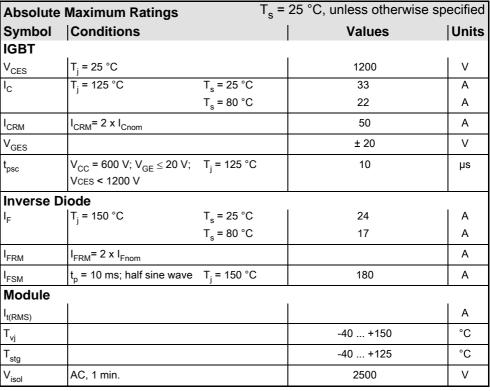
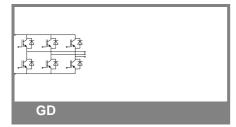


IGBT Module

SK30GD123


Preliminary Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532

Typical Applications

- Switching (not for linear use)
- Inverter
- · Switched mode power supplies
- UPS

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,15	mA	
		T _j = 125 °C				mA	
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 30 \text{ V}$	T _j = 25 °C			120	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1,2		V	
		T _j = 125 °C		1,2		V	
r_{CE}	V _{GE} = 15 V	T _j = 25°C		52		mΩ	
		T _j = 125°C		76		mΩ	
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}	2	2,5	3	V	
		$T_j = 125^{\circ}C_{chiplev.}$		3,1	3,7	V	
C _{ies}				1,65		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,25		nF	
C _{res}				0,11		nF	
$t_{d(on)}$				65		ns	
t _r E _{on}	R_{Gon} = 47 Ω	V _{CC} = 600V		100		ns	
		I _{Cnom} = 25A		3,5		mJ	
t _{d(off)}	R_{Goff} = 47 Ω	T _j = 125 °C		430		ns	
t _f		V _{GE} =±15V		35		ns	
E _{off}				2,5		mJ	
$R_{th(j-s)}$	per IGBT				1	K/W	

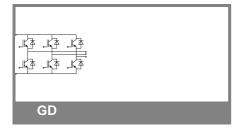
IGBT Module

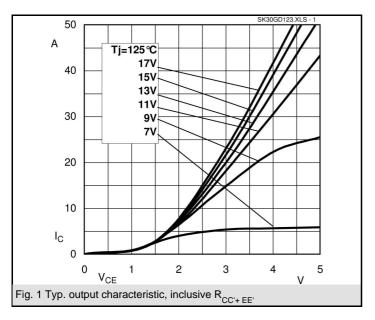
SK30GD123

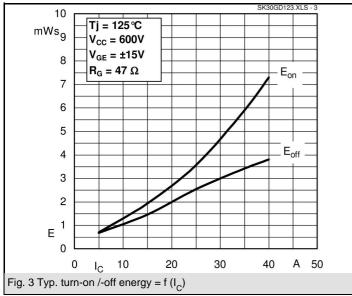
Preliminary Data

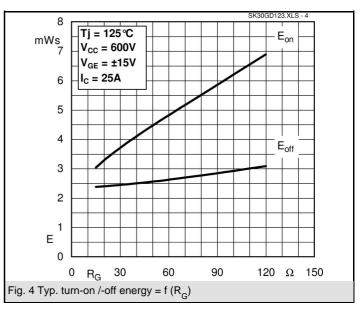
Features

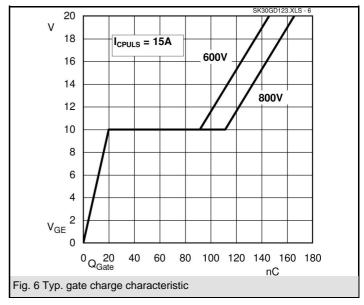
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532


Typical Applications


- Switching (not for linear use)
- Inverter
- · Switched mode power supplies
- UPS


Characteristics									
Symbol	Conditions		min.	typ.	max.	Units			
Inverse Diode									
$V_F = V_{EC}$	$I_{Fnom} = 15 \text{ A}; V_{GE} = 0 \text{ V}$	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V			
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,8	2,3	V			
V_{F0}		T _j = 125 °C		1	1,2	V			
r _F		T _j = 125 °C		53	73	mΩ			
I _{RRM}	I _{Fnom} = 15 A	T _i = 125 °C		16		Α			
Q_{rr}	di/dt = -200 A/μs	,		2,7		μC			
E _{rr}	V _{CC} = 600V			0,6		mJ			
R _{th(j-s)D}	per diode				1,7	K/W			
M_s	to heat sink M1		2,25		2,5	Nm			
w				30		g			


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

