INTEN, URUN_INTEN, YTR_INTEN must be 0 in message passing mode.

YTR_INTEN

LTL_END Little-endian.
Specifies that data in SDRAM is stored in little-endian format. This only affects the overlay packed-image format
interpretation in video-refresh modes. Refer to Appendix C, “Endian-ness,” for details on byte ordering.

VO_ENABLE Enable the EVO to send image data or message data to its output.

Note: This bit should not be simultaneously asserted with the RESET bit. The correct sequence to reset and
enable the EVO is as follows.

¢ Setall VO_CTL control fields as desired, writing VO_CTL with RESET =1, VO_ENABLE = 0.

* Retain all desired values of control fields, but rewrite VO_CTL with RESET = 0, VO_ENABLE = 0.

< Finally, still retaining all desired control fields, rewrite VO_CTL with RESET = 0, VO_ENABLE = 1.

Setting VO_ENABLE in video-refresh modes starts the EVO sending image data beginning with the first pixel in
the image. Setting VO_ENABLE in data-streaming and message-passing modes starts the EVO sending data
beginning with the first byte in Buffer 1. In video-refresh and data-streaming modes, VO_ENABLE remains set until
cleared by the CPU. In message-passing mode, VO_ENABLE is cleared when BFR1_EMPTY is set, indicating the
end of message transfer.

Note: De-asserting VO_ENABLE in video-refresh modes causes SDRAM reads to stop, but sync framing and
BFR1_EMPTY generation and interrupts remain fully operational. The transmitted active image data is undefined
in this case. To fully halt video output, a software reset is required.
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Table 7-7. VO register flelds

Register Field Description

VO_CLOCK FREQUENCY VO_CLK frequency. See DDS equation in Figure 7-6, and PLL description in Section 7.18.

VO_FRAME FRAME_LENGTH Total number of lines per frame; the ending value of the Frame Line Counter; typically 525
or 625. Note: the Frame Line Counter counts from 1 to 525 or 625, consistent with
CCIR 656 line numbering.

FIELD_2_ START Start line number in the Frame Line Counter; where the second field of the frame begins.
If non-interlaced pictures are desired, then the same value is programmed for Field 1 and
Field 2. Field 1 becomes Frame 1 and Field 2 becomes Frame 2.

FRAME_PRESET Value loaded into the Frame Line Counter when frame timing edge is received on VO_102.
Note: currently this must be set to 1.

VO_FIELD F1 VIDEO_LINE Line number in the Frame Line Counter of the first active video line of Field 1 of the frame.

F2_VIDEO_LINE Line number in the Frame Line Counter of the first active video line of Field 2 of the frame.
If non-interlaced pictures are desired, this is programmed to the same value as
F1_VIDEO_LINE

F1 _OLAP Overlap of the SAV and EAV codes from Field 1 to Field 2. Overlap is defined as the delay
in lines from start of blanking for Field 2 until SAV and EAV codes for Field 2 are emitted.
Typical values are +2 for 525/60 and +2 for 625/50.

F2_OLAP Overlap in lines of the SAV and EAV code from Field 2 to Field 1. Overlap is defined as the
delay in lines from start of blanking for Field 1 until the SAV and EAV codes for Field 1 are
emitted. Typical values are +3 for 525/60 and —2 for 625/50. The negative value means
Field 1 blanking actually starts two lines before end of Field 2 of previous frame. This over-
lap is described in Table 7-3 on page 7-6, and illustrated in Figure 7-30.

VO_LINE FRAME_WIDTH Total line length in pixels including blanking. Also the ending value for the Frame Pixel
Counter. Lines always begin with a horizontal blanking interval, and the image starts after
the blanking interval and runs to the end of the line.

VIDEO_PIXEL_START | Pixel number in Frame Pixel Counter of starting pixel of active video area within the line.
Note: Must be even.

VO_IMAGE IMAGE_HEIGHT Video Image height in lines.

IMAGE_WIDTH Video Image line (scaled) output width in pixels. Must be even for upscaling by 2x.

VO_YTHR Y_THRESHOLD Threshold image line number in the Image Line Counter for the YTR interrupt.

Can be reprogrammed on a frame-by-frame basis.

IMAGE_VOFF Image vertical offset in lines from the top of the active video window.

IMAGE_HOFF Image horizontal offset in pixels from the start of the active video window.

VO_OLSTART | OL_START_LINE Starting image line of YUV overlay within the image.

Zero indicates that the overlay starts at the same line as the image.

OL_START_PIXEL Starting image pixel of the YUV overlay within the image. ‘0’ indicates that the overlay
starts at same pixel as the image. Note: Must be even.

ALPHA ONE Alpha blend value used for YUV 4:2:2+alpha format overlays when the alpha bit = 1.

VO_OLHW OVERLAY_HEIGHT Height of the YUV overlay image in lines. Note: The height of the overlay should be cho-
sen such that it does not extend beyond the image area.

OVERLAY_WIDTH Width of the YUV overlay image in pixels. Note: Must be even.

ALPHA_ZERO Alpha blend value used for YUV 4:2:2+alpha format overlays when the alpha bit = 0.

VO_YADD Y_BASE_ADR Y-component buffer address or Buffer 1 address.

BFR1BASE_ADR ¢ In video-refresh modes: Y-component starting byte address.
¢ In data-streaming and message-passing modes: Buffer 1 starting byte address. Note:

must be 64-byte aligned in data-streaming mode and 4-byte aligned in message pass-
ing mode.

VO_UADD U_BASE_ADR U-component buffer address or Buffer 2 address.

BFR2BASE_ADR ¢ In video-refresh modes: U-component starting byte address
¢ In data-streaming mode: Buffer 2 starting byte address; must be 64-byte aligned
« Not used in message-passing mode

VO_VADD V_BASE_ADR V-component buffer address or Buffer 1 length.

SIZE1 ¢ In video-refresh modes: V-component starting byte address

¢ In data-streaming and message-passing modes: Buffer 1 length in bytes. Note: must be
a multiple of 64 in data-streaming mode. SIZE1 is limited to 24 bits.
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Table 7-7. VO register flelds

Register Field Description
VO_OLADD OL_BASE_ADDR Overlay-image buffer address or Buffer 2 length.
SIZE2 < In video-refresh modes: overlay-image starting byte address. OL_BASE can be repro-
grammed on a frame-by-frame basis.
« In data-streaming mode: Buffer 2 length in bytes. Note: Must be multiple of 64 in data-
streaming mode; Not used in message-passing mode.
VO_VUF U_OFFSET Offset in bytes from start of one line to start of next line (16-bits unsigned).
V_OFFSET Offset in bytes from start of one line to start of next line (16-bits unsigned).
VO_YOLF Y_OFFSET Offset in bytes from start of one line to start of next line (16-bits unsigned).
OL_OFFSET Offset in bytes from start of one line to start of next line (16-bits unsigned).

Table 7-8. If features are enabled, new TM1300 the func-
tionality replaces TM1000 functions.

The hardware reset value of EVO_CTL register is
0x10000000, which means that EVO functions are dis-
abled on reset and must be enabled by software. The MS
four bits indicate the EVO revision nhumber.

To ensure compatibility with future devices, any unde-
fined MMIO bits should be ignored when read, and writ-
ten as ‘O’s.

7.16.5 EVO-Related Registers

As shown in Figure 7-31, four additional registers are in-
troduced in the TM1300, as follows.

7.17 ENHANCED VIDEO OUT OPERATION

As described in Section 7.14, the EVO operates in either
video-refresh or data-transfer modes. The DSPCPU

« EVO_MASK and EVO_KEY — used in chroma key
(see Section 7.15.2).

» EVO_CLIP — provides programmable clipping (see
Section 7.15.3).

« EVO_SLVDLY — used
Section 7.10).

These registers are shown in Figure 7-31, and their reg-
ister fields are shown in Table 7-9.

in Genlock mode (see

To ensure compatibility with future devices, any unde-
fined MMIO bits should be ignored when read, and writ-
ten as ‘O’s.

starts the EVO by setting the appropriate VO MMIO reg-
isters and the appropriate EVO MMIO registers.

VO_CTL.MODE must be set to the appropriate transfer
mode, appropriate addresses, address offsets, and im-
age timing registers and the associated control bits in the
control register must be set. Lastly, software sets

MMIO_BASE
offset:
31 27 23 19 15 11 7 3 0
0x101840  EVO_CTL (riw) Lofofo[s [ [ [ T[T [ [[[reseRvESf [ [ [[[TTIT[[[I]]]
GENLOCK
FULL_BLENDING
CLIPPING_ENABLE
SYNC_STREAMING
FIELD_SYNC
KEY_ENABLE
EVO_ENABLE
31‘ , , 27‘ , , 23‘ ‘19‘ ‘15‘ : : ‘11‘ : 7‘ : 3‘ : 0
0x10 1844 EVO_MASK (/w)  |MASK_Y |MASK_Uv| RESERVED ‘
0x10 1848  EVO_CLIP (r/w) | HIGHER_CLIPUV| LOWER_CLIPUV | 'HIGHER CLIPY | LOWER CLIPY |
0x10 184C  EVO_KEY (r/w) [ RESERVED' KEY_V BREARE =T
0x10 1850  EVO_SLVDLY (rw) | ' RESERVED' ’ | ©  SLAVE_DLY \

Figure 7-31. EVO MMIO registers.
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Table 7-8. EVO_CTL Register Fields

Register

Field

Description

EVO_CTL

EVO_ENABLE

When set to 1, new EVO features are enabled. When set to 0 (the hardware reset value), the
EVO behaves exactly like a TM1000 VO unit. Default: 0.

FULL_BLENDING

Activates full 8-bit alpha blending when set to 1. When set to 0, only the original five TM1000
blending levels are implemented (0%, 25%, 50%, 75%, 100%). Default: 0.

CLIPPING_ENABLE

When set to 1, the values stored in EVO_CLIP are used for the clipping of output data. Otherwise,
TM1000 default values (240 and 16 for Y, U and V) are used. Default: 0.

SYNC_STREAMING

When set to 1 in data-streaming mode, VO _102 generates a DATA_VALID signal. See Section
7.17.2, “Data-transfer Modes”. Default: 0.

FIELD_SYNC When set, VO_I02 will generate frame synchronization signal that follows the field number in
SAV/EAV codes (Field1 gives a low VO_102, Field2 gives a high VO_102). Default: 0.

GENLOCK Activates Genlock mode when set to 1 and VO_CTL.SYNC_MASTER = 0. Default: 0.

KEY_ENABLE When set, this bit activates chroma key. The overlay values (Y, U and V) are compared to the val-

ues stored in the EVO_KEY register. Bits that correspond to bits set in MASK_Y and MASK_UV
are ignored for the comparison. When there is an exact match between the pixel value and the
value in EVO_KEY register (less the bits selected by MASK_Y and MASK_UV), then the overlay
value is not present in the output stream, resulting in full transparency.

The key is 24 bits (Y, U and V are 8 bits each). Default: 0.

Table 7-9. EVO-Related MMIO Registers Fields

Register Field Description
EVO_MASK MASK_Y This 4-bit value is used to mask the four lower bits of the overlay Y component during the
chroma key process. Example: Setting MASK_Y to ‘1" will eliminate the influence of the
LSB of KEY_Y in the keying process.

MASK_UV This 4-bit value is used to mask the four lower bits of the overlay U and V components
during the chroma key process. Example: Setting MASK_UV to ‘1’ will eliminate the
influence of the LSB of KEY_U and KEY_V in the keying process.

EVO_CLIP LOWER_CLIPY A'Y value lower or equal to LOWER_CLIPY is forced to LOWER_CLIPY. Default: 16.

HIGHER_CLIPY A'Y value higher or equal to HIGHER_CLIPY is forced to HIGHER_CLIPY. Default: 235.

LOWER_CLIPUV An U or Y value less than or equal to LOWER_CLIPUV is forced to LOWER_CLIPUV.
Default: 16.

HIGHER_CLIPUV An U or and an V value higher than or equal to HIGHER_CLIPUV is forced to
HIGHER_CLIPUV. Default: 240.

EVO_KEY KEY_Y Value compared to the Y component of the overlay for chroma keying.

KEY_U Value compared to the U component of the overlay for chroma keying.

KEY_V Value compared to the V component of the overlay for chroma keying.

EVO_SLVDLY Number of VO_CLK cycles of internal delay for VO_I02 in Genlock mode.

VO_CTL.VO_ENABLE to begin EVO operation. The
EVO transfers the image, data, or message as com-

Table 7-10. Timing register recommended values

manded. In video-refresh and data-streaming modes, . . 525/60 625/50
. : Register Field
the EVO runs continuously. In message-passing mode, Value Value
the EVO runs only until the message has been trans- VO FRAME | FRAME LENGTH 505 625
ferred. - =
o FIELD_2_START 264 311
The EVO unit is reset by a TM1300 hardware reset, or by FRAME PRESET 1 1
a software reset, as described in Table 7-6 for the RE- —
SET bit. VO_FIELD |F1_VIDEO_LINE 20 23
F2_VIDEO_LINE 283 336
Table 7-10. Timing register recommended values F1_OLAP 2 2
F2_OLAP 3 -2 (OXE)
Register Field 525/60 625/50 VO_LINE | FRAME_WIDTH 858 864
Value Value
VIDEO_PIXEL_START| 138 144
VO_CLOCK | FREQUENCY OXBSSE, | OxB5SE, VO_IMAGE | IMAGE_HEIGHT 240 288
E191 E191 — =
IMAGE_WIDTH 720 720
(704 visible)
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The VO_CLK signal is normally set as an output to drive
the data transfer for all modes at a programmable rate.
The VO_CLK signal can be an input or output, as con-
trolled by the VO_CTL.CLKOUT bit. When CLKOUT =1,
VO_CLK is an output, and its frequency is set by the
VO_CLOCK register value. When CLKOUT =0,
VO_CLK is an input and the EVO generates data at the
clock rate of the sender.

In video-refresh modes, the EVO receives or generates
horizontal and frame synchronization signals on the
VO_101 and VO_102 lines, as described in Section 7.9.4

7.17.1 Video Refresh Modes

In video-refresh mode, the EVO transfers an image from
SDRAM to the EVO port. The VO_CTL.MODE field de-
fines the video image memory data format and deter-
mines whether the EVO is to perform horizontal upscal-
ing (see Table 7-4). The EVO accepts memory image
data in YUV 4:2:2 co-sited, YUV 4:2:2 interspersed and
YUV 4:2:0 formats, and generates a CCIR 656-compati-
ble, YUV 4:2:2 co-sited image output stream. Scaling is
identified by the YUV-1x and YUV-2x modes. In YUV-1x
modes, luminance and chrominance pass unmodified. In
YUV-2x modes, luminance and chrominance are hori-
zontally upscaled by a factor of two.

During video refresh, the VO_STATUS.YTR bit is set
when the Image Line Counter reaches the
Y_THRESHOLD value. When an image field has been
transferred, the VO_STATUS.BFR1_EMPTY bit is set.
The DSPCPU is interrupted when either the YTR or
BFR1_EMPTY flag is set and its corresponding interrupt
is enabled. To maintain continuous transfer of image
fields, the DSPCPU supplies new pointers for the next
field following each BFR1_EMPTY interrupt. If the
DSPCPU does not supply new pointers before the next
field, the URUN bit is set, and the EVO uses the same
pointer values until they are updated.

Graphics Overlay

The graphics overlay is enabled by the VO_CTL.OL_EN
bit. The graphics overlay is typically a software-generat-
ed graphic overlaid onto the output video image stream.
The graphics overlay is either generated in YUV by the
DSPCPU or converted by the DSPCPU from an RGB to
a YUV overlay image. Because RGB-to-YUV conversion
can potentially lose information, this conversion is done
by the DSPCPU, because it has the most information
about how best to perform this conversion in the most ef-
fective manner.

The overlay height should be chosen such that the over-
lay does not vertically extend beyond the image area. A
height greater than this causes undefined results and
may result in vertical overlay wraparound.

Note: The emitted byte data rate is limited to 45% of the
SDRAM clock when overlays are enabled.

The YUV overlay logic assembles the UO, YO, VO, Y1
bytes for a pair of YUV 4:2:2 pixels for both the main im-
age and the overlay image. The alpha bit for pixel O (the
LSB of the UO byte of the overlay image) selects

ALPHA_ZERO or ALPHA_ONE as the alpha source,
and the alpha blend logic combines U0, YO0, and VO from
the main and overlay images to generate the U0, YO and
VO output values. The alpha bit for pixel 1 (the LSB of the
VO byte of the overlay image) selects ALPHA_ZERO or
ALPHA_ONE as the alpha source for blending the Y1
pixels to generate the Y1 output value. The alpha blend-
ed UO, YO0, VO and Y1 bytes are sent to the EVO output
port in the YUV 422 sequence. The overlay U and V val-
ues used assume an LSB of zero.

Video Image Addressing

The output image is read from SDRAM at a location de-
fined by Y _BASE_ADR, Y_OFFSET, U_BASE_ADR,
U_OFFSET, V_BASE_ADR, and V_OFFSET. The de-
fault memory packing is big-endian although little-endian
packing is also supported by setting the
VO_CTL.LTL_END bit.

Horizontally-adjacent samples are stored at successive
byte addresses, resulting in a packed form (four 8-bit
samples are packed into one 32-bit word). Upon horizon-
tal retrace, the starting byte address for the next line is
computed by adding the corresponding offset value to
the previous line's starting byte address. Note that
{OL,Y,U,V}_OFFSET values are 16-bit unsigned quanti-
ties. This process continues until the total image—height
in lines and width in pixels per line—has been read from
memory for luminance (Y). For chrominance, the same
number of lines are read, but half the number of pixels
per line are read in YUV 4:2:2 and YUV 4:2:0 formats?.
The YUV 4:2:0 format has half the number of U and V
lines in memory that the YUV 4:2:2 formats have, but
each line of U and V data is read and used twice. See
Figure 7-19 through Figure 7-22.

7.17.2 Data-transfer Modes

In data-streaming and message-passing modes, the
EVO supplies a stream of 8-bit data to the
VO_DATAJ[7:0] lines at rates up to 81 MHz.

Note: In the TM1300, the data-rate is limited to an 81-
MHz EVO clock.

Data is read from SDRAM in packed form (four 8-bit
bytes per 32-bit word). No data selection or data interpre-
tation is done, and data is transferred at one byte per
VO_CLK from successive byte addresses.

Data-Streaming Mode. In data-streaming mode, data is
stored in SDRAM in two buffers.

When the EVO has transferred out the contents of one
buffer, it interrupts the DSPCPU and begins transferring
out the contents of the second buffer. The DSPCPU sup-
plies pointers to both buffers. The EVO can provide a
continuous stream of data to the EVO output if the
DSPCPU updates the pointer to the next buffer before
the EVO starts transferring data from the next table.

1. Note that consecutive pixel components of each line
are stored in consecutive memory addresses but con-
secutive lines need not be in consecutive memory ad-
dresses
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Note: In this mode, SYNC_MASTER must be set to en-
sure correct operation of VO_IO1 and VO_IO2 as out-
puts.

When each buffer has been transferred, the correspond-
ing buffer-empty bit is set in the status register, and the
DSPCPU is interrupted if the buffer-empty interrupt is en-
abled. To maintain continuous transfer of data, the
DSPCPU supplies new pointers for the next data buffer
following each buffer-empty interrupt. If the DSPCPU
does not supply new pointers before the next field, the
URUN bit is set, and the EVO uses the same pointer val-
ues until they are updated.

When data-streaming mode is enabled and
EVO ENABLE =1 and SYNC_STREAMING =1, the
VO_102 signal indicates a data-valid condition. This sig-
nal is asserted when the EVO starts outputing valid data
(that is, data-streaming mode is enabled and video out-
put is running) and is de-asserted when data-streaming
mode is disabled. The VO_IO1 signal generates a pulse
one VO_CLK cycle before the first valid data is sent. See
Section 7.11 for timing signal details.

Message-Passing Mode . In message-passing mode
data is stored in SDRAM in one buffer.

Note: In this mode, SYNC_MASTER must be set to en-
sure correct operation of VO_IO1 and VO_IO2 as out-
puts.

When message passing is started by setting
VO_CTL.VO_ENABLE, the EVO sends a Start condition
on VO_lO1. When the EVO has transferred the contents
of the buffer, it sends an End condition on VO_I02 as
shown in Figure 7-18, sets BFR1_EMPTY, and inter-
rupts the DSPCPU. The EVO stops, and no further oper-
ation takes place until the DSPCPU sets VO_ENABLE
again to start another message, or until the DSCPU ini-
tiates other EVO operation. See Section 7.11 for timing
signal details.

7.17.3

The EVO has five interrupt conditions defined by bits in
the VO_STATUS register: BFR1_EMPTY,
BFR2_EMPTY, HBE, URUN, and YTR. Each of these
conditions has a corresponding interrupt enable flag and
interrupt acknowledge bit in the VO_CTL register.

The EVO asserts a SOURCE 10 interrupt request to the
TM1300 vectored interrupt controller as long as one or
more enabled events is asserted.

Interrupts and Error Conditions

Note: The interrupt controller should always be pro-
grammed such that the EVO interrupt operates in level-
triggered mode. This ensures that no EVO events can be
lost to the interrupt handler. Refer to Section 3.5.3, “INT
and NMI (Maskable and Non-Maskable Interrupts),” for
a description of setting level-triggered mode, as well as
for recommendations on writing interrupt handlers.

The BFR1_EMPTY, BFR2_EMPTY and YTR status
flags indicate to the DSPCPU that a buffer has been
emptied or that the Y threshold has been reached.

The buffer-underrun (URUN) status flag indicates that
the DSPCPU did not acknowledge a BFR1_EMPTY or

BFR2_EMPTY interrupt before the EVO required the
next buffer. In this case, the EVO uses the old address
pointer value and continues image or data transfer.
When the DSPCPU updates the pointer, the new pointer
value will be used at the start of the next frame or buffer
transfer. Therefore, the URUN flag can be interpreted as
indicating to the DSPCPU that the EVO is using its old
pointer values because it did not receive the new ones in
time.

Note: The actual buffer pointer write operation to the
MMIO registers is not seen by the hardware—only writ-
ing a '1’ to the appropriate BFR1_ACK or BFR2_ACK
bits signals buffer availability.

The Hardware Bandwidth Error (HBE) flag indicates that
the EVO did not get data from SDRAM via the TM1300's
internal data highway in time to continue data transfer or
video refresh. Data or video refresh will continue using
whatever data is in the EVO internal data buffers. The
address counter for the failing buffer(s) will continue to
count, and the EVO will continue to request data from the
SDRAM over the highway.

The EVO is a read-only device, transferring data from
SDRAM to the EVO output port. Unlike Video In, the
EVO does not modify SDRAM data. URUN and HBE are
the only EVO error conditions that can arise. In the case
of URUN or HBE, a scrambled image may be temporarily
displayed or incorrect data may be temporarily sent. The
EVO can cause no other system hardware error condi-
tions.

Even changing operating modes can not cause system
hardware error conditions to arise. For example, chang-
ing the MODE bits, the OL_EN and format bits, or the
LTL_END bit while the EVO is running may cause wrong
data to be displayed or transferred. However, the EVO
does not detect this or stop for it.

In normal operation, the user should not change the
mode or transfer-control bits while the EVO is enabled.
The EVO should be disabled before changing bits such
as the MODE bits, the OL_EN bit, or the LTL_END bit.
However if these bits are changed while the EVO is run-
ning, they will take effect at the beginning of the next field
or buffer.

7.17.4 Latency and Bandwidth Requirements

In order to avoid Hardware Bandwidth Error (HBE) con-
ditions, the internal highway bus arbiter (see Chapter 20,
“Arbiter”) must be programmed according to the latency
requirements of the EVO unit described in this section. In
the following discussion, it is assumed that data for video
lines (in Y, U, V and overlay planar memory format) is
stored in memory aligned on 64-byte boundaries. In oth-
er words, it means that the {OL,Y,U,V} OFFSET fields
are multiples of 64 bytes. Otherwise internal EVO arbitra-
tion for OL, Y, U and V requests will be different than de-
scribed here, and the following latencies would not be
guaranteed. The EVO uses internal 64-byte buffers.

1. Latency requirements for the EVO in image mode
4:2:2 or 4:2:0 co-sited or interspersed without upscal-
ing and with overlay disabled is expressed as follows.

PRODUCT SPECIFICATION 7-23



TM1300 Data Book

Philips Semiconductors

During 128 EVO clock cycles, the EVO block must
have 2 requests acknowledged, that is, ([2Ys, 1U and
1V]/ 2). For example, if the EVO clock is 27 MHz,
then the EVO must get two requests (128 bytes) from
SDRAM in 128 / 027 = 4740 ns.

The byte bandwidth B4, per video line within the ac-
tive image for this case is:

_ AW 0 W 0
By, = %en(a)men(mxzwmxm

where ceil(X) is a function returning the least integral
value greater than or equal to X, and W is the
IMAGE_WIDTH field value.

2. In the same modes but with overlay enabled, the la-
tency is as follows:

» During the first 64 EVO clock cycles at least one
request must be acknowledged for the OL data.

» During 128 EVO clock cycles, the EVO unit must
have 4 requests acknowledged ([4 OLs, 2 Ys, 1 V
and 1 U]/ 2).

For example, if the EVO clock runs at 54 MHz then the
EVO must get the first request from SDRAM in
64/.054 = 1185 ns and must average a bandwidth la-
tency of 4 requests in 128 / .054 = 2370 ns.

Byte bandwidth Bi, o, per video line within the active
image is then as follows:

W
BiuoL = By * heil(z) + 43 64

3. When the EVO is set to image mode with 2x upscal-
ing, the latency requirements are multiplied by a factor
of 2. For example, if 1x mode called for one request
per 64 EVO clock cycles, the latency becomes one re-
guest per 128 EVO clock cycles. Bandwidth is roughly
divided by 2:

_ oW o W 0
B,y = B:ell(—-—128)+cell(2—-—56)><2+4Dx 64
AW

BauoL = Bau* (eil(sy) + 4% 64

4. Latency for data-streaming mode or message-pass-
ing mode is as follows:

During 64 EVO clock cycles, the EVO unit must get
one request from SDRAM. For example, if the EVO
clock runs at 38 MHz, then the latency is 64 /.038 =
1684 ns and bandwidth is 38 MB/s.

7.17.5 Power Down and Sleepless

The EVO block enters in power down state whenever
TM1300 is put in global power down mode, except if the
SLEEPLESS bitin VO_CTL is set. In the latter case, the
block continues DMA operation and will wake up the
DSPCPU whenever an interrupt is generated.

The EVO block can be separately powered down by set-
ting a bit in the BLOCK_POWER_DOWN register. Refer
to Chapter 21, “Power Management.”

It is recommended that EVO be stopped (by negating
VO_CTL.ENABLE) before block level power down is
started, or that SLEEPLESS mode is used when global
power down is activated.

7.18 DDS AND PLL FILTER DETAILS

The PLL filter reduces the phase jitter of the DDS synthe-
sizer output. It can also be used to multiply the DDS out-
put frequency by 2x. The DDS and PLL filter together
provide a high-quality, accurately-programmable output
video clock. The PLL filter block is shown in Figure 7-32.

; Phase Loop VCO |
- + .
Square-Wave DDS div S+1 Detect Filter 8-90 MHz
| FREQUENCY | [pes | div T+1 g(l)
9 x CPU Clock 10 (O VO_CLK

——»
11
CLOCK_SELECT

VO_CLK Internal

CLKOUT (to Frame Timing Gen.)

Figure 7-32. PLL filter block diagram.

At hardware reset, the output multiplexer is set to 0x3,
and the PLL system is disabled. To start the PLL system,
the following steps must be performed:

1. Assign a DDS frequency. This starts the DDS. Allow
for at least 31 DSPCPU cycles for the DDS frequency
setting to take effect.
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2. Choose avalue for PLL_S and PLL_T. For 8-40 MHz
operation, a value of 1 (which selects division by 2) is
recommended.

3. Choose a value for CLOCK_SELECT. For 8-81 MHz
operation, CLOCK_SELECT = 00 is recommended.

4. Assign values to the VO_CTL register containing the
above choices. The first assignment with
CLOCK_SELECT not equal to 0x3 enables the PLL
system. Allow for a maximum of 50 microseconds to
achieve lock.

Once the PLL is locked, small changes to the DDS fre-
quency are allowed, and the VO_CLK output will
smoothly track the frequency change.

Table 7-11. DDS and PLL example settings

Note: Most consumer electronics equipment imposes
very high precision requirements on the value of the col-
or burst frequency. A video encoder will derive the color
burst frequency from VO_CLK. When changing the
VO_CLK frequency in software to phase-lock the EVO to
a master reference, special care is required to keep the
color burst signal frequency within a tolerance of about
50 ppm. When using a Philips DENC (Digital Encoder),
the color burst frequency is derived from the master
DENC frequency by a programmable synthesizer on the
DENC chip. In this case, VO_CLK changes larger than
50 ppm are allowed by changing the DENC synthesizer
over its 1°C interface to compensate for the VO_CLK
change.

Table 7-11 illustrates recommended settings.

ngz‘;i‘éy DDS frequency PLL_S PLL_T CLOCK_SELECT Usage
4 -10 MHz 8 — 20 MHz 1 (divide by 2) 1 (divide by 2) 01 (T divider) Custom low speed video
8 — 45 MHz 8 — 45 MHz 1 (divide by 2) 1 (divide by 2) 00 (VCO) Standard or 16:9 digital video
40 — 81 MHz 20 —40.5 MHz 1 (divide by 2) 3 (divide by 4) 00 (VCO) High pixel rate custom video
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Chapter 8

8.1 AUDIO IN OVERVIEW

The TM1300 Audio In (Al) unit connects to an off-chip
stereo A/D converter subsystem through a flexible bit-se-
rial connection. The Al unit provides all signals needed to
interface to high quality, low cost oversampling A/D con-
verters, including a generator for a precisely programma-
ble oversampling A/D system clock. Together, the Al unit
and external A/D provide the following capabilities:

* One or two channels of audio input.

» 8- or 16-bit samples per channel.

* Programmable sampling rate.

» Internal or external sampling clock source.

» Supports autonomous writes of sampled audio data
to memory using double buffering (DMA).

e Supports 8-bit mono and stereo as well as 16-bit
mono and stereo PC standard memory data formats.

» Supports little- and big-endian memory formats.

8.2 EXTERNAL INTERFACE

Four TM1300 pins are associated with the Al unit. The
Al_OSCLK output is an accurately programmable clock
output intended to serve as the master system clock for
the external A/D subsystem. The other three pins
(Al_SCK, Al_WS and Al_SD) constitute a flexible serial
input interface. Using the Al unit's MMIO registers, these
pins can be configured to operate in a variety of serial in-
terface framing modes, including but not limited to:

+ Standard stereo 1°S (MSB first, 1-bit delay from
Al_WS, left & right data in a frame).*

» LSB first with 1-16 bit data per channel.

» Complex serial frames of up to 512 bits/frame, with
‘valid sample’ qualifier bit.

The Al unit can be used with many serial A/D converter
devices, including the Philips SAA7366 (stereo A/D),
Crystal Semiconductor CS5331, CS5336 (stereo A/D’s),
CS4218 (codec), Analog Devices AD1847 (codec).

1. A definition of the Philips 1S serial interface protocol,
among others, can be found in the Philips IC01 da-
tabook.

by Gert Slavenburg

Table 8-1. Al unit external signals

Signal Type Description

Al_OSCLK [ OUT | Over-sampling clock. This output can be
programmed to emit any frequency up to
40-MHz with a sub Hertz resolution. It is
intended for use as the 256fg or 384fg
over sampling clock by external A/D sub-
system.

Al_SCK I/0-5 | « When the Al unit is programmed as
serial-interface timing slave (power-up
default), AI_SCK is an input. Al_SCK
receives the serial bitclock from the
external A/D subsystem. This clock is
treated as fully asynchronous to
TM1300 main clock.

* When the Al unit is programmed as the
serial-interface timing master, Al_SCK
is an output. Al_SCK drives the serial
clock for the external A/D subsystem.
The frequency is a programmable inte-
gral divide of the Al_OSCLK frequency.

Al_SCK is limited to 22 MHz. The sample

rate of valid samples embedded within

the serial stream is also limited by the
bandwidth.latency available in the system

(Section 8-7).

Al_SD IN-5 | Serial data from external A/D subsystem.
Data on this pin is sampled on positive or
negative edges of Al_SCK as determined
by the CLOCK_EDGE bit in the
Al_SERIAL register.

Al_WS I/0-5 |« When the Al unitis programmed as the
serial-interface timing slave (power-up
default), AI_WS acts as an input.
Al_WS is sampled on the same edge
as selected for Al_SD.

¢ When the Al unitis programmed as the
serial-interface timing master, Al_WS
acts as an output. It is asserted on the
opposite edge of the Al_SD sampling
edge.

Al_WS is the word-select or frame-syn-

chronization signal from/to the external A/

D subsystem.
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Al_OSCLK<{] I
(e.g. 256x1y) r 0 Square Wave DDS
divN+1 o] SCKDIV |
Al_SCK 9 x DSPCPUCLK
(e.g. 64xfy) s 0
T divN+1 || "WSDIV' ]
ALWS | L — ; 2
\ FREQUENCY
SER_MASTER
L. 25 . LEFT[15:0]
L .| Serial To Parallel Converter | X6 . RIGHT[15:0]
A_SD[ >—— ——= sample_clock
Figure 8-1. Al clock system and 1/O interface.
8.3 CLOCK SYSTEM fOSCLKE232
Figure 8-1 illustrates the different clock capabilities of the FREQUENCY= 30 pspepu

Al unit. At the heart of the clock system is a square wave
DDS (Direct Digital Synthesizer). The DDS can be pro-
grammed to emit frequencies from approx. 1 Hz to 40
MHz with a resolution of better than 0.3 Hz.

The output of the DDS is always sent on the Al_OSCLK
output pin. This output is intended to be used as the
256f or 384f system clock source instead of a fixed fre-
guency crystal for oversampling A/D converters, such as
the Philips SAA7366T, or Analog Devices AD1847.

The TM1300 Al DDS frequency is set by writing to the
FREQUENCY MMIO register. The programmer can
change the FREQUENCY setting dynamically, so as to
adjust the input sampling rate to track an application de-
pendent master reference.

Depending on bit 31 (MSB), the DDS runs in one of two
modes:

e bit 31 =1 (TM1300 improved mode)
e bit 31 = 0 (TM1000 compatibility mode)

8.3.1  TM1300 Improved Mode

In improved mode, a high quality, low-jitter Al_OSCLK is
generated. The setting of the FREQUENCY register to
accomplish a given Al_OSCLK frequency is given by:

f II32
FREQUENCY= 231+ _OSCLK —
9 |:lfDSF’CF’U

This mode, and the above formula, should be used for all
new software development on TM1300. It is not available
on TM1000.

8.3.2  TM1000 Compatibility Mode

TM21000 compatibility mode is provided so that TM1000
software runs without changes. It should NOT be used
for new TM1300 software development. TM1000 mode
is automatically entered whenever FREQUENCY[31] =
0. In TM1000 mode, Al_OSCLK frequency is set as fol-
lows:

84  CLOCK SYSTEM OPERATION

Al_SCK and Al_WS can be configured as input or out-
put, as determined by the SER_MASTER control field.
As output, Al_SCK is a divider of the DDS output fre-
guency. Whether input or output, the Al_SCK pin signal
is used as the bit clock for serial-parallel conversion.

faloscik

f = SCKDIV+1

AISCK SCKDIV 0[0,255]

If set as output, Al_WS can similarly be programmed us-
ing WSDIV to control the serial frame length from 1 to
512 bits.

Table 8-2. Sample rate settings (f pspcpucik=133
MHz, improved TM1300 mode)

fs OSCLK | SCK | FREQUENCY | SCKDIV
44.1 kHz 256f; | 64fy | 2187991971 3
48.0 kHz 256f, | 64f; | 2191574340 3
44.1 kHz 384f; | 64fy | 2208246133 5
48.0 kHz 384f, | 64fy | 2213619686 5

The preferred application of the clock system options is
to use Al_OSCLK as A/D master clock, and let the A/D
converter be timing master over the serial interface
(SER_MASTER=0).

In case an external codec (e.g. the AD1847 or CS4218)
is used for common audio I/O, it may not be possible to
independently control the A/D and D/A system clocks. In
that case it is recommended that the Audio Out (AO) unit
clock system DDS is used to provide a single master A/
D and D/A clock. The AO unit, or the D/A converter, can
be used as serial interface timing master, and the Al unit
is set to be slave to the serial frame determined by AO
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(Al SER_MASTER=0, Al_SCK and Al_WS externally
wired to the corresponding AO pins). In such systems, in-
dependent software control over A/D and D/A sampling
rate is not possible, but component count is minimized.

Table 8-3.Al MMIO clock & interface control bits

Field Name

SER_MASTER

Description

0 O (RESET default), the A/D converter
is the timing master over the serial inter-
face. Al_SCK and Al_WS are set to be
inputs.

1 0 TM1300 is timing master over the Al
serial interface. The Al_SCK and Al_WS
pins are set to be outputs.

Sets the clock frequency emitted by the
Al_OSCLK output. RESET default 0.

Sets the divider used to derive Al_SCK
from Al_OSCLK. Set to 0..255, for divi-
sion by 1..256. RESET default 0.

Sets the divider used to derive Al_WS
from Al_SCK. Set to 0..511 for a serial
frame length of 1..512. RESET default 0.

FREQUENCY

SCKDIV

WSDIV

85  SERIAL DATA FRAMING

The Al unit can accept data in a wide variety of serial
data framing conventions. Figure 8-2 illustrates the no-
tion of a serial frame. If POLARITY=1 and
CLOCK_EDGE=0, a frame is defined with respect to the
positive transition of the Al_WS signal, as observed by a
positive clock transition on Al_SCK. Each data bit sam-
pled on positive Al_SCK transitions has a specific bit po-
sition: the data bit sampled on the clock edge after the
clock edge on which the Al_WS transition is seen has bit
position 0. Each subsequent clock edge defines a new
bit position. As defined in Table 8-4, other combinations
of POLARITY and CLOCK_EDGE can be used to define
a variety of serial frame bitposition definitions.

The capturing of samples is governed by FRAMEMODE.
If FRAMEMODE=00, every serial frame results in one
sample from the serial-parallel converter. A sample is de-
fined as a left/right pair in stereo modes or a single left
channel value in mono modes. If FRAMEMODE=1y, the
serial frame data bit in bit position VALIDPOS is exam-
ined. If it has value 'y’, a sample is taken from the data
stream (the valid bit is allowed to precede or follow the
left or right channel data provided it is in the same serial
frame as the data).

The left and right sample data can be in a LSB-first or
MSB-first form, at an arbitrary bit position, and with an ar-
bitrary length.

Table 8-4. Al MMIO serial framing control fields

Field Name Description

POLARITY 0 O serial frame starts on Al_WS negedge
(RESET default)

1 0 serial frame starts on Al_WS posedge

FRAMEMODE |00 O accept a sample every serial frame
(RESET default)

01 O unused, reserved

10 O accept sample if valid bit =0

11 0 accept sample if valid bit = 1

VALIDPOS « Defines the bit position within a serial frame
where the valid bit is found.

¢ Default 0.

LEFTPOS « Defines the bit position within a serial frame
where the first data bit of the left channel is
found.

¢ Default 0.

RIGHTPOS « Defines the bit position within a serial frame
where the first data bit of the right channel
is found.

¢ Default 0.

DATAMODE 0 O MSB first (RESET default)

10 LSB first

SSPOS « Start/Stop bit position. Default 0.

* If DATAMODE=MSB first, SSPOS deter-
mines the bit index (0..15) in the parallel
word of the last data bit. Bits 15 (MSB) up
to/including SSPOS are taken in order from
the serial frame data. All other bits are set
to ‘0.

* If DATAMODE=LSB first, SSPOS deter-
mines the bit index (0..15) in the parallel
word of the first data bit. Bits SSPOS up to/
including 15 are taken in order from the
serial frame data. All other bits are set to ‘0’.

CLOCK_EDGE | «if ‘O’'(RESET default) the Al_SD and Al_WS
pins are sampled on positive edges of the
Al_SCK pin. If SER_MASTER =1, Al_WS is
asserted on negative edges of Al_SCK.

«if 1, Al_SD and Al_WS are sampled on neg-
ative edges of Al_SCK. As output, Al_WS
is asserted on positive edges of Al_SCK.

In MSB-first mode, the serial-to-parallel converter as-
signs the value of the bit at LEFTPOS to LEFT[15]. Sub-
sequent bits are assigned, in order, to decreasing bit po-
sitions in the LEFT data word, up to and including
LEFT[SSPOS]. Bits LEFT[SSPOS-1:0] are cleared.
Hence, in MSB-first mode, an arbitrary number of bits are
captured. They are left-adjusted in the 16-bit parallel out-
put of the converter.

In LSB-first mode, the serial to parallel converter assigns
the value of the bit at LEFTPOS to LEFT[SSPOS]. Sub-

1
1
[ 0 [1]2T73[415[6[7[8]9[10]11]12]13[14[15[16]17]18]19]20]21]22[23[24[25]26]27]28]29[30[31[0[1[2[3[4J5]6[7

frame,, framen.y

Figure 8-2. Al serial frame and bit position definition (POLARITY=1, CLOCK_EDGE=0).
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left,(18)

right,,(18)

left,,1(18)

Figure 8-3. Serial frame of the SAA7366 18 bit | 23 AID converter (format 2 SWS).

sequent bits are assigned, in order, to increasing bit po-
sitions in the LEFT data word, up to and including
LEFT[15]. Bits LEFT[SSPOS-1:0] are cleared. Hence, in
LSB-first mode, an arbitrary number of bits are captured.
They are returned left-adjusted in the 16-bit parallel out-
put of the converter.

Table 8-5. Example setup for SAA7366

Field Value Explanation
SER_MASTER 0 SAA7366 is serial master
FREQUENCY | 161628209 | 256f 44.1 kHz
SCKDIV 3 Al_SCK set to AI_OSCLK/4
(not needed since
SER_MASTER=0)

WSDIV 63 Serial frame length of 64 bits
(not needed since
SER_MASTER=0)

POLARITY 0 Frame starts with neg. AI_WS

FRAMEMODE 00 Take a sample each ser. frame

VALIDPOS n/a Don't care

LEFTPOS 0 Bit position 0 is MSB of left
channel and will go to
LEFT[15]

RIGHTPOS 32 Bit position 32 is MSB of right
channel and will go to
RIGHT[15]

DATAMODE 0 MSB first

SSPOS 0 Stop with LEFT/RIGHT[0]

CLOCK_EDGE 0 Sample WS and SD on posi-
tive SCK edges for I2S

Refer to Figure 8-3 and Table 8-5 to see an example of
how the Al unit MMIO registers are set to collect 16-bit
samples using the Philips SAA7366 1°S 18-bit A/D con-

verter. This setup assumes the SAA7366 acts as the se-
rial master.

For example, if it were desirable to use only the 12 MSBs
of the A/D converter in Figure 8-3, use the settings of
Table 8-5 with SSPOS set to ‘4. This results in
LEFT[15:4] being set with data bits 0..11, and LEFT[3:0]
being set to '0’. RIGHT[15:4] is set with data bits 32..43
and RIGHT[3:0] is set to '0’.

86 MEMORY DATA FORMATS

The Al unit autonomously writes samples to memory in
mono and stereo 8- and 16-bits per sample formats, as
shown in Figure 8-4. Successive samples are always
stored at increasing memory address locations. The set-
ting of the LITTLE_ENDIAN bit in the Al_CTL register de-
termines how increasing memory addresses map to byte
positions within words. Refer to Appendix C, “Endian-ness,’
for details on byte ordering conventions.

The Al hardware implements a double buffering scheme
to ensure that no samples are lost, even if the DSPCPU
is highly loaded and slow to respond to interrupts. The
DSPCPU software assigns buffers by writing a base ad-
dress and size to the MMIO control fields described in
Table 8-6. Refer to Section 8.7 for details on hardware/
software synchronization.

In 8-bit capture modes, the eight MSBs of the serial par-
allel converter output data are written to memory. In 16-
bit capture modes, all bits of the parallel data are written
to memory. If SIGN_CONVERT is set to '1’, the MSB of
the data is inverted, which is equivalent to translating
from two’s complement to offset binary representation.
This allows the use of an external two’s complement 16-
bit A/D converter to generate 8-bit unsigned samples,
which is often used in PC audio.

adr adr+1 adr+2 adr+3 adr+4 adr+5 adr+6 adr+7
Er;-ggo ‘ left,, ‘ left+q ‘ lefto ‘ left 3 ‘ left s ‘ left, s ‘ left g ‘ left,+7 ‘
adr adr+1 adr+2 adr+3 adr+4 adr+5 adr+6 adr+7
2{5:;0 ‘ left,, ‘ right, ‘ leftpq ‘ right,1 ‘ leftn.o ‘ right. ‘ leftn.3 ‘ right.3 ‘
adr adr+2 adr+4 adr+6
I:'I-T'I60-I't‘l)g ‘ lefty ‘ leftneg ‘ leftnso ‘ left.a ‘
adr adr+2 adr+4 adr+6
ig:’e'g ‘ left, ‘ right, ‘ left, s, ‘ tight, 1 ‘

Figure 8-4. Al memory DMA formats.
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MMIO_base
offset:

0x10 1C00

0x10 1C04

0x10 1C08

0x10 1C0C

0x10 1C10
0x10 1C14
0x10 1C18
0x10 1C1C

Audio In

31 ; ; I27I ; ; I23I ; ; IlgI ; ; I15I ; ; IllI ; ; ; 7I ; 3 0
AI_STATUS (r/w) ] [ [ [ 1]]

BUFl_ACT|VE4

OVERRUN
HBE (Highway bandwidth error)
BUF2_FULL
31 27 23T . . . 19Y . . . 15Y R%S%RY5S . 7 BUFl_FliLL 0
AI_CTL (1/w) LI T HEEREREEN
RESET4 OVR_lNTEN4
CAP_ENABLE HBE_INTEN
CAP_MODE BUF2_INTEN
SIGN_CONVERT BUF1_INTEN
LITTLE_ENDIAN ACK_OVR
DIAGMODE ACK_HBE
SLEEPLESS ACK2
ACK1
31 27 . . Y23Y . . Xng . ‘15Y : : ‘11‘ 7‘ : : ‘3‘ : ‘0
AI_SERIAL (r/w) HEEEE WSDIV SCKDIV
SER_MASTER4
DATAMODE
FRAMEMODE
CLOCK_EDGE
31 : ‘27‘ : : ‘23‘ ‘19‘ : : ‘15‘ ‘11‘ : : ‘7‘ : 3‘ : ‘0
AILFRAMING ("w) | | " VALIDPOS LEFTPOS |~ "RIGHTPOS SSPOS |
POLAR|TY4

31‘ ‘27‘ ‘23‘ ‘19‘ : : ‘15‘ : : ‘11‘ ‘7‘ ‘3‘ ‘0
AI_FREQ (r/w) | FREQUENCY |
Al_BASE1 (r/w) | BASEL lolololo]o]o]
Al_BASE2 (r/w) | BASE2 | [o[o[o[olo]o]
AI_SIZE (r/w) \ SIZE (in samples) lololololo]o]

Figure 8-5. Al status/control field MMIO layout.

Table 8-6. Al MMIO DMA control fields

Field Name

Description

LITTLE_ENDIAN

0 O capture in big endian memory format
(RESET default)
1 0 capture little endian

BASE1

Base address of bufferl; a 64-byte aligned
address in local SDRAM.
RESET default 0.

BASE2

Base address of buffer2; a 64-byte aligned
address in local SDRAM.
RESET default 0.

SIZE

« Number of samples to be placed in
buffer before switching to other buffer
 Stereo modes: a pair of 8- or 16-bit data

is 1 sample
* Mono modes: a single value is 1 sample
* RESET default 0.

CAP_MODE

00 O mono (left ADC only), 8 bits/sample.
(RESET default).

01 O stereo, 2 times 8 bits/sample

10 O mono (left ADC only), 16 bits/sample
11 O stereo, 2 times 16 bits/sample

SIGN_CONVERT

0 O leave MSB unchanged (RESET
default)
10 invert MSB

Note that the Al hardware does not generate A-law or -
law 8-bit data formats. If such formats are desired, the
DSPCPU can be used to convert from 16-bit linear data
to A-law or p-law data.

8.7 AUDIO IN OPERATION

Figure 8-5, Table 8-9 and Table 8-8 describe the func-
tion of the control and status fields of the Al unit. To en-
sure compatibility with future devices, undefined bits in
MMIO registers should be ignored when read, and writ-
tenas’'0’s.

The Al unit is reset by a TM1300 hardware reset, or by
writing 0x80000000 to the Al_CTL register. Upon RE-
SET, capture is disabled (CAP_ENABLE 0), and
bufferl is the active buffer (BUF1_ACTIVE=1). A mini-
mum of 5 valid Al_SCK clock cycles is required to allow
internal Al circuitry to stabilize before enabling capture.
This can be accomplished by programming Al_FREQ
and Al_SERIAL and then delaying for the appropriate
time interval.

Programing of the Al_SERIAL MMIO register needs to
follow the following sequence order:
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» set Al_FREQ to ensure that a valid clock is gener-
ated (Only when Al is the master of the audio clock
system)

* MMIO(AI_CTL) =1 << 31, /* Software Reset */

* MMIO(AI_SERIAL) = 1 << 31; /* sets serial-master
mode, starts Al_SCK */

« MMIO(AI_SERIAL) = (1 << 31) | (SCKDIV value); /*
then set DIVIDER values */

The DSPCPU initiates capture by providing two equal
size empty buffers and putting their base address and
size in the BASE,, and SIZE registers. Once two valid (lo-
cal memory) buffers are assigned, capture can be en-
abled by writing a ‘1’ to CAP_ENABLE. The Al unit hard-
ware now proceeds to fill buffer 1 with input samples.
Once buffer 1 fills up, BUF1_FULL is asserted, and cap-
ture continues without interruption in buffer 2. If
BUF1_INTEN is enabled, a SOURCE 11 interrupt re-
guest is generated.

Note that the buffers must be 64-byte aligned, and a mul-
tiple of 64 samples in size (the six LSBs of Al_BASE]1,
Al_BASEZ2 and Al_SIZE are always '0’).

The DSPCPU is required to assign a new, empty buffer
to BASE1 and perform an ACK1, before buffer 2 fills up.
Capture continues in buffer 2, until it fills up. At that time,
BUF2_FULL is asserted, and capture continues in the
new buffer 1, etc.

Upon receipt of an ACK, the Al hardware removes the re-
lated interrupt request line assertion at the next DSPCPU
clock edge. Refer to Section 3.5.3, “INT and NMI
(Maskable and Non-Maskable Interrupts),” for the rules
regarding ACK and interrupt re-enabling. The Al interrupt
should always be operated in level-sensitive mode, since
Al can signal multiple conditions that each need indepen-
dent ACKSs over the single internal SOURCE 11 request
line.

In normal operation, the DSPCPU and Al hardware con-
tinuously exchange buffers without ever loosing a sam-
ple. If the DSPCPU fails to provide a new buffer in time,
the OVERRUN error flag is raised. This flag is not affect-
edby ACK1 or ACK2; it can only be cleared by an explicit
ACK_OVR.

88 POWER DOWN AND SLEEPLESS

The Al unit enters power down state whenever TM1300
is put in global power down mode, except if the SLEEP-
LESS bitin Al_CTL is set. In the latter case, the unit con-
tinues DMA operation and will wake up the DSPCPU
whenever an interrupt is generated.

The Al unit can be separately powered down by setting
a bit in the BLOCK_POWER_DOWN register. Refer to
Chapter 21, “Power Management.”

It is recommended that Al be stopped (by negating
Al_CTL.CAP_ENABLE) before block level power down
is started, or that SLEEPLESS mode is used when global
power down is activated.

8.9 HIGHWAY LATENCY AND HBE

The Al unit uses internal buffering before writing data to
SDRAM. The internal buffer consists of one stereo sam-
ple input holding register and 64 bytes of internal buffer
memory. Under normal operation, the 64-byte buffer is
written to SDRAM while the input register receives an-
other sample. This normal operation is guaranteed to be
maintained as long as the highway arbiter is set to guar-
antee a latency for the Al unit that matches the sampling
interval. Given a sample rate f, and an associated sam-
ple interval T (in nsec), the arbiter should be set to have
a latency of at most T-20 nsec. Refer to Chapter 20, “Ar-
biter,” for information on arbiter programming. If the re-
quested latency is not adequate, the HBE (Highway
Bandwidth Error) condition may result. This error flag
gets set when the input register is full, the 64-byte buffer
has not yet been written to memory, and a new sample
arrives.

Table 8-7 shows the required arbiter latency settings for

Table 8-7. Al highway arbiter latency requirement
examples

max

CapMode (kﬁz) (n-g) |2:2irt\§; access pattern
(nsec)

16 bisfsample | 441 | 22676 | 22,086 | 319 K2V

16 bisjsample | 480 | 20833 | 20813 | 37Ty K2V

16 bisfsample | 960 | 10417 | 10397 | LEAETREY

a number of common operating modes. The rightmost
column illustrates the nature of the resulting 64-byte
highway requests. Is not necessary to compute arbiter
settings, but they may be used to compute bus availabil-
ity in a given interval.

Table 8-8. Al MMIO status fields (read only)

Field Name Description

BUF1_ACTIVE | « If ‘1", buffer 1 will be used for the next
incoming sample. If ‘0", buffer 2 will receive
the next sample.

* 1 after RESET.

BUF1_FULL o If ‘1, buffer 1 is full. If BUF1_INTEN is also
‘1’, an interrupt request (source 11) is
pending. BUF1_FULL is cleared by writing
a ‘1’ to ACK1, at which point the Al hard-
ware will assume that BASE1 and SIZE
describe a new empty buffer.

* 0 after RESET.
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Table 8-8. Al MMIO status fields (read only)

Table 8-9. Al MMIO control fields

Field Name Description Field Name Description
BUF2_FULL « If *1’, buffer 2 is full. If BUF2_INTEN is also OVR_INTEN Overrun Interrupt Enable. Default 0
‘1’, an interrupt request (source 11) is 0 O no interrupt
pending. BUF2_FULL is cleared by writing 1 0 interrupt (SOURCE 11) if an overrun
a ‘1’ to ACK2, at which point the Al hard- error occurs
ware will assume that BASE2 and SIZE ACK1 Write a '1' to clear the BUFL_FULL flag and
describe a new empty buffer. remove any pending BUF1_FULL interrupt
* 0 after RESET. request. This bit always reads as 0.
HBE  Highway BandW|d'§h Error. Condltlor_\ raised ACK2 Write a "1’ to clear the BUF2_FULL flag and
when _the 64-byte internal Al buffer_ls not remove any pending BUF2_FULL interrupt
yet written to SDRAM when a new input request. This bit always reads as 0.
sample arrives. Indicates insufficient allo- - —
cation of TM1300 highway bandwidth for ACK_HBE Write a1 to clear the HBE flag and
the audio sampling rate/mode. Refer to remove any pending HBE interrupt request.
Chapter 20, “Arbiter.” This bit always reads as 0.
* 0 after RESET. ACK_OVR Write a ’1’ to clear the OVERRUN flag and
OVERRUN « OVERRUN error occurred, i.e. the CPU did remove any pending OVERRUN interrupt
not provide an empty buffer in time, and 1 request. This bit always reads as 0.

or more samples were lost. If OVR_INTEN
is also 1, an interrupt request (source 11)
is pending. The OVERRUN flag can ONLY
be cleared by writing a ‘1’ to ACK_OVR.

* 0 after RESET.

Table 8-9. Al MMIO control fields

Field Name

Description

RESET

The Al logic is reset by writing a 0x80000000
to Al_CTL. This bit always reads as a ‘0.
See Section 8.7, “Audio In Operation” for
details on software reset.

DIAGMODE

0 O normal operation (RESET default)
1 0 diagnostic mode (see Section 8.11,
“Diagnostic Mode”)

SLEEPLESS

0 O participate in global power down
(RESET default)
1 0 refrain from participating in power down

CAP_ENABLE

Capture Enable flag. If 1, Al unit captures
samples and acts as DMA master to write
samples to local SDRAM. If '0’ (RESET
default), Al unit is inactive.

BUF1_INTEN

Buffer 1 full Interrupt Enable. Default 0.
0 O no interrupt
1 0 interrupt (SOURCE 11) if buffer 1 full

BUF2_INTEN

Buffer 2 full interrupt enable. Default 0
0 O no interrupt
1 0 interrupt (SOURCE 11) if buffer 2 full

HBE_INTEN

HBE Interrupt Enable. Default 0.

0 O no interrupt

1 0 interrupt (SOURCE 11) if a highway
bandwidth error occurs.

8.10 ERROR BEHAVIOR

If either an OVERRUN or HBE error occurs, input sam-
pling is temporarily halted, and samples will be lost. In
case of OVERRUN, sampling resumes as soon as the
DSPCPU makes one or more new buffers available
through an ACK1 or ACK2 operation. In the case of HBE,
sampling will resume as soon as the internal buffer is
written to SDRAM.

HBE and OVERRUN are ‘sticky’ error flags. They will re-
main set until an explicit ACK_HBE or ACK_OVR.

8.11 DIAGNOSTIC MODE

Diagnostic mode is entered by setting the DIAGMODE
bit in the Al_CTL register. In diagnostic mode, the
Al_SCK, Al_WS and Al_SD inputs of the serial-parallel
converter are taken from the output pins of the TM1300
AO unit. This mode can be used during the diagnostic
phase of system boot to verify correct operation of most
of the Al unit and AO unit logic circuitry.

Note that the inputs are truly taken from the TM1300 AO
external pins, i.e. if an external (board level) source is
driving AO_SCK or AO_WS, diagnostic mode is not ca-
pable of testing Audio Out.

Special care must be taken to enable diagnostic mode.

The recommended way of entering diagnostic mode is:

» setup the AO unit such that an AO_SCK is generated

» set DIAGMODE bit followed by a 5 (Al_SCK) cycle
delay

« perform a software reset of the Al unit and immedi-
ately set the DIAGMODE bit back to ‘1'.
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Chapter 9

9.1 AUDIO OUT OVERVIEW

The TM1300 Audio Out (AO) unit is new and contains
many features not available in the TM1100. It has up to
8 channels, and drives up to 4 external stereo D/A con-
verters through a flexible bit-serial connection.

It provides all signals to interface to high quality, low cost
oversampling D/A converters, including a precisely pro-
grammable oversampling D/A system clock. The AO unit
and external D/A’s together provide the following capa-
bilities:

* Up to 8 channels of audio output.

» 16-bit or 32-bit samples per channel.

» Programmable sampling rate.

» Internal or external sampling clock source.

« Autonomously reads processed audio data from
memory using double buffering (DMA).

e Supports 16-bit mono and stereo PC standard mem-
ory data formats.

» Supports little- and big-endian memory formats.

» Provides control capability for highly integrated PC
codecs such as the AD1847, CS4218 or UAD1340.

9.2 NEW AND CHANGED FEATURES

« Individual serial data outputs to each D/A
e 32-bit samples
* No 8-bit sample support

No support for connecting several D/As to one serial data
output.

Table 9-1. AO unit external signals

Signal Type Description

AO_OSCLK | OUT | Over sampling clock. Can be pro-
grammed to emit any frequency up to 40
MHz, with sub-Hz resolution. Intended for
use as the 256 or 384f5 oversampling
clock by the external D/A conversion sub-
system.

by Gert Slavenburg, Santanu Dutta

Table 9-1. AO unit external signals

Signal Type Description

AO_SCK I0 |+ When AO is programmed to act as a
serial interface timing slave (RESET
default), AO_SCK acts as input. It
receives the serial clock from the
external audio D/A subsystem. The
clock is treated as fully asynchronous
to the TM1300 main clock.

¢ When AO is programmed to act as
serial interface timing master,
AO_SCK acts as output. It drives the
serial clock for the external audio D/A
subsystem. Clock frequency is a pro-
grammable integral divide of the
AO_OSCLK frequency.

AO_SCK is limited to 22 MHz. The sam-

ple rate of valid samples embedded within

the serial stream is limited by the

AO_SCK maximum frequency and the

available highway bandwidth.

AO_WS I0 |+ When AO is programmed as the serial-
interface timing slave (RESET default),
AO_WS acts as an input. AO_WS is
sampled on the opposite AO_SCK
edge at which AO_SDx are asserted.

¢ When AO is programmed as serial-
interface timing master, AO_WS acts
as an output. AO_WS is asserted on
the same AO_SCK edge as AO_SDx.

AO_WS is the word-select or frame-sync

signal from/to the external D/A sub-

system. Each audio channel receives 1

sample for every WS period.

AO_WS can be set to change on

AO_OSCLK positive or negative edges by

the CLOCK_EDGE hit.

AO_SD1 OUT | Serial data to stereo external audio D/A
subsystem. AO_SD1 can be set to
change on AO_OSCLK positive or nega-
tive edges by the CLOCK_EDGE bit.

AO_SD2 OUT | Serial data to stereo external audio D/A
subsystem. AO_SD2 can be set to
change on AO_OSCLK positive or nega-
tive edges by the CLOCK_EDGE bit.

AO_SD3 OUT | Serial data to stereo external audio D/A
subsystem. AO_SD3 can be set to
change on AO_OSCLK positive or nega-
tive edges by the CLOCK_EDGE bit.

AO_SD4 OUT | Serial data to stereo external audio D/A
subsystem. AO_SD4 can be set to
change on AO_OSCLK positive or nega-

tive edges by the CLOCK_EDGE bit.
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9.3 EXTERNAL INTERFACE

Seven TM1300 pins are associated with the AO unit. The
AO_OSCLK output is an accurately programmable clock
output intended to be used as the master system clock
for the external D/A subsystem. The other pins
(AO_SCK, AO_WS and AO_SDx) constitute a flexible
serial output interface. Using the AO MMIO registers,
these pins can be configured to operate in a variety of se-
rial interface framing modes, including but not limited to:

+ Standard stereo 1°S (MSB first, 1-bit delay from
AO_WS, left & right data in a frame).

» LSB first, with 1-16-bit data per channel.
» Complex serial frames of up to 512 bits/frame.

94 SUMMARY OF OPERATION

The AO unit consists of three major subsystems, a pro-
grammable sample clock generator, a DMA engine and
a data serializer.

The DMA engine reads 16 or 32-bit samples from mem-
ory using a double buffered DMA approach. The
DSPCPU initially assigns two full sample buffers contain-
ing an integral number of samples for all active channels.
The DMA engine retrieves samples from the first buffer
until exhausted and continues from the second buffer,
while requesting a new first sample buffer from the
DSPCPU, etc.

The samples are given to the data serializer, which
sends them out in a MSB first or LSB first serial frame for-
mat that can also contain 1 or 2 codec control words of
up to 16 bits. The frame structure is highly programmable
by a series of MMIO fields.

programmed to emit frequencies from approx. 1 Hz to 80
MHz with a sub Hertz resolution.

The output of the DDS is always sent to the AO_OSCLK
output pin. This output is intended to be used as the
256f or 384fg system clock source for oversampling D/A
converters, such as the Philips SAA7322, or codecs
such as the AD1847, CS4218, or UAD1340.

The TM1300 DDS frequency is set by writing to the FRE-
QUENCY MMIO register. The programmer is free to
change the FREQUENCY setting dynamically, in order
to adjust the outgoing audio sample rate. In ATSC trans-
port stream decoding, this is the method by which the
system software locks audio output sample rate to the
original program provider sample rate.

Depending on bit 31 (MSB), the DDS runs in one of the
two following modes:

e bit 31 = 1 (standard mode)

e bit 31 = 0 (TM1000 compatibility mode)

951 TM1300 Standard Mode

This mode was first available in the TM1100. In this
mode, a high quality, low-jitter AO_OSCLK is generated.
The setting of the FREQUENCY register to accomplish a
given AO_OSCLK frequency is given by the formula:

f II32
FREQUENCY= 2°'+ 95CLK—
9 |:lfDSF’CF’U

This mode, and the above formula, should be used for all
new software development on TM1300.

Table 9-2. Clock system setting (f pgpcpy=133 MHz)

fs OSCLK | SCK | FREQUENCY [ SCKDIV
9.5 INTERNAL CLOCK SOURCE 441kHz | 256fs | 64fs | 2187991971 3
Figure 9-1 illustrates the different clock capabilities of the 48.0 kHz 256fs 64fs 2191574340 3
AO unit. At the heart of the clock system is a square 44.1kHz | 384fs | 64fs | 2208246133 5
wave DDS (Direct Digital Synthesizer). The DDS can be 48.0 kHz 384fs 64fs 2213619686 5
AO_OSCLK{]
(e.g. 256xf,) l
) Square Wave DDS
div N+1 -—{ SCKDIV ‘
AO_SCK{] 9 x DSPCPUCLK
(e.g. 64xf) s 0
div N+1 -—{ ‘ ‘W‘SD‘IV‘ ‘ ‘
AO_WS{] | 3L, ‘ ‘ 2
\ FREQUENCY
—— SER_MASTER
R 2 LEFT[15:0]
L_—+| Parallel to Serial Converter |26 RIGHT[15:0]
AO_SDXx( }——| <32 A0_CC[31:0]

Figure 9-1. AO clock system and 1/O interface
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AO_SDx l30l3‘1l 012314 )5]6]7]8]9[10[11]12)13]14]15]16][17][18][19]20)21]22]23]24]25[26]27]28]29]30J31J0[1[2[3[4]5]6]7

framep,_ 1

frame,, framen.q

Figure 9-2. Definition of serial frame bit positions (POLARITY =1, CLOCKEDGE = 0)

9.5.2 TM1000 Clock Compatibility Mode

TM1000 clock compatibility mode is provided so that
TM1000 audio software runs without changes. It should
NOT be used for new software development, due to a 3x
higher jitter. TM1000 mode is automatically entered
whenever FREQUENCY[31] = 0. In TM1000 mode,
AO_OSCLK frequency is set as follows:

32
fOSCLK[2

FREQUENCY=
3 pspcpu

96 CLOCK SYSTEM OPERATION

The output of the DDS is always sent to the AO_OSCLK
output pin. This output is typically used as the 256fg or
384f4 system clock source for oversampling D/A convert-
ers, such as the Philips SAA7322, or codecs such as the
AD1847, CS4218 or UD1340.

AO_WS and AO_SCK are sent to each external D/A con-
verter in the master mode.

AO_WS, the word strobe, determines the sample rate:
each active channel receives one sample for each
AO_WS period.

AO_SCK is the data bit clock. The number of AO_SCK
clocks in an AO_WS period is the number of data bits in
a serial frame required by the attached D/A converter.

faooscLk
faosck = SERDIVTI SCKDIV 00[0,255]
AO_WS is a divider of the bit clock and is set using WS-
DIV to control the serial frame length. The number of bits
per frame is equal to WSDIV+1. There are some mini-
mum length requirements for a serial frame, refer to
Section 9.7.1.

AO_SCK and AO_WS can be configured as input or out-
put, as determined by the SER_MASTER control field. If
set as output, AO_SCK can be set to a divider of the DDS
output frequency.

Whether set as input or output, the AO_SCK pin signal is
always used as the bit clock for parallel-serial conver-
sion. The AO_WS pin always acts as the trigger to start
the generation of a serial frame. AO_WS can similarly be
programmed using WSDIV to control the serial frame
length. The number of bits per frame is equal to WS-
DIV+1.

The preferred use of the clock system options is to use
AO_OSCLK as D/A master clock, and let the D/A con-

Table 9-3. AO MMIO Clock & Interface Control

Field Name Description

SER_MASTER 0 O (RESET default), the D/A subsystem
is the timing master over the AO
serial interface. AO_SCK and
AO_WS act as inputs.

1[0 TM1300 is the timing master over the
serial interface. AO_SCK and
AO_WS act as outputs. This mode is
required for 4,6 or 8 channel opera-
tion.

The SER_MASTER bit should only be

changed while the AO unit is disabled, i.e.

TRANS_ENABLE = 0.

FREQUENCY Sets the clock frequency emitted by the

AO_OSCLK output. RESET default 0.

SCKDIV Sets the divider used to derive AO_SCK
from AO_OSCLK. Set to 0..255, for divi-

sion by 1..256. RESET default 0.

WSDIV Sets the divider used to derive AO_WS
from AO_SCK. Set to 0..511 for a serial

frame length of 1..512. RESET default 0.

verter be a timing slave of the serial interface
(SER_MASTER=1). This is important in view of compat-
ibility with future Trimedia devices, which may only sup-
port the AO unit as serial interface master.

Some D/A converters however, like the AD1847, provide
better SNR properties if they are configured as serial
master, with the AO unit as slave (SER_MASTER=0). As
illustrated by Figure 9-1, the internal parallel to serial
converter that constructs the serial frame is oblivious to
which component is timing master.

9.7 SERIAL DATA FRAMING

The AO unit can generate data in a wide variety of serial
data framing conventions. Figure 9-2 illustrates the no-
tion of a serial frame. If POLARITY=1, a frame starts with
a positive edge of the AO_WS signal. If POLARITY=0, a
serial frame starts with a negative edge on AO_WS. If
CLOCK_EDGE=0, the parallel to serial converter sam-
ples AO_WS on a positive clock edge transition, and out-
puts the first bit (bit 0) of a serial frame on the next falling
edge of AO_SCK.

If CLOCK_EDGE-=1, the parallel to serial converter sam-
ples AO_WS on the negative edge of AO_SCK, while au-
dio data is output on the positive edge, i.e. the AO_SCK
polarity would be reversed with respect to Figure 9-2.
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Table 9-4. AO Serial Framing Control Fields

Field Name

POLARITY

Description

0 O serial frame starts with an AO_WS
negedge (RESET default)

1 0 serial frame starts with an AO_WS
posedge

This bit should NOT be changed during

operation of the AO unit, i.e. only update this

bit when TRANS_ENABLE = 0.

LEFTPOS(9) Defines the bit position within a serial frame
where the first data bit of the left channel is

placed. Reset default ‘0’.

RIGHTPOS(9) | Defines the bit position within a serial frame
where the first data bit of the right channel is

placed. Reset default ‘0’

DATAMODE 0 O MSB first (RESET default)
10 LSB first
SSPOS Start/Stop bit position. Reset default 0. Note

that SSPOS is a 5-bit field, with SSPOS bit 4
not-adjacent. This is for backwards compati-
bility in 16 bits/sample modes with TM1000/
1100.

« [f DATAMODE=MSB first, transmission
starts with the MSB of the sample, i.e. bit
15 for 16 bits/sample modes or bit 31 for 32
bits/sample modes. SSPOS determines
the bit index (0..31) in the parallel input
word of the last transmitted data bit.

* If DATAMODE=LSB first, SSPOS deter-
mines the bit index (0..31) in the parallel
word of the first transmitted data bit. Bits
SSPOS up tof/including the MSB are trans-
mitted, i.e. up to bit 15 in 16 bits/sample
mode and bit 31 in 32 bits/sample mode.

See Table 9-5 for more information.

CLOCK_EDGE | 0 O the parallel to serial converter samples
AO_WS on positive edges of AO_SCK
and outputs data on the negative edge
of AO_SCK (RESET default).

1 0 the parallel to serial converter samples
AO_WS on negative edges of AO_SCK
and outputs data on positive edges of
AO_SCK.

WS_PULSE 0O emit 50% AO_WS (RESET default).
1 0 emit single AO_SCK cycle AO_WS
NR_CHAN 00 O Only AO_SD1 is active

01 0 AO_SD1 and 2 are active

10 0 AO_SD1, 2 and 3 are active

110 AO_SD1..SD4 are active

Each SD output either receives 1 or 2 chan-
nels depending on TRANS_MODE mono
resp. stereo. Non-active channels receive 0
value samples. In mono modes, each chan-
nel of a SD output receives identical left &

right samples. See also Table 9-9.

Every serial frame transmits a single left and right chan-
nel sample, and optional codec control data to each D/A
converter. The left and right sample data can be in an
LSB first or MSB first form, at an arbitrary serial frame bit
position, and with an arbitrary length.

In MSB-first mode (DATAMODE = 0), the parallel to se-
rial converter sends the value of LEFT[MSB] in bit posi-
tion LEFTPOS in the serial frame. Subsequently, bits
from decreasing bit positions in the LEFT data word, up
to and including LEFT[SSPOS], are transmitted in order.

In LSB-first mode (DATAMODE = 1), the parallel-to-seri-
al converter sends the value of LEFT[SSPOS] in bit po-
sition LEFTPOS in the serial frame. Subsequent bits
from the LEFT data word, up to and including
LEFT[MSB], are transmitted in order. Table 9-5. shows
the transmitted bits in different modes.

Table 9-5. Bits transmitted for each memory data
item S

. first last valid
operating mode bit bit SSPOS
values

16 bits/sample, MSB-first S[15] S[SSPOS] | 0..15
16 bits/sample, LSB-first | S[SSPOS] | S[15] 0..15
32 bits/sample, MSB-first S[31] S[SSPOS] | 0..31
32 bits/sample, LSB-first | S[SSPOS] | S[31] 0..31

Frame bits that do not belong to either LEFT[MSB:SS-
POS] or RIGHT[MSB:SSPOS] or a codec control field
(Section 9.8, “Codec Control”) are shifted out as zero.
This zero extension ensures that TM1300 can be used in
combination with D/A converters of higher precision than
the actual number of transmitted bits in the current oper-
ating mode, e.g. 18-bit D/As operating with 16-bit mem-
ory data.

9.7.1 Serial Frame Limitations

Due to the implementation, there is a minimum serial
frame length required that is operating mode dependent.
This is shown in Table 9-6.

Table 9-6. Minimum serial frame length in bits

operating mode minimum serial frame length
16 bits/sample, mono 13 bits
32 bits/sample, mono 13 bits
16 bits/sample, stereo 13 bits
32 bits/sample, stereo 36 bits
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. : left channel ?atanﬁm)

right cthnel datap,(18) left channel datay,,1(18)

Figure 9-3. Serial frame (64 bits) of a 18-bit precision |

23 DJA converter.

9.7.2 1°S Serial Framing Example Table 9-8. AO MMIO codec control/status fields
Refer to Fllgure 9-3 and Table 9-7 to see how the AO_ unit Field Name Description
MMIO registers should be set to transmit 16 or 32 bits of : I
stereo data via an 1°S serial standard to an 18-bit D/A CC1 (16) The 16-bit value of CC1 is shifted into each
converter with a 64-bit serial frame. emitted serial frame starting at bit position
Table 9-7. E | for 64-bit | 2S f . CC1_POS, as long as CC1_EN is asserted.
able 9-7. Example setup for 64-bit raming CC1_POS Defines the bit position within a serial frame
- - where the first data bit of CC1 is placed.
Field Value Explanation RESET Default 0.
POLARITY 0 Frame starts with negedge AO_WS. CC1_EN 0 0 CC1 emission disabled (RESET default)
LEFTPOS 0 | LEFT[msb] will go to serial frame 10 CC1 emission enabled.
position 0. CC2(16) The 16-bit value of CC2 is shifted into each
RIGHTPOS 32 RIGHT[msb] will go to serial frame emitted serial frame starting at bit position
position 32. CC2_POS, as long as CC2_EN is asserted.
DATAMODE 0 MSB first CC2_POS Defines the bit position within a serial frame
— - where the first data bit of CC2 is placed.
SSPOS 0 Sfttop with LEFT/RIGHT[0], send O’'s Default 0.
after.
(for 32 bits/sample mode, this field CC2_EN 0 0 CC2 emission disabled (RESET default)
could be set to 14 to ensure zeroes 10 CC2 emission enabled.
in all unused bit positions) CC_BUSY 0 0O AO is ready to receive a CC1, CC2 pair
CLOCK_EDGE| 0 |AO_SDx change on negedge (RESET default).
- AO SCK g gedg 10 AOis not ready to receive a CC1, CC2
= pair. Try again in a few SCK clock inter-
WSDIV 63 Serial frame length = 64. vals.
WS_PULSE 0 emit 50% duty cycle AO_WS.

9.8 CODEC CONTROL

In addition to the left and right data fields that are gener-
ated based on autonomous DMA action, a serial frame
generated by the AO unit can be set to contain 1 or 2
control fields up to 16 bits in length. Each control field can
be independently enabled/disabled by the CC1_EN,
CC2_EN bits in AO_CTL. The content shifted into the
frame is taken from the CC1 and CC2 field in the AO_CC
register. The CC1_POS and CC2_POS fields in the
AO_CFC register determine the first bit position in the
frame where the control field is emitted. The field is emit-
ted observing the setting of DATAMODE, i.e. LSB or
MSB first.

The CC_BUSY bit in AO_STATUS indicates if the AO
unit is ready to receive another CC1, CC2 value pair.
Writing a new value pair to AO_CC writes the value into
a buffer register, and raises the CC_BUSY status. As
soon as both CC1 and CC2 values have been copied to
a shadow register in preparation for transmission,
CC_BUSY s negated, indicating that the AO logic is
ready to accept a new codec control pair. The old CC1/

CC2 data keeps being transmitted - i.e. software is not
required to provide new CC1 and CC2 data.

Software always needs to ensure that the CC_BUSY sta-
tus is negated before writing a new CC1, CC2 pair. By
polling CC_BUSY, the DSPCPU can emit a sequence of
individual audio frames with distinct control field values
reliably. This can, for example, be used during codec ini-
tialization. No provision is made for interrupt driven
operation of such a sequence of control values; it is as-
sumed that after initialization, the value of control fields
determine slow, asynchronous changing parameters
such as volume.

It is legal to program the control field positions within the
frame such that CC1 and CC2 overlap each other and/or
left/right data fields. If two fields are defined to start at the
same bit position, the priority is left (highest), right, CC1
then CC2. The field with the highest priority will be emit-
ted starting at the conflicting bit position. If a field f2is de-
fined to start at a bit position i that falls within a field f1
starting at a lower bit position, 2 will be emitted starting
from i and the rest of f1 will be lost. Any bit positions not
belonging to a data or control field will be emitted as ‘0’.
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AO_SCK
o || || | i
AO_SDx ‘ ] X X Tarfasl V] O [ T J62)63[0TI] |

left channel data,(16) Isb CC1(16) Isb right channel data,(16) Isb CC2(16) Isbleft data,.+1(16)

Figure 9-4. Example codec frame layout for a Crystal Semi, CS4218.

Figure 9-4 shows a 64-bit frame suitable for use with the
CS4218 codec. It is obtained by setting POLARITY=1,
LEFTPOS=0, RIGHTPOS=32, DATAMODE=0, SS-
POS=0, CLOCK_EDGE=1, WS_PULSE=1,CC1_POS =
16, CC1_EN=1, CC2_P0S=48, CC2_EN=1.

Note that frames are generated (externally or internally)
even when TRANS_ENABLE is de-asserted. Writes to
CCl1 and CC2 should only be done after
TRANS_ENABLE is asserted. The ‘first' CC values will
then go out on the next frame. For a summary of codec
control fields see Table 9-8

9.9 MEMORY DATA FORMATS

The AO unit autonomously reads samples from memory
in 16 or 32 bit-per-sample memory formats, as shown in
Figure 9-5 for some example modes. Memory samples
are retrieved and used as described in Table 9-9. Suc-

Table 9-9. Operating modes and memory formats

NR_CHAN | MODE | destination of successive samples

00 mono SD1.left

00 stereo SD1.left, SD1.right

01 mono SD1.left, SD2.left

01 stereo | SD1.left, SD1.right, SD2.left, SD2.right
10 mono SD1.left, SD2.left, SD3.left

10 stereo SD1.left, SD1.right, SD2.left, SD2.right,
SDa3.left, SD3.right

cessive samples are always read from increasing mem-
ory address locations. The setting of the
LITTLE_ENDIAN bit in the AO_CTL register determines
the byte order of retrieved 16 or 32-bit samples. Refer to
Appendix C, “Endian-ness,” for details on byte ordering con-
ventions.

AO hardware implements a double buffering scheme to
ensure that there are always samples available to trans-
mit, even if the DSPCPU is highly loaded and slow to re-
spond to interrupts. The DSPCPU software assigns 2
equal size buffers by writing a base address and size to
the MMIO control fields described in Figure 9-6. Refer to
Section 9.10, “Audio Out Operation,” for details on hard-
ware/software synchronization.

If SIGN_CONVERT is set to one, the MSB of the memo-
ry data is inverted, which is equivalent to translating from
offset binary representation to two’'s complement. This
allows the use of an external two’s complement 16-bit D/
A converter to generate audio from 16-bit unsigned sam-
ples. This MSB inversion also applies to the ‘0’ values
transmitted to non-active output channels.

Note that the AO hardware does not support A-law or p-
law eight-bit data formats. If such formats are desired,
the DSPCPU should be used to convert from A-law or p-
law data to 16-bit linear data.

11 mono SD1.left, SD2.left, SD3.left, SDA4.left
11 Stereo SD1.left, SD1.right, SD2.left, SD2.right,
SD3.left, SD3.right, SD4.left, SD4.right.

adr adr+2 adr+4 adr+6 adr+8 adr+10 adr+12 adr+14
I{IGR'E'C":‘AEI\’;“;%O ‘ SDLleft, ‘ SDL.right, ‘ SDLleft,.; | SDLright,.; ‘ SD1left,., | SDLrighty, | SDLleft s ‘ SDL.right,.es ‘

adr adr+2 adr+4 adr+6 adr+8 adr+10 adr+12 adr+14
I{IGR'E'C":‘AEI\’;“;?O ‘ SDLleft, ‘ SDL.right, ‘ SD2.left, SD2.right, SD3left, | SD3.ight, SD1left,,; | SDLright. ‘

adr adr+4 adr+8 adr+12

ﬁlzébg'j}f&i%o ‘ SD1.left, ‘ SDLright, ‘ SD1.lefty; ‘ SDL.righty ‘

Figure 9-5. AO memory DMA formats.
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MMIO_base
offset:
31T T T T27T T T T23T T T T19T T T T15T T T TllT T T T 7T 3 0
0x102000 AO_STATUS (rw) | 11T

cc_BuUsy——

BUF1_ACTIVE
UNDERRUN

HBE (Highway bandwidth error)
BUF2_EMPTY
BUF1_EMPTY
RESERVED*‘
31 27 23 — 19‘ ; — 15‘ ; 11 7 3 0
0x10 2004  AO_CTL (riw) LI T[T HEEEEEEEN
RESET4 UDR_INTEN4
TRANS_ENABLE HBE_INTEN
TRANS_MODE BUF2_INTEN
SIGN_CONVERT BUF1_INTEN
LITTLE_ENDIAN ACK_UDR
SLEEPLESS ACK_HBE
CC1_EN ACK2

CC2_EN— ACK1——
WS_PULSE——

31 T27| T T T23T T T Tlg \15T T T \11\ 7 T T \3\ T \0

0x10 2008 AO_SERIAL (w) | [ [ ] | ] WSDIV SCKDIV
SER_MASTERﬂ
DATAMODE
CLOCK_EDGE NR_CHAN

31 T T27T T T T23T \19\ T T \15\ \11\ T T T 7\ T T T \0

0x10200C  AO_FRAMING (w) [ | | \ LEFTPOS | "RIGHTPOS SsPOS |
POLARITY4 - SSPOS[4]

31\ \27\ 23 \19\ T T \15\ T T \11\ \7\ \3\ \0
0x10 2010 AO_FREQ (r/w) \ FREQUENCY |
0x10 2014 AO_BASE1 (r/w) \ BASE1 lo]oo]o]o]o]
0x10 2018 AO_BASE2 (r/w) \ BASE2 lo]oo]o]o]o]
0x10 201C  AO_SIZE (r/w) | SIZE (in samples) loJolo]o]o]0]
0x10 2020 AO_CC (r/w) \ ‘cc1 N cc2 T T
0x10 2024 AO_CFC (r/w) ] \ cC1 POS | cCc2 POS \

31\ \27\ 23 \19\ T T \15\ T T \11\ \7\ \3\ \0
0x102028 AO_TSTAMP (/o) | TIMESTAMP |

Figure 9-6. AO status/control field MMIO layout.
9.10 AUDIO OUT OPERATION counter stays synchronous with the DSPCPU
CCCOUNT register.

Figure 9-6, Table 9-10 and Table 9-11 describe the func-
tion of the control and status fields of the AO unit. To en-
sure compatibility with future devices, any undefined or
reserved MMIO bits should be ignored when read, and
written as zeroes

The AO unit is reset by a TM1300 hardware reset, or by
writing 0x80000000 to the AO_CTL register. The AO unit
is not affected by DSPCPU reset initiated through the
BIU_CTL register. Either reset method sets all MMIO
fields as indicated in the tables.

The timestamp counter is reset by TRI_RESET# or by
DSPCPU reset initiated through BIU_CTL. Itis not affect-
ed by AO_CTL reset. This ensures that the timestamp

After an AO reset, 5 AO_SCK clock cycles are required
to stabilize the internal circuitry before enabling Audio
Out. This can be accomplished by programming the
AO_FREQ and AO_SERIAL registers to start AO_SCK
generation then waiting for the appropriate 5 AO_SCK
cycle interval.

Programing of the AO_SERIAL MMIO register needs to
follow the following sequence order:

» set AO_FREQ to ensure that a valid clock is gener-
ated (Only when AO is the master of the audio clock
system)

* MMIO(AO_CTL) =1 << 31;/* Software Reset */
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* MMIO(AO_SERIAL) = 1 << 31; /* sets serial-master
mode, starts AO_SCK */

« MMIO(AO_SERIAL) = (1 << 31) | (SCKDIV value); /*
then set DIVIDER values */

Upon reset, transmission is disabled (TRANS_ENABLE
=0), and buffer 1 is the active buffer (BUF1_ACTIVE=1).

The DSPCPU initiates transmission by providing two full
equal size buffers and putting their base address and
size in the BASE,, and SIZE registers. Once two valid
buffers are assigned, transmission can be enabled by
writing a ‘1’ to TRANS_ENABLE. The AO hardware now
proceeds to empty buffer 1 by transmission of output
samples. Once buffer 1 empties, BUF1_EMPTY is as-
serted, and transmission continues without interruption
from buffer 2. If BUF1_INTEN is enabled, a SOURCE 12
interrupt request is generated.

Note that buffers must be 64-byte aligned (the six LSBs
of AO_BASE1, AO_BASE? are zero). Buffer sizes must
be a multiple of 64 samples (the 6 LSB’s of AO_SIZE are
zero).

Table 9-10. AO MMIO DMA control fields

Field Name

LITTLE_ENDIAN

Description

0 O big endian memory format (RESET
default)
10 little endian

BASE1 Base Address of bufferl. Must be a 64-
byte aligned address in local SDRAM.
RESET default 0.

BASE2 Base Address of buffer2. Must be a 64-

byte aligned address in local SDRAM.
RESET default 0.

SIZE DMA buffer size, in samples.

This number of mono samples or stereo
sample pairs is read from a DMA buffer
before switching to the other buffer.
Buffer size in bytes is as follows:

16 bps, mono : 2 * SIZE

32 bps, mono : 4 * SIZE

16 bps, stereo : 4 * SIZE

32 bps, stereo : 8 * SIZE

RESET default 0.

00 O mono, 32 bits/sample. (RESET
default). Left data and Right data
sent to each active output are the
same.

01 O stereo, 32 bits/sample

10 O mono, 16 bits/sample. Left data
and Right data are the same.

11 O stereo, 16 bits/sample

Refer to Table 9-9 for an explanation of

how TRANS_MODE and NR_CHAN

map to output behavior.

TRANS_MODE

continues from the new buffer 1, etc. An ACK performs
two functions: it tells the AO unit that the corresponding
BASE register now points to a buffer filled with samples,
and it clears BUF_EMPTY. Upon receipt of an ACK, the
AO hardware removes the BUF_EMPTY related inter-
rupt request line assertion at the next DSPCPU clock
edge. Refer to the interrupt controller documentation for
details on interrupt handler programming. The AO inter-
rupt (SOURCE 12) should always be operated in level
sensitive mode

Table 9-11. AO DMA status fields (read only)

Field Name Description

BUF1_ACTIVE

If 1, buffer 1 will be used for the next sam-
ple to be transmitted.

e If O, buffer 2 will contain the next sample
(1 after RESET).

BUF1_EMPTY

If 1, buffer 1 is empty.

e If BUFL1_INTEN is also 1, an interrupt
request (source 12) is asserted.

¢ BUF1_EMPTY is cleared by writing a ‘1’
to ACK1, at which point the AO hardware
will assume that BASE1 and SIZE
describe a new full buffer.

e 0 after RESET.

If 1, buffer 2 is empty.

e If BUF2_INTEN is also 1, an interrupt
request (source 12) is asserted.

¢ BUF2_EMPTY is cleared by writing a ‘1’
to ACK2, at which point the AO hardware
will assume that BASE2 and SIZE
describe a new full buffer.

e 0 after RESET.

HBE « Highway Bandwidth Error.

« 0 after RESET.

¢ Indicates that no data was transmitted
due to inability to read the local AO buffer
from SDRAM in time. This indicates an
insufficient allocation of TM1300 Highway
bandwidth for the audio sampling rate/
mode.

An UNDERRUN error has occurred, i.e.

the CPU failed to provide a full buffer in

time, and no samples were transmitted,

although requested by the D/A converter.

¢ If UDR_INTEN is also 1, an interrupt
request (source 12) is pending. The
UNDERRUN flag can ONLY be cleared by
writing a ‘1’ to ACK_UDR.

* 0 after RESET.

BUF2_EMPTY

UNDERRUN

SIGN_CONVERT |00 leave MSB unchanged (RESET
default)

10 invert MSB

(not applied to codec control fields)

The DSPCPU is required to assign a new, full buffer to
BASE1 and perform an ACK1 before buffer 2 empties.
Transmission continues from buffer 2 until it is empty. At
that time, BUF2_EMPTY is asserted and transmission

9.11 INTERRUPTS

The AO unit has a private interrupt request line to the
DSPCPU vectored interrupt controller. It uses SRC# 12
(same as TM1000/TM1100 AO).

An interrupt is asserted as long as one or more of the
UNDERRUN, HBE, BUF1_EMPTY or BUF2_EMPTY
condition flags and the corresponding INTEN bit are as-
serted. Interrupts are sticky, i.e. an interrupt remains as-
serted until the software explicitly clears the condition
flag by an ACK_x action.
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Table 9-12. AO MMIO Control Fields

Field Name Description

RESET Resets the audio-out logic. See Section
9.10, “Audio Out Operation” for a descrip-

tion of the recommended procedure.

TRANS_ENABLE | Transmission Enable flag.

0 O (RESET default) AO inactive.

10 AO transmits samples and acts as
DMA master to read samples from
local SDRAM.

Do NOT change the POLARITY bit while

transmission is enabled.

SLEEPLESS 0 O (power up default) AO goes into
power-down mode if TM1300 goes to
global powerdown mode.

1 0 AO continues operation when
TM1300 goes to global powerdown
mode. Samples are read from mem-
ory as needed, and AO interrupts,
when enabled, will wake up the
DSPCPU.

BUF1_INTEN Buffer 1 Empty Interrupt Enable.
0 O (default) no interrupt
1 0 interrupt (SOURCE 12) if buffer 1

empty

BUF2_INTEN Buffer 2 Empty Interrupt Enable.
0 O (default) no interrupt
1 0 interrupt (SOURCE 12) if buffer 2

empty

HBE_INTEN HBE Interrupt Enable.
0 O (default) no interrupt
1 0 interrupt (SOURCE 12) if a highway

bandwidth error occurs.

UDR_INTEN UNDERRUN Interrupt Enable.
0 O (default) no interrupt
1 0 interrupt (SOURCE 12) if an

UNDERRUN error occurs

ACK1 * Write a 1 to clear the BUF1_EMPTY flag
and remove any pending BUF1_EMPTY
interrupt request.

* ACK1 always reads 0.

ACK2 « Write a 1 to clear the BUF2_EMPTYflag
and remove any pending BUF2_EMPTY
interrupt request.

* ACK2 always reads 0.

ACK_HBE * Write a 1 to clear the HBE flag and
« remove any pending HBE interrupt
request.
e« ACK_HBE always reads as 0.
ACK_UDR * Write a 1 to clear the UNDERRUN flag

and remove any pending UNDERRUN
interrupt request.

¢ ACK_UDR always reads 0.

9.12 TIMESTAMP

The AO_TSTAMP MMIO register provides a 32-bit
timestamp value that contains the CCCOUNT time value
at which the last sample of the last DMA buffer transmit-
ted was sent across the SD output pin. This value is
available for software inspection (read-only) in the inter-
rupt handler for BUFX_EMPTY.

The implementation involves an internal DSPCPU clock
cycle counter that is reset to have the same value as the
DSPCPU CCCOUNT register. It is guaranteed to be in
sync with the 32 LSB of CCCOUNT provided that PC-
SW.CS=1.

9.13 POWERDOWN AND SLEEPLESS

The AO unit enters powerdown state whenever TM1300
is put in global powerdown mode, except if the SLEEP-
LESS bit in AO_CTL is set. In the latter case, the block
continues DMA operation and will wake up the DSPCPU
whenever an interrupt is generated. The internal times-
tamp counter never powers down to ensure that it re-
mains synchronous with CCCOUNT.

The AO unit can be separately powered down by setting
a bit in the BLOCK_POWER_DOWN register. Refer to
Chapter 21, “Power Management.”

If the block enters powerdown state, AO_SCK, AO_SDXx,
and AO_WS hold their value stable. AO_OSCLK contin-
ues to provide a D/A converter clock. The signals resume
their original transitions at the point where they were in-
terrupted once the system wakes up. The external D/A
converter subsystem is most likely confused by this be-
havior, hence it is recommended AO unit to be stopped
(by negating TRANS_ENABLE) before block level pow-
erdown is started, or that SLEEPLESS mode is used
when global powerdown is activated.

9.14 HIGHWAY LATENCY AND HBE

The AO unit uses an internal 64-byte buffer as well as an
output holding register that contains a single mono sam-
ple or single stereo sample pair. Under normal operation,
the internal buffer is refreshed from SDRAM fast enough
to avoid any missing samples, while data is being emit-
ted from the holding register. If the highway arbiter is set
up with an insufficient latency guarantee, the situation
can arise that the 64-byte buffer is not refilled and the
holding register is exhausted by the time a new output
sample is due. In that case the HBE error is raised. The
last sample for each channel will be repeated until the
buffer is refreshed. The HBE condition is sticky, and can
only be cleared by an explicit ACK_HBE. This condition
indicates an incorrect setting of the highway bandwidth
arbiter.

Given a sample rate f;, and an associated sample inter-
val T (in ns), the arbiter should be set to have a latency
of at most T-20 ns for all modes. The latency for 4,6 and
8 channel modes can be computed as if the system is op-
erating in stereo mode with a 2x, 3x respectively 4x sam-
ple rate.

Table 9-13 shows the required arbiter latency settings for
a number of common operating modes. The right most
column in illustrates the nature of the resulting 64-byte
highway requests. Is not necessary to compute arbiter
settings, but they may be used to compute bus availabil-
ity in a given interval.

Refer to Chapter 20, “Arbiter,” for information on arbiter
programming.
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Table 9-13. AO highway arbiter latency requirement

examples
max.
TransMode fs T arbiter access
(kHz) (ns) latency pattern
(ns)
stereo 1 request every
16 bits/sample 44.1 122,676 | 22,656 362,812 ns
stereo 1 request every
16 bits/sample 48.0 20,833 | 20,813 333,333 ns
stereo 1 request every
16 bits/sample 96.0 110,417 10,397 166,667 ns
6 channel 1 request every
16 bits/sample 48.0 | 20,833 6,924 111,111 ns
stereo 1 request every
32 hits/sample 480 120,833 20813 166,667 ns
6 channel 1 request every
32 hits/sample 48.0 120,833 6,924 55,556 ns

9.15 ERROR BEHAVIOR

In normal operation, the DSPCPU and AO hardware
continuously exchange buffers without ever failing to
transmit a sample. If the DSPCPU fails to provide a new
buffer in time, the UNDERRUN error flag is raised, and
the last valid sample or sample pair is repeated until a
new buffer of data is assigned by an ACK1 or ACK2. The
UNDERRUN flag is not affected by ACK1 or ACK2; it can
only be cleared by an explicit ACK_UDR.

If an HBE error occurs, the last valid sample or sample
pair is repeated until the AO hardware retrieves a new
sample buffer across the highway.

9-10
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Chapter 10

10.1 SPDIF OUT OVERVIEW

The TM1300 SPDIF Output unit (SPDO) allows genera-
tion of a 1-bit high-speed serial data stream. The primary
application is to make SPDIF (Sony/Philips Digital Inter-
face) data available for use by external audio equipment.

The SPDO unit has the following features:
» fully compliant with IEC958, for both consumer and
professional applications

» supports 2-channel linear PCM audio, with 16 or 24
bits per sample

» supports one or more Dolby Digital(r) 6-channel data
streams embedded per Project 1937

e supports one or more MPEG-1 or MPEG-2 audio
streams embedded per Project 1937

« allows arbitrary, programmable, sample rates from 1
Hz to 300 kHz

e can output data with a sample rate independent of
and asynchronous to the sample rate of the Audio
Out (AO) unit

* hardware performs autonomous DMA of memory
resident IEC958 sub-frames

« hardware performs parity generation and bi-phase
mark encoding

» allows software to have full control over all data con-
tent, including user and channel data

Alternate use of the SPDO unit to generate a general-
purpose high-speed data stream is possible. Potential
applications include use as a high-speed UART or high
speed serial data channel. In this case features are:

* up to 40 Mbit/sec data rate

« full software control over each bit cell transmitted

» LSB first or MSB first data format

10.2 EXTERNAL INTERFACE

The external interface consists of only one pin, SPDO,
which is described in Table 10-1.

Table 10-1. SPDO external signals

Signal Type Description

SPDO /O | SPDIF output. Self clocking interface
carrying either 2-channel PCM data with
samples up to 24 bits, or encoded Dolby
AC-3(r) or MPEG audio data for decod-

ing by an external audio component.

by Gert Slavenburg, Santanu Dutta

An external circuit (see Figure 10-1) is required to pro-
vide an electrically isolated output and convert the 3.3 V
output pin to a drive level of 0.5 V peak-peak into a 75-
ohm load, as required for consumer applications of IEC-
958.

TM1300 rans
ransformer  Rca
10UF  240E ; ohono
| 1.5-7 MHz
SPDO HI —
110E L] Ll]lj
L

Figure 10-1. External SPDIF interface circuitry

10.3 SUMMARY OF OPERATION

In both SPDIF and transparent DMA modes, SPDO
sends alternating memory data buffers out across the
output pin. Software initially gives SPDO two memory
data buffers and enables the SPDO unit. When the first
buffer is sent, SPDO requests a new buffer from software
while switching over to use the other buffer, etc. Trans-
mission continues uninterrupted until the unit is disabled.

10.3.1 SPDIF Mode

SPDIF driver software assembles SPDIF data in each
memory data buffer. Each memory data buffer consists
of groups of 32-bit words in memory. Each word de-
scribes the data to be transmitted for a single IEC-958
sub-frame, including what type of preamble is to be in-
cluded. Each sub-frame is transmitted in 64-clock cycle
intervals of the SPDO clock, a programmable clock gen-
erated by the SPDO Direct Digital Synthesizer (DDS).

10.3.2 Transparent DMA Mode

In transparent DMA mode, software prepares each data
bit exactly as it is to be transmitted, in a series of 32-bit
words in each memory data buffer. Each 32-bit word is
transmitted LSB first or MSB first in 32-clock cycle inter-
vals of the SPDO clock, a programmable clock generat-
ed by the SPDO Direct Digital Synthesizer.
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M | sub-frame 1 | W| sub-frame 2 | B | sub-frame 1 | W| sub-frame 2 | M| sub-frame 1 | W| sub-frame 2 | M | sub-frar
sub-frame sub-frame
. frame 191 frame O frame 1
—— Start of block (indicated by unique B pre-amble)
0 4 8 12 16 20 24 28 31
T T T T T T I_ T T T T T T T T T T T T T M
B, WorM S|V|UIC|P
pre-amble Aux. S Sample data B
Validity flag 1
User data
Channel status
Parity bit
sub-frame (2 channel PCM)
0 4 12I 16 20 24 28 31
T T T T T T T T T T T T T T T T T T T T M
B, Wor M 5 -bi s|v|ulc|p
pre-amble unused (0) S 16-bit data B
Validity flag 1
User data
Channel status
Parity bit
sub-frame (non-PCM audio)

Figure 10-2. Serial format of a IEC958 block
104 |IEC-958 SERIAL FORMAT

Figure 10-2 shows the serial format layout of a IEC-958
block. A block starts with a special ‘B’ pre-amble, and
consists of 192 frames. The sample-rate of all embedded
audio data is equal to the frame rate. Each frame con-
sists of 2 sub-frames. Sub-frame 1 always starts with a
‘M’ pre-amble, except for sub-frame 1 in frame 0, which
starts with a ‘B’. Sub-frame 2 always starts with a ‘W’ pre-
amble.

When IEC-958 data carries 2-channel PCM data, one
audio sample is transmitted in each sub-frame, ‘left’ in
sub-frame 1 and ‘right’ in sub-frame 2. Each sample can
be 16 or 24 bits in length, where the MSB is always
aligned with bit slot 28 of the sub-frame. In case of more
than 20 bits/sample, the Aux field is used for the 4 LSBs.

When IEC-958 data carries non-PCM audio, such as 1 or
more streams of Dolby AC-3 encoded data and/or MPEG
audio, each sub-frame carries 16-bit data. The data of
successive frames adds up to a payload data-stream
which carries its own burst-data. This is described in [2].

Programmers should refer to the IEC-958 documents [1]
and Project 1937 document [2] for a precise description
of the required values in each field for different types of
consumer equipment. A complete discussion of this is-
sue is outside the scope of this document.

The SPDO block hardware only concerns itself with gen-
erating B, W and M preambles as well as generating the

P (parity) bit. All other bits in the sub-frame are complete-
ly determined by software and copied verbatim from
memory to output, subject only to bit-cell coding.

The programmer must construct valid IEC-958 blocks by
constructing the right sequence of 32-bit words as de-
scribed in Section 10.7, “IEC-958 Memory Data Format.”

10.5 |EC-958 BIT CELL AND PRE-AMBLE

Each data bit in IEC-958 is transmitted using bi-phase
mark encoding. In bi-phase mark encoding, each data bit
is transmitted as a cell consisting of two consecutive bi-
nary states. The first state of a cell is always inverted
from the second state of the previous cell. The second
state of a cell is identical to the first state if the data bit
value is a “0”, and inverted if the data bit value is a “1".

Pre-ambles are coded as bi-phase mark violations,
where the first state of a cell is not the inverse of the last
state of the previous cell.

The duration of each state in a cell is called a Ul (Unit In-
terval), so that each cell is 2 Ul's long. In SPDO, the
length of a Ul is 1 SPDO clock cycle as determined by
the settings of the DDS (see Section 10.8, “Sample Rate
Programming”).

Figure 10-3 illustrates the transmission format of 8-bit
data value “10011000", as well as the transmission for-
mat of the 3 pre-ambles. Note that each pre-amble al-
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bi-phase mark violation

bi-phase mark violation

T
LU
t ¢t

Figure 10-3. Bi-phase mark data transmission

bi-phase mark violation

ways starts with a rising edge. This is made possible
thanks to the presence of the parity bit, which always
guarantees an even number of ‘1’ bits in each sub-frame.

10.6 IEC-958 PARITY

The parity bit, or P bit in Figure 10-2, is computed by the
SPDO hardware. The P bit value should be set such that
bit cells 4 to 31 inclusive contain an even number of ‘1's
(and hence even number of ‘0’s). The P bit is bi-phase
mark encoded using the same method as for all other
bits.

10.7 IEC-958 MEMORY DATA FORMAT

The DSPCPU software must prepare a memory data
structure that instructs the SPDO hardware to generate
correct IEC-958 blocks. This data structure consists of
32-bit words with the following content:

Table 10-2. SPDIF sub-frame descriptor word

bits definition

31 (MSB) | this bit must be a ‘0’ for future compatibility

30..4 Data value for bits 4..30 of the subframe, exactly
as they are to be transmitted. Hardware will per-
form the bi-phase mark encoding and parity gen-
eration.

3.0 0000 - generate a B preamble
(LSB) 0001 - generate a M preamble
0010 - generate a W preamble
0011 .. 1111 reserved for future

The data structure for a block consists of 384 of these 32-
bit descriptor words, one for each subframe of the block,
with the correct B, M, W values. All data content, includ-
ing the U, C and V flag are fully under control of the soft-
ware that builds each block.

A DMA buffer handed to the hardware is required to be a
multiple of 64 bytes in length. It can contain 1 or more
complete blocks, or a block may straddle DMA buffer
boundaries. The 64-byte length will result in DMA buffers
that contain a multiple of 16 sub-frames.

Note that the descriptor structure is a 32-bit word memo-
ry data structure, and is hence subject to processor en-
dian-ness. To allow software to be efficient in both little-
endian and big-endian operation, the SPDO block
SPDO_CTL register has an endian-ness bit
‘LITTLE_ENDIAN’. The SPDO block performs byte
swapping when loading the SPDIF descriptors as fol-
lows.

e |If LITTLE_ENDIAN = 1, 32-bit words at address ‘a’
will be assembled from bytes (a+3,a+2,a+1,a), with
the byte at ‘a+3’ containing the MSB’s and the byte at
‘a’ the LSB’s.

e |If LITTLE_ENDIAN = 0, 32-bit words at address ‘a’
will be assembled from bytes (a,a+1,a+2,a+3), with
the byte at ‘a’ containing the MSB’s and the byte at
‘a+3’ the LSB's.

10.8 SAMPLE RATE PROGRAMMING

In he SPDO unit, the frame rate always equals fg, the
sample rate of embedded audio. This relation holds for
PCM as well as for Dolby AC-3 and MPEG encoded au-
dio. Each frame consists of 128 Unit Intervals (Ul's). The
length of a Ul is determined by the frequency setting of
the DDS (Direct Digital Synthesizer) in the SPDO block.

— (fDDS) Eqg. 1
S 128

The DDS can be programmed to emit frequencies from
approx. 1 Hz to 80 MHz in steps of approx. 0.3 Hz, with
a jitter of approx. 750 psec (at DSPCPU frequency of 143
MHz, see equations below).

Programming is accomplished through the FREQUEN-
CY MMIO register: the relation between FREQUENCY
register value, DSPCPU clock value and synthesized fre-
quency is:

32
f %
FREQUENCY= 2!+ _DBS Eq. 2
9Uf pspepu

Putting equation 1 and 2 above together yields the for-
mula for setting FREQUENCY to accomplish a given
sample rate:
a1 fs |:239
FREQUENCY= 27"+ ——
9 pspcru
The DDS synthesizer maximum jitter can be computed

as follows:

jitter = — 1
90 pspcru

Table 10-3 shows settings for common sample rate and
DSPCPU clock combinations:
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Table 10-3. SPDIF sample rate setting

fg fospcpu | FREQUENCY ul jitter
(kHz) (MHz) | (hexadecimal) | (nSec) | (nSec)

32.000 143 | 0x80D0,9316 |244.14|0.777
32.000 166 | Ox80B3,ACF8 |244.14 | 0.669
32.000 180 O0x80A5,B36E | 244.14 | 0.617
44.100 143 0x811F711B 177.15 | 0.777
44.100 166 | 0x80F7,9D93 |177.15 | 0.669
44.100 180 O0x80E4,5B47 | 177.15|0.617
48.000 143 0x8138,DCA1 | 162.76 | 0.777
48.000 166 | 0x810D,8375 |162.76 | 0.669
48.000 180 | Ox80F8,8D25 |162.76 | 0.617

The programmer is free to change FREQUENCY, and
hence the system sample rate to perform long-term
tracking of any absolute timing source and/or control
software buffer fullness. Changes to the FREQUENCY
register pull-in or delay the next clock edge and have no
instantaneous effect on clock level, i.e. the rate of phase
progression is changed, not the phase.

10.9 TRANSPARENT MODE

When SPDO is set to operate in transparent mode, it
takes all 32 bits of the memory data and shifts them out
verbatim, without bi-phase mark encoding, parity gener-
ation, or preamble.

Two transparent modes are provided, as determined by
TRANS_MODE in SPDO_CTL: LSB first and MSB first.

One bit of memory data is transmitted for each DDS
clock, such that the FREQUENCY register value for a
desired bitrate is given by the following equation:
32 .
FREQUENCY= o3, 2 [bitrate g, 5
9 [f DSPCPU

The 32-bit memory word is constructed according to the
same rules for LITTLE_ENDIAN as in Section 10.7,
“IEC-958 Memory Data Format.”

10.10 DMA OPERATION

Before enabling the SPDO block, software must assign
two buffers with data to SPDO_BASE1, SPDO_BASE?2,
and SPDO_SIZE (buffer size in bytes). Each memory
buffer size must be a multiple of 64 bytes regardless of
the operating mode.

The SPDO block is enabled by writing a ‘1’ to
SPDO_CTL.TRANS_ENABLE. Once enabled, the first
DMA buffer is sent out at the programmed sample rate.
Once the first buffer is empty, BUF1_ACTIVE is negated,
a timestamp is generated (see Section 10.13, “Times-
tamps”) and the BUF1_EMPTY flag in SPDO_STATUS
is asserted. If BUF1_INTEN in SPDO_CTL is also as-
serted, an interrupt to the DSPCPU is generated. The
SPDO block continues emitting the data in DMA buffer 2.
In normal operation, the DSPCPU assigns a new buffer

1 full of data to SPDO and signals this by writing a ‘1’ to
ACK_BUF1. The SPDO block immediately negates the
BUF1_EMPTY condition and the related interrupt re-
quest. Once buffer 2 is empty, similar signaling occurs
and the hardware switches back to using buffer 1.

10.11 DMA ERROR CONDITIONS

Two types of error can occur during DMA operation.

If the software fails to provide a new buffer of data in
time, and both DMA buffers empty out, the SPDO hard-
ware raises the UNDERRUN flag in SPDO_STATUS.
Transmission switches over to the use of the next buffer,
but the data transmitted is incorrect. If UDR_INTEN is
asserted, an interrupt will be generated. The UNDER-
RUN flag is sticky, i.e. it will remain asserted until the
software clears it by writing a ‘1’ to ACK_UDR.

A lower level error can also occur when the limited size
internal buffer empties out before it can be refilled across
the highway. This situation can arise only if insufficient
bandwidth has been requested from the highway. In this
case, the HBE error flag is raised. Refer to Section
10.17, “HBE and Highway Latency” for a description of
how to set the arbiter latency correctly.

10.12 INTERRUPTS

The SPDO block uses interrupt SRC NUM 25, with inter-
rupt vector MMIO offset 0x1008E4.

It is highly recommended that the interrupt be operated
in level-sensitive mode only.

The SPDO block generates an interrupt if one of the fol-
lowing status bit flags, and its corresponding INTEN_xxx
flag are set: BUF1_EMPTY, BUF2_EMPTY, HBE, UN-
DERRUN.

All these status flags are sticky, i.e. they are asserted by
hardware when a certain condition occurs, and remain
set until the interrupt handler explicitly clears them by
writing a ‘1’ to the corresponding ACK bit in SPDO_CTL.
The SPDO hardware takes the flag away in the clock cy-
cle after the ACK is received. This allows immediate re-
turn from interrupt once performing an ACK.

10.13 TIMESTAMPS

Any outgoing DMA buffer is assigned a 32-bit ‘time of de-
parture’ timestamp. The counter used to generate times-
tamps uses the DSPCPU clock and the same reset time
as the DSPCPU CCCOUNT register, resulting in a value
that corresponds to the 32 LSB’s of CCCOUNT - provid-
ed that PCSW.CS=1, i.e. the real CCCOUNT counter in-
crements on every clock cycle.

The timestamp can be read in the DMA interrupt handler
as MMIO register SPDO_TSTAMP. Its contents corre-
sponds to the (synchronized) clock edge at which the last
bit in the DMA buffer was sent across the output signal

pin.
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MMIO_base
offset:
31 T T27T T T T23T T T T19T T T T15T T T TllT T T T 7T T 3 0
0x104C00 SPDO_STATUS (1 | ITTT 1]
BUFl_ACTlVEJ
UNDERRUN
HBE (Highway bandwidth error)
BUF2_EMPTY
BUF1_EMPTY
31 27 T23T T T TlgT T T T15T T T TllT T 7 3 0
0x10 4C04 SPDO_CTL (r/w) [ 1] [ 1] TTTTTTTT]
RESET4 UDR_INTEN4
TRANS_ENABLE HBE_INTEN
TRANS_MODE BUF2_INTEN
BUF1_INTEN
LITTLE_ENDIAN ACK_UDR
SLEEPLESS ACK_HBE
ACK_BUF2
ACK_BUF1——
31\ \27\ \23\ \19\ T T \15\ T T \11\ \7\ \3\ \0
0x10 4C08 SPDO_FREQ (w) | FREQUENCY |
0x10 4COC  SPDO_BASEL (riw) | BASE1 lo]o]o]o]o]o]
0x10 4C10 SPDO_BASE2 (rlw) | BASE2 lo]olo]o]o]o]
0x104C14 SPDO_SIZE (tiw) | SIZE (in bytes) loolo]o]o]o
0x10 4C18 SPDO_TSTAMP (1/0) | " TIMESTAMP ST

Figure 10-4. SPDO unit status/control field MMIO layout.

10.14 MMIO REGISTER DESCRIPTION

Table 10-5. SPDO_CTL MMIO register

Table 10-4. SPDO_STATUS MMIO register field type

description

ACK_BUF1

field
BUF1_EMPTY

description
Sticky flag - set if DMA buffer 1 emp-

type w/o

Always reads as ‘0. Write a ‘1’ here
to clear BUF1_EMPTY. This

informs SPDO that DMA buffer 1 is
now full. Writing a ‘0’ has no effect.

tied by the SPDO hardware. Can only
be cleared by software write to
ACK_BUF1.

Sticky flag - set if DMA buffer 2 emp-

r/o ACK_BUF2

w/o

BUF2_EMPTY

Always reads as ‘0. Write a ‘1’ here
to clear BUF2_EMPTY. This

informs SPDO that DMA buffer 2 is
now full. Writing a ‘0’ has no effect.

tied by the SPDO hardware. Can only
be cleared by software write to
ACK_BUF2.

r/o ACH_HBE

w/o

Always reads as ‘0’. Writing a ‘1’
here clears HBE.

ACK_UDR

HBE Highway Bandwidth Error. Sticky flag -

set if internal SPDO buffers emptied

w/o

Always reads as ‘0’. Writing a ‘1’
here clears UNDERRUN.

before new data brought from memory.
Refer to Section 10.17, “HBE and
Highway Latency.” Can be cleared

tlo BUF1_INTEN
rlw

If BUF1_EMPTY asserted and this
bit asserted, the SRC 25 interrupt
line is asserted.

only by a software write to ACK_HBE.

Sticky flag - set if both DMA buffers
were emptied before a new full buffer

BUF2_INTEN

UNDERRUN riw

If BUF2_EMPTY asserted and this
bit asserted, the SRC 25 interrupt
line is asserted.

was assigned by the DSPCPU. The
hardware has performed a normal
buffer switch over and is emitting old

HBE_INTEN

rfo riw

If HBE asserted and this bit
asserted, the SRC 25 interrupt line
is asserted.

data. Can only be cleared by software
write to ACK_UDR.

Flag - set if the hardware is currently
emitting DMA buffer 1 data; negated

UDR_INTEN

rlw
BUF1_ACTIVE

r/o

If UNDERRUN asserted and this bit
asserted, the SRC 25 interrupt line
is asserted.

when emitting DMA buffer 2 data.
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Table 10-5. SPDO_CTL MMIO register

field type description
SLEEPLESS If ‘1’, the SPDO block does not
rw | Power down when TM1300 goes

into global power-down mode. If ‘0’,
the block does power down.

If asserted, the 32-bit data SPDIF
descriptor word or transparent
riw | mode data word is assembled
using little endian byte ordering,
otherwise big-endian.

LITTLE_ENDIAN

TRANS_MODE « 000 - IEC-958 mode. Hardware
performs bi-phase mark encod-
ing, preamble generation, and
parity generation, and transmits
one |IEC-958 subframe for each
data descriptor word.

e 010 transparent mode, LSB first.
The 32-bit data descriptor words
are transmitted as is, LSB first.

¢ 011 transparent mode, MSB
first. The 32-bit data descriptor
words are transmitted as is,
MSB first.

« Any other code reserved for
future extensions.

The transmission mode should only

be changed while transmission is

disabled.

rlw

TRANS_ENABLE Writing a ‘1’ to this bit enables
transmission per the selected
mode. Writing a ‘0’ here stops any
ongoing transmission after com-
pleting any actions related to the

current data descriptor word.

rlw

RESET Writing a ‘1’ to this bit resets the
SPDO unit and should be used with
w/o | extreme caution. Ongoing trans-
mission will be interrupted, receiv-

ers may be left in a strange state.

To ensure compatibility with future devices, any unde-
fined MMIO bits should be ignored when read, and writ-
ten as '0’s.

The SPDO_FREQ register determines the frequency of
operation of the DDS, and hence the sample rate of out-
going audio. Refer to Section 10.8, “Sample Rate Pro-
gramming.” and Section 10.9, “Transparent Mode.”

SPDO_BASE1 contains the memory address of DMA
buffer 1. SPDO_BASE?2 contains the memory address of
DMA buffer 2. SPDO_SIZE determines the size, in bytes,
of both DMA buffers. Assignment to SPDO_BASEL1,
SPDO_BASE?2 and SPDO_SIZE have no effect on the
state of the SPDO_STATUS flags; the ACK_BUF1 and
ACK_BUF2 bits signal the assignment of valid data to
the DMA buffers. Any change to the BASE register
should only be done to an inactive buffer and should pre-
cede the ACK to that buffer.

SPDO_TSTAMP is a read-only register containing the
cycle count at which the last bit from the last emptied
buffer was transmitted across the output pin. Refer to
Section 10.13, “Timestamps.”

10.15 RESET

The SPDO block is reset by global TM1300 reset pin
TRI_RESET# or by writing a ‘1’ to the RESET bit in
SPDO_CTL. The SPDO block is not affected by
DSPCPU reset initiated though the PCI block BIU_CTL
register. Either reset method sets the SPDO block in the
following state:

« SPDO_BASE1, SPDO_BASE2, SPDO_SIZE =0

« SPDO_STATUS: all defined fields set to '0’, except
BUF1 ACTIVE=1

« SPDO_CTL all defined fields set to value 0

The SPDO block timestamp counter is reset by
TRI_RESET# or by DSPCPU reset initiated through
BIU_CTL, so as to ensure that it stays synchronous to
the CCCOUNT DSPCPU register.

10.16 POWER DOWN AND SLEEPLESS

The SPDO block enters powerdown state whenever
TM1300 is put in global powerdown mode, except if the
SLEEPLESS bit in SPDO_CTL is set. In the latter case,
the block continues DMA operation and will wake up the
DSPCPU whenever an interrupt is generated.

SPDO can be separately powered down by setting a bit
in the BLOCK_POWER_DOWN register. For a descrip-
tion of powerdown, see Chapter 21, “Power Manage-
ment.”

The SPDO block should not be active when applying glo-
bal powerdown (TRANS_ENABLE = 0), or if active,
SLEEPLESS should be asserted. SPDO should not be
active if powered down separately.

If the block enters power-down state while transmission
is enabled, its operation continues from the interrupted
clock cycle, but the output signal generated by the block
has undergone a pause that is unacceptable to external
equipment.

10.17 HBE AND HIGHWAY LATENCY

The SPDO unit uses one internal 64-byte buffer and two
32-bit holding registers. Under normal operation, the in-
ternal buffer is refilled from SDRAM fast enough to avoid
missing any data, while data is being sent from the two
32-bit registers. If the highway arbiter is set up with an in-
sufficient latency guarantee, the situation can arise in
which the 64-byte buffer is not refilled in time. In that case
the HBE error is raised, and some data has been irrevo-
cably lost. The HBE condition is sticky, and can only be
cleared by an explicit ACK_HBE.

The highway arbiter needs to be programmed such that
the SPDO unit’s latency requirement can always be met.
Refer to Chapter 20, “Arbiter” for details. The required la-
tency can be computed as indicated below.

Given an output data rate fg in samples/sec, 2x 32 bits
are required each sample interval. The arbiter should be
set to have a latency so that the buffer is refilled before a
sample interval expires. See Table 10-6 for example
practical settings.

10-6 PRODUCT SPECIFICATION



Philips Semiconductors SPDIF Out

Table 10-6. SPDO block highway latency 10.18 LITERATURE REFERENCES
requirements o )
[1] IEC-958 Digital Audio Interface, Part 1: General; Part

fq Max. latency t2i(:)rI]38rofessionaI applications; Part 3: Consumer applica-
(kHz) (nSec) )
[2] ‘Interface for non-PCM encoded Audio bitstreams ap-
32.000 31250 plying IEC958', Philips Consumer Electronics, June 6
44.100 22675 1997. IEC 100c/WG11(project 1937)
48.000 20833
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PCI Interface

Chapter 11

by Gert Slavenburg, Ken-Sue Tan, Babu Kandimalla

11.1  NEW IN TM1300

TM1300 DMA read transactions use the more efficient
‘memory read multiple’ PCI transactions, unless explicit-
ly disabled. Section 11.7.5.

TM1300 contains an on-board PCI_CLK generator for
low-cost configurations. It can be enabled/disabled at
boot time. See Section 13.2.

TM1300 has a sideband control signal that allows glue-
less connection of simple slave peripherals directly to the
PCI bus wires. This can be used to connect Flash, ROM,
SRAM, UARTS, etc. with 8-bit data and demultiplexed
addresses. Refer to Chapter 22, “PCI-XIO External 1/0
Bus.”

11.2 PCIOVERVIEW

TM1300 includes a PCl interface for easy integration into
personal computer applications—where the PCl-bus is
the standard for high-speed peripherals. In embedded
applications, with TM1300 serving as the main CPU, the
PCI bus can interface to peripheral devices that imple-
ment functions not provided by the on-chip peripherals.
See Figure 11-1.

The main function of the PCI interface is to connect the
TM1300 on-chip highway and PCI buses. A bus cycle on
the internal highway that targets an address mapped into
PCI space will cause the PCI interface to create a PCI
bus cycle. Similarly, a bus cycle on PCI that targets an
address mapped into TM1300 memory space will cause
the PCl interface to create a highway bus cycle targeted
at SDRAM. For some operations, the PCl interface is ex-
plicitly programmed by the DSPCPU.

From TM1300, only the DSPCPU and the image copro-
cessor (ICP) unit can cause the PCI interface to create
PCI bus cycles; the other on-chip peripherals cannot see
external hardware through the PCI interface. From PCI,
SDRAM and most of the registers in MMIO space can be
accessed by external PCI initiators.

The PCIl interface implements DMA (also called block or
burst) and non-DMA transfers. DMA transfers are inter-
ruptible on 64-byte boundaries. The PCI interface can
service outbound (TM1300 - PCI) and inbound (PCI -
TM1300) data flows simultaneously.

Table 11-1 lists some of the features of the PCl interface.

Table 11-1. PCI interface characteristics

Characteristic

Comments

PCI Compliance

PCI Local Bus Specification Rev. 2.1

PCI Speed

Up to 33 MHz

Data bus width

32-bit only

Address space

32 bits (4 GB)

Voltage levels

Drive & receive at either 3.3 V or 5V

Burst mode

Yes, w/ double buffering so maxi-
mum transfer rate (132 MB/sec) is
sustainable

Posted write

Yes, can be disabled

PCI ‘special cycle’

Not recognized

PCI ‘memory write &
invalidate’

Supported for TM1300 as initiator

PCI ‘interrupt acknowl-
edge’

Not generated

PCI ‘dual-address
cycle’

Not generated

PCI Bridge Host CPU
TM1300 Interrupt ||PCI Bus|[™ | (e.g., x86)
Controller || Arbiter e
| PCI Bus | |
PCI Agent PCI Agent PCI Agent

a) TM1300 as peripheral

TM1300

PCI Bus
Arbiter

| PCI Bus

PCI Agent

PCI Agent PCI Agent

b) TM1300 as host CPU

Figure 11-1. Two typical system implementations: (a) shows TM1300 as a PCI peripheral in a desktop PC, (b)

shows an embedded system with TM1300 as the host CPU.
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11.3 PCIINTERFACE AS AN INITIATOR

The following classes of operations invoked by TM1300
cause the PCl interface to act as a PCl initiator:

» Transparent, single-word (or smaller) transactions
caused by DSPCPU loads and stores to the PCI
address aperture

» Explicitly programmed single-word 1/O or configura-
tion read or write transactions

» Explicitly programmed multi-word DMA transactions.
* ICP DMA

11.3.1 DSPCPU Single-Word Loads/Stores

From the point of view of programs executed by
TM1300's DSPCPU, there are three apertures into
TM1300’s 4-GB memory address space:

» SDRAM space (0.5 to 64 MB; programmable)
* MMIO space (2 MB)
* PCI space

MMIO registers control the positions of the address-
space apertures (see Chapter 3, “DSPCPU Architec-
ture”). The SDRAM aperture begins at the address spec-
ified in the MMIO register DRAM_BASE and extends up-
ward to the address in the DRAM_LIMIT register. The 2-
MB MMIO aperture begins at the address in
MMIO_BASE (defaults to OXEFEOO00O after power-up).
All addresses that fall outside these two apertures are
assumed to be part of the PCI address aperture. Refer-
ences by DSPCPU loads and stores to the PCI aperture
are reflected to external PCI devices by the coordinated
action of the data cache and PClI interface.

When a DSPCPU load or store targets the PCI aperture
(i.e., neither of the other two apertures), the DSPCPU’s
data cache automatically carries out a special sequence
of events. The data cache writes to the PCI_ADR and (if
the DSPCPU operation was a store) PCI_DATA regis-
ters in the PCl interface and asserts (load) or de-asserts
(store) the internal signal pci_read_operation (a direct
connection from the data cache to the PCI interface).

While the PCI interface executes the PCI bus transac-
tion, the DSPCPU is held in the stall state by the data
cache. When the PCI interface has completed the trans-
action, it asserts the internal signal pci_ready (a direct
connection from the PCI interface to the data cache).

When pci_ready is asserted, the data cache finishes the
original DSPCPU operation by reading data from the
PCI_DATA register (if the DSPCPU operation was a
load) and releasing the DSPCPU from the stall state.

Explicit Writes to PCI_ADR, PCI_DATA

The PCI_ADR and PCI_DATA registers are intended to
be used only by the data cache. Explicit writes are not al-
lowed and may cause undetermined results and/or data
corruption.

11.3.2

Explicit programming by DSPCPU software is the only
way to perform transactions to PCI I/O space. DSPCPU
software writes three MMIO registers in the following se-
quence:

1. The IO_ADR register.
2. The |O_DATA register (if PCI operation is a write).

3. The IO_CTL register (controls direction of data move-
ment and which bytes participate).

I/O Operations

The PCI interface starts the PCl-bus I/O transaction
when software writes to I0_CTL. The interface can raise
a DSPCPU interrupt at the completion of the I/O transac-
tion (see BIU_CTL register definition in Section 11.7.5,
“BIU_CTL Register”) or the DSPCPU can poll the appro-
priate status bit (see BIU_STATUS register definition in
Section 11.7.4, “BIU_STATUS Register”). Note that PCI
I/O transactions should NOT be initiated if a PCI config-
uration transaction described below is pending. This is a
strict implementation limitation.

The fully detailed description of the steps needed can be
found in Section 11.7.13, “IO_CTL Register.”

11.3.3 Configuration Operations

As with 1/O operations, explicit programming by
DSPCPU software is the only way to perform transac-
tions to PCI configuration space. DSPCPU software
writes three MMIO registers in the following sequence:

1. The CONFIG_ADR register.

2. The CONFIG_DATA register (if PCI operation is a
write).

3. The CONFIG_CTL register (controls direction of data
movement and which bytes participate).

The PCl interface starts the PCI-bus configuration trans-
action when software writes to CONFIG_CTL. As with
the 1/0 operations, the biu_status and BIU_CTL registers
monitor the status of the operation and control interrupt
signaling. Note that PCI configuration space transactions
should NOT be initiated if a PCI I/O transaction de-
scribed above is pending. This is a strict implementation
limitation.

The fully detailed description of the steps needed can be
found in Section 11.7.10, “CONFIG_CTL Register.”

11.3.4 DMA Operations

The PCI interface can operate as an autonomous DMA
engine, executing block-transfer operations at maximum
PCI bandwidth. As with I/0O and configuration operations,
DSPCPU software explicitly programs DMA operations.

General-purpose DMA

For DMA between SDRAM and PCI, DSPCPU software
writes three MMIO registers in the following sequence:
1. The SRC_ADR and DEST_ADR registers.

2. The DMA_CTL register (controls direction of data
movement and amount of data transferred).
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PCI Interface

The PCl interface begins the PCI-bus transactions when
software writes to DMA_CTL. As with the I/O and config-
uration operations, the BIU_STATUS and BIU_CTL reg-
isters monitor the status of the operation and control in-
terrupt signaling.

The fully detailed description of the steps needed to start
a DMA transaction can be found in Section 11.7.16,
“DMA_CTL Register.”

Image-Coprocessor DMA

The PCI interface also executes DMA transactions for
the Image Coprocessor (ICP). The ICP performs rapid
post-processing of image data and writes it at PClI DMA
speed to a PCI graphics card frame buffer. The ICP can-
not perform PCI read transactions. BIU_CTL.IE (ICP
DMA Enable) should be asserted before attempting ICP
PCI operation. Programming of ICP DMA is described in
Section 14.6, “Operation and Programming.”

11.4 PCIINTERFACE AS A TARGET

The TM1300 PCl interface responds as a target to exter-
nal initiators for a limited set of PCI transaction types:
» Configuration read/write

* Memory read/write, read line, and read multiple to
the TM1300 SDRAM or MMIO apertures. See Sec-
tion 11.9, “Limitations.”

TM1300 ignores PCI transactions other than the above.

115 TRANSACTION CONCURRENCY,
PRIORITIES, AND ORDERING

The PCI interface can be processing more than one op-
eration at a given time. There are five distinct classes of
operations implemented by the PCI interface:

1. DSPCPU load/store to PCI space.

PCI I/O read/write and PCI configuration read/write.
General-purpose DMA read/write.

ICP DMA write.

External-PCl-agent-initiated read/write (to TM1300
on-chip resource).

o wbn

If the active general-purpose DMA transaction is a read,
up to five transactions, one from each, can be active si-
multaneously. If the active general-purpose DMA opera-
tion is a write, then only four transactions can be active
simultaneously because general-purpose DMA writes
force ICP DMA writes to wait until the general-purpose
DMA completes. When a general-purpose DMA write is
pending, an in-progress ICP DMA operation is suspend-
ed at the next 64-byte block boundary and waits until the
completion of the DMA write operation. General-purpose
DMA reads are interleaved with ICP DMA writes, so both
can be active concurrently.

PCl single-data-phase transactions (DSPCPU load/
store, 1/0 read/write, and configuration read/write) are
executed in the order they are issued to the PCI inter-
face. Note the strict implementation limitation that PCI -

I/0 and PCI configuration transactions cannot be simul-
taneously active.

11.6 REGISTERS ADDRESSED IN PCI
CONFIGURATION SPACE

Since it is a PCI device, TM1300 has a set of configura-
tion registers to determine PCI behavior. PCI configura-
tion registers allow full relocation of interrupt binding and
address mapping by the system’s host processor. This
relocatability of PCl-space parameters eases installa-
tion, configuration, and system boot.

The PCI standard specifies a 64-byte PCI configuration
header region within a reserved 256-byte block. During
system initialization, host system software scans the PCI
bus, looking for PCI headers, to determine what PCI de-
vices are present in the system. The fields in the header
region uniquely identify the PCI device and allow the host
to control the device in a generic way. Figure 11-2 shows
the layout of the configuration header region.

Figure 11-2 also shows the initial values for the configu-
ration registers. Some registers, such as Device ID, have
hardwired values, while others are programmed by soft-
ware. Still others are set automatically from the external
boot ROM during TM1300’s power-up initialization.

11.6.1 Vendor ID Register

For TM1300, the value of the 16-bit Vendor ID field is
hardwired to 0x1131 (Philips). This value identifies the
manufacturer of a PCI device. Valid vendor identifiers
are assigned by the PCI special interest group (PCI SIG)
to ensure uniqueness. The value OxFFFF is reserved
and must be returned by the host/PCI bridge when an at-
tempt is made to read a non-existent device’'s Vendor ID
configuration register.

11.6.2 Device ID Register

For TM1300, the value of the 16-bit Device ID field is
hardwired to 0x5402. The Device ID is assigned by the
manufacturer to uniquely identify each PCI device it
makes.

11.6.3 Command Register

The 16-bit command register provides basic control over
a PCI device’s ability to generate and/or respond to PCI
bus cycles. According to the PCI specification, after re-
set, all bits in this register are cleared to ‘0’ (except for a
device that must be initially enabled). Clearing all bits to
'0’ logically disconnects the device from the PCI bus for
all accesses except configuration accesses.

The command register format is shown in Figure 11-3.
Table 11-2 summarizes the field values. Note that the
values listed as ‘normally taken’ are not necessarily the
reset values, i.e. the Command register is reset to all ‘0’s,
meaning the features are disconnected on reset.

Following are detailed descriptions of the command reg-
ister fields.
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I/O (I/O access enable). This bit controls a device’s abil- MA (Memory access enable). This bit controls re-
ity to respond to 1/O-space accesses. A value of '0’ dis- sponse to memory-space accesses. A value of ‘0’ dis-
ables PCI device response; a value of 'l'enables re- ables TM1300 response; a value of '1l’ enables re-
sponse. This bit is hardwired to '0’ because all TM1300 sponse. This bitis set to '0’ at power-up; software can set
internal registers are memory mapped. this bit to "1’ with a configuration write.

31 23 15 7 0

ofl1]of[1]o]1]o]o]o]o]o]o]o]o]1][o]o]o]o]1]o]o]o]2]o0]of2][1]00]0]1 0o ]

Device ID (0x5402) Vendor ID (0x1131)
ofoJoJoJofo[1]o[ofofo] reserved " reseved  |o]1]o1]o]plo][1]1]0
04
Status Command
oflolof[ofJo]1]o]o]1]o]o]o]o]o]o]o]o]o]o]o]o]o]o]o][1]o]o]o]oo]1]0 08
Class Code (0x048000) Revision ID (see text)
olofofofofofofoofofofofofofolo[p[p[p]p[p[ofofofofofofp[ppfofo] .
BIST (0x00) Header Type (0x00) Latency Timer Cache Line Size
plplplp[plsp[splsp[sp|splsp[spl0[0]0]0]0o]0o]o[o]ofof0oof0ofofofofof0]0]|
DRAM Base Address
plplelplplp[plp[plplp[ofofo]ofofofofofofo]ofof00]0f0f0f0f0]0]0] ,

MMIO Base Address

ofojofojofofoojofofofofofofofofofo[o[o]o]ofofofofofofofo]o]o]0] 18 1c,

Configuration-Space Address Offset

Four other base address registers 20,24
olo[ofo]o]ofo]o]o]o]o]o]o][o]o[o]o][o]o]o]o]o]o]o]o]o]o]o][o]o]0]0
- 28
Reserved register
S‘S‘S‘S‘S‘S‘S‘S‘S‘S‘S‘S‘S‘S‘S‘S S‘S‘S‘S‘S‘S‘S‘S‘S‘S‘S‘S‘S‘S‘S‘S 2C
Subsystem ID Subsystem Vendor ID
olo[ofo]o]ofo]o]o]o]o]o]o][o]o][o]o][o]o]o]o]o]o]o]o]o]o]o][o]o]0]0
Expansion Rom Base Address 30
olo[ofo]o]ofo]o]o]o]o]o]o][o]o][o]o][o]o]o]o]o]o]o]o]o]o]o][o]o]0]0
: 34, 38
Two reserved registers
olofofofofofof1]ofo]ofofofo[1]s][ofofofofofoofs]p[p]p[r[p[r]rlr| ..
Max_Lat (0x01) Min_Gnt (0x03) Interrupt Pin (0x01) Interrupt Line —
Key
0 | Normally '0’ 0 | Hardwired to ground | sp | Set by software if aperture size allows | p | Set by software
1 [ Normallyone | 1 [ Hardwired to Vyq s | Set by hardware from boot EEPROM

Figure 11-2. PCI configuration header region register layout and initial values. (All values in hex.)

15

10 9 8 7 6 5 4 3 2 1 0
Command Register \ Reserved \ FB ‘SERRt4 Wait‘PAR‘VGA‘ MWI‘ scC \ EM \ MA \ 110 \

Figure 11-3. Command Register format.
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Table 11-2. Field values for Command Register

Field Value Explanation

110 Hardwired to 0 (ignore 1/O space accesses)

MA 0 O no recognition of memory-space accesses
10 recognizes memory-space accesses

EM 0 O cannot act as PCl initiator
1 0 can act as PCl initiator

SC Hardwired to O (ignore special cycle accesses)

MWI 0 O cannot generate memory write and invalidate
1 0 can generate memory write and invalidate

VGA Hardwired to O

Par 0 O ignore parity errors
1 0 acknowledge parity errors

SERR# |0 O disable driver for serr# pin
1 0 enable driver for serr# pin

FB 0 O fast back-to-back only to same agent
1 O fast back-to-back to different agents

Reserved | Write ignored; reads return 0

EM (Enable mastering). This bit controls the TM1300
PCI interface’s ability to act as a PCI master. A value of
‘0’ prevents the PCI interface from initiating PCI access-
es; a value of '1’" allows the PCI interface to initiate PCI
accesses.

Note that the EM bit is automatically set to '1’ whenever
the HE bit in the BIU_CTL register is set to '1’ (see Sec-
tion 11.7.5, “BIU_CTL Register”). Mastering must be en-
abled for TM1300 to serve as PCI host processor.

EM is set to ‘0’ at power-up. Host system software can
set this bit to "1’ with a configuration write.

SC (Special cycle). This bit controls PCI device recog-
nition of special-cycle operations. A value of ‘0’ causes a
PCI device to ignore all special cycles; a value of '1’ al-
lows a PCI device to monitor special cycle operations.
This bit is hardwired to '0’ in TM1300.

MWI (Memory write and invalidate). This bit deter-
mines a PCI device’s ability to generate memory-write-
and-invalidate commands. A value of '1’ allows a PCI de-
vice to generate memory-write-and-invalidate com-
mands; a value of '0’ forces the PCI device to use mem-
ory-write commands instead. TM1300 implements this
bit. The conditions under which TM1300 DMA transac-
tions generate memory-write-and-invalidate are de-
scribed in Section 11.7.16, “DMA_CTL Register.” De-
tails of operation can be found in Section 11.6.7, “Cache
Line Size Register.” Image Coprocessor DMA writes al-
ways use regular memory-write transactions.

VGA (VGA palette snoop). This bit controls how VGA-
compatible PCI devices handle accesses to their palette
registers. This bit is hardwired to '0’.

PAR (Parity error response).  This bit controls signaling
of parity errors (data or address). A value of '0’ causes
the PCI interface to ignore parity errors; a value of "1’
causes the PCI interface to report parity errors on the
perr# PCI signal. This bit is set to '0’ at power-up; since
the PCI interface checks parity, software can set this bit
to "1’ with a configuration write.

Wait (Wait-cycle control). This bit controls whether or
not a PCI device does address/data stepping. PCI devic-
es that never do stepping must hardwire this bit to O.
Since TM1300 does not implement stepping, this bit is
hardwired to '0’.

SERRY# (serr# enable). This bit enables the driver of the
serr# pin (system error): a value of '0’ disables it, a value
of 1" enables it. All PCI devices that have an serr# pin
must implement this bit. This bit is set to '0’ after reset; it
can be set to "1’ with a configuration write. SERR# and
PAR must both be set to '1’ to allow signaling of address
parity errors on the serr# signal.

FB (Fast back-to-back enable). This bit controls wheth-
er or not a PCI master can do fast back-to-back transac-
tions to different devices. A value of '0’ means fast back-
to-back transactions are only allowed when the transac-
tions are to the same agent; a value of '1' means the
master is allowed to generate fast back-to-back transac-
tions to different agents. Initialization software will set
this bit if all targets are capable of fast back-to-back
transactions. In TM1300, this bit is hardwired to '0’.

Reserved. Reads from reserved bits returns '0’; writes to
reserved bits cause no action.

11.6.4 Status Register

The status register is used to record information about
PCI bus events. The status register format is shown in
Figure 11-4. Table 11-3 lists the Status register fields.

Reserved. Reads from reserved bits return '0’; writes to
reserved bits cause no action.

66M (66-MHz capable). This bit is hardwired to '0’ for
TM1300 (PCI runs at 33-MHz maximum).

UDF (user-definable features). Since the TM1300 PCI
interface does not implement PCI user-definable fea-
tures, this bit is hardwired to '0’.

FBC (Fast back-to-backcapable). The TM1300 PCI in-
terface does not support fast back-to-back capability, so
this bit is hardwired to '0’.

DPD (Data parity detected). Since the TM1300 PCI in-
terface can act as a PCI bus initiator, this bit is imple-
mented. DPD is set in the initiator’s status register when:

* The PAR (parity-error response) bit in the command
register is set, and

15 14 13 12 11 10 , 9
Status Register ‘ DPE ‘ SSE ‘ RMA‘ RTA‘ STA ‘ DEVSEL

8 7 6 5 4
[oPp | FBC | UDF | 66M |

T T
Reserved

Figure 11-4. Status register format.
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« The initiator asserted perr# or detected it asserted by
the target (during a write cycle).

Table 11-3. Status register fields

DPE (Detected parity error). TM1300’s PCI interface
sets this bit when it detects a parity error, even if parity
error handling is disabled. (The PAR bit in the command
register enables the handling of parity errors.)

Field Characteristics 11.6.5 Revision ID Register
Reserved | Writes ignored; reads return 0 The value in the Revision ID register is a read only value
66M PCI bus speed (hardwired to 0 O 33-MHz) chosen by the manufacturer to indicate product revi-
UDF User-definable features (hardwired to 0 O none) SIons. qu the TM:.LSOO product family, the two MSBs of
_ the revision ID indicate the fab where the part was man-
FBC Eﬁzhbag'r(t'é%')ba‘:k capable (hardwired to 0 [ ufactured. The next two bits indicate an all-layer revision
bp : number, and the 4 LSBs indicate metal layer revisions.
bpD Data parity detected Each all-layer revision adds 0x10 to the revision ID and
DEVSEL | devsel# signal timing (hardwired to 1 0 ‘medium’) resets the 4 LSBs to ‘0’. Non-pin or -function compatible
STA Signaled target abort TriMedia devices will use the same Revision ID conven-
RTA Receive target abort tion, but with a revised Device ID.
RMA Receive master abort L
- Table 11-5. Actual revision ID values
SSE Signaled system error
DPE Detected parity error Value (hex) Product description
. L . v fiel 0x80 TM1300 original mask - tm1f 1.0
DEVSEL (Device select timing). This read-only field 0x81 TM1300 Lst metal revision - tm1f 1.1
defines the slowest timing that will be used for the i
devsel# signal when TM1300 is a target on the PCI bus. 0x82 TM1300 2nd metal revision - tm1f 1.2

Table 11-4 shows the allowable encodings and mean-
ings. These bits are hardwired to ‘01’ to indicate that

Table 11-4. DEVSEL encodings

DEVSEL Meaning
00 Fast
01 Medium
10 Slow
11 Reserved

TM1300 uses a ‘medium’ devsel# timing.

STA (Signaled target abort). TM1300's PCI interface
sets this bit when it is a target device and aborts a trans-
action.

RTA (Receive target abort). TM1300’s PCI interface
sets this bit when it is the initiating device and the trans-
action is aborted by the target device. (All initiating devic-
es must implement this bit.)

RMA (Receive master abort). TM1300's PCI interface
sets this bit when it is the initiating device and aborts a
transaction (except when the transaction is a special cy-
cle). (All initiating devices must implement this bit.)

SSE (Signaled system error). TM1300’s PCI interface
sets this bit when it asserts the serr# signal. (TM1300
can generate serr#, so this bit is implemented; devices
incapable of generating serr# need not implement SSE.)

11.6.6 Class Code Register

The value in the Class Code register is read-only. Sys-
tem software uses the Class Code register to identify the
generic function of the device, and in some cases, the
Class Code can specify a register-level programming in-
terface.

Class Code consists of three 1-byte fields as shown in
Figure 11-5. The value of the upper byte, Base Class
Code, broadly classifies the function of the device. The
value of the middle byte, Subclass Code, identifies the
function more specifically. The value of the lower byte
specifies a register-level programming interface so that
device-independent software can interact with the de-
vice. The meanings of the Base Class byte values are
shown in Table 11-6.

The value of Base Class is hardwired to 0x04 since
TM1300 is a multimedia device. Currently, there are no
specific register-level programming interfaces defined
for multimedia devices.

Table 11-7 lists the defined subclasses of multimedia de-
vices. TM1300 is both a video and audio multimedia de-
vice, so its subclass value is hardwired to 0x80.

11.6.7 Cache Line Size Register

This field only matters when the MWI bit in configuration
space is set. The value of the Cache Line Size register
specifies the host system cache line size in units of 32-

7 0

23 15
T

T T T T T
Class Code ‘ Base Class Code

T T T T T
Subclass Code ‘

T T T T T T
Programming Interface ‘

Figure 11-5. Class-code register format.
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Table 11-6. Base Class Encodings

7 6 0
Header Type \ MF \ Layout

Ba_se Class Meaning

(in hex)

00 Device was built before class code definitions
were finalized

01 Mass-storage controller
02 Network controller
03 Display controller
04 Multimedia device
05 Memory controller
06 Bridge device
07 Simple communications controller
08 Base system peripheral
0A Docking station
0B Processor
oC Serial bus controller

OD-FE Reserved
FF Device does not fit any of the above classes

Table 11-7. Subclass & programming interface fields

Figure 11-6. Header type register format.

This register must be writable in any PCl-initiating device
that can burst more than two data phases. In the TM1300
PCI interface, the least-significant three bits are hard-
wired to '0’ and software can program any value into the
most-significant five bits. This permits software to specify
the time slice with a minimum granularity of eight PCI
clocks. A value of '0’ signifies maximum latency, i.e. 256
PCI clocks.

11.6.9 Header Type Register

The value of the Header Type register defines the format
of words 16 through 63 in configuration space and
whether or not the device contains multiple functions.
Figure 11-6 shows the format of Header Type.

Bit 7 of Header Type is '0’ for single-function devices, '1’
for multi-function devices. TM1300 is a single-function

: device, so bit 7 is '0’. Table 11-9 shows the encodings of
vy | engeringy | weanng
00 00 Video device Table 11-9. Layout encodings
01 00 Audio device
80 00 Other multimedia device Layout (in hex) Meaning
00 Non-bridge PCI device
bit words. Initiating devices, such as the TM1300, that 01 PCl-to-PClI bridge device

can generate memory-write-and-invalidate commands
must implement this register. When implemented, the
cache line size allows initiators participating in the PCI
caching protocol to retry burst accesses at cache-line
boundaries.

This register is implemented in TM1300. In the TM1300,
PCI DMA performs write-and-invalidate cycles as per the
table below. ICP DMA and CPU PCI writes are per-
formed using normal memory-write cycles.

Table 11-8. Cache line size values

Cache_ Line Size Effect
(binary)
0000,0100 write-and-invalidates are done in 4-
DWORD, i.e. 16-byte chunks
0000,1000 write-and-invalidate in 8-DWORD chunks
0001,0000 write-and-invalidate in 16-DWORD chunks
all other values | only normal ‘memory-write’ is performed

11.6.8 Latency Timer Register

The value of the Latency Timer register specifies the
minimum number of PCI clock cycles the TM1300 BIU
(as initiator) is allowed to own the PCI bus. This register
is readable and writable in PCI configuration space.

11.6.10 Built-In Self Test Register

When implemented, the BIST register is used to control
the operation of a device’s built-in self testing capability.
TM1300 does not implement BIST, so this register is
hardwired to return '0’s when read.

11.6.11 Base Address Registers

The TM1300 PCl interface implements two configuration
space memory Base Address registers: DRAM_BASE
and MMIO_BASE. DRAM_BASE relocates TM1300’s
SDRAM within the system address space; MMIO_BASE
relocates the 2-MB memory-mapped I/O address aper-
ture.

The values in the Base Address registers determine the
address map as seen by both the DSPCPU and external
PCI masters. These values are normally set once, and
not changed dynamically once the DSPCPU operates.

Hardware RESET initializes DRAM_BASE to 0x0 and
MMIO_BASE to 0xefe0,0000, after which the TM1300
boot protocol sets the final value.

In standalone systems, the autonomous boot sequence
is executed. In this case, the values of DRAM_BASE and
MMIO_BASE are copied from the content of the serial
boot EEPROM, as described in Section 13.3.2, “Initial
DSPCPU Program Load for Autonomous Bootstrap.”
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In X86 or other host-assisted platforms, the PCI host as-
sisted boot sequence is executed. In this case, the base
registers are not set from the EEPROM. Instead, the host
BIOS executes a scan for devices on each PCI bus. Dur-
ing this scan, memory apertures needed by each device
are determined, and a suitable base is assigned by the
host BIOS. The details of this process are described be-
low.

Figure 11-7 shows the formats for DRAM_BASE and
MMIO_BASE. Following are descriptions of the register
fields.

M (Memory). The value of the M bit indicates whether
the desired resource is a memory or PC I/O aperture.
The M bit is hardwired to '0’, indicating a memory type
aperture for both the DRAM_BASE and MMIO_BASE
registers.

T (Type). The value of the T field indicates the size of the
base address register and constraints on its relocatabili-
ty. Table 11-10 lists the encodings and meanings of the
T field.

Table 11-10. Type field encodings

Type Meaning

00 Base register is 32 bits wide; mapping can relocate
anywhere in 32-bit memory space

01 Base register is 32 bits wide; mapping must relocate
below 1 MB in memory space

10 Base register is 64 bits wide; mapping can relocate
anywhere in 64-bit address space

11 Reserved

TM1300's PCl-interface base registers are 32 bits wide
and can be relocated in the 32-bit address space; thus,
the value of the T field is ‘00’ for both DRAM_BASE and
MMIO_BASE.

P (Prefetchable). The value of the P bit indicates to oth-
er devices whether or not the range is prefetchable.

The P bit in DRAM_BASE reflects the DRAM prefetch-
able attribute as set by the prefetchable bit in the boot
prom (Refer to Table 13-5 on page 13-7 for program-
ming).

MMIO is not prefetchable, so the P bit is hardwired to '0’
for MMIO_BASE.

Being prefetchable means there are no side effects on
reads, the device returns all bytes on reads regardless of
the byte enables, and host bridges can merge processor
writes into this range without causing errors.

Note: the setting of the P bit does not change the behav-
ior of the cache or memory interface. It simply signals the
host if the range is assumed to be prefetchable.

DRAM/MMIO base address. In X86 or other host plat-
forms, the configuration space DRAM Base Address and
MMIO Base Address fields serve two purposes. First, the
host BIOS software can use them to determine the sizes
of the SDRAM and MMIO apertures. Second, the BIOS
can write to these fields to cause the apertures to be re-
located within the PCI memory address space.

To determine the sizes of an aperture, the BIOS first
writes all ‘1's (OXFFFFFFFF) to the address field. When
the BIOS reads the field immediately after, the value re-
turned will have '0’s in all don’t-care bits and ‘1's in all re-
quired address bits. Required address bits form a left-
aligned (i.e., starting at the MSB) contiguous field of ‘1’s,
thus effectively specifying the size of the aperture.

For example, the MMIO aperture is a fixed 2-MB space.
After writing all ‘1’s to the MMIO Base Address field, a
subsequent read returns the value OXFFEO0000. The M,
T, and P fields are all '0’ indicating the aperture is mem-
ory (not I/O), can be relocated anywhere in a 32-bit ad-
dress space, and is not prefetchable. Since the aperture
has 21 address bits (the position of the first "1’ bit), MMIO
space is a 2-MB aperture (2?1 bytes). The host BIOS
now assigns a suitable 2-MB aligned base address by
writing to the MMIO_BASE register in configuration
space.

The DRAM aperture can range in size from 1 MB to 64
MB (but the size must be a power of 2). Thus, the number
of required address bits can range from 20 to 26. The ac-
tual amount of SDRAM present is determined by the con-
tent of the first byte of the boot EEPROM, as described
in Section 13.5, “Detailed EEPROM Contents.” The PCI
BIU uses this size to determine which of the bits marked
‘sp’ in Figure 11-7 are writable and which are set to ‘0’
This causes the BIOS to determine the correct actual
DRAM aperture size.

11.6.12 Subsystem ID, Subsystem Vendor ID
Register

The subsystem and subsystem vendor ID are new in PCI
Rev 2.1. These fields are optional, but their use is highly
recommended as a means to have software drivers iden-
tify the board rather than the chip on the board.

This register is implemented starting with TM1300 and
onwards, and replaces the ‘Personality’ register function-
ality in the TriMedia CTC chip.

The board manufacturer chooses the values of both 16
bits fields by modifying the TM1300 Boot EEPROM. The

L MMIO Base Address

31\ \25\ T T T T \lg\ T T T T T T T T T T T T T \4 3 2\1 0

DRAM_BASE ‘ spspspspspsp 0 0 000 0OO0O0OOO0OOOOO OO O‘P‘ T ‘M‘
! DRAM Base Address !

31 \20\ T T T T T T T T T T T T T T \4 3 2\1 0

MMIO_BASE | 00000000000000000[P| T M
|

Figure 11-7. Base address register format.
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location of 