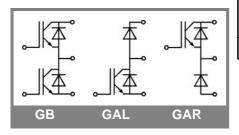


IGBT Module

SK50GB067 SK50GAL067 SK50GAR067


Target Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT)
- Positive V_{ce,sat} temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- · Low treshold voltage

Typical Applications

- Switching (not for linear use)
- High Frequencies Applications
- Welding generator
- · Switched mode power supplies
- UPS

Absolute Maximum Ratings $T_s = 25$ °C, unless otherwise specified						
Symbol	-			Values	Units	
IGBT						
V_{CES}	$T_{j} = 25 \text{ °C}$ $T_{j} = 125 \text{ °C}$			600	V	
I _C	T _j = 125 °C	T _s = 25 °C		83	Α	
		$T_s = 80 ^{\circ}C$		54	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			240	Α	
V_{GES}				± 20	V	
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C		10	μs	
Inverse	Diode					
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$		90	Α	
		$T_s = 80 ^{\circ}C$		56	Α	
I_{FRM}	I _{FRM} = 2 x I _{Fnom}				Α	
I _{FSM}	t _p = 10 ms; sinusoidal	$T_j = {^{\circ}C}$		360	Α	
Freewhe	eling Diode				•	
I_{F}	T _j = 150 °C	T_s = 25 °C		90	Α	
		$T_s = 80 ^{\circ}C$		56	Α	
I _{FRM}					Α	
I _{FSM}	t _p = ms;	T _j = °C		360	Α	
Module						
I _{t(RMS)}					Α	
T _{vj}				-40 + 150	°C	
T _{stg}				-40 +125	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics $T_s = 2$				25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units		
IGBT			_					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.2 \text{ mA}$		3	4	5	V		
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,008	mA		
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			480	nA		
V _{CE0}		T _j = 150 °C			2	V		
r _{CE}	V _{GE} = 15 V	T _j = 150°C		12,5		mΩ		
V _{CE(sat)}	I _{Cnom} = 120 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2,8	3,15	V		
		T _j = 125°C _{chiplev} .		3,5	4	V		
C _{ies}				6		nF		
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,6		nF		
C _{res}				0,36		nF		
t _{d(on)}				22		ns		
t,	R_{Gon} = 11 Ω	V _{CC} = 400V		10		ns		
Ė _{on}		I _{Cnom} = 120A		7,5		mJ		
t _{d(off)}	R_{Goff} = 11 Ω	T _i = 125 °C		280		ns		
t _f		V _{GE} =±15V		26		ns		
E _{off}				4		mJ		
R _{th(j-s)}	per IGBT				0,45	K/W		

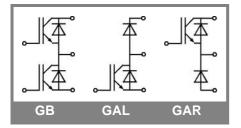
IGBT Module

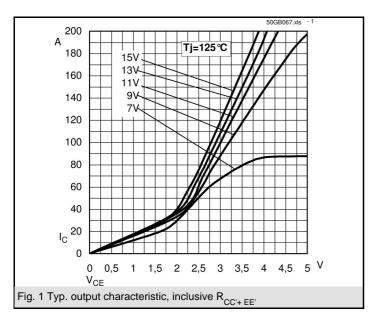
SK50GB067 SK50GAL067 SK50GAR067

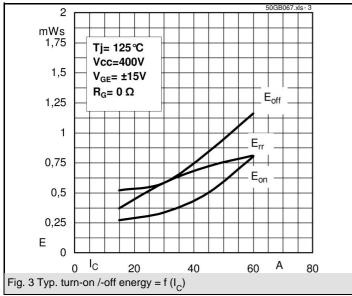
Target Data

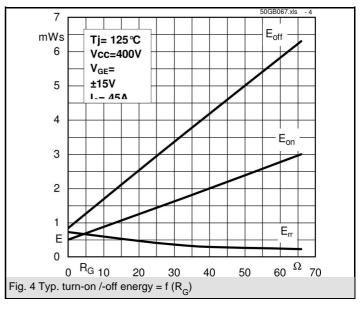
Features

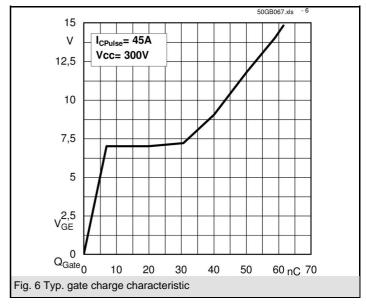
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT)
- Positive V_{ce,sat} temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- · Low treshold voltage

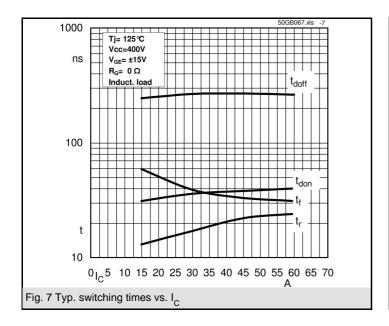

Typical Applications

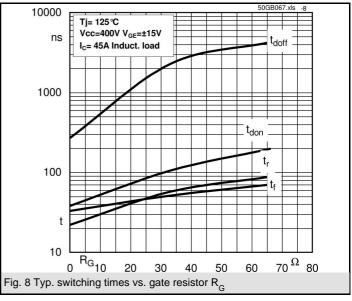

- Switching (not for linear use)
- High Frequencies Applications
- Welding generator
- · Switched mode power supplies
- UPS

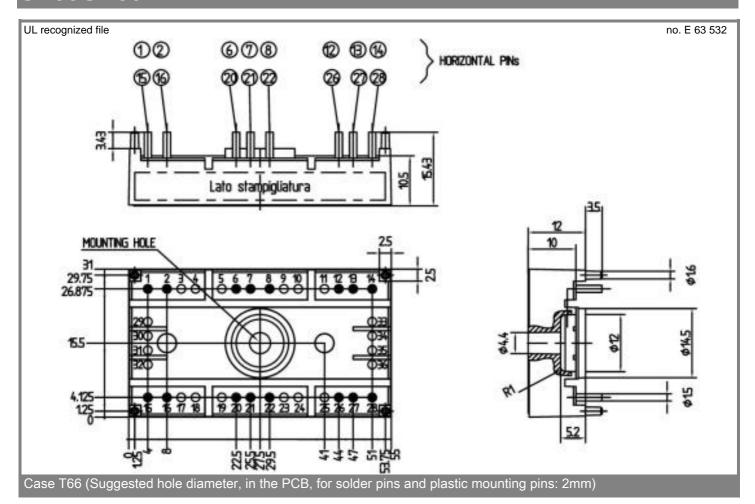

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
	Inverse Diode							
$V_F = V_{EC}$	I_{Fnom} = 120 A; V_{GE} = 0 V				2	V		
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$		1,25		V		
V_{F0}		T _j = 25 °C				V		
		T _j = 150 °C		1		V		
r _F		T _j = 25 °C				mΩ		
		T _j = 150 °C		4		mΩ		
I _{RRM}	I _{Fnom} = 120 A	T _j = 125 °C				Α		
Q_{rr}	di/dt = -100 A/μs	-				μC		
E _{rr}	V _{CC} = 400V					mJ		
$R_{th(j-s)D}$	per diode				0,8	K/W		
M_s	to heat sink		2,25		2,5	Nm		
w				29		g		

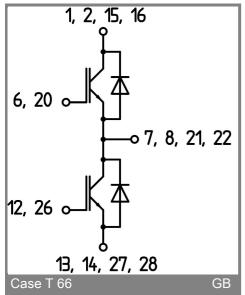

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

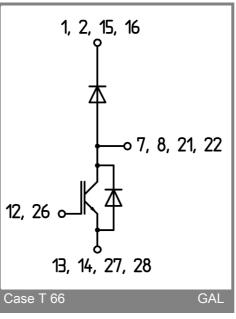

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

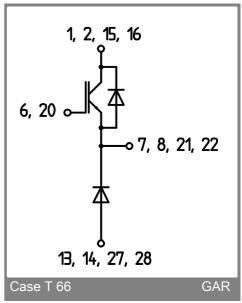












4 05-04-2007 DIL © by SEMIKRON

