

SEMITOP[®] 2

IGBT Module

SK20GB123

Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specifi				
Symbol	Conditions		Values	Units
IGBT				
V _{CES}	T _j = 25 °C		1200	V
I _C	T _j = 125 °C	T _s = 25 °C	23	А
		T _s = 80 °C	15	А
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		30	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs
Inverse D	Diode			
I _F	T _j = 150 °C	T _s = 25 °C	24	А
		T _s = 80 °C	17	А
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			А
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	180	А
Module				
I _{t(RMS)}				А
T _{vj}			-40 +150	°C
T _{stg}			-40 +125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 0,6 mA		4,5	5,5	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,1	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V				480	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1,2		V	
		T _j = 125 °C		1,2		V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		86		mΩ	
		T _j = 125°C		126		mΩ	
V _{CE(sat)}	I _{Cnom} = 15 A, V _{GE} = 15 V		2	2,5	3	V	
		T _j = 125°C _{chiplev.}		3,1	3,7	V	
C _{ies}				1		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,15		nF	
C _{res}				0,07		nF	
Q_{G}	V _{GE} =0 20 V			90		nC	
t _{d(on)}				35		ns	
t,	R_{Gon} = 40 Ω	$V_{\rm CC} = 600V$		45		ns	
E _{on}	R _{Goff} = 40 Ω	I _{Cnom} = 15A T _i = 125 °C		2 250		mJ ns	
t _{d(off)} t _f	Gott	V_{GF} =±15V		70		ns	
E _{off}		GL		1,8		mJ	
R _{th(j-s)}	per IGBT	-			1,4	K/W	

SEMITOP[®] 2

IGBT Module

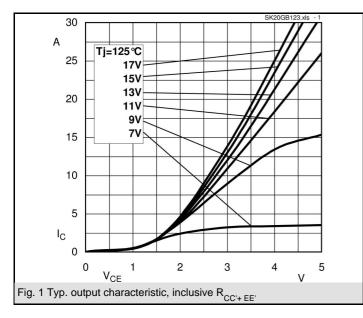
SK20GB123

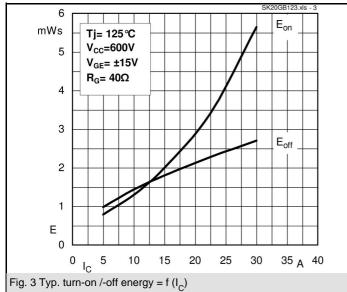
Preliminary Data

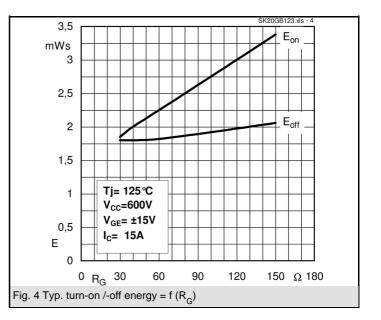
Features

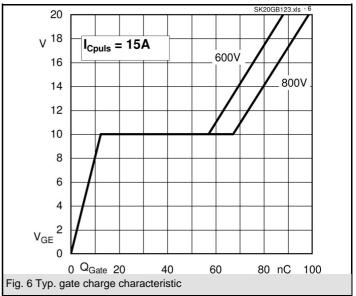
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence

Typical Applications


- Switching (not for linear use)
- Inverter
- · Switched mode power supplies
- UPS


Symbol	Conditions		min.	typ.	max.	Units
Inverse D	ode					
$V_F = V_{EC}$	I _{Fnom} = 15 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V
		T _j = 125 °C _{chiplev.}		1,8	2,3	V
V _{F0}		T _j = 125 °C		1	1,2	V
r _F		T _j = 125 °C		53	73	mΩ
I _{RRM}	I _{Fnom} = 15 A	T _i = 125 °C		16		А
Q _{rr}	di/dt = -200 A/µs			2,7		μC
E _{rr}	V _{CC} = 600V			0,6		mJ
R _{th(j-s)D}	per diode				1,7	K/W
M _s	to heat sink M1				2	Nm
w				19		g


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

