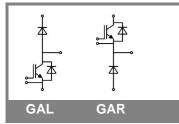


SEMITOP[®] 2

IGBT Module

SK60GAL128 SK60GAR128


Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- High short circuit capabilit
- SPT= Soft-Punch-Through technology
- V_{ce,sat} with positive coefficient

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specifie					
Symbol	Conditions		Values	Units	
IGBT	_			_	
V _{CES}	T _j = 25 °C		1200	V	
I _C	T _j = 125 °C	T _s = 25 °C	63	А	
		T _s = 80 °C	44	А	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	А	
V _{GES}			± 20	V	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs	
Inverse D	Diode				
I _F	T _i = 150 °C	T _s = 25 °C	33	А	
		T _s = 80 °C	23	А	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			А	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	110	А	
Freewhee	eling Diode		·		
I _F	T _j = 150 °C	T _{case} = 25 °C	57	А	
		T _{case} = 80 °C	38	А	
I _{FRM}				А	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	550	А	
Module					
I _{t(RMS)}				А	
T _{vj}			-40 +150	°C	
T _{stg}			-40 +125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics T _s =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 2 mA		4,5	5,5	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,1	mA
		T _j = 125 °C		0,2		mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			200	nA
1		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1,1	1,3	V
		T _j = 125 °C		1	1,2	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		16		mΩ
		T _j = 125°C		18		mΩ
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}	1,7	1,9	2,3	V
		T _j = 125°C _{chiplev.}		1,9	2,3	V
C _{ies}				4,46		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,33		nF
C _{res}				0,21		nF
t _{d(on)}				80		ns
t,	R_{Gon} = 15 Ω	V _{CC} = 600V		50		ns
Ė _{on}	D (5.0	I _{Cnom} = 50A		5,8		mJ
^t d(off)	R_{Goff} = 15 Ω	$T_{j} = 125 \text{ °C}$		420		ns
t _f		V _{GE} =±15V		40		ns
E _{off}				4,8		mJ
R _{th(j-s)}	per IGBT				0,6	K/W

SEMITOP[®] 2

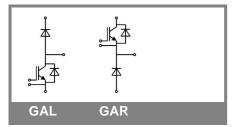
IGBT Module

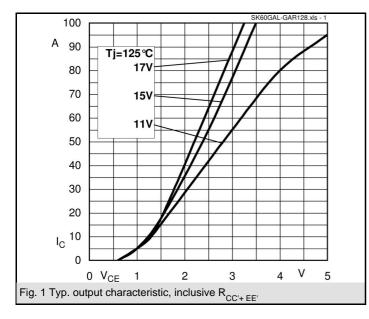
SK60GAL128 SK60GAR128

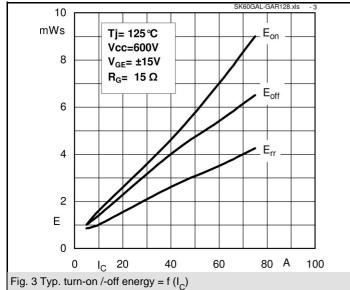
Preliminary Data

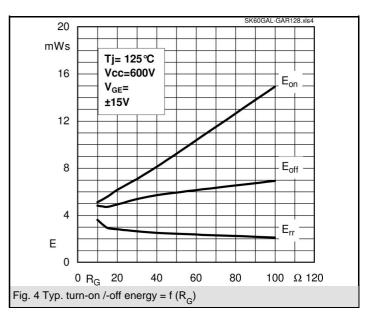
Features

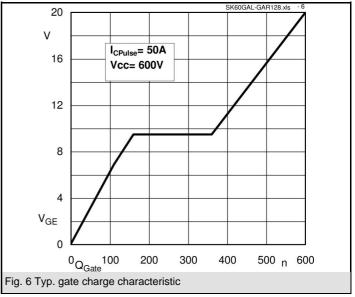
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- High short circuit capabilit
- SPT= Soft-Punch-Through technology
- V_{ce,sat} with positive coefficient

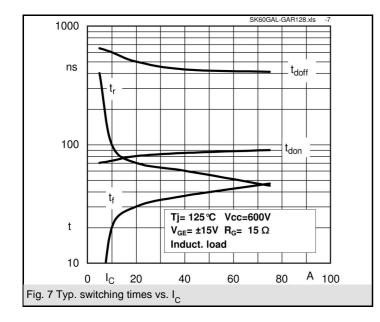

Typical Applications

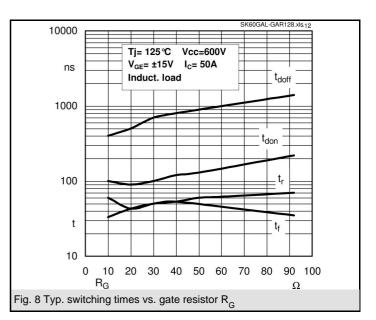

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

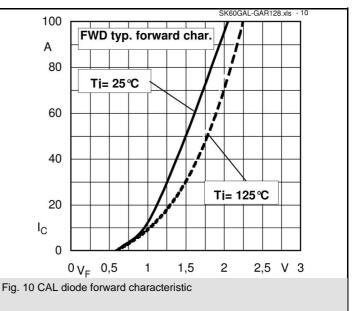

Symbol	Conditions		min.	typ.	max.	Units
Inverse D				.96.	maxi	
	I _{Fnom} = 10 A; V _{GE} = 0 V	T _i = 25 °C _{chipley}		2	2,5	V
I LO	Thom SE	$T_j = 125 \ ^{\circ}C_{chiplev}$		1,8	2,3	V
V _{F0}		T _j = 125 °C		1,2		V
r _F		T _j = 125 °C		62,7		mΩ
I _{RRM}	I _{Fnom} = 10 A	T _i = 125 °C		12		Α
Q _{rr}	di/dt = -300 A/µs	1		1,8		μC
E _{rr}	V _{CC} = 600V			0,4		mJ
R _{th(j-s)D}	per diode				2,1	K/W
	eling Diode					•
$V_F = V_{EC}$	I _{Fnom} = 50 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2		V
		T _j = 125 °C _{chiplev.}		1,8		V
V _{F0}		T _j = 125 °C		1	1,2	V
r _F		T _j = 125 °C		18	22	V
I _{RRM}	I _{Fnom} = 50 A	T _i = 125 °C		40		Α
Q _{rr}	di/dt = -800 A/µs	,		8		μC
E _{rr}	V _R =600V			2,3		mJ
R _{th(j-s)FD}	per diode				0,9	K/W
M _s	to heat sink M1				2	Nm
w				21		g

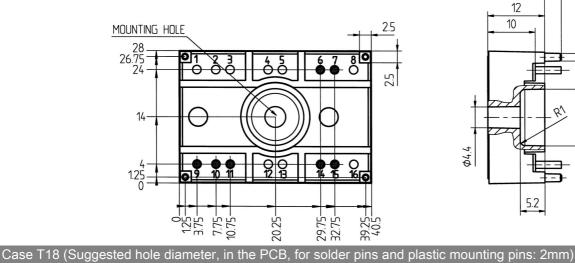

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

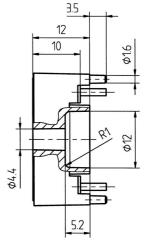

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.











UL recognized file 67 901 14C Ф Ø14.5 3.43 15.43 10.5

no. E 63 532

Δ 15 15 10 0 1 8 6 6 7 1 Case T18 GAR Case T18 GAL