

MSM66591/ML66592

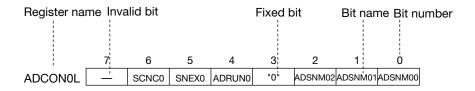
User's Manual

CMOS 16-bit microcontroller

Issue Date: Mar. 4, 2002

Preface

This document describes the hardware of the 16-bit microcontrollers MSM66591/ML66592 that employ Oki-original CPU core nX-8/500S. Shown below are the related manuals. Refer to them as required.


- nX-8/500S Core Instruction Manual
 - Description of nX-8/500S core instruction set
 - Description of addressing modes
- MAC66K Assembler Package User's Manual
 - · Package overview
 - Description of RAS66K [relocatable assembler] operation
 - Description of RAS66K assembly language
 - Description of RL66K [linker] operation
 - Description of LIB66K [librarian] operation
 - Description of OH66K [object converter] operation
- Macroprocessor (MP) User's Manual
 - Description of MP operation
 - · Description of macro processing language

This document is subject to change without notice.

Notation

Classification	Notation	Description
■ Numeric value	xxH xxb	Represents a hexadecimal number Represents a binary number
■ Unit	Word, W byte, B nibble, N mega-, M kilo-, K kilo-, k milli-, m micro-, µ nano-, n second, s	1 word = 16 bits 1 byte = 2 nibbles = 8 bits 1 nibble = 4 bits 106 2 ¹⁰ = 1024 10 ³ = 1000 10 ⁻³ 10 ⁻⁶ 10 ⁻⁹ second
■ Terminology	"H" level "L" level	The signal level of the high side of the voltage; indicates the voltage level of V_{IH} and V_{OH} described in the electrical characteristics. The signal level of the low side of the voltage; indicates voltage level of V_{IL} and V_{OL} described in the electrical characteristics.
	Opcode trap	Operation code trap. Occurs when an empty area that has not been assigned an instruction is fetched, or when an instruction code combination that does not contain an instruction is addressed.

■ Register description

Invalid bit Indicates that the bit does not exist. Writing into this bit is invalid. Fixed bit

When writing, always write the specified value. If read, the specified

value will be read. Values of fixed bits are specified as "0" or "1".

Contents

Chapter	1 Overview	
1.1	Features	1-2
1.2	Block Diagram	1-4
1.3	Pin Configuration	1-5
1.4	Basic Operation Timing	1-6
Chapter	2 Description of Pins	
2.1	P0_0-P0_7: Input/Output Pins	2-1
2.2	P1_0-P1_7: Input/Output Pins	2-1
2.3	P2_0-P2_7: Input/Output Pins	2-1
2.4	P3_0-P3_7: Input/Output Pins	2-2
2.5	P4_0-P4_7: Input/Output Pins	2-3
2.6	P5_0-P5_7: Input/Output Pins	2-3
2.7	P6_0-P6_7: Input/Output Pins	2-4
2.8	P7_0-P7_7: Input/Output Pins	2-5
2.9	P8_0-P8_7: Input/Output Pins	2-6
2.10	P9_0-P9_7: Input/Output Pins	2-6
2.11	P10_0-P10_7: Input/Output Pins	2-7
2.12	P11_0-P11_7: Input/Output Pins	2-8
2.13	P12_0, P12_1: Input/Output Pins	2-9
2.14	AI0-AI23: Input Pins	2-9
2.15	AV _{DD} : Input Pin	2-9
2.16	V _{REF} : Input Pin	2-9
2.17	AGND: Input Pin	2-9
2.18	OSC0, OSC1: Input Pin, Output Pin	2-9
2.19	OE: Input Pin	2-9
2.20	NMI: Input Pin	2-9
2.21	RES: Input Pin	2-9
2.22	EA: Input Pin	2-10
2.23	TEST: Input Pin	2-10
2.24	V _{DD} : Input Pin	2-10
2.25	GND: Input Pin	2-10
2.26	Structure of Pins	2-10
2 27	Handling of Unused Pins	2-12

Chapter 3 CPU Architecture

3.1 N	Memory Space	3-1
3.1.1	Memory Space Expansion	3-1
3.1.2	Program Memory Space	3-2
[1]	Accessing Program Memory Space	3-4
[2]	Vector Table Area	3-4
[3]	VCAL Table Area	3-6
[4]	ACAL Area	3-7
3.1.3	Data Memory Space	3-8
[1]	Special Function Register (SFR) Area	3-9
[2]	Expanded Special Function Register (Expanded SFR) Area	3-9
[3]	Internal RAM Area	3-9
[4]	Fixed Page (FIX) Area	3-10
[5]	Local Register Setting Area	3-11
[6]	ROM Window Setting Area	3-11
3.1.4	Data Memory Access	3-12
[1]	Byte Operation	3-12
[2]	Word Operation	3-12
3.2 F	Registers	3-13
3.2.1	Arithmetic Register (ACC)	3-13
3.2.2	Control Register	3-14
[1]	Program Status Word (PSW)	3-14
[2]	Program Counter (PC)	3-17
[3]	Local Register Base (LRB)	3-17
[4]	System Stack Pointer (SSP)	3-18
3.2.3	Pointing Register (PR)	3-19
3.2.4	Local Registers (R, ER)	3-20
3.2.5	Segment Register	3-21
[1]	Code Segment Register (CSR)	3-21
[2]	Table Segment Register (TSR)	3-22
3.2.6	Special Function Register (SFR)	3-23
3.3 A	Addressing Mode	3-37
3.3.1	RAM Addressing	3-37
[1]	Register Addressing	3-37
[2]	Page Addressing	3-40
[3]	Direct Data Addressing	3-43
[4]	Pointing Register Indirect Addressing	3-44
[5]	Special Bit Area Addressing	3-50

3.3.2	ROM Addressing	3-51
[1]	Immediate Addressing	3-51
[2]	Table Data Addressing	3-51
[3]	Program Code Addressing	3-53
[4]	ROM Window Addressing	3-55
Chapter 4	CPU Control Functions	
4.1	Standby Function	4-1
4.1.1	Standby Control Register (SBYCON)	4-3
4.1.2	Operation in Each Standby Mode	4-4
[1]	HALT Mode	4-4
[2]	STOP Mode	4-5
4.2 F	Reset Function	4-6
Chapter 5	Memory Control Functions	
5.1 F	ROM Window Function	5-1
5.2 F	READY Function	5-3
Chapter 6	Port Functions	
6.1 H	Hardware Configuration of Each Port	6-1
6.1.1	Configuration of Type A (P0_0-P0_7, P1_0-P1_7, P12_0)	6-4
6.1.2	Configuration of Type B	
	(P2_0-P2_7, P3_0-P3_3, P7_4-P7_7, P8_0-P8_7, P10_0-P10	4) 6-5
6.1.3	Configuration of Type C	
	(P3_4-P3_7, P4_0-P4_7, P5_0-P5_7, P6_0-P6_7, P7_2, P7_3,	
	P9_0-P9_7, P10_5-P10_7, P11_0-P11_3)	6-6
6.1.4	Configuration of Type D (P7_0, P7_1, P11_4–P11_7)	6-7
6.1.5	Configuration of Type E (P12_1)	6-7
6.2 F	Port Control Registers	6-8
6.2.1	Port Data Register (Pn: n = 0-12)	6-8
6.2.2	Port Mode Register (PnIO: n = 0–12)	6-8
6.2.3	Port Secondary Function Control Register (PnSF: n = 2–10)	6-8
6.3 F	Port 0 (P0)	6-11
6.4 F	Port 1 (P1)	6-12
6.5 F	Port 2 (P2)	6-13
6.6 F	Port 3 (P3)	6-15
6.7 F	Port 4 (P4)	6-17

6.8	Port 5 (P5)	6-19
6.9	Port 6 (P6)	6-21
6.10	Port 7 (P7)	6-23
6.11	Port 8 (P8)	6-25
6.12	Port 9 (P9)	6-27
6.13	Port 10 (P10)	6-29
6.14	Port 11 (P11)	6-31
6.15	Port 12 (P12)	6-32
Chapter	7 Output Pin Control Pin (OE)	
Chapter	8 Clock Generation Circuit	
Chapter	9 Time Base Counter (TBC)	
9.1	1/n Counter	9-2
Chapter	10 Watchdog Timer (WDT)	
10.1	WDT Control Register (WDTCON)	10-1
10.2	Operation of WDT	
10.3	Time until Overflow of WDT	10-2
10.4	Program Runaway Detection Timing Diagram	10-2
Chapter	11 Flexible Timer (FTM)	
11.1	Configuration of Counter Part	11-6
11.2	Counter Selection Part	
	Type A1 Register Modules (TMR0–TMR3)	
	3.1 Configuration of Type A1 Register Modules (TMR0–TMR3)	
[´	I] Timer Registers (TMR0, TMR0L–TMR3, TMR3L)	
[2	- , , , , , , , , , , , , , , , , , , ,	
[3	,	
[4		
-	5] EVDV0–EVDV3 Buffer Registers (EVDV0BF–EVDV3BF)	
11.3	, , ,	
11.3		
-	I] Configuration of Dividing Circuit	
-	2] Operation of Dividing Circuit	
[3	B] Operation to Switch Dividing Ratio	11-16

11.4 Type A2 Register Modules (TMR14, TMR15)	11-17
11.4.1 Configuration of Type A2 Register Modules (TMR14, TMR15)	11-17
[1] Timer Registers (TMR14, TMR15)	11-17
[2] Capture Control Register (CAPCON)	11-18
[3] Event Control Register 2 (EVNTCON2)	11-19
[4] Event Dividing Counters 14, 15 (EVDV14, EVDV15)	11-20
[5] EVDV14, EVDV15 Buffer Registers (EVDV14BF, EVDV15BF)	
11.4.2 Operation of Type A2 Register Modules (TMR14, TMR15)	
11.4.3 Capture Pin Dividing Circuit	11-22
[1] Configuration of Dividing Circuit	11-22
[2] Operation of Dividing Circuit	11-22
[3] Operation to Switch Dividing Ratio	11-22
11.5 Type B Register Modules (TMR4–TMR13)	11-23
11.5.1 Configuration of Type B Register Modules (TMR4–TMR13)	11-23
[1] Timer Registers (TMR4–TMR13)	11-24
[2] Timer Register Buffer Registers (TMR4BF–TMR13BF)	11-24
[3] Real-time Output Control Registers (RTOCON4-RTOCON13)	11-24
11.5.2 Operation of Type B Register Modules (TMR4–TMR13)	11-26
11.6 Type D Register Module (TMR17)	11-27
11.6.1 Configuration of Type D Register Module (TMR17)	11-27
[1] Timer Register (TMR17)	11-29
[2] Real-time Output Control Registers (RTOCON17, RTO4CON)	11-29
[3] TMR Mode Register (TMRMODE)	11-31
[4] Capture Control Register (CAPCON)	11-32
11.6.2 Operation of Type D Register Module (TMR17)	11-33
[1] Operation in Real-time Output Mode (RTO)	11-33
[2] Operation in 4-Port Output Real-time Output Mode (4-Port RTO)	11-34
[3] Operation in CAP Mode	11-35
11.7 Type E Register Module (TMR16)	11-36
11.7.1 Configuration of Type E Register Module (TMR16)	11-36
[1] Timer Register (TMR16)	11-37
[2] Real-time Output Control Register (RTOCON16)	11-37
[3] TMR Mode Register (TMRMODE)	11-38
[4] Capture Control Register (CAPCON)	11-39
11.7.2 Operation of Type E Register Module (TMR16)	11-40
[1] Operation in Real-time Output Mode (RTO)	11-40
[2] Operation in CAP Mode	11-40
11.8 RTO Mode Output Timing Changes	11-41

Chapter 12 General-Purpose 8-Bit Timer Function	
12.1 General-Purpose 8-Bit Timer (GTM)	12-2
[1] General-Purpose 8-Bit Timer Counter (GTMC)	12-3
[2] General-Purpose 8-Bit Timer Register (GTMR)	12-3
[3] General-Purpose 8-Bit Timer Control Register (GTMCON)	12-3
[4] General-Purpose 8-Bit Timer Interrupt Control Register (GTII	NTCON) 12-5
12.2 General-Purpose 8-Bit Event Counter (GEVC)	12-6
[1] General-Purpose 8-Bit Event Counter (GEVC)	12-6
[2] General-Purpose 8-Bit Timer Control Register (GTMCON)	12-6
[3] General-Purpose 8-Bit Timer Interrupt Control Register (GTII	NTCON) 12-7
Chapter 13 PWM Functions	
13.1 Configuration of PWM	13-4
[1] PWM Counters (PWC0-PWC11)	13-4
[2] PWM Counter Buffer Registers (PWC0BF–PWC11BF)	13-4
[3] PWM Registers (PWR0–PWR11)	13-5
[4] PWM Buffer Registers (PW0BF–PW11BF)	13-5
[5] Comparison Circuit	13-5
[6] Output F/F	13-5
[7] PWM Control Registers (PWCON0–PWCON5)	13-5
[8] PWMRUN Register (PWRUN)	13-9
[9] PWM Interrupt Registers (PWINTQ0, PWINTQ1)	13-10
[10] PWM Interrupt Enable Registers (PWINTE0, PWINTE1)	13-13
13.2 Operation of PWM	13-16
Chapter 14 Baud Rate Generator Functions	
14.1 Configuration of SCI0 Timer (S0TM)	
[1] SCI0 Timer Counter	14-3
[2] SCI0 Timer Register	
[3] SCI0 Timer Control Register (S0CON)	14-3
14.2 Operation of SCI0 Timer	
14.3 Configuration of SCI1 Timer (S1TM)	14-6
[1] SCI1 Timer Counter	
[2] SCI1 Timer Register	
[3] SCI1 Timer Control Register (S1CON)	
14.4 Operation of SCI1 Timer	14-8

14.5 Configuration of SCI2 Timer (S2TM)	14-9
[1] SCI2 Timer Counter	14-9
[2] SCI2 Timer Register	14-9
[3] SCI2 Timer Control Register (S2CON)	14-9
14.6 Operation of SCI2 Timer	14-11
14.7 Configuration of SCI3 Timer (S3TM)	14-12
[1] SCI3 Timer Counter	14-12
[2] SCI3 Timer Register	14-12
[3] SCI3 Timer Control Register (S3CON)	14-12
14.8 Operation of SCI3 Timer	14-14
14.9 Configuration of SCI4 Timer (S4TM)	14-15
[1] SCI4 Timer Counter	14-15
[2] SCI4 Timer Register	14-15
[3] SCI4 Timer Control Register (S4CON)	14-15
14.10 Operation of SCI4 Timer	14-17
Chapter 15 Serial Port Functions	
15.1 Configuration of Serial Ports	15-2
15.2 Serial Port Control Registers	
15.2.1 Control Registers for SCI0	15-5
[1] SCI0 Transmit Control Register (ST0CON)	15-5
[2] SCI0 Receive Control Register (SR0CON)	15-7
[3] SCI0 Transmit/Receive Buffer Register (S0BUF0)	15-9
[4] SCI0 Receive Buffer Registers (S0BUF1, S0BUF2, S0BUF3)	15-9
[5] SCI0 Transmit and Receive Registers	15-9
[6] SCI0 Status Register 0 (S0STAT0)	15-10
[7] SCI0 Status Register 1 (S0STAT1)	15-13
[8] SCI0 Status Register 2 (S0STAT2)	15-15
[9] SCI0 Interrupt Control Register (SR0INT)	15-17
15.2.2 Control Registers for SCI1	15-19
[1] SCI1 Transmit Control Register (ST1CON)	15-19
[2] SCI1 Receive Control Register (SR1CON)	15-21
[3] SCI1 Transmit/Receive Buffer Register (S1BUF)	15-23
[4] SCI1 Transmit and Receive Registers	15-23
[5] SCI1 Status Register (S1STAT)	15-23

15.2.3	Control Registers for SCI2	15-26
[1]	SCI2 Transmit Control Register (ST2CON)	15-26
[2]	SCI2 Receive Control Register (SR2CON)	15-28
[3]	SCI2 Transmit/Receive Buffer Register (S2BUF0)	15-30
[4]	SCI2 Receive Buffer Registers (S2BUF1, S2BUF2, S2BUF3)	15-30
[5]	SCI2 Transmit and Receive Registers	15-30
[6]	SCI2 Status Register 0 (S2STAT0)	15-31
[7]	SCI2 Status Register 1 (S2STAT1)	15-34
[8]	SCI2 Status Register 2 (S2STAT2)	15-36
[9]	SCI2 Interrupt Control Register (SR2INT)	15-38
15.2.4	Control Registers for SCI3	15-40
[1]	SCI3 Transmit Control Register (ST3CON)	15-40
[2]	SCI3 Receive Control Register (SR3CON)	15-42
[3]	SCI3 Transmit/Receive Buffer Register (S3BUF0)	15-44
[4]	SCI3 Receive Buffer Registers (S3BUF1, S3BUF2, S3BUF3)	15-44
[5]	SCI3 Transmit and Receive Registers	15-44
[6]	SCI3 Status Register 0 (S3STAT0)	15-45
[7]	SCI3 Status Register 1 (S3STAT1)	15-48
[8]	SCI3 Status Register 2 (S3STAT2)	15-50
[9]	SCI3 Interrupt Control Register (SR3INT)	15-52
15.2.5	Control Registers for SCI4	15-54
[1]	SCI4 Transmit Control Register (ST4CON)	15-54
[2]	SCI4 Receive Control Register (SR4CON)	15-56
[3]	SCI4 Transmit/Receive Buffer Register (S4BUF0)	15-58
[4]	SCI4 Receive Buffer Registers (S4BUF1, S4BUF2, S4BUF3)	15-58
[5]	SCI4 Transmit and Receive Registers	15-58
[6]	SCI4 Status Register 0 (S4STAT0)	15-59
[7]	SCI4 Status Register 1 (S4STAT1)	15-62
[8]	SCI4 Status Register 2 (S4STAT2)	15-64
[9]	SCI4 Interrupt Control Register (SR4INT)	15-66
15.3 C	Pperation of Serial Ports	15-68
15.3.1	Transmit Operation	15-68
15.3.2	Receive Operation	15-74
[1]	Single Buffer Mode	15-74
[2]	4-Stage Buffer Mode	15-81

Chapter 16	A/D Converter Functions	
16.1 C	Configuration of A/D Converter	16-4
[1]	Scan Mode	16-4
[2]	Select Mode	16-4
[3]	Hard Select Mode	16-4
16.2 C	Control Register of A/D Converter	16-7
[1]	A/D Control Register 0L (ADCON0L)	16-7
[2]	A/D Control Register 1L (ADCON1L)	16-9
[3]	A/D Control Register 0H (ADCON0H)	16-11
[4]	A/D Control Register 1H (ADCON1H)	16-13
[5]	A/D Interrupt Control Register 0 (ADINTCON0)	16-15
[6]	A/D Interrupt Control Register 1 (ADINTCON1)	16-17
[7]	A/D Hard Select Register 0 (ADHSEL0)	16-19
[8]	A/D Hard Select Register 1 (ADHSEL1)	16-22
[9]	A/D Hard Select Software-Control Register (ADHSCON)	16-25
[10]	A/D Hard Select Enable Register (ADHENCON)	16-26
[11]	A/D Result Registers (ADCR0-ADCR23)	16-28
16.3	Generated Timing of the A/D Hard Select Mode	16-29
Chapter 17	Transition Detector Functions	
17.1 T	ransition Detector Control Register (TRNSCON)	17-1
17.2 T	ransition Detector Register (TRNSIT)	17-3
Chapter 18	B Peripheral Functions	
•	•	10.4
	Clockout Function	
	RES Pin Valid Level Detection Function	
18.3 C	DE Pin Monitor Function	18-1

Chapter 19 External Interrupt Request Function

Chapter 20 Interrupt Request Processing Function	
20.1 Non-maskable Interrupt (NMI)	. 20-2
20.2 Maskable Interrupt	. 20-4
[1] Interrupt Request Flag Disable Register IRQD	
(IRQD0L, IRQD0H, IRQD1L, IRQD1H, IRQD2L)	. 20-6
[2] Interrupt Request Register IRQ (IRQ0L, IRQ0H, IRQ1L, IRQ1H, IRQ2L)	. 20-6
[3] Interrupt Enable Register IE (IE0L, IE0H, IE1L, IE1H, IE2L)	. 20-6
[4] Master Interrupt Enable Flag (MIE)	. 20-6
[5] Master Interrupt Priority Flag (MIPF)	. 20-6
[6] Interrupt Priority Control Register	
IPX0 (IP00L, IP00H, IP10L, IP10H, IP20L),	
IPX1 (IP01L, IP01H, IP11L, IP11H, IP21L)	. 20-7
20.3 Operation of Maskable Interrupt	. 20-8
Chapter 21 Bus Port Functions	
21.1 Bus Port (P0, P1, P12_0, P12_1) Functions	. 21-1
21.1.1 Operation of P0, P1, P12_0 and P12_1 During a Program Memory	
Access	. 21-1
21.2 External Memory Access	. 21-2
21.2.1 External Program Memory Access	. 21-2
21.2.2 External Program Memory Access Timing	. 21-2
Chapter 22 Expansion Port	
22.1 Expansion Port Configuration	. 22-1
22.2 Expansion Port Control Register (EXTPCON)	. 22-2
22.3 Expansion Port Register (EXTPD)	
22.4 Expansion Port Operation	
[1] Input Mode	. 22-3
[2] Output Mode	. 22-4

Chapter	23 Serial Port with FIFO (SCI5)	
23.1	SCI5 Configuration	23-1
23.2	SCI5 Control Register 0 (SCI5CON0)	23-2
23.3	SCI5 Control Register 1 (SCI5CON1)	23-4
23.4	SCI5 Interrupt Register (SCI5INT)	23-5
23.5	Serial Address Output Register (SFADR)	23-6
23.6	Serial Data Input Register (SFDIN)	23-7
23.7	Serial Data Output Register (SFDOUT)	23-7
23.8	SCI5 Operation	23-8
Chapter	24 RAM Monitor Function	
24.1	Configuration of RAM Monitor Function	24-1
24.2	Configuration of Serial Transfer Data	24-3
24.3	RAM Monitor Function Operation	24-5
[[1] Setting the addresses	24-5
[[2] Detection of address matching	24-5
[[3] Reading data	24-5
Chapter	25 Electrical Characteristics	
•	M66591 Electrical Characteristics]	25-1
25.1	Absolute Maximum Ratings	
25.2	Operating Range	
25.3	DC Characteristics	
25.4	AC Characteristics	
[[1] External Program Memory Control	25-5
25.5	A/D Converter Characteristics	
[ML6	6592 Electrical Characteristics]	25-8
25.6	Absolute Maximum Ratings	25-8
25.7	Operating Range	25-9
25.8	DC Characteristics	25-10
25.9	AC Characteristics (Preliminary)	25-12
[[1] External Program Memory Control	25-12
25.10	A/D Converter Characteristics	25-13

Chapter 26 Package Dimensions

Chapter 27 Revision History

Chapter 7	Output Pin Control Pin (OE)	7
Chapter 8	Clock Generation Circuit	8
Chapter 9	Time Base Counter (TBC)	9
Chapter 10	Watchdog Timer (WDT)	10
Chapter 11	Flexible Timer (FTM)	11
Chapter 12	General-Purpose 8-Bit Timer Function	12
Chapter 13	PWM Functions	13
Chapter 14	Baud Rate Generator Functions	14
Chapter 15	Serial Port Functions	15
Chapter 16	A/D Converter Functions	16
Chapter 17	Transition Detector Functions	17
Chapter 18	Peripheral Functions	18
Chapter 19	External Interrupt Request Function	19
Chapter 20	Interrupt Request Processing Function	20
Chapter 21	Bus Port Functions	21
Chapter 22	Expansion Port	22
Chapter 23	Serial Port with FIFO (SCI5)	23
Chapter 24	RAM Monitor Function	24
Chapter 25	Electrical Characteristics	25
Chapter 26	Package Dimensions	26
Chapter 27	Revision History	27

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Overview

Description of Pins

CPU Architecture

Port Functions

CPU Control Functions

Memory Control Functions

2

4

5

6

Chapter 1

Overview

1. Overview

The MSM66591/ML66592 are high performance 16-bit microcontrollers that contain a 16-bit CPU (nX-8/500S), ROM, RAM, a 10-bit A/D converter, serial ports, flexible timers, and PWMs.

The ML66592 is the same as the MSM66591 with the exception that the ML66592 has an increased ROM and RAM capacity and a higher operating speed. Table 1-1 lists the functional differences between the MSM66591 and ML66592.

The MSM66Q591 is a Flash EEPROM version of the MSM66591. The ML66Q592 is a Flash EEPROM version of the ML66592.

Table 1-1 Differences between MSM66591/66Q591 and ML66592/66Q592 Specifications

Item	MSM66591/66Q591	ML66592/66Q592	Modifications in ML66592/ML66Q592 and notes
Operating frequency (internal)	20 to 24 MHz	20 to 28 MHz	Increased by 4 MHz (with increased supply current)
Operating temperature	–40 to +115°C	-40 to +95°C	Changed from +115°C to +95°C
Program memory space	128K bytes 0:0000H to 1:FFFFH	192K bytes (internal) 256K bytes (external) 0:0000H to 3:FFFFH	Increased by 64K bytes (internal) (SEG2) Increased by 128K bytes (external) (SEG2, 3) External A17 output (P12_1) has been added. (When EA = "L")
Data memory space	6K bytes 200H to 19FFH	8K bytes 200H to 21FFH	Increased by 2K bytes (1A00H to 21FFH)
Internal ROM capacity	128K bytes 0:0000H to 1:FFFFH	192K bytes 0:0000H to 2:FFFFH	Increased by 64K bytes (SEG2) One valid bit has been added to each of CSR and TSR. Access forbidden to the internal SEG3.
Internal RAM capacity	6K bytes 200H to 19FFH	8K bytes 0200H to 21FFH	Increased by 2K bytes (1A00H to 21FFH)
Starting address for the ROM Window function	2000H	3000H	Changed from 2000H to 3000H
	4000H	4000H	
	8000H	8000H	
	1/2 CLK (12 MHz)	1/2 CLK (14 MHz)	
CLKOUT function	1/4 CLK (6 MHz)	1/4 CLK (7 MHz)	
(Values in parentheses are output frequencies of the	1/8 CLK (3 MHz)	1/8 CLK (3.5 MHz)	
device operating at the maximum frequency)	1/16 CLK (1.5 MHz)	1/16 CLK (1.75 MHz)	
maximum requericy)	2/3 CLK (16 MHz)	2/3 CLK (forbidden)	Use of 2/3 CLK is forbidden.
	1/3 CLK (8 MHz)	1/3 CLK (9.3 MHz)	
10-bit A/D converter conversion time	512 CLK (21.3 μs)	512 CLK (18.3 μs)	Should be used at 16 μs or more
(Values in parentheses are conversion time when the device is operating at the maximum frequency)	384 CLK (16 μs)	384 CLK (13.7μs)	
	256 CLK (10.7 μs)	256 CLK (9.1 μs)	
Transfer clock during	1/4 CLK (6 MHz*)	Not provided	1/4 CLK has been deleted.
Flash ROM reprogramming in the user mode	1/8 CLK (3 MHz)	1/8 CLK (3.5 MHz)	* 6 MHz is outside the guarantee range.
(MSM66Q591/ML66Q592 only)	1/16 CLK (1.5 MHz)	1/16 CLK (1.75 MHz)	90.

Note: In the ML66592/66Q592, the AC characteristics during external program memory access apply only when the internal operating frequency is not more than 24 MHz.

1.1 Features

[1] Abundant Instruction Set

- Instruction set has superb orthogonal capability
- 8/16-bit arithmetic instructions
- Multiplication/division instructions
- Bit operation instructions
- Bit logic operation instructions
- ROM table reference instructions

[2] Abundant Addressing Modes

- · Register addressing
- · Page addressing
- · Pointing register indirect addressing
- Stack addressing
- · Immediate addressing

[3] Minimum Instruction Cycle

MSM66591: 83.3 nsec @ 12 MHz (internal: 24 MHz) ML66592: 71.4 nsec @ 14 MHz (internal: 28 MHz)

[4] Program Memory (ROM)

MSM66591: Internal: 128K bytes

External: 128K bytes, EA pin active

ML66592: Internal: 192K bytes

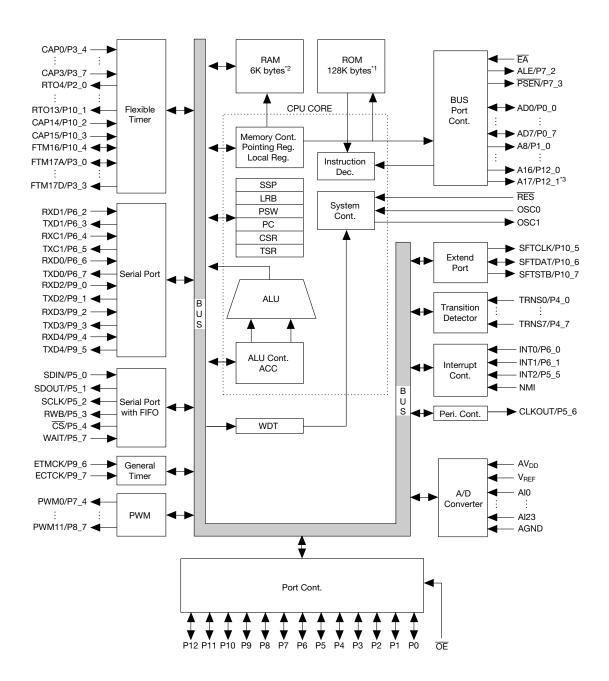
External: 256K bytes (EA pin active)

[5] Data memory (RAM)

MSM66591: Internal: 6K bytes ML66592: Internal: 8K bytes

[6] I/O Ports

Analog input ports: 24

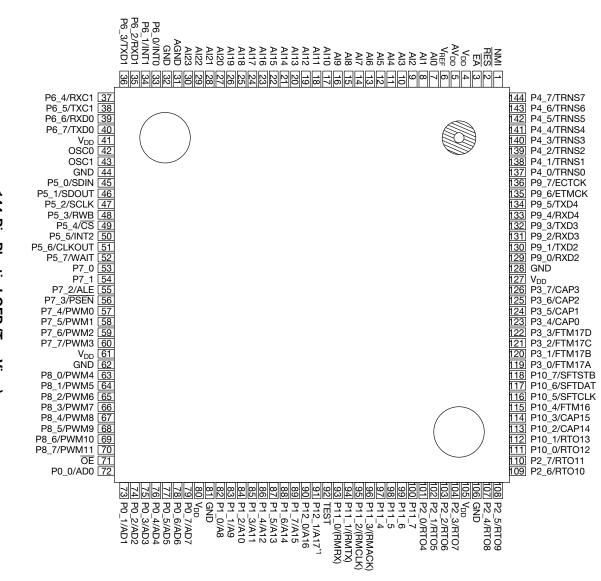

• I/O ports: 98

[7] Multiplier

MSM66591: MUL ERn instruction: 208 nsec @ 12 MHz ML66592: MUL ERn instruction: 178.6 nsec @ 14 MHz

- [8] Flexible Timer
 - Freerun counter: 20-bit × 1, 16-bit × 1
 - Capture register with divider: 6
 - Double-buffer realtime output: 10
 - Multifunction timer: 2
- [9] General-Purpose 8-Bit Timers
 - General-purpose 8-bit timer: 1
 - 8-bit event counter: 1
- [10] 16-Bit PWM: 12
- [11] 8-Bit Serial Ports
 - UART with BRG (provided with a 4-stage buffer on the receive side): 4
 - UART/synchronous type with BRG: 1
 - Synchronous (with 8-byte FIFO): 1
- [12] A/D Converter
 - 10-bit resolution: 24 channels (12-channel × 2)
- [13] Transition Detector: 8
- [14] Watchdog Timer: 1
- [15] Expansion Port (serial-parallel conversion): 1
- [16] Interrupts
 - Non-maskable: 1
 - Maskable internal: 63/external: 3 (38 vectors)
 - · 4-level priority
- [17] ROM Window Functions
- [18] RAM Monitor Functions
- [19] Standby Modes
 - HALT mode
 - STOP mode
- [20] Clock Multiplier (2x original oscillation clock)
- [21] Package
 - 144-pin plastic LQFP (LQFP144-P-2020-0.50-K)

1.2 Block Diagram



^{*1 192}K bytes for the ML66592/66Q592

^{*2 8}K bytes for the ML66592/66Q592

^{*3} For the ML66592/66Q592 only

1.3 Pin Configuration

144-Pin Plastic LQFP (Top View)

For the ML66592/66Q592 only

Note: For the package dimensions, see Chapter 26. For handling of unused pins, see Section 2.27

1.4 Basic Operation Timing

The MSM66591/ML66592 utilize the Oki-original 16-bit CPU core (nX-8/500S).

With the nX-8/500S, the basic instruction code unit is 8 bits, and instructions are 1 byte to 6 bytes long. Instructions are classified as either NATIVE instructions for frequent operation or COMPOSIT instructions to realize a wide addressing range.

NATIVE instructions consist of 1 to 4 bytes and achieve high code efficiency and high processing efficiency.

COMPOSIT instructions consist of a 1- to 3-byte address specification field (PREFIX) and a 1- to 3-byte operation specification field (SUFFIX). A wide addressing range can be realized by combining the PREFIX and SUFFIX.

The MSM66591/ML66592 multiply the original oscillation clock by a factor of 2 to generate the master clock pulse (CLK). One master clock pulse (CLK) forms one state. In other words, one state is 41.7 nsec (@ 12 MHz) for the MSM66591 or 35.7 nsce (@ 14 MHz) for the ML66592. The execution of a single instruction is performed over several states (S2, S3, ...Sn).

The number of states required for instruction execution depends upon the instruction. The minimum is 2 states and the maximum is 48 states. (For details, refer to the "nX-8/500S Core Instruction Manual.")

Figures 1-1 through 1-4 show examples of the basic timing.

In the case of external program memory access (EA pin = "L" level), 1 cycle (= 1 state) is automatically inserted for a 1 byte read (fetch) operation. In addition, the number of wait cycles (0 to 3 cycles) specified by the ROM ready control register (ROMRDY) are also inserted.

For further details regarding external memory access timing, see Chapter 21, "Bus Port Functions".

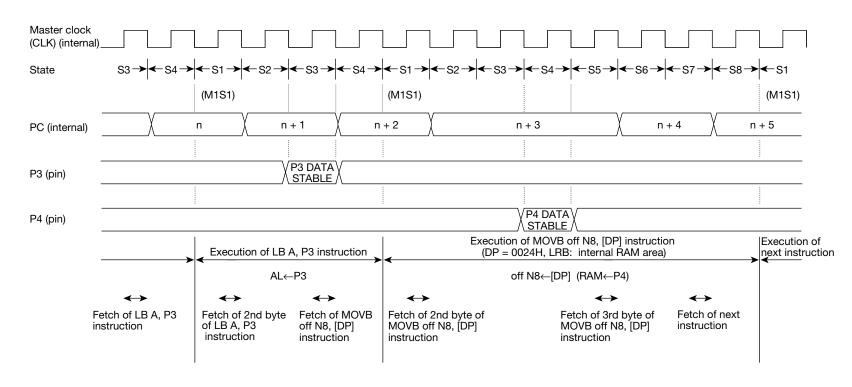


Figure 1-1 Basic Operation Timing Example (Input of Port Data)

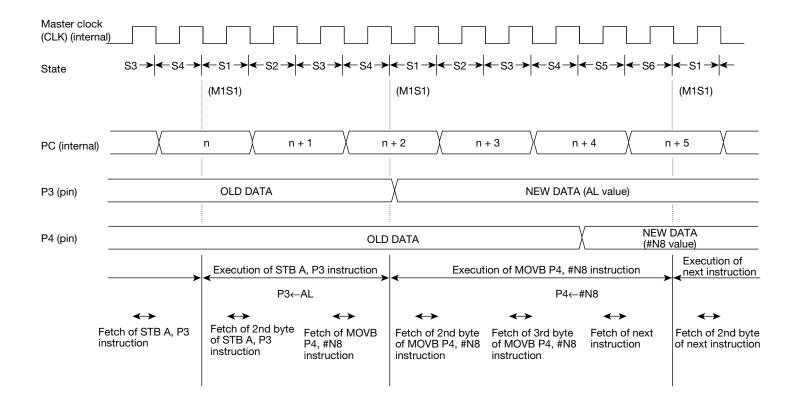
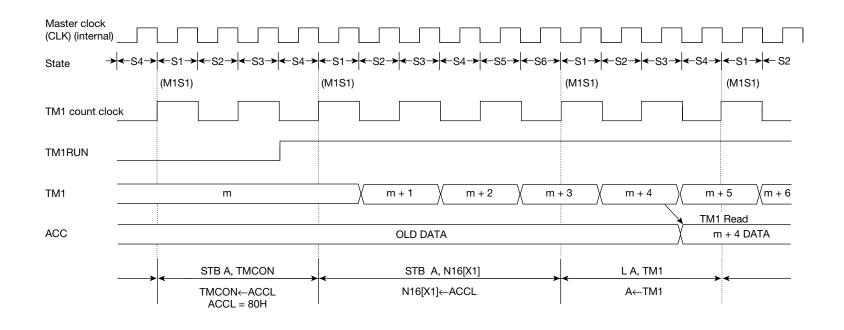
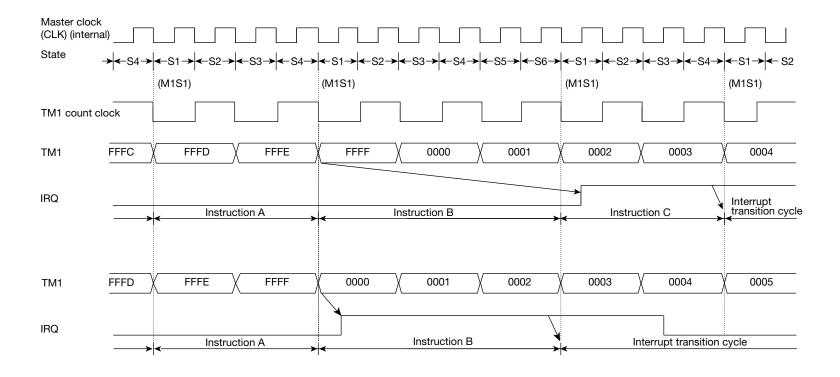




Figure 1-2 Basic Operation Timing Example (Output to Port)

- The timing for the RUN bit that becomes "1" differs depending on the instruction executed.
- The timing to read TM1 differs, depending on the instruction executed.
- The count timing of TM1 differs, depending on the selected clock of TM1.

Figure 1-3 TM1 Operation Timing

- The interrupt transition cycle has 14 cycles. However, it has 17 cycles if the program memory space is extended to 128K bytes.
- IRQ is reset ("0") at the 3rd cycle of the interrupt transition cycle.

Figure 1-4 Interrupt Transition Timing Example

Description of Pins

2. Desacacription of Pins

Chapter 2 describes each pin of the MSM66591/ML66592.

For handling of unused pins, see Section 2.27.

2.1 P0_0-P0_7: Input/Output Pins

8-bit I/O pins of Port 0. I/O can be specified in bit units by the Port 0 mode register (P0IO).

If the \overline{EA} pin is set to "L" level, these pins automatically function as time-shared address output and data I/O pins (AD0–AD7) for external program memory access.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer (WDT) is overflown, or an operation code trap is generated), P0 becomes a high impedance input.

When Port 0 is in output status, "H" or "L" level is output if the \overline{OE} pin (pin 71) is in "L" level, but Port 0 goes into high impedance status if the \overline{OE} pin is in "H" level.

2.2 P1 0-P1 7: Input/Output Pins

8-bit I/O pins of Port 1. I/O can be specified in bit units by the Port 1 mode register (P1IO).

By setting the \overline{EA} pin to "L" leve, P1_0–P1_7 also function as output pins for internal operations (secondary function).

<Description of Secondary Functions of Each Pin>

• A8-A15 (P1_0-P1_7)

If the externally expanded data memory is accessed with the \overline{EA} pin in "L" level, these pins function as output pins to output addresses A8–A15.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), P1 becomes high impedance input.

When Port 1 is in output status, "H" or "L" level is output if the \overline{OE} pin (pin 71) is in "L" level, but Port 1 goes into high impedance status if the \overline{OE} pin is in "H" level.

2.3 P2 0-P2 7: Input/Output Pins

8-bit I/O pins of Port 2. I/O can be specified in bit units by the Port 2 mode register (P2IO).

P2_0-P2_7 also function as output pins for internal operations (secondary function). The secondary functions for P2_0-P2_7 are set in bit units by the Port 2 secondary function control register (P2SF).

For the pins that have secondary functions set by P2SF, I/O settings by P2IO become invalid.

<Description of the Secondary Functions of Each Pin>

• RTO4 (P2 0)-RTO11 (P2 7)

The preset level is output when the value of registers 4–11 (TMR4–TMR11) of the flexible timer match the selected counter values.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), P2 becomes a high impedance input.

When Port 2 is in output status, "H" or "L" level is output if the \overline{OE} pin (pin 71) is in "L" level. If the \overline{OE} pin is in "H" level, Port 2 goes into high impedance status.

2.4 P3_0-P3_7: Input/Output Pins

8-bit I/O pins of Port 3. I/O can be specified in bit units by the Port 3 mode register (P3IO).

P3_0-P3_7 also function as I/O pins for internal operations (secondary function).

Secondary functions for P3_0-P3_7 are set in bit units by the Port 3 secondary function control register (P3SF). For the pins that have secondary functions set by P3SF, I/O settings by P3IO become invalid.

<Description of Secondary Functions of Each Pin>

• FTM17A (P3 0)

When register 17 (TMR17) of the flexible timer is in RTO mode, and when the value of the TMR17 matches the selected counter value, the preset level is output.

When the TMR17 is in CAP mode, FTM17A is set to input pin status. If the specified edge is input to this pin, the selected counter value is input to the TMR17.

• FTM17B (P3_1)-FTM17D (P3_3)

When the TMR17 is in 4-port output RTO mode, and when the value of the TMR17 matches the selected counter value, the preset level is output.

CAP0 (P3 4)—CAP3 (P3 7)

If the edge specified to this pin is input for a specified number of times, the selected counter value is input to timer registers 0–3 (TMR0–TMR3).

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), P3 becomes a high impedance input.

When P3_0–P3_3 are in output status, "H" or "L" level is output if the \overline{OE} pin (pin 71) is in "L" level. If the \overline{OE} pin is in "H" level, they go into high impedance status.

2.5 P4 0-P4 7: Input/Output Pins

8-bit I/O pins of Port 4. I/O can be specified in bit units by the Port 4 mode register (P4IO).

P4_0-P4_7 also function as input pins for internal operations (secondary function).

Secondary functions for P4_0-P4_7 are set in bit units by the Port 4 secondary function control register (P4SF).

For the pins that have secondary functions set by P4SF, I/O settings by P4IO become invalid.

<Description of Secondary Functions of Each Pin>

TRNS0 (P4_0)-TRNS7 (P4_7)
 Input pins of transition detectors 0-7.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), P4 becomes a high impedance input.

2.6 P5_0-P5_7: Input/Output Pins

8-bit I/O pins of Port 5. I/O can be specified in bit units by the Port 5 mode register (P5IO).

P5 0-P5 7 also function as output pins for internal operations (secondary function).

Secondary functions for P5_0–P5_7 are set in bit units by the Port 5 secondary function control register (P5SF). For the pins that have secondary functions set by P5SF, I/O settings by P5IO become invalid.

<Description of Secondary Functions of Each Pin>

• SDIN (P5_0)

Data input pin of serial port 5 (synchronous SCI with FIFO)

• SDOUT (P5_1)

Data output pin of serial port 5 (synchronous SCI with FIFO)

• SCLK (P5 2)

Synchronous clock output pin of serial port 5 (synchronous SCI with FIFO)

• R/W (P5 3)

Data read/write switch signal output pin of serial port 5 (synchronous SCI with FIFO)

• $\overline{\text{CS}}$ (P5 4)

Chip select signal output pin of serial port 5 (synchronous SCI with FIFO)

• INT2 (P5_5)

Dual function interrupt and external interrupt 2 input pin of serial port 5 (synchronous SCI with FIFO)

• CLKOUT (P5_6)

Output pin that outputs clock pulses specified by the peripheral control register (PRPHF)

• WAIT (P5_7)

BUSY signal input pin of serial Port 5 (synchronous SCI with FIFO)

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, a watchdog timer is overflown, or an operation code trap is generated), P5 becomes a high impedance input.

2.7 P6_0-P6_7: Input/Output Pins

8-bit pins of Port 6. I/O can be specified in bit units by the Port 6 mode register (P6IO).

P6 0-P6 7 also function as I/O pins for internal operations (secondary function).

Secondary functions for P6_0–P6_7 are set in bit units by the Port 6 secondary function control register (P6SF).

For pins that have secondary functions set by P6SF, I/O settings by P6IO become invalid.

<Description of Secondary Functions of Each Pin>

- INT0 (P6_0), INT1 (P6_1)
 Input pins for external interrupts 0 and 1.
- RXD1 (P6 2)

Input pin to input receive data at the serial port 1 receive side.

• TXD1 (P6_3)

Output pin to output transmit data at the serial port 1 transmit side.

RXC1 (P6_4)

Configured to be the output pin for the shift clock if the serial port 1 receive side is in synchronous and master mode, and configured to be the input pin of the shift clock if the receive side is in slave mode.

• TXC1 (P6 5)

Becomes the output pin of the shift clock if the serial port 1 transmit side is in synchronous mode and master mode, and becomes the input pin of the shift clock if in slave mode.

RXD0 (P6 6)

Input pin to input receive data at the serial port 0 receive side.

• TXD0 (P6 7)

Output pin to output transmit data at the serial port 0 transmit side.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), P6 becomes a high impedance input.

2.8 P7_0-P7_7: Input/Output Pins

8-bit pins of Port 7. I/O can be specified in bit units by the Port 7 mode register (P7IO).

P7 2-P7 7 also function as I/O pins for internal operations (secondary function).

Secondary functions for P7_2–P7_7 are set in bit units by the Port 7 secondary function control register (P7SF).

For the pins that have secondary functions set by P7SF, I/O settings by P7IO become invalid.

<Description of Secondary Functions of Each Pin>

• ALE (P7_2)

When accessing external memory, this pin outputs a strobe signal to externally latch the lower 8 bits of the address output from P0.

If the $\overline{\text{EA}}$ pin has been set to a "L" level, the pin function automatically changes to the secondary function.

If both the \overline{EA} and \overline{RES} pins have been set to a "L" level, this pin is pulled up.

• PSEN (P7 3)

When accessing external program memory, this pin outputs a strobe signal for the read operation.

If the $\overline{\sf EA}$ pin has been set to a "L" level, the pin function automatically changes to the secondary function.

If both the EA and RES pins have been set to a "L" level, this pin is pulled up.

PWM0 (P7_4)–PWM3 (P7_7)
 PWM0–PWM3 output pins.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), P7 becomes a high impedance input.

If the $\overline{\text{OE}}$ pin (pin 71) is in "L" level when P7_4 (PWM0)–P7_7 (PWM3) are in output status, these pins output "H" or "L" level, but if the $\overline{\text{OE}}$ pin is in "H" level, these pins go into high impedance status.

2.9 P8 0-P8 7: Input/Output Pins

8-bit I/O pins of Port 8. I/O can be specified in bit units by the Port 8 mode register (P8IO).

P8 0-P8 7 also function as output pins for internal operations (secondary function).

Secondary functions for P8_0–P8_7 are set in bit units by the Port 8 secondary function control register (P8SF).

For the pins that have secondary functions set by P8SF, I/O settings by P8IO become invalid.

<Description of Secondary Functions of Each Pin>

PWM4 (P8_0)-PWM11 (P8_7)
 Output Pins of PWM4-PWM11

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), P8 becomes a high impedance input.

If the \overline{OE} pin (pin 71) is in "L" level when P8 is in output status, these pins output "H" or "L" level, but if the \overline{OE} pin is in "H" level, these pins go into high impedance status.

2.10 P9_0-P9_7: Input/Output Pins

8-bit I/O pins of Port 9. I/O can be specified in bit units by the Port 9 mode register (P9IO).

P9 0-P9 7 also functions as an output pin for internal operations (secondary function).

Secondary functions for P9_0–P9_7 are set in bit units by the Port 9 secondary function control register (P9SF). For the pins that have secondary functions set by P9SF, I/O settings by P9IO become invalid.

<Description of Secondary Functions of Each Pin>

RXD2 (P9_0)

Receive data for the receive side serial port 2 is input through this pin.

• TXD2 (P9_1)

Transmit data for the transmit side serial port 2 is output through this pin.

• RXD3 (P9_2)

Receive data for the receive side serial port 3 is input through this pin.

• TXD3 (P9 3)

Transmit data for the transmit side serial port 3 is output through this pin.

• RXD4 (P9_4)

Receive data for the receive side serial port 4 is output through this pin.

• TXD4 (P9 5)

Transmit data for the transmit side serial port 4 is input through this pin.

• ETMCK (P9 6)

External clock input pin of the general-purpose 8-bit timer counter.

ECTCK (P9 7)

External clock input pin of the general-purpose 8-bit event counter.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, a watchdog timer is overflown, or an operation code trap is generated), P9 becomes a high impedance input.

2.11 P10_0-P10_7: Input/Output Pins

8-bit I/O pins of Port 10. I/O can be specified in bit units by the Port 10 mode register (P10IO).

P10 0-P10 7 also function as output pins for internal operations (secondary function).

Secondary functions for P10_0–P10_7 are set in bit units by the Port 10 secondary function control register (P10SF).

For the pins that have secondary functions set by P10SF, I/O settings by P10IO become invalid.

<Description of Secondary Functions of Each Pin>

• RTO12 (P10_0), RTO13 (P10_1)

The output pins from which the set level is output when the value of the registers 12 and 13 (TMR12, TMR13) for the flexible timer is consistent with the value of the selected counter. These are I/O pins that output the set level.

CAP14 (P10 2), CAP15 (P10 3)

When the specified edge is input to these pins for the specified number of times, the value of the selected counter is input to TMR14, TMR15.

• FTM16 (P10_4)

Output pins from which set level is output when the value of the register 16 (TMR16) for the flexible timer matches the value of the selected counter. This is true when the TMR16 is in RTO mode.

If this register is in CAP mode, the FTM16 pin is configured to be input pin. When the specified edge is input to this pin, the value of the selected counter is input to TMR16.

• SFTCLK (P10_5)

Shift clock output pin for the expansion port.

• SFTDAT (P10 6)

Serial data input/output pin for the expansion port.

• SFTSTB (P10_7)

Strobe signal output pin for externally latching serial data through the expansion port.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), P10 becomes a high impedance input.

If the $\overline{\text{OE}}$ pin (pin 71) is in "L" level when P10_0–P10_4 are in output status, these pins output "H" or "L" level, but if the $\overline{\text{OE}}$ pin is in "H" level, these pins go into high impedance status.

2.12 P11_0-P11_7: Input/Output Pins

8-bit I/O pins of Port 11. Individual bits can be specified as input or output by the Port 11 mode register (P11IO).

P11_0-P11_3 also function (secondary and tertiary functions) as I/O pins for internal operation.

<Description of Secondary/Tertiary Functions of Each Pin>

• RMRX (P11_0)

Address input pin for RAM monitor function.

Also functions (tertiary function) as data I/O pin for serial write mode of the MSM66Q591/ML66Q592 flash EEPROM.

• RMTX (P11_1)

Data output pin for RAM monitor function.

• RMCLK (P11 2)

Synchronous clock input pin for RAM monitor function.

Also functions (tertiary function) as clock input pin for serial write mode of the MSM66Q591/ML66Q592 Flash EEPROM.

• RMACK (P11 3)

Address match signal output pin for RAM monitor function.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), P11 becomes a high impedance input, except when the RAM monitor function is enabled.

2.13 P12_0, P12_1: Input/Output Pins

2-bit I/O pins of Port 12. Individual bits can be specified as input or output by the Port 12 mode register (P12IO).

P12_0 can also be made to function (secondary function) as an output pin for internal operation by setting the \overline{EA} pin to a "L" level. In the ML66592, P12_1, also, functions as its secondary function.

<Description of Secondary Functions of Each Pin>

• A16 (P12_0)

If the \overline{EA} pin has been set to a "L" level, this pin functions to output address A16 that is used to access external expanded program memory.

• A17 (P12 1)

If the \overline{EA} pin has been set to a "L" level, this pin functions to output address A17 that is used to access external expanded program memory. (ML66592 only)

2.14 AI0-AI23: Input Pins

Analog input pins of the A/D converter.

2.15 AV_{DD}: Input Pin

Power input pin of the A/D converter. Supply the same voltage as V_{DD} to this pin.

2.16 V_{RFF}: Input Pin

Reference voltage input pin of the A/D converter.

2.17 AGND: Input Pin

GND pin of the A/D converter.

2.18 OSC0, OSC1: Input Pin, Output Pin

Connection pins to connect the crystal oscillator, ceramic resonator or capacitors for basic clock oscillation. If the basic clock is supplied externally, input to the OSC0 pin, and leave the OSC1 pin open.

2.19 OE: Input Pin

When the \overline{OE} pin is in "H" level, and when each of P0–P2, P3_0–P3_3, P7_4–P7_7, P8, P10_0–P10_4, P12_0, and P12_1 is in output status, each pin goes into high impedance state.

2.20 NMI: Input Pin

Input pin of a non-maskable interrupt request.

2.21 RES: Input Pin

Input pin of low active reset.

2.22 EA: Input Pin

If the \overline{EA} pin is set to "H" level, internal program memory is accessed for the entire program address (0H–1FFFFH).

When in "H" level, the RAM monitor function is enabled.

If the \overline{EA} pin is set to "L" level, external program memory is accessed for the entire program address.

In the MSM66Q591/ML66Q592 flash EEPROM version, the RAM monitor function becomes enabled by setting the EA pin to a "H" level.

<u>Do not apply a high voltage (more than 5 V) to the \overline{EA} pin when using the MSM66591/ML66592 mask ROM version.</u>

2.23 TEST: Input Pin

Load test pin. Connect to GND.

In the MSM66Q591/ML66Q592 flash EEPROM version, this pin becomes a high voltage supply pin while writing to the flash EEPROM.

In the MSM66591/ML66592 mask ROM version, the RAM monitor function becomes enabled by setting the TEST pin to "H" level. Do not apply a high voltage (more than 5 V) to this pin.

2.24 V_{DD}: Input Pin

Power pin. Connect all the V_{DD} pins (pins 4, 41, 61, 80, 105, 127) to the power supply. Connect a bypass capacitor of 0.01 to 0.1 μ F between the V_{DD} and GND pins.

2.25 GND: Input Pin

GND pin. Connect all the GND pins (pins 32, 44, 62, 81, 106, 128) to the ground.

2.26 Structure of Pins

Table 2-1 and Figure 2-1 show the basic structure of each MSM66591/ML66592 pin.

Pin Name	Type No.	Pin Name	Type No.
P0_0-P0_7	6	P8_0-P8_7	5
P1_0-P1_7	5	P9_0-P9_7	5
P2_0-P2_7	5	P10_0-P10_7	5
P3_0-P3_7	5	P11_0-P11_7	5
P4_0-P4_7	5	P12_0, P12_1	5
P5_0-P5_7	5	AI0-AI23	3
DC 0 DC 7	5	ŌĒ	1
P6_0-P6_7	5	NMI	1
P7_0, P7_1	5	RES	2
P7_2, P7_3	4	ĒĀ	1

TEST

5

P7_4-P7_7

Table 2-1 Structure of Each Pin

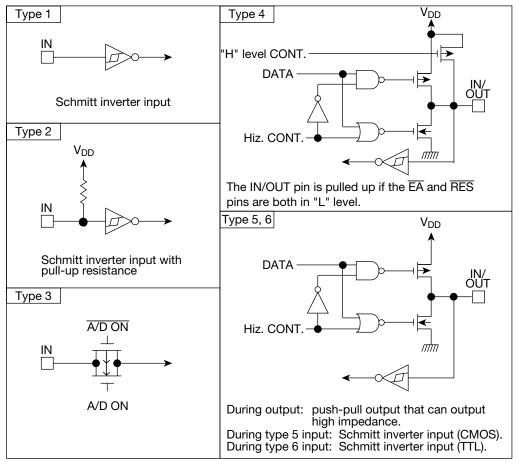


Figure 2-1 Pin Structure Types

2.27 Handling of Unused Pins

Table 2-2 shows how unused pins should be handled.

Table 2-2 Handling of Unused Pins

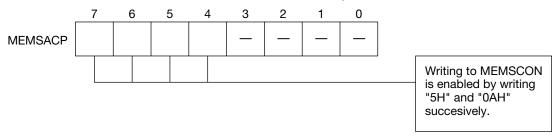
Pin	Recommended pin handling
P0_0-P0_7	
P1_0-P1_7	
P2_0-P2_7	
P3_0-P3_7	
P4_0-P4_7	
P5_0-P5_5	For input setting: "H" or "L" level
P6_0-P6_7	For output setting: open
P7_0-P7_7	
P8_0-P8_7	
P9_0-P9_7	
P10_0-P10_7	
P11_0-P11_7	
P12_0, P12_1	
AI0-AI23	Connect to V _{REF} or AGND
AV _{DD}	Connect to V
V _{REF}	Connect to V _{DD}
AGND	Connect to GND
ŌĒ	Set to "L" level
NMI	Set to "H" or "L" level
ĒĀ	Set to "H" level
TEST	Set to "L" level

CPU Architecture

3. CPU Architecture

3.1 Memory Space

Program memory space and data memory space in MSM66591/ML66592 are set independently. At reset, up to 64K bytes (small-sized memory model) can be accessed for program memory space, and up to 6K bytes (MSM66591) or 8K bytes (ML66592) for data memory space. By changing the setting of the memory size control register allocated to the SFR, the program memory space can be expanded up to 128K bytes (MSM66591) or 192K bytes (ML66592) (medium-sized memory model).


3.1.1 Memory Space Expansion

The memory size control register (MEMSCON) is a register allocated to the SFR area and specifies the size of the memory space. The program memory space can be expanded to 128K bytes (medium-sized memory model) by setting the LROM bit (bit 1) to "1". (Write "0" to bit 0.)

	7	6	5	4	3	2	1	0		
MEMSCON	_	_	_	_	_	_	LROM	"0"		
									0	Program Memory Space 64K bytes
									1	Program Memory Space 128K bytes ^{*1}

*1 192K bytes for the ML66Q592

To write to the LROM bit of MEMSCON, first write "5H" to the high-order 4 bits (low-order 4 bits are arbitrary data) of the memory size accepter (MEMSACP) allocated to the SFR area, then write "0AH" to them successively.

When an FJ or FCAL is executed with the LROM bit "0", an OP code trap is generated and a reset occurs.

When data is written to the LROM bit (setting to "1"), an actual memory space expansion is enabled after the instruction next to a LROM bit write instruction (setting to "1") is executed.

[&]quot;—" indicates a bit that is not provided.

[&]quot;1" is read if a read instruction is executed.

[&]quot;0" indicates a bit that is not provided.

[&]quot;0" is read if a read instruction is executed. Always write "0" to this bit for write.

Following is a programing example when expanding the program memory space.

This example indicates that the program memory space is expanded up to 128K bytes (MSM66591) or 192K bytes (ML66592) after the execution of NOP instruction.

MOVB MEMSACP, #50H MOVB MEMSACP, #0A0H SB LROM NOP

MSMSCON can be written only once after reset. Therefore, resetting (by RES signal input, by execution of BRK instruction, by watchdog timer (WDT) overflow, or by an operation code trap) is the only way to restore the program memory size to 64K bytes after it has been expanded to 128K bytes (MSM66591) or 192K bytes (ML66592).

3.1.2 Program Memory Space

Program memory space is referred to as "ROM space."

The MSM66591 can access a maximum of 128K (131072) bytes of program memory in 64K (65536)-byte unit (segment) for segments 0 and 1. The ML66592 can access a maximum of 192K (196608) bytes of program memory in 64K (65536)-byte unit (segment) for segments 0, 1 and 2. Since segment 3 is not provided, do not try to access it. However, if more than 64K bytes (segments 1 and 2) are accessed, the LROM bit of the MEMSCON (memory size control register) allocated to SFR must be set to "1".

The code segment register (CSR) specifies the segment to be used, and the program counter (PC) specifies the address in the segment. However, the segment to be used at execution of ROM table reference instructions (LC A, obj etc.) and the ROM window functions is specified by the table segment register (TSR).

In the MSM66591, the entire 128K-byte area of the sum of the 64K (65536)-byte area in segment 0 and the 64K (65536)-byte area in segment 1 is the internal ROM area.

In the ML66592, the entire 192K (196608)-byte area of the sum of the 64K-byte area in segment 0 and each 64K-byte area in segment 1 and segment 2 is the internal ROM area.

The following areas are assigned to segment 0:

- Vector table area (86 bytes)
- VCAL table area (32 bytes)

The ACAL area (2048 bytes) is assigned to each segment.

Figures 3-1(a) and 3-1(b) show the memory maps of program memory space.

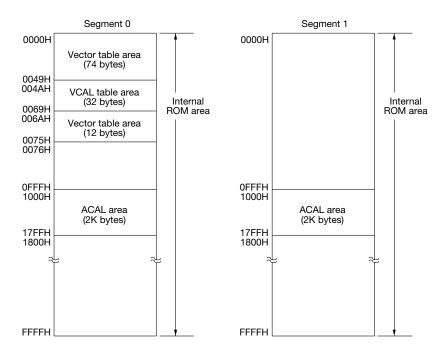


Figure 3-1(a) Memory Map of MSM66591 Program Memory Space

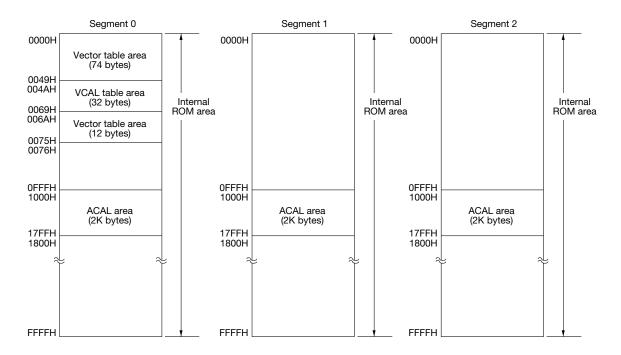


Figure 3-1(b) Memory Map of ML66592 Program Memory Space

[1] Accessing Program Memory Space

Program memory space is usually accessed by the program counter (PC) and the code segment register (CSR). However, when a ROM table reference instruction (LC A, obj...etc.) or a ROM window function (see Section 5.1) is executed, program memory space is accessed by the content of the table segment register (TSR) and the register specified by the instruction.

Accessing the internal ROM area and the external memory (ROM) area of the program memory space is automatically switched by an internal MSM66591/ML66592 operation by the status of the \overline{EA} pin (input: pin 3).

When "H" level is input to the \overline{EA} pin, the internal program memory area is accessed for the entire program address. When "L" level is input to the \overline{EA} pin, the external program memory area is accessed for the entire program address.

If the external memory area of the program memory space is accessed with the \overline{EA} pin in "L" level, Port 0 (I/O: pins 72–79: output of low address and input of data), Port 1 (output: pins 82–89: output of high address) and P12_0/A16 pin (output: pin 90: output of code segment) operates as the bus port, and the P7_3/PSEN pin (output: pin 56) becomes active synchronizing with the P7_2/ALE pin (output: pin 55). In ML66592, P12_1/A17 (output: pin 91: output of code segment) also operates as a bus port.

In MSM66591, the internal program fetch enable area is 00000H–1FFFDH. This means that the final address of instruction code must not exceed 1FFFDH. The final address of the table data is 1FFFFH.

In ML66592, the internal program fetch enable area is 00000H–2FFFDH. This means that the final address of instruction code must not exceed 2FFFDH. The final address of the table data is 2FFFFH.

Segment 3 is not provided in the ML66592. Therefore, do not access address 30000H or later.

[2] Vector Table Area

The 74-byte area and 12-byte area of program memory space, which are 0000H–0049H and 006AH–0074H in segment 0 respectively, are the vector table area (43 types). This program memory space is used to store branch addresses caused by reset by \overline{RES} (input: pin 2) input, reset by execution of BRK instruction, reset by watchdog timer (WDT) overflow, and reset by an operation code trap (OPTRP). It is also used to store branch addresses by various interrupt requests.

If a reset or interrupt occurs, a 2-byte content of a branch address, stored in the corresponding vector table, is loaded to the PC (an even address is insignificant data, the following odd address is significant data), while at the same time "0" is loaded to the CSR, and program execution starts from the loaded address in segment 0. Therefore, if the reset or interrupt occurs during execution of the instruction for segment 1, the program is executed from an address in segment 0.

If this area is not used as a vector table area, it can be used as a normal program area.

[Example] If the program start address by RES pin input is 0200H:

Program Address Data Code

0000H 00H (insignificant data of program start address)

0001H 02H (significant data of program start address)

Table 3-1 Vector Table List

Vector Table First Address [H]	Cause
0000	Reset by RES pin input
0002	Reset by BRK instruction execution
0004	Reset by WDT
0006	Reset by OPTRP (operation code trap)
0008	Interrupt by NMI pin input
000A	Interrupt by external interrupt pin input (INT0)
000C	Interrupt by TM0 overflow
000E	Interrupt by TM1 overflow
0010	Interrupt by CAP0 event generation
0012	Interrupt by CAP1 event generation
0014	Interrupt by CAP2 event generation
0016	Interrupt by CAP3 event generation
0018	Interrupt by double buffer RTO4 event generation
001A	Interrupt by double buffer RTO5 event generation
001C	Interrupt by double buffer RTO6 event generation
001E	Interrupt by double buffer RTO7 event generation
0020	Interrupt by double buffer RTO8 event generation
0022	Interrupt by double buffer RTO9 event generation
0024	Interrupt by double buffer RTO10 event generation
0026	Interrupt by double buffer RTO11 event generation
0028	Interrupt by SCI1 transmit/receive
002A	Interrupt by S0TM/S1TM/S2TM/S3TM/S4TM overflow
002C	Interrupt by GTMC/GEVC overflow
002E	Interrupt by end of conversion by A/D converter 1 in scan/select/hard select mode
0030	Interrupt by end of conversion by A/D converter 0 in scan/select/hard select mode
0032	Interrupt by PWC0/PWC1 underflow or match
0034	Interrupt by PWC2/PWC3 underflow or match
0036	Interrupt by SCI0 transmit/receive
0038	Interrupt by external interrupt pin input (INT1)
003A	Interrupt by double buffer RTO12 event generation
003C	Interrupt by double buffer RTO13 event generation
003E	Interrupt by PWC4/PWC5 underflow or match
0040	Interrupt by PWC6/PWC7 underflow or match
0042	Interrupt by CAP14 event generation
0044	Interrupt by CAP15 event generation
0046	Interrupt by flexible FTM16 event generation
0048	Interrupt by flexible FTM17 event generation

	Table 3-1	Vector	Table List	(continued)
--	-----------	--------	-------------------	-------------

Vector Table First Address [H]	Cause
6AH	Interrut by PWC8/PWC9 underflow or match
6CH	Interrut by PWC10/PWC11 underflow or match
6EH	Interrupt by SCI2 transmit/receive
70H	Interrupt by SCI3 transmit/receive
72H	Interrupt by SCI4 transmit/receive
74H	Interrupt by SCI5 transmit/receive or external interrupt pin input (INT2)

[3] VCAL Table Area

32-byte area of program memory space, 004AH–0069H in segment 0, is the VCAL table area to store branch addresses of 1 byte of a call instruction (VCAL: 16 types).

If a VCAL instruction is executed, the next address of the VCAL instruction is saved to the system stack, the system stack pointer (SSP) is decremented by 2, 2 bytes of the branch address content, stored in the corresponding vector address, is loaded to the PC (even address is insignificant data, the following odd address is significant data), and program execution is started from the loaded address.

If, however, the program memory space is expanded to 128K bytes (MSM66591) or 192K bytes (ML66592), the SSP is decremented by 4 because the CSR value is saved at the same time that the PC is saved. Also, "0" is loaded to the CSR at the same time that the branch address content is loaded to the PC. Therefore, if the VCAL instruction is executed in segment 1, the program is executed from a branch address in segment 0.

When the program memory space is 64K bytes (the LROM bit of MEMSCON is "0"), the subroutine branched by the VCAL instruction is returned by the RT instruction.

When the program memory space is 128K bytes (MSM66591) or 192K bytes (ML66592) (the LROM bit is "1"), the subroutine is returned by the FRT instruction.

If this area is not used as the VCAL table area, it can be used as a normal program area.

Table 3-2 shows the VCAL vector address list.

[Example] The program start address by VCAL 4AH is 0400H.

Program Address	Data Code	
004AH	00H	(insignificant data of subroutine first address)
004BH	04H	(significant data of subroutine first address)

Table 3-2 VCAL Vector Address List

VCAL Table First Address [H]	VCAL Instruction
004A	VCAL 4AH
004C	VCAL 4CH
004E	VCAL 4EH
0050	VCAL 50H
0052	VCAL 52H
0054	VCAL 54H
0056	VCAL 56H
0058	VCAL 58H
005A	VCAL 5AH
005C	VCAL 5CH
005E	VCAL 5EH
0060	VCAL 60H
0062	VCAL 62H
0064	VCAL 64H
0066	VCAL 66H
0068	VCAL 68H

[4] ACAL Area

2K-byte area of program memory space for each segment, 1000H–17FFH, is an area that can directly call subroutines by a 2-byte call instruction (ACAL). Since the ACAL instruction can call subroutines in the current segment, when an ACAL instruction is executed in segment 1, the ACAL area in segment 1 is called. If an ACAL instruction is executed, the next address of the next ACAL instruction is saved to the system stack, the system stack pointer (SSP) is decremented by 2, 11 bits of data, included in ACAL instruction code, is loaded to the PC, and program execution is started from the loaded address (1000H–17FFH). The CSR value does not change.

3.1.3 Data Memory Space

Data memory space is referred to "RAM space".

The MSM66591 can access a maximum of 6K (6144) bytes of data memory.

The ML66592 can access a maximum of 8K (8192) bytes of data memory.

The following areas are assigned to the data memory space: a special function register area (SFR area: 256 bytes), an expanded SFR area (256 bytes), a fixed page area (FIX area: 256 bytes), an internal RAM area (MSM66591: 6144 bytes, ML66592: 8192 bytes), a local register setting area (2048 bytes), and a ROM window setting area (MSM66591: 57344 bytes, ML66592: 53248 bytes).

The pointing register area (PR: 64 bytes) and the special bit addressing area (sbafix: 64 bytes) are located in the fixed page area.

In MSM66591, access to the area from 1A00H–FFFFH is inhibited since it is not located in internal RAM. However, the ROM window setting area (2000H–FFFFH) can be accessed only if the ROM window has been set.

In ML66592, access to the area from 2200H–FFFFH is inhibited since it is not located in internal RAM. However, the ROM window setting area (3000H–FFFFH) can be accessed only if the ROM window has been set.

Figures 3-2(a) and 3-2(b) show the memory maps of the data memory space.

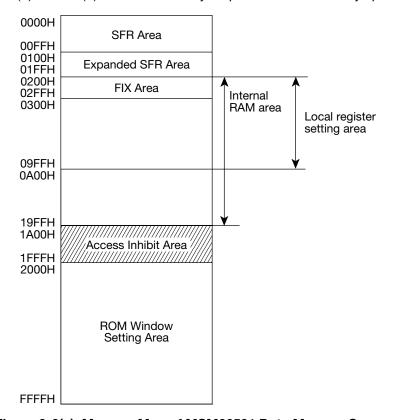


Figure 3-2(a) Memory Map of MSM66591 Data Memory Space

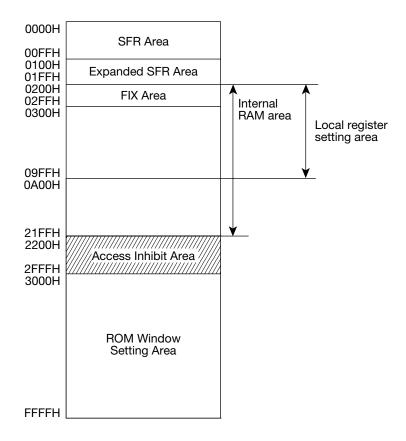


Figure 3-2(b) Memory Map of ML66592 Data Memory Space

[1] Special Function Register (SFR) Area

The following are assigned to the 256-byte area of data memory space, 0000H–00FFH: such special function registers as mode registers of MSM66591/ML66592 internal peripheral hardware, control registers and a counter.

[2] Expanded Special Function Register (Expanded SFR) Area

The same special function registers that the SFR area has are assigned to the 256 byte area of data memory space, 0100H–01FFH.

[3] Internal RAM Area

In the MSM66591, internal RAM is assigned to the 6K (6144)-byte area of data memory space, 0200H–19FFH.

In the ML66592, internal RAM is assigned to the 8K (8192)-byte area of data memory space, 0200H–21FFH.

[4] Fixed Page (FIX) Area

The following are assigned to the 256-byte area of data memory space, 0200H–02FFH: a pointing register (PR) area, and a special bit address area (sbafix).

The pointing register area is assigned to 0200H–023FH, and it has 8 sets of the following 4 registers.

- index registers (X1, X2)
- data pointer (DP)
- user stack pointer (USP)

All are 16-bit registers. Even addresses are insignificant data, and the following odd addresses are significant data.

The special bit address area is assigned to 02C0H–02FFH, so that SB, RB, JBR and JBS instructions to this area can be implemented in a small number of bytes.

Figure 3-3 shows the map of the fixed page area.

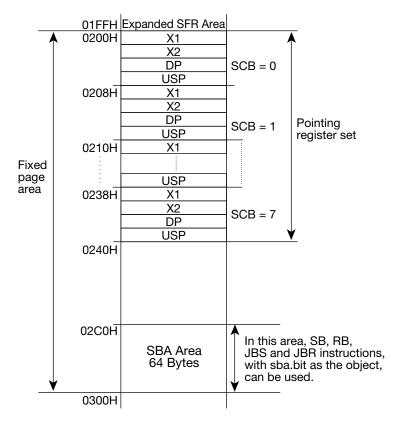


Figure 3-3 Map of Fixed Page Area

[5] Local Register Setting Area

A 2K-byte area of data memory, 0200H–09FFH, is the local register setting area. The local register is specified by LRB low-order 8 bits (LRBL) in 8-byte units.

Figure 3-4 shows the map of the local register setting area.

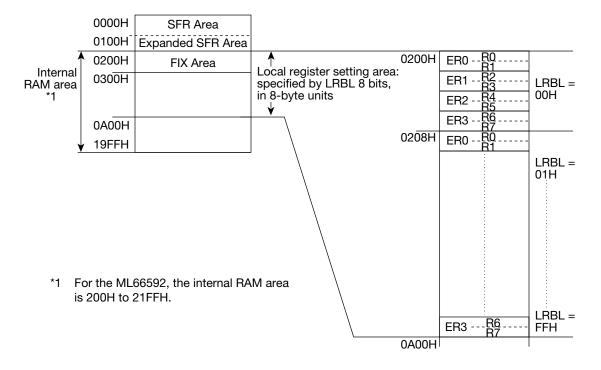


Figure 3-4 Map of Local Register Setting Area

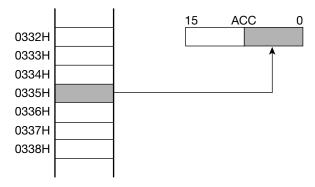
[6] ROM Window Setting Area

The 56K (57344)-byte area from 2000H to FFFFH in the data memory space of the MSM66591 is not allocated as data memory. However, this area is used by the ROM window function if set by the ROM window setting register.

The 52K (53248)-byte area from 3000H to FFFFH in the data memory space of the MSM66591 is not allocated as data memory. However, this area is used by the ROM window function if set by the ROM window setting register.

Corresponding to the specified area (MSM66591: 2000H and above, ML66592: 3000H and above) of data memory, the ROM window function enables instructions to access (read operation) data in the program space at the same address instead of data in the data memory space.

There are two conditions for the ROM window function to be valid, (1) register settings (ROMWIN) must enable the ROM window function, and (2) the accessed address (read operation) must be in external data memory area.

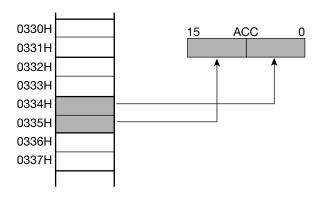

3.1.4 Data Memory Access

Examples of memory access when a byte operation and a word operation are performed to a data memory space by an instruction are shown below.

[1] Byte Operation

In the case of a byte operation, the 8-bit data indicated by the address specified by an instruction becomes the target.

[Example] LB A, [DP]: when content of DP is 0335H



[2] Word Operation

In the case of a word operation, the target is 16-bit data with 8-bit data indicated by an address in which the least significant bit (LSB) "0" (even address) becomes low-order 8-bit data, and 8-bit data indicated by an address in which LSB "1" (odd address) becomes high-order 8-bit data.

16-bit data where low-order 8 bits are allocated in an odd address and high-order 8 bits are allocated in an even address is inaccessible. (A boundary exists during word operation.) Such a boundary does not exists in the program memory space.

[Example] L A, [DP]: when content of DP is 0334H (or 0335H)

In the avobe example, 16-bit data where low-order 8 bits are allocated in 0333H and high-order 8 bits are allocated in 0334H is inaccessible.

3.2 Registers

Registers are classified by the following functions: the arithmetic registers, control registers, pointing registers, special function registers, local registers, and segment registers.

Figure 3-5 shows the configuration of each register.

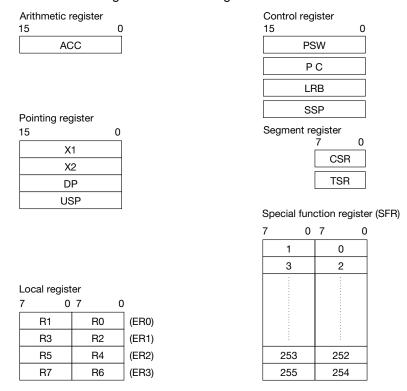


Figure 3-5 Configuration of Register

3.2.1 Arithmetic Register (ACC)

The 16-bit arithmetic register is the accumulator (ACC), a central register for various operations.

If the transfer, operation, etc. is

- Word type, all 16 bits (bits 15-0) are accessed.
- Byte type, the low-order 8 bits (bits 7–0) are accessed.
- Nibble type, the low-order 4 bits (bits 3–0) are accessed.

If the target bits are specified (SBR, RBR...) by ACC with a bit operation instruction, the high-order 5 bits (bits 7–3) of the low-order 8 bits become the offset specification of an address, and the low-order 3 bits (bits 2–0) become the bit position specification.

ACC is assigned to SFR, and the content becomes 0000H at reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated.)

3.2.2 Control Register

Control registers are a group of registers that have dedicated functions, such as functions for program status, program sequence, local registers, and stack control. Control registers consist of four 16-bit registers.

[1] Program Status Word (PSW)

PSW is a 16-bit register that consists of

- flags to be referred to when executing an instruction (DD)
- flags that are set to "1" or "0" depending on the result of an executing instruction (CY, ZF, HC, S, OV)
- flags to specify the pointing register set (SCB0-2)
- flags to specify enable ("1") or disable ("0") of an entire maskable interrupt (MIE)
- flags that the user can freely use (F0-2)
- flags available for future expansion of CPU core functions. The user can freely use these flags in MSM66591/ML66592. (BCB0, 1, MAB)

PSW can be divided into PSWH (bits 8–15) and PSWL (bits 7–0) in 8-bit units, and can perform 8-bit unit operations as well as 16-bit unit operations depending on the instruction.

Figure 3-6 shows the configuration of PSW.

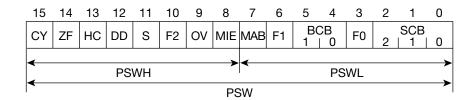


Figure 3-6 Configuration of PSW

High-order 8 bits (PSWH) of PSW include:

- flags to be referred to when executing an instruction (DD)
- flags that are set to "1" or "0" depending on the result of an executing instruction (CY, ZF, HC, DD, S, OV)

This means that <u>if the following instructions are executed to PSW or PSWH, the operation may be different from the original operation of the flags.</u>

- A. PSW or PSWH content load instruction to ACC (ZF becomes undefined)
- B. Bit operation instruction to ZF (ZF becomes undefined)

C. Instructions for increment, decrement, and arithmetic and logic operation and comparison to PSW or PSWH (content of PSW or PSWH is undefined after the instruction is executed).

If an interrupt occurs, PSW is automatically saved during an interrupt transition cycle, and automatically returns when an RTI instruction is executed.

PSW is assigned to SFR, and the content becomes 0000H at reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated.)

A description of each PSW bit follows:

Bit 15: carry flag (CY)

A carry flag is set to "1" if:

- carry from bit 7 occurs in a byte operation
- borrow to bit 7 occurs in a byte operation
- carry from bit 15 occurs in a word operation
- borrow to bit 15 occurs in a word operation

as a result of executing an arithmetic instruction and a comparison instruction, otherwise, it is set to "0". Carry flags can be set/reset depending on the instruction, and can transmit/receive data for the bit specified by register. A carry flag can be tested by a conditional branch instruction.

Bit 14: zero flag (ZF)

A zero flag is set to "1" if:

- the value is zero as a result of an arithmetic instruction execution
- the loaded content is zero when a load instruction to ACC is executed
- the target bit is zero when a bit operation instruction is executed otherwise, it is set to "0". A zero flag can be tested by a conditional branch instruction.

Bit 13: half carry flag (HC)

A half carry flag is set to "1" if a carry or borrow from bit 3 occurs as a result of executing an arithmetic operation and comparison instruction (same for both byte and word operations), otherwise, it is set to "0".

Bit 12: data descriptor (DD)

A data descriptor indicates the attributes of data stored in ACC, and

- If DD is "1", ACC data is valid for 16 bits
- If DD is "0", ACC data is valid for the low-order 8 bits

When DD is referred to for an arithmetic instruction and data transfer instruction execution with ACC:

- the operation and transfer in word units are executed if DD is "1"
- the operation and transfer in byte units are executed if DD is "0"

DD is set to "1" or "0" when the data transfer instruction to ACC is executed, and also set or reset when a dedicated set or reset instruction is executed.

This means that:

- DD is set to "1" when a word type load instruction to ACC is executed, and when an SDD instruction is executed.
- DD is set to "0" when a byte type load instruction to ACC is executed, and when an RDD instruction is executed.

If the state of DD is changed when a load instruction to ACC or a dedicated set or reset instruction is executed, the next instruction, if it is an instruction to refers to DD, is executed referring to the DD whose state has been changed.

Since DD is assigned to PSW, DD can also be changed by instructions other than the instructions above. In this case, if the next is an instruction to refer to DD, the state of DD to be changed is referred to in order to execute the instruction. If DD is used in this manner, insert an NOP instruction, next to the instruction that directly changes the state of DD.

Bit 11: sign flag (S)

A sign flag is set if MSB is "1", as a result of executing an arithmetic or logic instruction, and is reset if MSB is "0".

Bit 10: user flag 2 (F2)

Bit 6: user flag 1 (F1)

Bit 3: user flag 0 (F0)

These flags can be set to "1" or "0" depending on the instruction.

Bit 9: overflow flag (OV)

An overflow flag is set to "1" if the result of executing an arithmetic instruction exceeds the range expressed by a complement of 2 (–128 to +127 in the case of a byte operation; –32768 to +32767 in the case of a word operation), otherwise it is set to "0".

Bit 8: master interrupt enable flag (MIE)

A master interrupt enable flag controls enable ("1") and disable ("0") of an entire maskable interrupt. This flag is set to "0" after it is saved to the system stack as PSW during a maskable interrupt transition cycle, and returns by executing an RTI instruction. If MIE is set to "1", the generation of an entire maskable interrupt is enabled from the next instruction. If MIE is set to "0", an entire maskable interrupt is disabled from the next instruction.

Bit 7: sum of product operation function bank flag (MAB)

Since the MSM66591/ML66592 have no sum of product operation function, MAB can be used as a user flag.

Bit 5: bank common base 1 (BCB1)

Bit 4: bank common base 0 (BCB0)

Since the MSM66591/ML66592 have no bank common base function, these flags can be used as user flags.

Bit 2: system control base 2 (SCB2)

Bit 1: system control base 1 (SCB1)

Bit 0: system control base 0 (SCB0)

These flags specify setting the pointing register (PR) assigned to a fixed page area.

	SCB		Setting of Pointing
2	1	0	Register
0	0	0	PR0 (0200H-0207H)
0	0	1	PR1 (0208H-020FH)
0	1	0	PR2 (0210H-0217H)
0	1	1	PR3 (0218H-021FH)
1	0	0	PR4 (0220H-0227H)
1	0	1	PR5 (0228H-022FH)
1	1	0	PR6 (0230H-0237H)
1	1	1	PR7 (0238H-023FH)

[2] Program Counter (PC)

The PC is a 16-bit counter that holds the address information in the segment of the program to be executed next. PC is normally incremented according to the number of bytes of an instruction to-be-executed. If a branch instruction or an instruction that requires a branch is executed, immediate data, register content, etc. are loaded.

The CSR value does not change even if an overflow occurs because of an increment in PC.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), or when an interrupt occurs, the content of the vector table area is loaded to the PC.

[3] Local Register Base (LRB)

The LRB is a 16-bit register. The low-order 8 bits (LRBL) specifies 2K bytes of data memory space, 0200H–09FFH, in 8 byte units (local register addressing).

The high-order 8 bits (LRBH) specify 64K bytes of data memory space in 256 byte units (current page addressing). 64 bytes of the current page, xxC0H-xxFFH, is an area that SB, RB, JBR, and JBS instructions can access by specifying the sba.bit addressing. Both LRBL (02H) and LRBH (03H) are assigned to SFR, and the content is undefined at reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated).

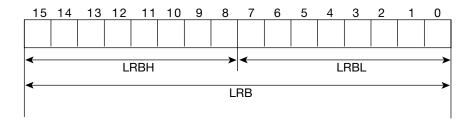
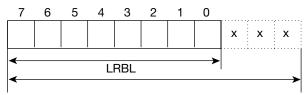
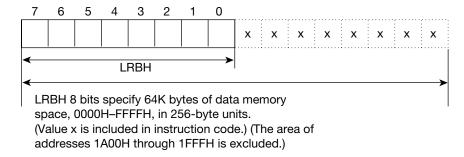



Figure 3-7 Configuration of LRB


• LRBL 8 bits specify 2K bytes of data memory space, 0200H-09FFH, in 8-byte units.

LRBL 8 bits specify 2K bytes of data memory space, 0200H–09FFH, in 8-byte units.

(Value x is included in instruction code.)

 LRBH 8 bits specify 64K bytes of data memory space, in 256-byte units. (The area of addresses 1A00H through 1FFFH is excluded.)

[4] System Stack Pointer (SSP)

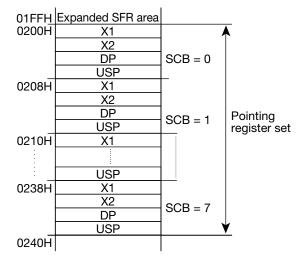
SSP is a 16-bit register that indicates the stack address to save or return PC, registers, etc. while handling an interrupt and executing CAL, PUSH, RT, and POP instructions. SSP is automatically incremented or decremented depending on the process to be executed.

A save or return to the stack address indicated by SSP is performed in word units, so the least significant bit (LSB) of SSP is addressed as "0".

The SFR area and expanded SFR area cannot be used as the stack.

SSP (00H) is assigned to SFR, and the content becomes FFFFH at reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated).

3.2.3 Pointing Register (PR)


PR has 8 sets. 1 set consists of the following four 16-bit registers.

- index register 1 (X1)
- index register 2 (X2)
- data pointer (DP)
- user stack pointer (USP)

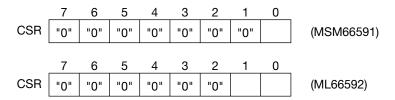
PR is assigned to 0200H–023FH of the internal RAM area, and one of the 8 sets is selected by SCB0–2 of PSWL.

If the PR function is not used, PR can be used as internal RAM.

For all of X1, X2, DP and USP, even addresses are low-order 8 bits. The following odd addresses are high-order 8 bits.

3.2.4 Local Registers (R, ER)

R is an 8-bit register, ER is a 16-bit register. R and ER specify 2K bytes of data memory space, 0200H–09FFH, in 8 byte units by the LRBL low-order 8 bits of the local register base. 1 byte of the specified 8 bytes is assigned as R by 3-bit data of a local register operation instruction. (2 bytes are assigned as ER by 2-bit data.)



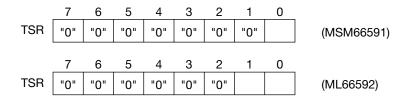
3.2.5 Segment Register

The segment register consists of two 8-bit registers: code segment register (CSR) and table segment register (TSR). It selects a segment in the program memory space. Since the program memory space of MSM66591 has only two segments, segment 0 and segment 1, only bit 0 is valid for both the CSR and the TSR. Bits 1 to 7 are fixed to "0".

Since the program memory space of ML66592 has only segments 0, 1 and 2, only bits 0 and 1 are valid for both the CSR and the TSR. Bits 2 to 7 are fixed to "0". (Do not access segment 3.)

[1] Code Segment Register (CSR)

CSR specifies the segment in the program memory space to which the program code being executed belongs. CSR is given as an independent 8-bits register, and is not assigned to the SFR area.


CSR can be reloaded by the FJ, FCAL, FRT, and RTI instructions and an interrupt. No other methods can reload CSR. <u>Since in the MSM66591 CSR has only one valid bit while in the emulator for the MSM66591 CSR has two valid bits, specify either segment 0 or segment 1 when executing the FJ or FCAL instruction for MSM66591.</u>

Since in the ML66592 segment 3 is not provided, specify segment 0, 1 or 2 when executing the FJ or FCAL instruction (do not access segment 3).

Each segment is assigned offset addresses of 0 through 0FFFFH. The address calculation for determining the addressing target is performed by a 16-bit offset address, and the resulting overflow and underflow are ignored, which therefore never results in change in the CSR. Similarly, a PC overflow never updates the CSR. Therefore, without the use of the CSR reloading method described above, a program execution does not progress beyond the code segment boundary. The CSR value at reset is 00H.

When an interrupt is generated after the program memory space is extended to 128K bytes (MSM66591) or 192K bytes (ML66592), the current CSR value, along with the PC, is automatically saved onto the stack. Executing the RTI instruction returns the saved value to CSR. (See Section 3.1.1, "Memory Space Expansion.")

[2] Table Segment Register (TSR)

TSR specifies the segment (in the program memory space) to which the table data belongs. TSR is an 8-bit register which is assigned to the SFR area.

TSR can be read/written by the program. Data in the table segment can be accessed using the ROM reference instructions (LC, LCB, CMPC, and CMPCB). By executing the ROM window function, RAM addressing can be used for this table segment.

In MSM66591, only bit 0 of TSR is valid. If a read instruction is executed, "0s" are read from bits 1 to 7. Since in the MSM66591 TSR has only one valid bit while on the emulator for the MSM66591 TSR has two valid bits, be sure to write "0s" to bits 1 to 7 when writing to TSR.

In ML66592, only bits 0 and 1 of TSR are valid. If a read instruction is executed, "0s" are read from bits 2 to 7. Since in the ML66592 segment 3 is not provided, do not access segment 3. When writing to TSR, be sure to write "0s" to bits 2 to 7.

Each segment is assigned offset addresses of 0 through 0FFFFH. The address calculation for determining the addressing target is performed by a 16-bit offset address, and the resulting overflow and underflow are ignored, which therefore never results in a change in TSR. The TSR value at reset is 00H.

3.2.6 Special Function Register (SFR)

The SFR area is a 256-byte area of data memory space, 0000H–00FFH, and the expanded SFR area is another 256-byte area of data memory space, 0100H–01FFH.

SFR and expanded SFR are groups of registers that have special functions assigned, such as:

- mode register of various peripheral hardware
- arithmetic register (ACC)
- control registers (PSW, LRBL, LRBH, SSP)

Table 3-3 shows the SFR list. The meaning of items in this list are explained below.

• Address [H] An address is expressed in hexadecimal. "☆" in the address column

indicates that there is a missing bit (nonexistent bit) in the register.

Name Name based on the SFR function.

Abbreviated
 Name

Abbreviation of name and data address symbol in assembler. Specifically SSP, LRB, LRBL, LRBH, PSW, PSWL and PSWH become ASSP, ALRB, ALRBL, ALRBH, APSW, APSWL and

APSWH respectively.

R/W Read (R)/write (W) possibility of SFR

R/W both read and write enable

R read only W write only

• 8/16-Bit Operation

8-bit operation/16-bit operation possibility of SFR.

Specify a 16-bit operation for a 16-bit operable register by an even

address.

The bit operation to a 16-bit operation-only register is disabled.

8/16 both 8-bit operation and 16-bit operation enable

8 8-bit operation only16 16-bit operation only

Reset State

Indicates content of each SFR at reset (when RES signal is input, the BRK instruction is executed, the watchdog timer is over-

flown, or an operation code trap is generated).

In Table 3-3, addresses where nothing has been assigned are indicated by blank columns. Do not access them.

[Note]

Do not perform the following operations to SFR:

- A. A write operation to a read-only SFR
- B. A read operation to a write-only SFR
- C. A 16-bit operation to an 8-bit operation-only SFR
- D. An 8-bit operation to a 16-bit operation-only SFR
- E. A 1-bit operation to a 16-bit operation-only SFR
- F. An operation to an address where register, etc. are not assigned
- G. An operation to the emulator use area

Table 3-3 SFRs

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
0000	Cyctom Ctook Dointor		000		16	
0001	System Stack Pointer	_	SSP		16	FFFF
0002	Local Register Base	LRBL	LDD			المماملات مما
0003	Local negister base	LRBH	LRB			Undefined
0004	Program Status Word	PSWL	DOM	R/W		00
0005	Flogram Status Word	PSWH	PSW		8/16	00
0006	Accumulator	ACCL	100			00
0007	Accumulator	ACCH	ACC			00
0008☆	Table Segment Register	TSR	_		8	00
0009						
000A						
000B☆	ROM Window Register	ROMWIN	_	R/W	8	F0
000C☆	ROM Ready Control Register	ROMRDY	_	L/ AA	0	FF
000D						
000E	Stop Code Acceptor	STPACP	_	W	8	"0"
000F☆	Standby Control Register	SBYCON	_	R/W	0	C8
0010	Port 0 Data Register	P0	_			00
0011	Port 1 Data Register	P1	_		8	00
0012	Port 2 Data Register	P2	_			00
0013	Port 3 Data Register	P3	_			00
0014	Port 4 Data Register	P4	_			00
0015	Port 5 Data Register	P5	_	R/W		00
0016	Port 6 Data Register	P6	_			00
0017	Port 7 Data Register	P7	_			00
0018	Port 8 Data Register	P8	_			00
0019	Port 9 Data Register	P9	_			00
001A	Port 10 Data Register	P10	_			00
001B	Port 11 Data Register	P11	_			00
001C	Port 2 Secondary Function Control Register	P2SF	_			00
001D	Port 3 Secondary Function Control Register	P3SF	_			00
001E	Port 4 Secondary Function Control Register	P4SF	_			00
001F	Port 5 Secondary Function Control Register	P5SF	_			00
0020	Port 6 Secondary Function Control Register	P6SF	_	R/W	8	00
0021☆	Port 7 Secondary Function Control Register	P7SF	_			00
0022	Port 8 Secondary Function Control Register	P8SF	_			00
0023	Port 9 Secondary Function Control Register	P9SF	_			00
0024	Port 10 Secondary Function Control Register	P10SF	_			00
0025☆	Port 12 Data Register	P12	_	R/W	8	00
0026	SCI1 Transmit/Receive Buffer Register	S1BUF	_			Undefined
0027	SCI1 Status Register	S1STAT	_	R/W		00
0028	SCI0 Transmit/Receive Buffer Register 0	S0BUF0	_		8	Undefined
0029	SCI0 Receive Buffer Register 1	S0BUF1	_			Undefined
002A	SCI0 Receive Buffer Register 2		_	R		Undefined
002B	SCI0 Receive Buffer Register 3	S0BUF3	_			Undefined

Addresses in the address column marked by " \updownarrow " indicate that the register has bits missing.

Table 3-3 SFRs (continued)

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
002C	SCI2 Transmit/Receive Buffer Register 0	S2BUF0	_	R/W		Undefined
002D	SCI2 Receive Buffer Register 1	S2BUF1	_			Undefined
002E	SCI2 Receive Buffer Register 2	S2BUF2	_	R		Undefined
002F	SCI2 Receive Buffer Register 3	S2BUF3	_			Undefined
0030	SCI3 Transmit/Receive Buffer Register 0	S3BUF0	_	R/W		Undefined
0031	SCI3 Receive Buffer Register 1	S3BUF1	_			Undefined
0032	SCI3 Receive Buffer Register 2	S3BUF2	_	R		Undefined
0033	SCI3 Receive Buffer Register 3	S3BUF3	_			Undefined
0034	SCI4 Transmit/Receive Buffer Register 0	S4BUF0	_	R/W		Undefined
0035	SCI4 Receive Buffer Register 1	S4BUF1	_			Undefined
0036	SCI4 Receive Buffer Register 2	S4BUF2	_	R	8	Undefined
0037	SCI4 Receive Buffer Register 3	S4BUF3	_			Undefined
0038	SCI0 Status Register 0	S0STAT0	_			00
0039☆	SCI0 Interrupt Control Register	SROINT	_			01
003A	SCI2 Status Register 0	S2STAT0	_			00
003B☆	SCI2 Interrupt Control Register	SR2INT	_	R/W		01
003C	SCI3 Status Register 0	S3STAT0	_			00
003D☆	SCI3 Interrupt Control Register	SR3INT	_			01
003E	SCI4 Status Register 0	S4STAT0	_			00
003F☆	SCI4 Interrupt Control Register	SR4INT	_			01
0040	International Description O	IRQ0L	IPOO			00
0041	Interrupt Request Register 0	IRQ0H	IRQ0		8/16	00
0042	Intermed Decreet Decistor 1	IRQ1L	IRQ1	R/W	0/10	00
0043	Interrupt Request Register 1	IRQ1H	InQI			00
0044☆	Interrupt Request Register 2	IRQ2L	_		8	C0
0045						
0046	Interrupt Enable Desister O	IE0L	IE0			00
0047	Interrupt Enable Register 0	IE0H	ILU	R/W	8/16	00
0048	Interrupt Enable Degister 1	IE1L	IE1	□/ VV	0/10	00
0049	Interrupt Enable Register 1	IE1H	ILI			00
004A☆	Interrupt Enable Register 2	IE2L	_		8	C0
004B						
004C	Watchdog Timer	WDT	_	W	8	Stop
004D			_			
004E☆	General-Purpose 8-Bit Timer Interrupt Control Register	GTINTCON	_	R/W	8	F0
004F	Transition Detector	TRNSIT	_			00
0050	PWM Counter 0/		PWC0/			FFFF
0051	PWC0 Buffer Register	_	PWC0BF			FFFF
0052	PWM Counter 1/		PWC1/	R/W	16	FFFF
0053	PWC1 Buffer Register	_	PWC1BF	(*1)		FFFF
0054	PWM Counter 2/		PWC2/	` '		CCCC
0055	PWC2 Buffer Register	_	PWC2BF			FFFF

Addresses in the address column marked by " \dot{x} " indicate that the register has bits missing.

Table 3-3 SFRs (continued)

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
0056	PWM Counter 3/		PWC3/		-	CCCC
0057	PWC3 Buffer Register	_	PWC3BF			FFFF
0058	PWM Counter 4/		PWC4/			FFFF
0059	PWC4 Buffer Register	_	PWC4BF			ГГГГ
005A	PWM Counter 5/		PWC5/			FFFF
005B	PWC5 Buffer Register		PWC5BF			1111
005C	PWM Counter 6/		PWC6/			FFFF
005D	PWC6 Buffer Register		PWC6BF			1111
005E	PWM Counter 7/		PWC7/	R/W		FFFF
005F	PWC7 Buffer Register		PWC7BF	(*1)		1111
0060	PWM Counter 8/	_	PWC8/			FFFF
0061	PWC8 Buffer Register		PWC8BF			1111
0062	PWM Counter 9/	_	PWC9/		16	FFFF
0063	PWC9 Buffer Register		PWC9BF			
0064	PWM Counter 10/	_	PWC10/			FFFF
0065	PWC10 Buffer Register		PWC10BF			
0066	PWM Counter 11/		PWC11/			FFFF
0067	PWC11 Buffer Register		PWC11BF			
0068	PWM Register 0/	_	PWR0/			0000
0069	PWR0 Buffer Register		PW0BF			
006A	PWM Register 1/	_	PWR1/			0000
006B	PWR1 Buffer Register		PW1BF			
006C	PWM Register 2/	_	PWR2/			0000
006D	PWR2 Buffer Register		PW2BF			0000
006E	PWM Register 3/	_	PWR3/			0000
006F	PWR3 Buffer Register	_	PW3BF			0000
0070	PWM Register 4/		PWR4/			0000
0071	PWR4 Buffer Register	_	PW4BF			0000
0072	PWM Register 5/		PWR5/	R/W		0000
0073	PWR5 Buffer Register	_	PW5BF	(*2)		0000
0074	PWM Register 6/		PWR6/	()		0000
0075	PWR6 Buffer Register	_	PW6BF			0000
0076	PWM Register 7/		PWR7/			0000
0077	PWR7 Buffer Register	_	PW7BF			0000
0078	PWM Register 8/		PWR8/			0000
0079	PWR8 Buffer Register	_	PW8BF			0000
007A	PWM Register 9/		PWR9/		[0000
007B	PWR9 Buffer Register		PW9BF			0000
007C	PWM Register 10/		PWR10/			0000
007D	PWR10 Buffer Register		PW10BF			0000
007E	PWM Register 11/		PWR11/			0000
007F	PWR11 Buffer Register		PW11BF			0000
0800	PWMRUN Register	PWRUNL PWRUNH	PWRUN	R/W	8/16	00
0081☆	i vvivii iOiv i iegistei					F0

Addresses in the address column marked by "\$\pi\$" indicate that the register has bits missing.

Table 3-3 SFRs (continued)

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
0082	DVA(AALL LEG LEG LEG LEG LEG LEG LEG LEG LEG L	PWINTQ0L	DWANTERS			00
0083☆	PWM Interrupt Register 0	PWINTQ0H	PWINTQ0		8/16	F0
0084	PWM Interrupt Register 1	PWINTQ1L	PWINTQ1			00
0085☆	- Will interrupt negister i	PWINTQ1H	1 WINTQ1	R/W		F0
0086	PWM Interrupt Enable Register 0	PWINTE0L	PWINTE0	11/ / /	0/10	00
0087☆	T WWW Interrupt Enable Hegieter 6	PWINTE0H				F0
0088	PWM Interrupt Enable Register 1	PWINTE1L	PWINTE1			00
0089☆	T TTTT INTO TAPE ENGINE TROSPOSO	PWINTE1H				F0
A800	Timer Register 0	_	TMR0			Undefined
008B						
008C	Timer Register 1		TMR1			Undefined
008D	Timor riogistor r		1101111	R		
008E	Timer Register 2		TMR2	• •		Undefined
008F	Timer register 2		1101112			Orideliried
0090	Timer Register 3	_	TMR3			Undefined
0091						
0092	Timer Register 4	_	TMR4			0000
0093	- I I I I I I I I I I I I I I I I I I I					
0094	Timer Register 5	_	TMR5			0000
0095			TMR6			
0096	Timer Register 6	_				0000
0097						
0098	Timer Register 7	_	TMR7			0000
0099						
009A	Timer Register 8	_	TMR8			0000
009B				TMR9	16	
009C	Timer Register 9	<u> </u>	TMR9			0000
009D						
009E 009F	Timer Register 10	<u> </u>	TMR10			0000
00A0						
00A0 00A1	Timer Register 11	<u> </u>	TMR11			0000
00A1 00A2	_					
00A2	Timer Register 12	-	TMR12			0000
00A3						
00A5	Timer Register 13	_	TMR13			0000
00A5 00A6					1	
00A7	Timer Register 14	_	TMR14			Undefined
00A7				R		
00A9	Timer Register 15	_	TMR15			Undefined
00AA					-	
00/IT	Timer Register 16	_	TMR16			0000
00AC				R/W		
00AD	Timer Register 17	-	TMR17			0000

Addresses in the address column marked by "\$\paraller{a}\$" indicate that the register has bits missing.

Table 3-3 SFRs (continued)

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
00AE	TMD4 Dieffer Decister		TMD4DE			0000
00AF	TMR4 Buffer Register	_	TMR4BF			0000
00B0	TMR5 Buffer Register		TMR5BF			0000
00B1	TWING Bullet Negister		TWITTODI			
00B2	TMDC Duffer Desister		TMR6BF			0000
00B3	TMR6 Buffer Register	_	TIVINODE			
00B4	TMR7 Buffer Register	_	TMR7BF			0000
00B5						
00B6	TMR8 Buffer Register	_	TMR8BF			0000
00B7	Tim to Barrot Flogictor					
00B8	TMR9 Buffer Register	_	TMR9BF		16	0000
00B9				R/W		
00BA	TMR10 Buffer Register	<u> </u>	TMR10BF			0000
00BB	-					
00BC	TMR11 Buffer Register	_	TMR11BF			0000
00BD	Thirt Daniel Hegiote					
00BE	TMR12 Buffer Register	_	TMR12BF			0000
00BF	TWIN 12 Bullet negister — TWIN 12 Bi			-		
00C0	TMR13 Buffer Register	_	TMR13BF			0000
00C1						
00C2	Timer Setting Register	_	TMSEL			0000
00C3		TNACELO				
00C4☆	Timer Setting Register 2	TMSEL2	_		8	FC
00C5	DT0 0	DTOODIL				
00C6☆	RTO Control Register 4	RTOCON4	_			F8
00C7☆	RTO Control Register 5	RTOCON5	_			F8
00C8☆	RTO Control Register 6	RTOCON6	_		-	F8
00C9☆	RTO Control Register 7	RTOCON7	_		-	F8
00CA☆	RTO Control Register 8	RTOCON8	_			F8
00CB☆	RTO Control Register 9	RTOCON10	_			F8
00CC☆	RTO Control Register 10	RTOCON10	_		8	F8
00CD☆	RTO Control Register 11	RTOCON11	_			F8
00CE☆	RTO Control Register 12	RTOCON12	_	R/W		F8
00CF☆	RTO Control Register 13	RTOCON16	_			F8
00D0☆	RTO Control Register 16	RTOCON17	_			F8
00D1☆	RTO Control Register 17	RTOCON17	_			F8
00D2	4-Port RTO Control Register	RTO4CON	_			00
00D3☆	Timer Counter 0 Low-Order 4 Bits	TM0L	_			0F
00D4	Timer Counter 0	_	TM0			0000
00D5					16	
00D6	Timer Counter 1	_	TM1			0000
00D7						

Addresses in the address column marked by "\$\paraller \" indicate that the register has bits missing.

Table 3-3 SFRs (continued)

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
0050	TMD0 L O! 4 P.		INATHE (WOND)		Operation	Undefined
00D8	TMR0 Low-Order 4 Bits	TMR0L	_			
00D9	TMR1 Low-Order 4 Bits	TMR1L	_	R		Undefined Undefined
00DA	TMR2 Low-Order 4 Bits	TMR2L	_			
00DB	TMR3 Low-Order 4 Bits	TMR3L	_		8	Undefined
00DC	Timer Control Register	TMCON	_			00
00DD☆	Event Control Register 2	EVNTCON2	_	R/W		88
00DE☆	Event Control Register L	EVNTCONL	_			88
00DF☆	Event Control Register H	EVNTCONH				88
00E0	A/D Result Register 0	_	ADCR0			Undefined
00E1	A/D Result Register 1	_	ADCR1			Undefined
00E2	A/D Result Register 2		ADCR2			Undefined
00E3	A/D Result Register 3	_	ADCR3			Undefined
00E4	A/D Result Register 4	_	ADCR4	R/W	16	Undefined
00E5	A/D Result Register 5	_	ADCR5	(*3)		Undefined
00E6	A/D Result Register 6	_	ADCR6	(3)		Undefined
00E7	A/D Result Register 7	_	ADCR7			Undefined
00E8	A/D Result Register 8	_	ADCR8			Undefined
00E9	A/D Result Register 9	_	ADCR9			Undefined
00EA	A/D Result Register 10	_	ADCR10			Undefined
00EB	A/D Result Register 11	_	ADCR11			Undefined
00EC☆	A/D0 Control Register L	ADCON0L	_			80
00ED☆	A/D0 Control Register H	ADCON0H	_			80
00EE☆	A/D Interrupt Control Register 0	ADINTCON0	_	R/W	8	C0
00EF	A/D Hard Select Enable Register	ADHENCON	_			00
00F0	A/D Result Register 12	_	ADCR12			Undefined
00F1	A/D Result Register 13	_	ADCR13			Undefined
00F2	A/D Result Register 14	_	ADCR14			Undefined
00F3	A/D Result Register 15	_	ADCR15			Undefined
00F4	A/D Result Register 16	_	ADCR16			Undefined
00F5	A/D Result Register 17	_	ADCR17	R/W	16	Undefined
00F6	A/D Result Register 18	_	ADCR18	(*3)		Undefined
00F7	A/D Result Register 19	_	ADCR19	()		Undefined
00F8	A/D Result Register 20	_	ADCR20			Undefined
00F9	A/D Result Register 21	_	ADCR21			Undefined
00FA	A/D Result Register 22	_	ADCR22			Undefined
00FB	A/D Result Register 23	_	ADCR23			Undefined
00FC☆	A/D1 Control Register L	ADCON1L				80
00FD☆	A/D1 Control Register H	ADCON1H	_			80
00FE☆	A/D Interrupt Control Register 1		_	R/W	8	C0
00FF☆	A/D Hard Select Software Control Register	ADHSCON	_	1 I/ V V		FC

Addresses in the address column marked by " $\mbox{$\mbox{$$}$}$ " indicate that the register has bits missing.

- *1 Indicates that the R/W operation of the PWM counter/buffer is a special operation. When a read operation is performed, the value of the PWM counter (PWMCn) is read. When a write operation is performed, data is written to the PCM buffer register (PWCnBF).
- *2 Indicates that the R/W operation of the PWM register/buffer is a special operation. When a read operation is performed, the value of the PWM register (PWRn) is read. When a write operation is performed, data is written to the PWR buffer register (PWnBF).
- *3 Indicates that the R/W operation of ADCR is a special operation.

 ADCR is divided into the groups of: ADCR0, 2, 4, 6, 8, 10; ADCR1, 3, 5, 7, 9, 11;

 ADCR12, 14, 16, 18, 20, 22; and ADCR13, 15, 17, 19, 21, 23. Data can be written simultaneously to each of these groups.

 Writing to ADCR0 simultaneously writes to ADCR0, 2, 4, 6, 8, and 10.

 Writing to ADCR1 simultaneously writes to ADCR1, 3, 5, 7, 9, and 11.

 Writing to ADCR12 simultaneously writes to ADCR12, 14, 16, 18, 20, and 22.

 Writing to ADCR13 simultaneously writes to ADCR13, 15, 17, 19, 21, and 23.

Expanded SFR Area

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
0100	Memory Size Acceptor	MEMSACP	_	W	_	"0"
0101☆	Memory Size Control Register	MEMSCON	_	R/W	8	FC
0102	,					
0103						
0104						
0105☆	Watchdog Control Register	WDTCON	_	R/W	8	FE
0106	3 3			-		
0107☆	Peripheral Control Register	PRPHF	_	R/W	8	F8 or 78
0108	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					
0109☆	External Interrupt Control Register	EXICON	_	R/W	8	C0
010A						
010B						
010C						
010D						
010E						
010E						
0110	Port 0 Mode Register	POIO				00
0111	Port 1 Mode Register	P1IO	_			00
0112	Port 2 Mode Register	P2IO	_			00
0112	•	P3IO	_			00
0113	Port 3 Mode Register	P4IO	_			00
0115	Port 4 Mode Register	_	_			
	Port 5 Mode Register	P5IO	_	R/W	8	00
0116	Port 6 Mode Register	P6IO	_	H/VV	0	00
0117	Port 7 Mode Register	P7IO	_			00
0118	Port 8 Mode Register	P8IO	_			00
0119	Port 9 Mode Register	P9IO	_			00
011A	Port 10 Mode Register	P10IO	_			00
011B	Port 11 Mode Register	P11IO	_			00
011C☆	Port 12 Mode Register	P12IO	_			00
011D						
011E☆	TBC Clock Dividing Counter	TBCKDVC	_	R	8	F0
011F☆	TBC Clock Dividing Register	TBCKDVR	_	R/W		F0
0120	SCI0 Timer	_	S0TM			0000
0121						
0122	SCI1 Timer	_	S1TM			0000
0123						
0124	SCI2 Timer	_	S2TM		16	0000
0125	-		0=1111	R/W		
0126	SCI3 Timer	_	S3TM	, **		0000
0127			001101			
0128	SCI4 Timer	_	S4TM			0000
0129		_	O-711VI			
012A☆	SCI0 Timer Control Register	SOCON	_		8	02
012B☆	SCI1 Timer Control Register	S1CON	_			02

Addresses in the address column marked by " \updownarrow " indicate that the register has bits missing.

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
012C☆	SCI2 Timer Control Register	S2CON	_			02
012D☆	SCI3 Timer Control Register	S3CON		R/W	8	02
012E☆	SCI4 Timer Control Register	S4CON	_			02
012F	=					
0130☆	SCI0 Transmit Control Register	ST0CON	_			8A
0131☆	SCI1 Transmit Control Register	ST1CON	_			88
0132☆	SCI2 Transmit Control Register	ST2CON	_	R/W	8	8A
0133☆	SCI3 Transmit Control Register	ST3CON	_			8A
0134☆	SCI4 Transmit Control Register	ST4CON	_			8A
0135	•					
0136						
0137						
0138☆	SCI0 Receive Control Register	SR0CON	_			12
0139☆	SCI1 Receive Control Register	SR1CON	_			08
013A☆	SCI2 Receive Control Register	SR2CON	_	R/W	8	12
013B☆	SCI3 Receive Control Register	SR3CON	_			12
013C☆	SCI4 Receive Control Register	SR4CON	_			12
013D	3					
013E						
013F						
0140		IP00L	IDOO			00
0141	Interrupt Priority Register 00	IP00H	IP00		8/16 R/W	00
0142		IP01L	ID04			00
0143	Interrupt Priority Register 01	IP01H	IP01			00
0144		IP10L				00
0145	Interrupt Priority Register 10	IP10H	IP10	R/W		00
0146		IP11L	ID44			00
0147	Interrupt Priority Register 11	IP11H	IP11			00
0148☆	Interrupt Priority Register 20	IP20L	_			C0
0149☆	Interrupt Priority Register 21	IP21L	_		8	C0
014A☆	NMI Control Register	NMICON	_			3C or BC
014B						
014C						
014D						
014E						
014F						
0150	Interrupt Request Flag	IRQD0L	.n.c			00
0151	Disable Register 0	IRQD0H	IRQD0		0/40	00
0152	Interrupt Request Flag	IRQD1L		R/W	8/16	00
0153	Disable Register 1	IRQD1H	IRQD1	11/00		00
0154☆	Interrupt Request Flag Disable Register 2	IRQD2L	_		8	C0
0155	Specification and Diodolo Flogistic 2					
0156						
0157						

Addresses in the address column marked by "\u00e4" indicate that the register has bits missing.

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
0158	A/D Hardware Select Register 0		ADHSEL0			0000
0159	A/D Hardware Select Negister 0		ADHOLLO	R/W	16	
015A	A/D Hardware Select Register 1		ADHSEL1	1000		0000
015B	That dware delect negister 1		ADITOLLI			0000
015C						
015D						
015E						
015F						
0160	PWM Control Register 0	PWCON0	_			00
0161	PWM Control Register 1	PWCON1	_			00
0162	PWM Control Register 2	PWCON2	_	R/W	8	00
0163	PWM Control Register 3	PWCON3	_	□/ VV	0	00
0164	PWM Control Register 4	PWCON4	_			00
0165	PWM Control Register 5	PWCON5	_			00
0166	3					
0167						
0168						
0169						
016A☆	General-Purpose 8-Bit Timer Control Register	GTMCON	_			30
016B	Conord Durage & Bit Front Country CEVC		R/W	8	00	
016C	General-Purpose 8-Bit Timer Counter	GTMC	_	H/ VV		00
016D	General-Purpose 8-Bit Timer Register	GTMR	_			00
016E	-					
016F	TRNS Control Register	_	TRNSCON	R/W	16	0000
0170☆	Event Dividing Counter 0	EVDV0	_			C0
0171☆	Event Dividing Counter 1	EVDV1	_			C0
0172☆	Event Dividing Counter 2	EVDV2	_			C0
0173☆	Event Dividing Counter 3	EVDV3	_			C0
0174☆	Event Dividing Counter 14	EVDV14	_			C0
0175☆	Event Dividing Counter 15	EVDV15	_			C0
0176☆	EVDV0 Buffer Register	EVDV0BF	_	R/W	8	C0
0177☆	EVDV1 Buffer Register	EVDV1BF	_			C0
0178☆	EVDV2 Buffer Register	EVDV2BF	_			CO
0179☆	EVDV3 Buffer Register	EVDV3BF	_			C0
017A☆	EVDV14 Buffer Register	EVDV14BF	_			C0
017R☆	EVDV11 Buffer Register	EVDV15BF	_			C0
017C	-					
017D	Capture Control Register	ıre Control Register — CAPCON		R/W	16	0000
017E☆	TMR Mode Register	TMRMODE	_	, **	8	F2
017E	······································	7.0002				
0180						
0181						
0182						
0183						

Addresses in the address column marked by " \updownarrow " indicate that the register has bits missing.

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
0184☆	SIO5 Control Register 0	SIO5CON0	_			10
0185	SIO5 Control Register 1	SIO5CON1	_	R/W		C0
0186	Serial Address Output Register	SFADR	_		8	00
0187	Serial Data Input Register	SFDIN	_	R	8	Undefined
0188	Serial Data Output Register	SFDOUT	_	W		Undefined
0189☆	SIO5 Interrupt Control Register	SIO5INT	_	R/W		1F
018A	•					
018B						
018C☆	Expansion Port Control Register L	EXTPCON	_	R/W	8	F8
018D	•					
018E	Expansion Part Data Degister	EXTPDL	EVEDD	R/W	8/16	00
018F	Expansion Port Data Register	_	EXTPD	H/VV	0/10	00
0190☆	SCI0 Status Register 1	S0STAT1	_			11
0191☆	SCI0 Status Register 2	S0STAT2	_		8	C1
0192☆	SCI2 Status Register 1	S2STAT1	_			11
0193☆	SCI2 Status Register 2	S2STAT2	_	D/M		C1
0194☆	SCI3 Status Register 1	S3STAT1	_	R/W	0	11
0195☆	SCI3 Status Register 2	S3STAT2	_			C1
0196☆	SCI4 Status Register 1	S4STAT1	_			11
0197☆	SCI4 Status Register 2	S4STAT2	_			C1
0198						
0199						
019A						
019B						
019C						
019D						
019E						
019F						

Addresses in the address column marked by "\$\psi\$" indicate that the register has bits missing.

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
01F0						
01F1	Flash Memory Control					
01F2	Register Area					
01F3	(*5)					
01F4						
01F5						
01F6						
01F7						
01F8						
01F9	Emulator Use Area					
01FA						
01FB	(*6)					
01FC						
01FD						
01FE						
01FF						

Addresses in the address column marked by "&" indicate that the register has bits missing.

- * 4 The initial values of PRPHF (SFR = 107H) are as follows:
 At reset by RES pin: VBFF (bit 6) is "1"; CKOUT2 (bit 2), CKOUT1 (bit 1) and CKOUT0 (bit 0) are "0".

 At reset by WDT and BRK instructions and operation code trap: VBFF (bit 6) holds the value just before reset; CKOUT2 (bit 2), CKOUT1 (bit 1) and CKOUT0 (bit 0) are "0".
- * 5 The flash control register area is used exclusively for the MSM66Q591/ML66Q592 (Flash EEPROM version product). For details, refer to the "MSM66Q591 Flash Memory User's Manual" or "ML66Q592 Flash Memory User's Manual".

In both cases, the \overline{OE} pin status is read for OERD (bit 7).

*6 Do not access the emulator use area.

3.3 Addressing Mode

The MSM66591/ML66592 have two independent memory spaces: data memory space and program memory space. MSM66591/ML66592 addressing mode is divided into two, corresponding to each space.

Data memory space is referred to as "RAM space," since the space normally consists of random access memory (RAM). Addressing to this space is referred to as "RAM addressing."

Program memory space is referred to as "ROM space," since the space normally consists of read only memory (ROM). Addressing to this space is referred to as "ROM addressing."

ROM addressing is classified into immediate addressing to an instruction code, table addressing to data or ROM space (normally read-only data), and program code addressing to a program in ROM space.

ROM window addressing is unique to MSM66591/ML66592. This involves accessing the table data in ROM space using the above RAM addressing formats. Data in a table segment is read via the window on a data segment opened by a program. See Chapter 5, "Memory Control Functions."

3.3.1 RAM Addressing

RAM addressing modes specify addressing of program variables in RAM space. Addressing modes provided are register addressing, page addressing, direct addressing, pointing register indirect addressing, and special bit area addressing.

Access to the area from 1A00H to FFFFH in the RAM space of MSM66591 and from 2200H to FFFFH in the RAM space of ML66592 is inhibited since it is not located in internal RAM. However, the ROM window setting area (MSM66591: 2000H–FFFFH, ML66592: 3000H–FFFFH) can be accessed only if the ROM window has been set. Any access is inhibited to the area where the ROM window function has not been set.

[1] Register Addressing

A. Accumulator Addressing: A

B. Control Register Addressing: PSW, LRB, SSP

C. Pointing Register Addressing: X1, X2, DP, USP

D. Local Register Addressing: ERn, Rn

A. Accumulator Addressing

Word instructions access the accumulator contents (A). Byte instructions access the low byte of the accumulator (AL).

[Word Type]

L <u>A,</u> #1234H ST A, VAR [Byte Type]

LB <u>A,</u> #12H STB <u>A,</u> VAR

[Bit Type]

MB C, <u>A</u>.3 JBS <u>A</u>.3, LABEL

B. Control Register Addressing

Register contents are accessed.

SSP: system stack pointer

LRB: local register base

PSW: program status word

PSWH: program status word high-order byte

PSWL: program status word low-order byte

C: carry flag

[Word Type]

FILL SSP

MOV LRB, #401H

CLR PSW

[Byte Type]

CLRB PSWH INCB PSWL

[Bit Type]

MB <u>C</u>, BITVAR

C. Pointing Register Addressing

Pointing register contents are accessed. Pointing registers are provided with eight sets of registers (PR0–PR7: every 8-byte block in 200H–23FH in data memory), but the set addressed in this mode is specified by the System Control Base (SCB) field in PSW.

X1: index register 1
X2: index register 2
DP: data pointer
USP: user stack pointer

X1L: index register 1 low-order byte X2L: index register 2 low-order byte

DPL: data pointer low-order byte
DP*: data pointer low-order byte
USPL: user stack pointer low-order byte

*This register can be used only for [JRNZ DP, radr] instruction which is provided for compatibility with nX-8/100 to nX-8/400 CPU core.

[Word Type]

L A, <u>X1</u>
ST A, <u>X2</u>
MOV <u>DP</u>, #2000H
CLR <u>USP</u>

[Byte Type]

DJNZ X1L, LOOP
DJNZ X2L, LOOP
DJNZ DPL, LOOP
DJNZ USPL, LOOP
JRNZ DP, LOOP

D. Local Register Addressing

Local register contents are accessed. Local registers are 256 sets of registers (every 8-byte block in 200H–9FFH in data memory), but the set addressed in this mode is specified by the Local Register Base (LCB) low-order byte.

ER0-ER3: expanded local registers

R0-R7: local registers

[Word Type]

L A, <u>ER0</u>
MOV <u>ER2, ER1</u>
CLR <u>ER3</u>

[Byte Type]

LB A, <u>R0</u>
ADDB <u>R1</u>, A
CMPB <u>R2</u>, #12H
INCB <u>R3</u>
ROR <u>R4</u>
MOVB R5, R6

[Bit Type]

SB R0.0 RB R1.7

JBRS R7.3, LABEL

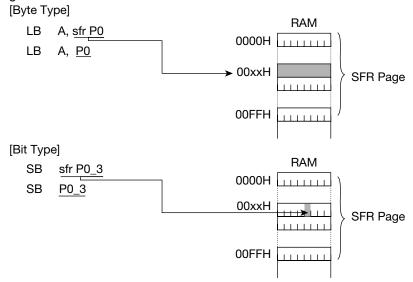
[2] Page Addressing

A. SFR Page Addressing: sfr Dadr

B. FIXED Page Addressing: fix Dadr

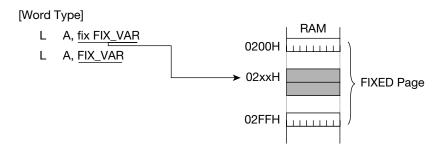
C. Current Page Addressing: off Dadr

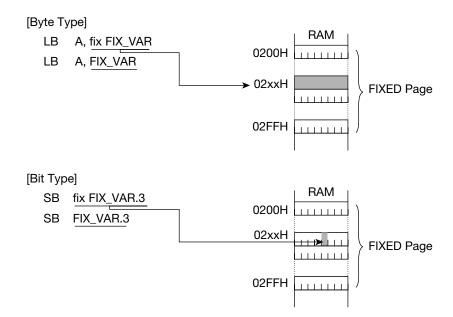
A. SFR Page Addressing


SFR page addressing specifies an offset in the SFR page (0–0FFH in data memory) with one byte of instruction code. Word, byte, or bit data can be accessed at the specified address.

The operand is coded with the "sfr" addressing specifier. The "sfr" can be omitted, but then SFR page addressing will only be used when the assembler recognizes that an address is in the SFR page.

Every microcontroller device has its particular SFR symbols (abbreviated names). Normally these symbols are used for SFR accesses.

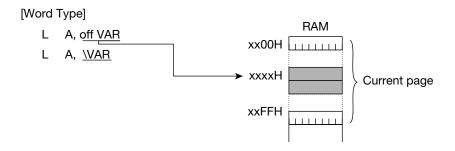

If an odd address is specified, then the word data starting at the next lower even address will be accessed (see "Word Operation"). However, there are exceptions depending on the SFR.

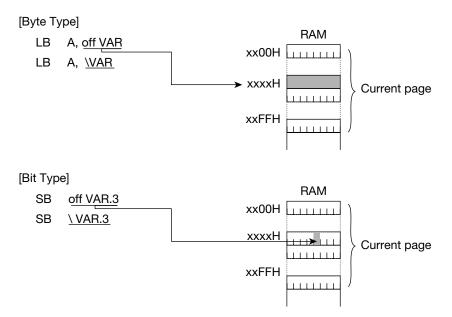


B. FIXED Page Addressing

FIXED page addressing specifies an offset in the FIXED page (200H–2FFH in data memory) with one byte of instruction code. Word, byte, or bit data can be accessed at the specified address.

The operand is coded with the "fix" addressing specifier. The "fix" can be omitted, but then FIXED page addressing will only be used when the assembler recognizes that an address is in the FIXED page.

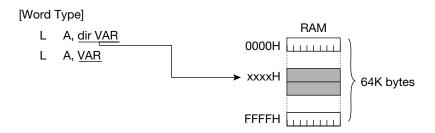


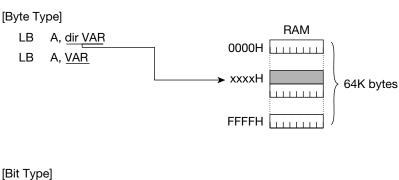


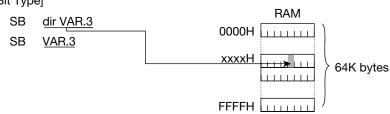
C. Current Page Addressing

Current page addressing specifies an offset in the current page (one of 256 pages in data memory specified by LRBH) with one byte of instruction code (<u>excluding access inhibit area</u>). Word, byte, or bit data can be accessed at the specified address.

The operand is coded with the "off" addressing specifier. The "off" can be replaced by "\", but this will have a slightly different meaning when bit data in the SBA area is accessed (see "sbaoff Badr").



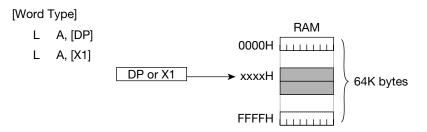


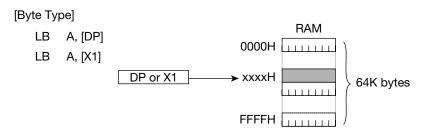

[3] Direct Data Addressing: dir Dadr

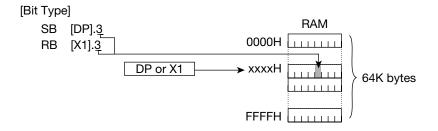
Direct page addressing specifies an address in the current physical segment of data memory (address 0–0FFFFH: 64K bytes) with two bytes of instruction code (excluding access inhibit area). Word, byte, or bit data can be accessed at the specified address.

The operand is coded with the "dir" addressing specifier. The "dir" can be omitted, but then if an address in the SFR page or FIXED page is specified then the assembler may interpret it as SFR page addressing or FIXED page addressing.

[4] Pointing Register Indirect Addressing


A. DP/X1 Indirect Addressing:	[DP],[X1]
B. DP Indirect Addressing with Post-Increment:	[DP+]
C. DP Indirect Addressing with Post-Decrement:	[DP-]
D. DP/USP Indirect Addressing with 7-Bit Displacement:	n7[DP],n7[USP]
E. X1/X2 Indirect Addressing with 16-Bit Base:	D16[X1],D16[X2]
F. X1 Indirect Addressing with 8-Bit Register Displacement:	[X1+R0],[X1+A]

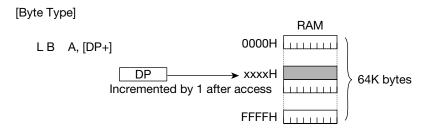

A. DP/X1 Indirect Addressing


DP/X1 indirect addressing specifies an address in the current physical segment (address 0–0FFFFH: 64K bytes) by the contents of a pointing register (excluding access inhibit area). Word, byte, or bit data can be accessed at the specified address.

[DP]: DP Indirect Addressing

[X1]: X1 Indirect Addressing

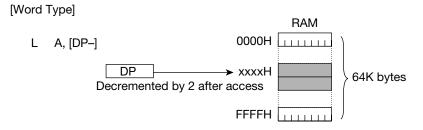


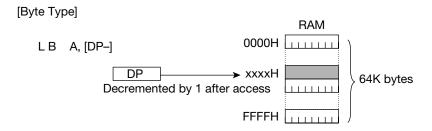

B. DP Indirect Addressing with Post-Increment

DP indirect addressing with post-increment specifies an address in the current physical segment (address 0–0FFFFH: 64K bytes) by the contents of a pointing register (excluding access inhibit area). Word, byte, or bit data can be accessed at the specified address.

After access, the pointing register contents will be incremented. The increment will be 2 for word instructions and 1 for byte and bit instructions. This mode is primarily used to access consecutive array elements.

[DP+]: DP indirect addressing with post-increment

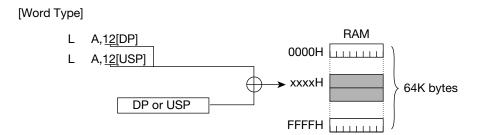


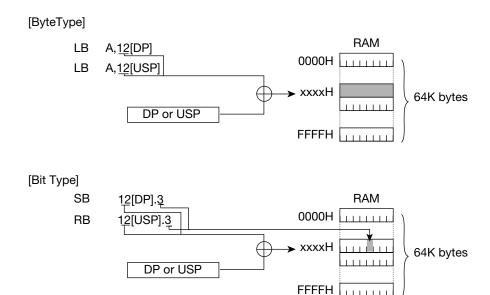

C. DP Indirect Addressing with Post-Decrement

DP indirect addressing with post-decrement specifies an address in the current physical segment of data memory (address 0–0FFFH: 64K bytes) by the contents of a pointing register (excluding access inhibit area). Word, byte, or bit data can be accessed at the specified address.

After access, the pointing register contents will be decremented. The decrement will be 2 for word instructions and 1 for byte and bit instructions. This mode is primarily used to access consecutive array elements.

[DP-]: DP indirect addressing with post-decrement

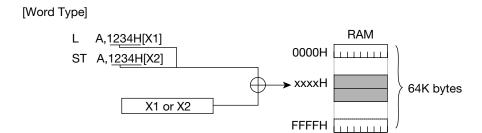


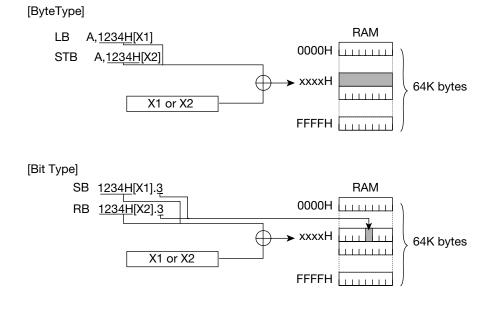

D. DP/USP Indirect Addressing with 7-Bit Displacement

DP/USP indirect addressing with 7-bit displacement specifies an address in the current physical segment (address 0–0FFFFH: 64K bytes) using the contents of a pointing register as a base and adding a 7-bit displacement with sign embedded in instruction code (bits 6–0; bit 6 is a signed bit) (excluding access inhibit area). The range –64 to +63 bytes around the pointing register value can be accessed. Word, byte, or bit data can be accessed at the specified address.

numeric_expression[DP]: DP indirect addressing with 7-bit displacementnumeric_expression[USP]: USP indirect addressing with 7-bit displacement

The *numeric_expression* is a value in the range –64 to +63. DP and USP can be used as the pointing register.

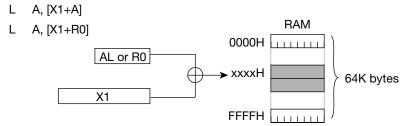



E. X1/X2 Indirect Addressing with 16-Bit Base

X1/X2 indirect addressing with 16-bit base specifies a 2-byte (D16) base embedded in instruction code and adds it to the contents of an index register (X1 or X2) to obtain an address in the current physical segment (address 0–0FFFH: 64K bytes). Word (16-bit) calculations are used to generate the address, with overflows ignored. Therefore the generated address will be 0–0FFFFH. Word, byte, or bit data can be accessed at the specified address.

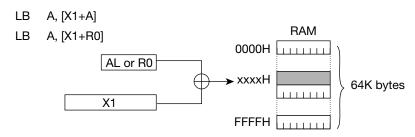
address_expression[X1]: X1 indirect addressing with 16-bit baseaddress_expression[X2]: X2 indirect addressing with 16-bit base

The *address_expression* is a value in the range 0–0FFFFH. However, the assembler allows a value in the range of –8000H to +0FFFFH. That is, D16 can also be thought of as a displacement instead of a base address.

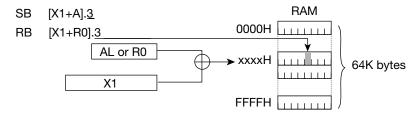

F. X1 Indirect Addressing with 8-Bit Register Displacement

X1 indirect addressing with 8-bit register displacement specifies an address in the current physical segment (address 0–0FFFFH: 64K bytes) using the contents of a pointing register as a base and adding the contents of the Accumulator low byte (AL) or Local Register 0 (R0) (excluding access inhibit area). Word (16-bit) calculations are used to generate the address. The 8-bit displacement obtained from the register will be extended without sign, and overflow will be ignored so the generated address will be 0–0FFFFH. Word, byte, or bit data can be accessed at the specified address.

[X1+A]: X1 indirect addressing with 8-bit register displacement (AL)

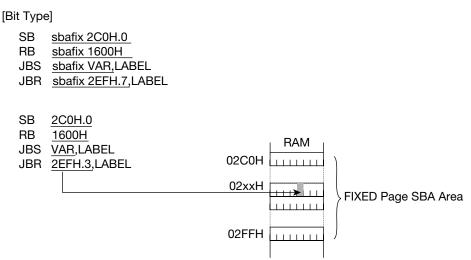

[X1+R0]: X1 indirect addressing with 8-bit register displacement (R0)

[Word Type]



If an odd address is specified, then the word data starting at the next lower even address will be accessed (see "Word Operation").

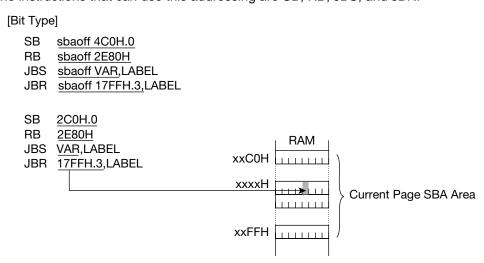
[Bit Type]


[5] Special Bit Area Addressing

- A. FIXED Page SBA Area Addressing: sbafix Badr
- B. Current Page SBA Area Addressing: sbaoff Badr

A. FIXED Page SBA Area Addressing

FIXED page SBA area addressing specifies a bit address in the FIXED page's 512-bit SBA area (2C0H.0–2FFH.7). Only bit data can be accessed at the specified address.


The instructions that can use this addressing are SB, RB, JBS, and JBR.

B. Current Page SBA Area Addressing

Current page SBA area addressing specifies a bit address in the current page's 512-bit SBA area (xxC0H.0–xxFFH.7) (excluding access inhibit area). Only bit data can be accessed at the specified address.

The instructions that can use this addressing are SB, RB, JBS, and JBR.

3.3.2 ROM Addressing

ROM addressing specifies addressing of program variables in ROM space. The modes provided are immediate addressing, table data addressing, and program code addressing.

[1] Immediate Addressing

Immediate addressing specifies access of immediate data embedded in instruction code. For words, two bytes (N16) in instruction code will be accessed. For bytes, one byte (N8) in instruction code will be accessed.

Word values are expressions in the range 0–0FFFH. Byte values are expressions in the range 0–0FFH. However, the assembler permits values in the range covered by both signed and unsigned expressions. For words that range is from –8000H to +0FFFFH, and for bytes it is from –80H to +0FFH.

[Word Type]

L A, #1234H

MOV X1, #WORD ARRAY BASE

[Byte Type]

LB A, #12H

MOVB X1, #BYTE_ARRAY_BASE

[2] Table Data Addressing

Table data addressing specifies access for the 64K bytes in the table segment of ROM space as specified by TSR. This mode can be used with operands of LC, LCB, CMPC, and CMPCB instructions.

- A. Direct Table Addressing: Tadr
- B. RAM Addressing Indirect Table Addressing: [**]
- C. RAM Addressing Indirect Addressing with 16-Bit Base: T16 [**]

A. Direct Table Addressing

Direct table addressing specifies an address (0–0FFFFH: 64K bytes) in the table segment specified by TSR with two bytes of instruction code. Word or byte data can be accessed at the specified address. This addressing can be used with the four instructions LC, LCB, CMPC, and CMPCB.

[Word Type]

LC A, VAR

CMPC A, <u>VAR</u>

[Byte Type]

LCB A, <u>VAR</u> CMPCB A, VAR

B. RAM Addressing Indirect Table Addressing

RAM addressing indirect table addressing uses the word data specified by RAM addressing as a pointer to the table segment specified by TSR. Word (16-bit) calculations are used to generate the address, with overflows ignored. Therefore the generated address will be 0–0FFFFH. Table memory can be accessed by using a register or data memory as a pointer into the table memory. This addressing can be used with the four instructions LC, LCB, CMPC, and CMPCB.

[Word Type]

LC A, [A]

CMPC A, [1234[X1]]

[Byte Type]

LCB A, [ER0]

CMPCB A, [VAR]

C. RAM Addressing Indirect Addressing with 16-Bit Base

RAM addressing indirect addressing with 16-bit base specifies two bytes (D16) in instruction code as a base and adds it to the contents of word data specified by RAM addressing to obtain an address (0–0FFFH: 64K bytes) in the table segment specified by TSR. Word (16-bit) calculations are used to generate the address, with overflows ignored. Therefore the generated address will be 0–0FFFH. Word or byte data can be accessed at the specified address.

This mode can be used with operands of LC, LCB, CMPC, and CMPCB instructions.

[Word Type]

LC A, <u>2000H[A]</u>

CMPC A, 2000H[1234[X1]]

[Byte Type]

LCB A, <u>2000H[ER0]</u>

CMPCB A, 2000H[VAR]

[3] Program Code Addressing

Program code addressing specifies access of the current program code in ROM space. These modes are used as operands of branch instructions.

A. NEAR Code Addressing: Cadr B. FAR Code Addressing: Fadr

C. Relative Code Addressing: radr

D. ACAL Code Addressing: Cadr11

E. VCAL Code Addressing: Vadr

F. RAM Addressing Indirect Code Addressing: [**]

A. NEAR Code Addressing

Near code addressing specifies an address (0–0FFFFH: 64K bytes) in the current code segment with two bytes of instruction code. This addressing can be used with J and CAL instructions.

[Example of Use]

J 3000H

CAL LABEL

B. FAR Code Addressing

Far code addressing specifies an address (0:0–1:0FFFFH: 128K bytes) in program memory space with three bytes of instruction code. This addressing can be used with FJ and FCAL instructions.

[Example of Use]

FJ <u>1: 3000H</u>

FCAL <u>FARLABEL</u>

C. Relative Code Addressing

Relative code addressing takes the current program counter (PC) value as a base and adds it to an 8-bit or sign-extended 7-bit value in instruction code to obtain an address (0–0FFFH: 64K bytes) in the current code segment. Word (16-bit) calculations are used to generate the address, with overflows ignored. Therefore the generated address will be 0–0FFFH. This addressing can be used with SJ and conditional branch instructions.

[Example of Use]

SJ LABEL

DJNZ R0, LABEL

JC LT, LABEL

D. ACAL Code Addressing

ACAL code addressing specifies an address in the ACAL area (1000H–17FFH: 2K bytes) in the current code segment with 11 bits of instruction code. This addressing can be used only with ACAL instructions.

[Example of Use]

ACAL <u>1000H</u>

ACAL ACALLABEL

E. VCAL Code Addressing

VCAL code addressing specifies an entry (word data) in the vector table for VCAL instructions with 4 bits of instruction code. The vector table is located at even addresses in the range 004AH–0069H in segment 0. This addressing can be used only with VCAL instructions.

[Example of Use]

VACL 4AH

VCAL 0: 4AH

VCAL <u>VECTOR</u>

F. RAM Addressing Indirect Code Addressing

RAM addressing indirect code addressing uses word data specified by RAM addressing as a pointer to the code segment. Word (16-bit) calculations are used to generate the address, with overflows ignored. Therefore the generated address will be 0–0FFFFH. It allows indirect jumps and calls using a register or data memory as a pointer to code memory. This addressing can be used with J and CAL instructions.

[Example of Use]

J [A]

CAL [1234[X1]]

[4] ROM Window Addressing

ROM window addressing accesses table data in ROM space using RAM addressing. This mode reads data in the table segment specified by TSR using data segment window opened by the program. (See "ROM Window Function.")

<u>Data memory addressing is permitted in the ROM window area, but results are not guaranteed if an instruction that writes to the ROM window is executed.</u>

CPU Control Functions

4. CPU Control Functions

The MSM66591/ML66592 have two CPU control functions:

- Standby function
- Reset function

4.1 Standby Function

The MSM66591/ML66592 standby function has two types of operation modes:

- HALT mode: stops the clock supply CPU by software
- STOP mode: stops the original oscillation clock supply by software

Each mode is set by:

- Stop code acceptor (for STPACP: STOP mode)
- Standby control register (for SBYCON: HALT and STOP modes)

Table 4-1 lists the standby modes, indicating the output pin status, etc. in standby mode.

Table 4-1 Standby Modes

	Standby Mode	HALT Mode	STOP M	lode (*1)	
	Setting Condition	Set bit 1 (HLT) of SBYCON to "1"	Set bit 0 (STP) of SBYCON to "1" when bit 2 (FLT) of SBYCON is "1"	• Set bit 0 (STP) of SBYCON to "1" when bit 2 (FLT) of SBYCON is "0"	
Release Condition		Interrupt RES pin input WDT	Interrupt RES pin input		
	P0	No change	High impedance	(*2)	
Pin	P1	No change	High impedance	No change	
State of Output Pin	P2–P6, P7_0, P7_1, P7_4–P7_7, P8–P11, P12_0, P12_1	No change	High impedance	No change	
o of	P7_2, P7_3 (primary function)	No change	High impedance	No change	
State	P7_3 (secondary function: PSEN)	"H" level	High impedance	"H" level	
0,	P7_2 (secondary function: ALE)	"L" level	High impedance	"L" level	
u	TBC	Operating	Stop		
nctic	WDT	Operating	Stop		
al Fu	FTM	Operating	Stop		
terna	GTMC, GEVC	Operating	Operating if external of	lock is selected (*3)	
of In	S0TM-S4TM	Operating	Stop		
state	SCI0-SCI5	Operating	Stop		
on S	ADC	Operating	Stop		
Operation State of Internal Function	PWM	Operating	Stop		
Q	Expansion Port	Operating	Stop		

^{* 1} A setting condition for STOP mode is that the stop code acceptor (STPACP) has already been set to "1".

^{* 2} Becomes high impedance in external ROM mode, and no change in internal ROM mode.

^{* 3} Edge specification is invalid and the falling edge is always selected for operation.

4.1.1 Standby Control Register (SBYCON)

SBYCON is a 5-bit register that controls standby functions.

The stop code acceptor (STPACP) is an acceptor used to set STOP mode.

Figure 4-1 shows the configuration of SBYCON.

7	6	5	4	3	2	1	0
_	_	OST1	OST0	_	FLT	HLT	STP

[&]quot;—" Indicates a bit that is not provided. "1" is read if a read instruction is executed.

Figure 4-1 Configuration of SBYCON

• STP (bit 0)

Writing n5H and nAH (n = 0–F) consecutively to STPACP will set the stop code acceptor to "1". Setting the STP bit of SBYCON to "1" at that point will set the device in stop mode. STP will be set to "0" if an interrupt request is generated or reset from RES pin input or reset by the WDT occurs, releasing stop mode. For details refer to Section 4.1.2 [2], "Stop Mode." STPACP will be set to "0" at the same time stop mode is entered.

• HLT (bit 1)

Setting the HLT (bit 1) of SBYCON to "1" will set the device in halt mode. HLT will be set to "0" when an interrupt or reset from RES pin input occurs, releasing halt mode. For details refer to Section 4.1.2 [1], "Halt Mode."

• FLT (bit 2)

If stop mode is entered when the FLT bit of SBYCON is set to "1", then ports, control signals, and all other output pins will enter a high impedance state. At this time, the prevention circuit operates so that a through current will not flow into the input circuits of pins in high impedance status, even if the pin becomes open externally.

The through current prevention circuit, however, does not operate for external interrupt pins (INT0–INT2) and for the clock input pins of event timers (ETMCK, ECTCK), since they can be the factors that clear STOP mode. Therefore, through current may flow into the input circuits of external interrupt pins (INT0–INT2) and into the clock input pins of event timers (ETMCK, ECTCK). When the STOP mode is entered by setting the FLT bit of SBYCON to "1", these pins should be fixed at "H" or "L" level. However, if these pins are used as their primary function (input/output port), the through current prevention circuit will operate, so it is not necessary to fix them at a logic level.

When the STOP mode is cleared, all outputs for ports and control signals return to a status immediately preceding the STOP mode entered.

If the device enters STOP mode when FLT of SBYCON is set to "0" (that is, FLT = "0", STP = "1"), the ports and all output pins, such as control signal output, maintain the status at that time.

Fix pins that are in input mode to "H" or "L" level, regardless of the content of the FLT bit.

• OST0 (Bit 4) and OST1 (Bit 5)

OST0 (bit 4) and OST1 (bit 5) of SBYCON set the timing to the supply clock for the CPU after the original oscillation clock oscillates when STOP mode is cleared by an interrupt request.

OST1	OST0	Selected Clock Frequency
0	0	262144
0	1	131072
1	0	65536
1	1	Setting inhibited

Do not set both OST1 and OST0 to "1".

4.1.2 Operation in Each Standby Mode

[1] HALT Mode

The MSM66591/ML66592 enter HALT mode if HLT (bit 1) of SBYCON is set to "1".

In HALT mode, the original oscillation clock operates, and the TBC, the WDT, the flexible timer, serial ports, etc. also operate. However the clock supply to the CPU stops, therefore instructions are not executed. All executions stop at the beginning of the instruction following the one that set HLT (bit 1) of SBYCON to "1".

HALT mode is cleared when an interrupt request is generated, an $\overline{\text{RES}}$ pin is input, or when reset by WDT occurs. If HALT mode is cleared by a non-maskable interrupt, HALT mode is cleared unconditionally, and the CPU executes a non-maskable interrupt process.

A maskable interrupt clears HALT mode if both an interrupt request flag (IRQ bit) and an interrupt enable flag (IE bit) are "1".

After HALT mode is cleared, the maskable interrupt process is executed if the master interrupt enable flag (MIE of PSW) is "1".

If the master interrupt enable flag (MIE of PSW) is "0", the instruction next to the instruction that set the device to HALT mode (instruction that set HLT (bit 1) of SBYCON to "1") is executed.

However, if, in a non-maskable interrupt routine, HALT mode is set and then cleared by an interrupt request, the instruction following the instruction that set HALT mode is executed. Also, if interrupt priority has been set (MIP = "1") and halt mode is entered from within a high-priority interrupt routine, then halt mode can be released by interrupt requests of lower priority but the lower priority interrupt process is not executed even though MIE is "1". Instead the instruction following the instruction that set halt mode is executed.

If HALT mode is cleared by a RES pin input or by the WDT, the CPU performs a reset process.

[2] STOP Mode

Writing n5H and nAH (n = 0–F) consecutively to STPACP will set the stop code acceptor to "1". Setting the STP bit of SBYCON to "1" at that point will set the device in stop mode. STPACP will be set to "0" at the same time stop mode is entered.

In STOP mode, the original oscillation clock stops, therefore the TBC, the WDT, the flexible timer, serial ports, etc. also stop. If the external clock is selected, the general-purpose 8-bit timer (GTMC) and the 8-bit event counter (GEVC) operate. The edge specification of the external clock is invalid, and the falling edge is always selected for operation.

The clock supply to the CPU also stops therefore instructions are not executed, and all executions stop at the beginning of the instruction following the one that set STP (bit 0) of SBYCON to "1".

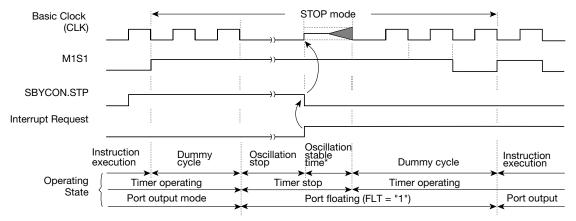
STOP mode is cleared either when an interrupt request is generated or when the $\overline{\text{RES}}$ pin is input.

If STOP mode is cleared by a non-maskable interrupt, STOP mode is cleared unconditionally, and the CPU executes a non-maskable interrupt process.

A maskable interrupt request clears STOP mode if both an interrupt request flag (IRQ bit) and an interrupt generation enable flag (IE bit) are "1".

After STOP mode is cleared, the maskable interrupt process is executed if the master interrupt enable flag (MIE of PSW) is "1".

If the master interrupt enable flag (MIE of PSW) is "0", the instruction next to the instruction that set STOP mode (instruction that set STP (bit 0) of SBYCON to "1") is executed.


However, if, in a non-maskable interrupt routine, STOP mode is set and then cleared by an interrupt request, the instruction following the instruction that set STOP mode is executed. Also, if interrupt priority has been set (MIP = "1") and stop mode is entered from within a high-priority interrupt routine, then stop mode can be released by interrupt requests of lower priority but the lower priority interrupt process is not executed even though MIE is "1". Instead the instruction following the instruction that set stop mode is executed.

If STOP mode is cleared by an interrupt request, the original oscillation clock starts oscillating, and after the number of clocks specified by OST0 and 1 (bits 4 and 5) of SBYCON have elapsed, operation after STOP mode is started.

Figure 4-2 shows STOP mode timing.

If STOP mode is cleared by a \overline{RES} pin input, the CPU performs a reset process. If STOP mode is cleared by a \overline{RES} pin input, apply "L" level to the \overline{RES} pin until more than 1 ms has elapsed after the original oscillation clock stabilizes.

When setting or clearing STOP mode, do so within the guaranteed operating range for the power supply voltage.

^{*} Oscillation stable time is the sum of the time until the original oscillation clock starts oscillation, plus the time set by OST0 and OST1 as the number of clock cycles.

Figure 4-2 STOP Mode Timing (when cleared by an interrupt)

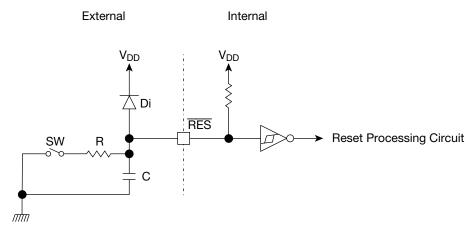
4.2 Reset Function

The MSM66591/ML66592 become reset status by the following four factors:

- RES pin input becomes "L" level
- BRK (break) instruction is executed
- WDT overflow is generated
- OPTRP (operation code trap) is generated

The processing of these four factors is the same except for the vector address that is loaded to the program counter during the reset process.

In the reset process, the arithmetic register, control register, mode register, etc. are initialized, and the content of the address shown by the vector address is loaded to the program counter.


For the initialization status of registers, see Table 3-3 SFRs. For the correspondence between each factor and the vector address, see Table 3-1 Vector Table List.

In the case of reset by RES pin input, apply "L" level until more than 1 ms has elapsed after the original oscillation clock is stable.

The reset process has priority over all other processes (interrupt process, instruction execution). Since all other processes are suspended, the content of registers and RAM at this time are not guaranteed.

Figure 4-3 shows the reset pin connection example. Table 4-2 shows the output pin status at reset.

On power up, apply "L" level to the \overline{RES} pin for 12 ms or more after V_{DD} has reached 4.5 V or more.

SW and R are needed for manual reset.

Figure 4-3 Reset Pin Connection Example

Table 4-2 Output Pin Status at Reset

Name	P0	P1	P7_2, P7_3 (EA pin: "L" level)	P7_2, P7_3 (EA pin: "H" level)	P2–P6, P7_0, P7_1, P7_4–P7_7, P8–P11, P12_0, P12_1
Status	Hiz	Hiz	"H" level (pull-up)	Hiz	Hiz

Notes:

- 1. If the \overline{EA} pin is at a "L" level and external memory is selected, P7_2, P7_3, P0, P1, P12_0, and P12_1 (ML66592 only) will automatically take their secondary functions and go into an operating state.
- 2. Hiz refers to the high impedance status.

Memory Control Functions

5. Memory Control Functions

MSM66591/ML66592 have two independent memory spaces: program memory space and data memory space. Each memory space has functions that make it easier to use the respective space. One function allows various instructions for data memory to be used as program memory by the program (ROM window function).

Another function allows a wait cycle to be inserted (READY function) to MSM66591's or ML66592's external memory timing by the program, according to the access time of external memory, etc. when the program memory space used as external memory.

5.1 ROM Window Function

The ROM window function reads the content of the program memory, specified by the ROM window control register (ROMWIN), on SFR through the same address of the data memory space as a window.

This means that if the instruction to access (read) the data memory space is executed when the ROM window function becomes valid, data in the data memory space is not accessed (read), instead the data at the same address in the segment (in the program memory space) specified by TSR is accessed (read).

To the instruction execution cycle, 3 cycles are added by one access (reading) in the case of a byte instruction, and 6 cycles are added in the case of a word instruction.

If a write instruction is executed when the ROM window function is valid, the result is not guaranteed. Cycles are not added in this case.

ROMWIN is an 8-bit register. The low-order 4 bits of this register specifies the ROM window start address. The ROM window end address is 0FFFFH. The low-order 4 bits specify the most significant hexadecimal digit of the four digits needed to fully address 64K bytes of program memory space.

However, in the MSM66591 "2", "4", and "8" are the only values that can be specified. Therefore, the area for which the ROM window can be set is either 2000H–0FFFFH, 4000H–0FFFFH, or 8000H–0FFFFH.

In the ML66592, "3", "4", and "8" are the only values that can be specified. Therefore, the area for which the ROM window can be set is either 3000H–0FFFFH, 4000H–0FFFFH.

If, in both MSM66591 and ML66592, the low-order 4 bits of the ROMWIN register are all zeroes, the ROM window function does not operate.

Figures 5-1(a) and 5-1(b) show the configuration of ROMWIN.

ROMWIN

7 6 5 4 3 2 1 0 — — — — (MSM66591) These 4 bits specify the ROM window start address [the most significant haxadecimal digit of the four digits needed to fully address 64K bytes of memory space]. Either 2H, 4H, or 8H can be specified. "—" indicates a bit that is not provided. "1" is read if a read instruction is executed.

Figure 5-1(a) Configuration of ROMWIN of MSM66591

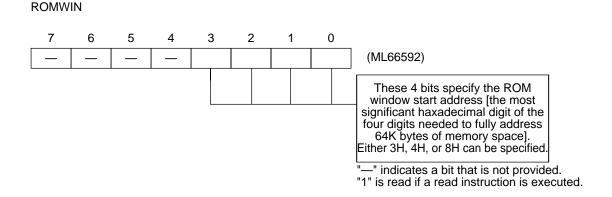


Figure 5-1(b) Configuration of ROMWIN of ML66592

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer (WDT) is overflown, or an operation code trap is generated), ROMWIN becomes F0H, and the ROM window function is disabled.

ROMWIN can be written only once after reset. A second or later writing is ignored. This means that once a ROM window function is set, it cannot be changed until reset. ROMWIN, however, can be read any number of times.

[Note]

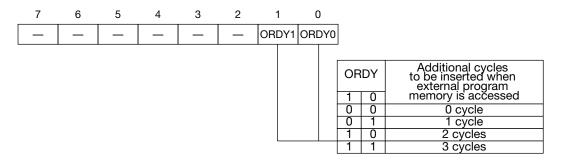
In MSM66591 do not write any other value than 2H, 4H, and 8H to the low-order 4 bits of ROMWIN.

In ML66592 do not write any other value than 3H, 4H, and 8H to the low-order 4 bits of ROMWIN.

5.2 READY Function

The MSM66591/ML66592 can specify the wait cycle (ROM: 0 to 3 cycles) to insert during external memory access, so that memory that has a slow access speed can be connected. The ROM READY control register (ROMRDY) specifies the number of wait cycles. ROMRDY specifies the wait cycle when the external memory is extended (or external ROM mode is used) to the program memory space.

ROMRDY can be read/written by the program. If ROMRDY is written to, the low-order 2 bits are valid, but the high-order 6 bits become invalid. If ROMRDY is read, the low-order 2 bits are valid, but "1" is read for the high-order 6 bits.


Figure 5-2 shows the configuration of ROMRDY.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), both RAMRDY and ROMRDY becomes FFH. Then if the external program memory is accessed, 3 cycles of a wait cycle can be inserted.

[Note]

In the MSM66591/ML66592, unlike internal program memory access, when external program memory is accessed, <u>1 cycle is automatically inserted per 1 byte access</u>. ROMRDY <u>specifies the number of cycles inserted in addition</u> to the above 1 cycle inserted.

ROMRDY

[&]quot;—" indicates a bit that is not provided.
"1" is read if a read instruction is executed.

Figure 5-2 Configuration of ROMRDY

¹ cycle is 1 CLK.

Chapter 6

6

Port Functions

6. Port Functions

The MSM66591/ML66592 have twelve 8-bit I/O ports, and one 2-bit I/O port. Input or output can be specified for each bit. If a pin is input, the high impedance input is set, and if a pin is output, push-pull output is set. In addition to the port functions, functions for internal operations (secondary functions) are assigned to most ports.

6.1 Hardware Configuration of Each Port

The MSM66591/ML66592 ports (P0, P1, P2, P3, P4, P5 P6, P7, P8, P9, P10, P11, P12) are classified into the following 5 types according to function.

- Type A: Has secondary functions as an address/data bus, and automatically switches to its secondary function when the external memory is accessed. Goes into high impedance status if the output status of the $\overline{\sf OE}$ pin is in "H" level.
- Type B: Has secondary functions and switches to its secondary function according to the status of the port secondary function control register. Goes into high impedance status in output status if the OE pin is in "H" level.
- Type C: Has secondary functions and switches to its secondary function according to the status of the port secondary control register.
- Type D: Does not have any secondary function.
- Type E: Does not have any secondary function. Goes into high impedance status in output state if the \overline{OE} pin is in "H" level.

Table 6-1 lists the port functions.

Table 6-1 Port Function List

Port Name	Name	Туре	Qty	I/O	Secondary Function	OE Control
Port 0	P0_0-P0_7	Α	8	I/O	External memory address/data: AD0-AD7 (I/O)	yes
Port 1	P1_0-P1_7	Α	8	I/O	External memory address: A8-A15 (Output)	yes
Port 2	P2_0-P2_7	В	8	I/O	Double buffer RTO output: RTO4-RTO11 (Output)	yes
Port 3	P3_0-P3_3	В	4	I/O	Flexible timer I/O: FTM17A (I/O)-FTM17D (Output)	yes
Ports	P3_4-P3_7	С	4	I/O	CAP event input: CAP0-CAP3 (Input)	no
Port 4	P4_0-P4_7	С	8	I/O	Input for transition detector: TRNS0-TRNS7 (Input)	no
	P5_0	С	1	I/O	Data input for SCI5 with FIFO: SDIN (Input)	no
	P5_1	С	1	I/O	Data output for SCI5 with FIFO: SDOUT (Output)	no
	P5_2	С	1	I/O	Clock output for SCI5 with FIFO: SCLK (Output)	no
Port 5	P5_3	С	1	I/O	R/WB output for SCI5 with FIFO: RWB (Output)	no
Ports	P5_4	С	1	I/O	Chip select output for SCI5 with FIFO: CSB (Output)	no
	P5_5	С	1	I/O	External interrupt input 2: INT2 (Input)	no
	P5_6	С	1	I/O	Clockout: CLKOUT (Output)	no
	P5_7	С	1	I/O	Wait signal input pin: WAIT (Input)	no
	P6_0, P6_1	С	2	I/O	External interrupt signal input: INT0, INT1 (Input)	no
	P6_2	С	1	I/O	Serial port 1 data input: RXD1 (Input)	no
	P6_3	С	1	I/O	Serial port 1 data output: TXD1 (Output)	no
Port 6	P6_4	С	1	I/O	Shift clock for serial 1 receive: RXC1 (I/O)	no
	P6_5	С	1	I/O	Shift clock for serial 1 transmission: TXC1 (I/O)	no
	P6_6	С	1	I/O	Serial port 0 data input: RXD0 (Input)	no
	P6_7	С	1	I/O	Serial port 0 data output: TXD0 (Output)	no
	P7_0, P7_1	D	2	I/O	None	no
Dowt 7	P7_2	С	1	I/O	External memory access: ALE (Output)	no
Port 7	P7_3	С	1	I/O	External program memory access: PSEN (Output)	no
	P7_4-P7_7	В	4	I/O	PWM output: PWM0-PWM3 (Output)	yes
Port 8	P8_0-P8_7	В	8	I/O	PWM output: PWM4-PWM11 (Output)	yes
	P9_0	С	1	I/O	Serial port 2 data input: RXD2 (Input)	no
	P9_1	С	1	I/O	Serial port 2 data output: TXD2 (Output)	no
	P9_2	С	1	I/O	Serial port 3 data input: RXD3 (Input)	no
David C	P9_3	С	1	I/O	Serial port 3 data output: TXD3 (Output)	no
Port 9	P9_4	С	1	I/O	Serial port 4 data input: RXD4 (Input)	no
	P9_5	С	1	I/O	Serial port 4 data output: TXD4 (Output)	no
	P9_6	С	1	I/O	External clock input for GTMC: ETMCK (Input)	no
	P9_7	С	1	I/O	External clock input for GEVC: ECTCK (Input)	no

Table 6-1 Port Function List (continued)

Port Name	Name	Туре	Qty	I/O	Secondary Function	OE Control
	P10_0, P10_1	В	2	I/O	Double buffer RTO output: RTO12, 13 (Output)	yes
	P10_2, P10_3	В	2	I/O	CAP event input: CPA14, CAP15 (Input)	yes
Port 10	P10_4	В	1	I/O	Flexible timer I/O: FTM16 (I/O)	yes
Port 10	P10_5	С	1	I/O	Shift clock for expansion port: SFTCLK (Output)	no
	P10_6	С	1	I/O	Expansion port data I/O: SFTDAT (I/O)	no
	P10_7	С	1	I/O	Latch strobe output for expansion port: SFTSTB (Output)	no
	D44 0		1	I/O	Address input for RAM monitor function: RMRX (Input)	0.0
	P11_0	С	'	1/0	Data I/O for writing to flash memory (tertiary function)	no
	P11_1	С	1	I/O	Data output for RAM monitor function: RMTX (Output)	no
Port 11	P11 2	C	1	I/O	Clock input for RAM monitor function: RMCLK (Input)	no
	PII_Z)	ı	1/0	Clock input for writing to flash memory (tertiary function)	no
	P11_3	С	1	I/O	Address match detect output: RMACK (Output)	no
	P11_4-P11_7	D	4	I/O	None	no
Port 12	P12_0	Α	1	I/O	External program memory address: A16 (Output)	yes
FUIL 12	P12_1*1	Е	1	I/O	None	yes

^{*1} In the case of ML66592, P12_1 is of type A and, as its secondary function, functions to output address A17 that is used to access external program memory.

6.1.1 Configuration of Type A (P0_0-P0_7, P1_0-P1_7, P12_0)

Type A ports automatically take their secondary function when the \overline{EA} pin is set to "L" level. They function as address output pins and data I/O pins for external program memory access. The pin specified as the output goes into high impedance if \overline{OE} is in "H" level.

In the ML66592, P12_1, also, is a Type A port.

Figure 6-1 shows the configuration of a Type A port.

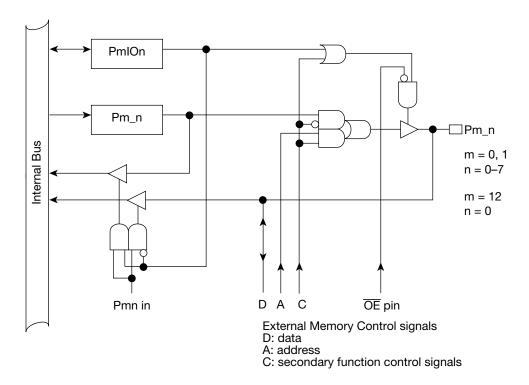


Figure 6-1 Configuration of Type A

6.1.2 Configuration of Type B (P2_0-P2_7, P3_0-P3_3, P7_4-P7_7, P8_0-P8_7, P10_0-P10_4)

Some of the type B ports function as high-order address output when the external data memory is accessed and the other ports act as secondary function input and output pins, according to the specification of the secondary function control register (PmSFn). The pin specified as the output goes into high impedance if \overline{OE} is in "H" level.

Figure 6-2 shows the configuration of a Type B port.

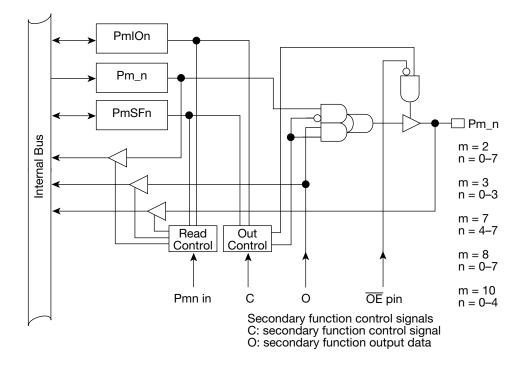


Figure 6-2 Configuration of Type B

6.1.3 Configuration of Type C (P3_4-P3_7, P4_0-P4_7, P5_0-P5_7, P6_0-P6_7, P7_2, P7_3, P9_0-P9_7, P10_5-P10_7, P11_0-P11_3)

Type C ports function as the output pins of secondary functions, or as input pins of secondary functions according to the specification of the secondary function control register (PmSFn).

However, P7_2 and P7_3 automatically switch to their secondary function when the $\overline{\text{EA}}$ pin is set to "L" level. Then, when external program memory is accessed, P7_3 functions as an output pin $(\overline{\text{PSEN}} \text{ pin})$ for a strobe signal to be output for a read operation, and P7_2 functions as an output pin (ALE pin) for a strobe signal used to externally latch the low-order 8 bits of addresses that are output from P0.

Figure 6-3 shows the configuration of a Type C port.

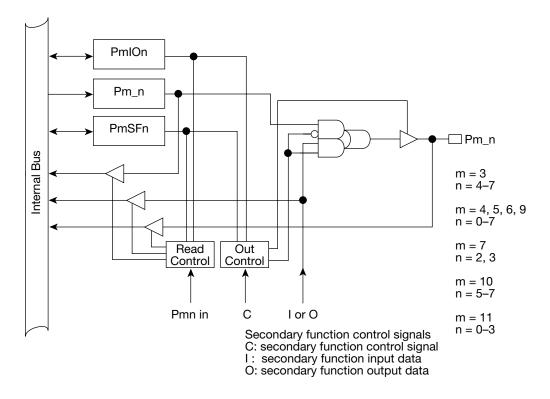


Figure 6-3 Configuration of Type C

6.1.4 Configuration of Type D (P7_0, P7_1, P11_4-P11_7)

Type D ports function as I/O pins without secondary functions.

Figure 6-4 shows the configuration of Type D ports.

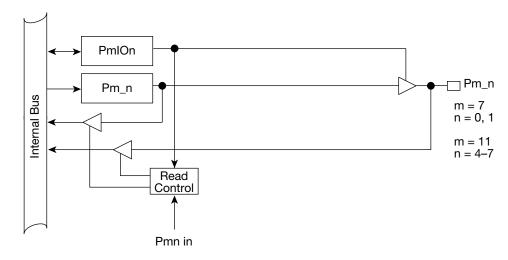


Figure 6-4 Configuration of Type D

6.1.5 Configuration of Type E (P12_1)

Type E ports function as I/O pins without secondary functions. When the \overline{OE} pin is in "H" level, the pin specified as the output goes into high impedance.

The ML66592 has no Type E ports.

Figure 6-5 shows the configuration of Type E port.

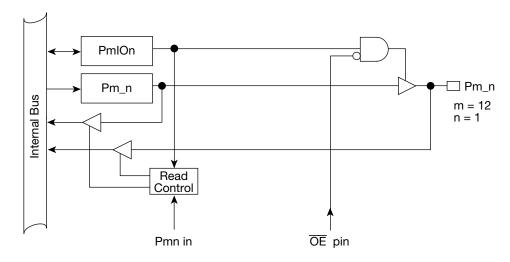


Figure 6-5 Configuration of Type E

6.2 Port Control Registers

The MSM66591/ML66592 have 3 types of port control registers.

- port data register (Pn: n = 0–12)
- port mode register (PnIO: n = 0-12)
- port secondary function control register (PnSF: n = 2–10)

These registers are allocated as SFRs. Table 6-2 lists the port control registers.

6.2.1 Port Data Register (Pn: n = 0-12)

A port data register (Pn: n = 0-12) is an 8-bit register that stores the output data of a port. Port 12, however, is a 2-bit register.

Pn is assigned to SFR, and the content of P0–P12 becomes 00H at reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer (WDT) is overflown, or an operation code trap is generated).

If a read instruction is executed to Pn, the pin status ("0" or "1") is read from the port specified to input, and the Pn status ("0" or "1") is read from the port specified to output. If a write instruction is executed to Pn, data is written to Pn, regardless of the I/O specification of the port.

Each of the bits assigned in a port is represented by the bit symbol corresponding to each bit. Bit symbols for bits of a port data register are, for example, P0_0 for bit 0 and P0_1 for bit 1 in Port 0. So, a port data register is represented corresponding to each bit either by the bit symbol such as P0_0 or P0_1 or by the dot operator such as P0.0 or P0.1 in assembly language.

6.2.2 Port Mode Register (PnIO: n = 0-12)

A port mode register (PnIO: n = 0-12) is an 8-bit register that specifies the input/output of an I/O port. Port 12, however, is a 2-bit register.

PnIO is assigned to SFR, and the content of P0IO–P12IO becomes 00H. All ports become input mode at reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated).

If each bit of PnIO is set to "0", the input mode is set. If set to "1", the output mode is set. However, as explained below, if the secondary function is selected after setting the content of the port secondary function control register (PnSF: n = 2-10) to "1", specification by PnIO becomes invalid.

6.2.3 Port Secondary Function Control Register (PnSF: n = 2-10)

A port secondary function control register (PnSF: n = 2-10) is an 8-bit register that specifies the primary/secondary functions of a port. Port 7 is a 6-bit register.

6

PnSF is assigned to SFR, and the content of P2SF–P10SF becomes 00H, and all ports are set to primary functions at reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated).

If each bit of PnSF is set to "0", primary function is selected, and if "1", secondary function is selected. Ports 0, 1, and 12 have no secondary function control register, since the primary/secondary function of these ports is automatically selected by hardware.

Table 6-2 Port Control SFRs

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
0010	Port 0 Data Register	P0	_			00
0011	Port 1 Data Register	P1	_			00
0012	Port 2 Data Register	P2	_			00
0013	Port 3 Data Register	P3	_			00
0014	Port 4 Data Register	P4	_			00
0015	Port 5 Data Register	P5	_			00
0016	Port 6 Data Register	P6	_	R/W	8	00
0017	Port 7 Data Register	P7	_			00
0018	Port 8 Data Register	P8	_			00
0019	Port 9 Data Register	P9	_			00
001A	Port 10 Data Register	P10	_			00
001B	Port 11 Data Register	P11	_			00
001C	Port 2 Secondary Function Control Register	P2SF	_			00
001D	Port 3 Secondary Function Control Register	P3SF	_			00
001E	Port 4 Secondary Function Control Register	P4SF	_			00
001F	Port 5 Secondary Function Control Register	P5SF	_			00
0020	Port 6 Secondary Function Control Register	P6SF	_	R/W	8	00
0021☆	Port 7 Secondary Function Control Register	P7SF	_		-	00
0022	Port 8 Secondary Function Control Register	P8SF	_			00
0023	Port 9 Secondary Function Control Register	P9SF	_			00
0024	Port 10 Secondary Function Control Register	P10SF	_			00
0025☆	Port 12 Data Register	P12	_	R/W	8	00
0110	Port 0 Mode Register	P0IO	_			00
0111	Port 1 Mode Register	P1IO	_			00
0112	Port 2 Mode Register	P2IO	_			00
0113	Port 3 Mode Register	P3IO	_			00
0114	Port 4 Mode Register	P4IO	_			00
0115	Port 5 Mode Register	P5IO	_			00
0116	Port 6 Mode Register	P6IO	_	R/W	8	00
0117	Port 7 Mode Register	P7IO	_			00
0118	Port 8 Mode Register	P8IO	_			00
0119	Port 9 Mode Register	P9IO	_			00
011A	Port 10 Mode Register	P10IO	_			00
011B	Port 11 Mode Register	P11IO	_			00
011C☆	Port 12 Mode Register	P12IO	_			00

Some addresses are not consecutive.

Addresses in the address column marked by "\$\paraller{a}\$" indicate that the register has bits missing.

6.3 Port 0 (P0)

Port 0 (P0_0–P0_7) is an 8-bit I/O port. Input or output can be specified for each bit by the Port 0 mode register (P0IO).

In addition to its port function, Port 0 is assigned a secondary function (low-order address output and data input of external program memory). If the \overline{EA} pin is set to "L" level, Port 0 automatically operates as its secondary function, as an address/data bus (low-order address output pin, data I/O pin).

If the \overline{OE} pin (pin 71) is in "L" level when Port 0 is in output status, Port 0 outputs "H" or "L" level, but if the \overline{OE} pin is in "H" level, Port 0 goes into high impedance status.

Figure 6-6 shows the configuration of the Port 0 data register (P0) and the Port 0 mode register (P0IO).

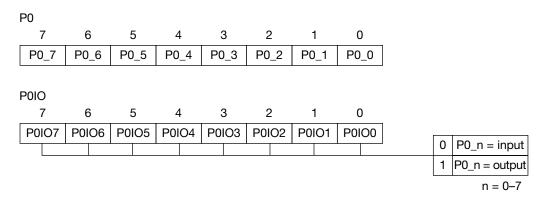


Figure 6-6 Configuration of P0, P0IO

If a read instruction is executed to a P0 in which input is specified (P0IOn = "0") by P0IO, the content of the pin is read; and if a read instruction is executed to a P0 in which output is specified (P0IOn = "1"), the content of the port data register is read. If an arithmetic instruction, increment instruction, or instruction of that type (read-modify-write instruction) is executed to P0, the content of the pin or port data register is read according to specification by P0IO (in the case of reading), and data is written to the port data register (in the case of writing).

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), Port 0 goes into high impedance input port (P0IO = 00H). The content of P0 becomes 00H.

6.4 Port 1 (P1)

Port 1 (P1_0–P1_7) is an 8-bit I/O port. Input or output can be specified for each bit by the Port 1 mode register (P1IO).

In addition to the port function, a secondary function (high address output of external program memory) is assigned to Port 1. If the \overline{EA} pin is set to "L" level, Port 1 operates as an address bus (high address output pin) of the external program memory.

If the \overline{OE} pin (pin 71) is in "L" level when Port 1 is in output status, Port 1 outputs "H" or "L" level, but if the \overline{OE} pin is in "H" level, Port 1 goes into high impedance status.

Figure 6-7 shows the configuration of the Port 1 data register (P1) and the Port 1 mode register (P1IO).

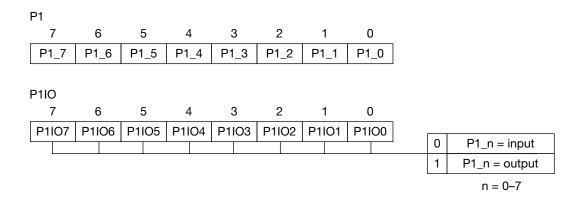


Figure 6-7 Configuration of P1, P1IO

If a read instruction is executed to P1 in which input is specified (P1IOn = "0") by P1IO, the content of the pin is read. If a read instruction is executed to P1 in which output is specified (P1IOn = "0"), the content of the port data register is read. If an arithmetic instruction, increment instruction, or instruction of that type (read-modify-write instruction) is executed to P1, the content of the pin or port data register is read according to specification by P1IO (in the case of reading), and data is written to the port data register (in the case of writing).

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), Port 1 becomes a high impedance input port (P1IO = 00H). The content of P1 becomes 00H.

6.5 Port 2 (P2)

Port 2 (P2_0–P2_7) is an 8-bit I/O port. Input or output can be specified for each bit by the Port 2 mode register (P2IO).

In addition to the port function, a secondary function (real-time output, etc.) is assigned to Port 2. Port function/secondary function is selected by the Port 2 secondary function control register (P2SF).

If the \overline{OE} pin (pin 71) is in "L" level when Port 2 is in output status, Port 2 outputs "H" or "L" level, but if the \overline{OE} pin is in "H" level, Port 2 goes into high impedance status.

Figure 6-8 shows the configuration of the Port 2 data register (P2), the Port 2 mode register (P2IO), and the Port 2 secondary function control register (P2SF).

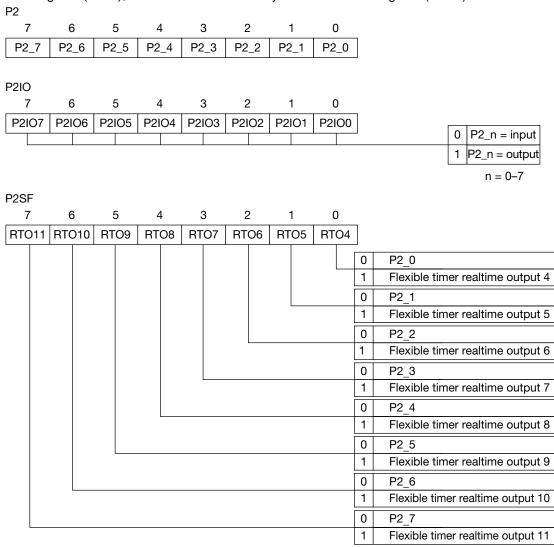


Figure 6-8 Configuration of P2, P2IO, and P2SF

Table 6-3 shows the content of the data that is read when a read instruction is executed to P2, according to the content of P2IO and P2SF. If an arithmetic instruction, increment instruction, or instruction of that type (read-modify-write instruction) is executed to P2, the content of the pin or port data register is read according to specification by P2IO (when reading), and data is written to the port data register (when writing).

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), Port 2 becomes a high impedance input port (P2IO = 00H, P2SF = 00H). The content of P2 becomes 00H.

Table 6-3 Read of P2

	P2IO	P2SF	Read Data
	0	0	Pin
P2_0-P2_7	1	0	Output latch
	*	1	Output data

[&]quot;*" indicates either "1" or "0".

6.6 Port 3 (P3)

Port 3 (P3_0–P3_7) is an 8-bit I/O port. Input or output can be specified for each bit by the Port 3 mode register (P3IO).

In addition to the port function, a secondary function (real-time output, etc.) is assigned to Port 3. Port function/secondary function is selected by the Port 3 secondary function control register (P3SF).

Figure 6-9 shows the configuration of the Port 3 data register (P3), the Port 3 mode register (P3IO), and the Port 3 secondary function control register (P3SF).

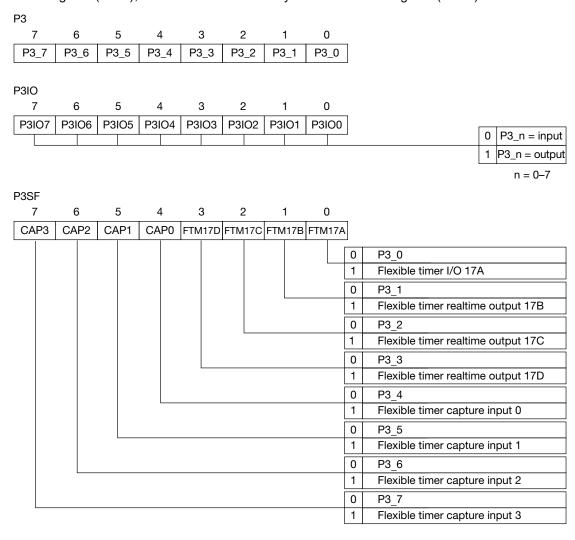


Figure 6-9 Configuration of P3, P3IO, and P3SF

Table 6-4 shows the content of the data that is read when a read instruction is executed to P3 according to the content of P3IO and P3SF. If an arithmetic instruction, increment instruction, or instruction of that type (read-modify-write instruction) is executed to P3, the content of the pin or port data register is read according to specification by P3IO (when reading), and data is written to the port data register (when writing).

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), Port 3 becomes a high impedance input port (P3IO, P3SF = 00H). The content of P3 becomes 00H.

Table 6-4 Read of P3

	P3IO	P3SF	Read Data
	0	0	Pin
P3_0	1	0	Output latch
	*	1	Pin: if timer is in CAP mode
		I	Output data: if timer is in RTO mode
	0	0	Pin
P3_1-P3_3	1	0	Output latch
	*	1	Output data
	0	0	Pin
P3_4_P3_7	1	0	Output latch
	*	1	Pin

[&]quot;*" indicates either "1" or "0".

6.7 Port 4 (P4)

Port 4 (P4_0–P4_7) is an 8-bit I/O port. Input or output can be specified for each bit by the Port 4 mode register (P4IO).

In addition to the port function, a secondary function (transition detector input) is assigned to Port 4. Port function/secondary function is selected by the Port 4 secondary function control register (P4SF).

Figure 6-10 shows the configuration of the Port 4 data register (P4), the Port 4 mode register (P4IO), and the Port 4 secondary function control register (P4SF).

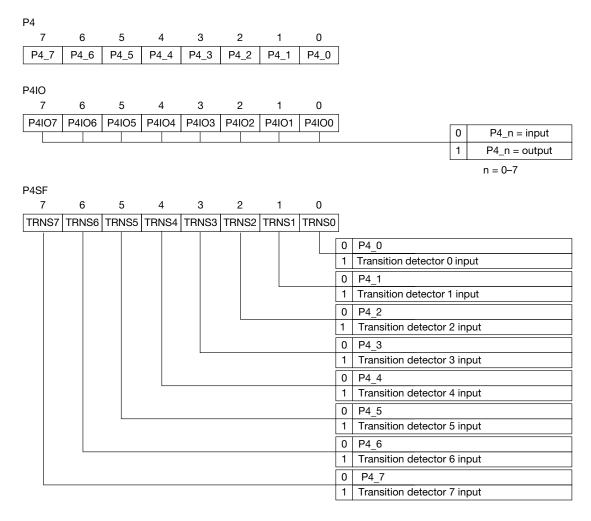


Figure 6-10 Configuration of P4, P4IO, and P4SF

Table 6-5 shows the content of the data that is read when a read instruction is executed to P4 according to the content of P4IO and P4SF. If an arithmetic instruction, increment instruction, or instruction of that type (read-modify-write instruction) is executed to Port 4, the content of the pin or port data register is read according to specification by P4IO (when reading), and data is written to the port data register (when writing).

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), Port 4 becomes a high impedance input port (P4IO, P4SF = 00H). The content of P4 becomes 00H.

Table 6-5 Read of P4

	P4IO	P4SF	Read Data
	0	0	Pin
P4_0-P4_7	1	0	Output latch
	*	1	Pin

[&]quot;*" indicates either "1" or "0".

6.8 Port 5 (P5)

Port 5 (P5_0–P5_7) is a 8-bit I/O port. Input or output can be specified for each bit by the Port 5 mode register (P5IO).

In addition to the port function, a secondary function (serial interface with FIFO) is assigned to Port 5. Port function/secondary function is selected by the Port 5 secondary function control register (P5SF).

Figure 6-11 shows the configuration of the Port 5 data register (P5), Port 5 mode register (P5IO), and Port 5 secondary function control register (P5SF).

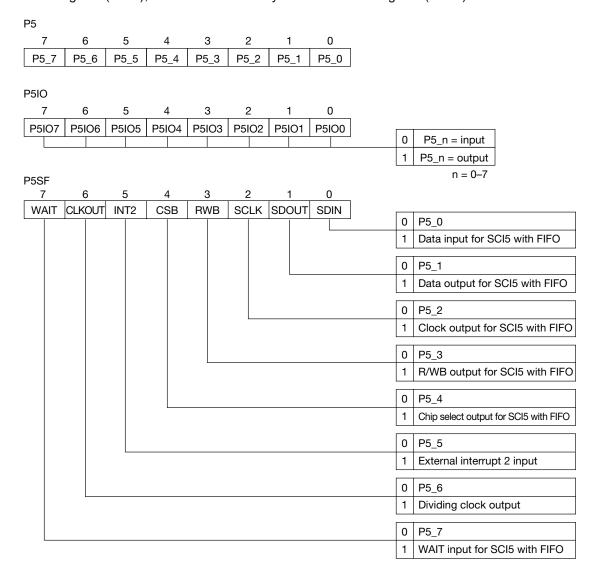


Figure 6-11 Configuration of P5, P5IO, and P5SF

If a read instruction is executed to P5 in which the input is specified (P5IOn = "0") by P5IO, the content of the pin is read. If a read instruction is executed to P5 in which the output is specified (P5IOn = "1"), the content of the port data register is read. If an arithmetic instruction, increment instruction, or instruction of that type (read-modify-write instruction) is executed to P5, the content of the pin or port data register is read according to specification by P5IO (when reading), and data is written to the port data register (when writing).

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), Port 5 becomes high impedance input port (P5IO = 00H, P5SF = 00H). The content of P5 becomes 00H.

6.9 Port 6 (P6)

Port 6 (P6_0–P6_7) is an 8-bit I/O port. Input or output can be specified for each bit by the Port 6 mode register (P6IO).

In addition to the port function, a secondary function (external interrupt input, etc.) is assigned to Port 6. Port function/secondary function is selected by the Port 6 secondary function control register (P6SF).

Figure 6-12 shows the configuration of the Port 6 data register (P6), the Port 6 mode register (P6IO), and the Port 6 secondary function control register (P6SF).

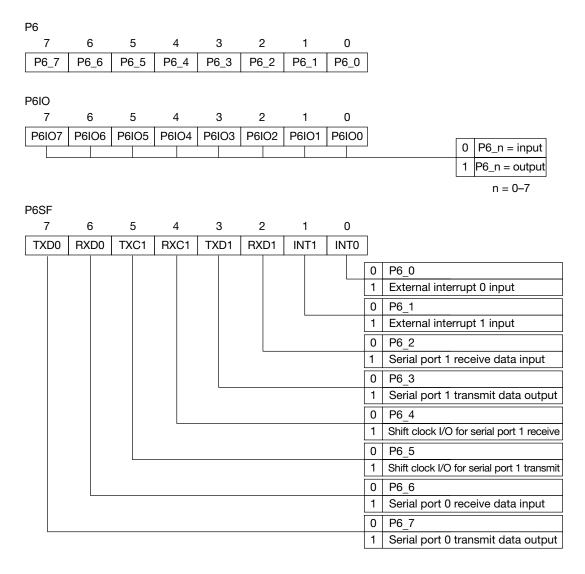


Figure 6-12 Configuration of P6, P6IO, and P6SF

Table 6-6 shows the content of the data that is read when a read instruction is executed to P6 according to the content of P6I0 and P6SF. If an arithmetic instruction, increment instruction, or instruction of that type (read-modify-write instruction) is executed to Port 6, the content of the pin or port data register is read according to specification by P6IO (when reading), and data is written to the port data register (when writing).

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), Port 6 becomes a high impedance input port (P6IO, P6SF = 00H). The content of P6 becomes 00H.

Table 6-6 Read of P6

	P6IO	P6SF	Read Data
	0	0	Pin
P6_0-P6_2,	1	0	Output latch
P6_6	*	1	Pin
	0	0	Pin
P6_3, P6_7	1	0	Output latch
	*	1	Output data latch
	0	0	Pin
P6_4, P6_5	1	0	Output latch
	*	1	Clock: if shift clock is output Pin: if shift clock is input

[&]quot;*" indicates either "1" or "0".

6.10 Port 7 (P7)

Port 7 (P7_0–P7_7) is an 8-bit I/O port. Input or output can be specified for each bit by the Port 7 mode register (P7IO). In addition to the port function, a secondary function (output of the strobe signal for the external memory, etc) is assigned to Port 7. Port function/secondary function is selected by the Port 7 secondary function control register (P7SF).

When the \overline{EA} pin is set to "L" level, P7_2 and P7_3 automatically operates as the \overline{PSEN} pin and the ALE pin respectively.

If the $\overline{\text{OE}}$ pin (pin 71) is in "L" level when P7_4–P7_7 are in output status, P7_4–P7_7 output in "H" or "L" level. But if the $\overline{\text{OE}}$ pin is in "H" level, P7_4–P7_7 go into high impedance.

Figure 6-13 shows the configuration of the Port 7 data register (P7), the Port 7 mode register (P7IO), and the Port 7 secondary function control register (P7SF).

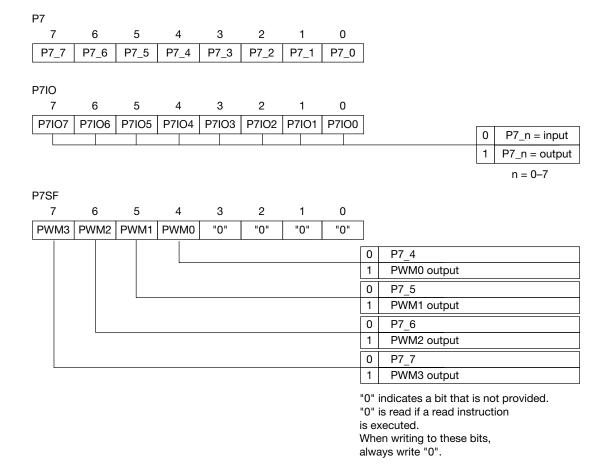


Figure 6-13 Configuration of P7, P7IO, and P7SF

Table 6-7 shows the content of the data that is read when a read instruction is executed to P7 according to the content of P7IO and P7SF. If an arithmetic instruction, increment instruction, or instruction of that type (read-modify-write instruction) is executed to P7, the content of the pin or port data register is read according to specification by P7IO (when reading), and data is written to the port data register (when writing).

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), Port 7 becomes a high impedance input port (P7IO, P7SF = 00H). The content of P7 becomes 00H.

Table 6-7 Read of P7

	P7IO	P7SF	Read Data
D7 0 D7 0	0	_	Pin
P7_0-P7_3	1	_	Output latch
	0	0	Pin
P7_4-P7_7	1	0	Output latch
	*	1	Output data

[&]quot;__" indicates a bit that is not provided and "*" indicates either "1" or "0".

6.11 Port 8 (P8)

Port 8 (P8_0–P8_7) is an 8-bit I/O port. Input or output can be specified for each bit by the Port 8 mode register (P8IO). In addition to the port function, a secondary function (PWM output) is assigned to Port 8. Port function/secondary function is selected by the Port 8 secondary function control register (P8SF).

If the \overline{OE} pin (pin 71) is in "L" level when Port 8 is in output status, Port 8 outputs "H" or "L" level. But if the \overline{OE} pin (pin 71) is in "H" level, Port 8 goes into high impedance status.

Figure 6-14 shows the configuration of the Port 8 data register (P8), the Port 8 mode register (P8IO), and the Port 8 secondary function control register (P8SF).

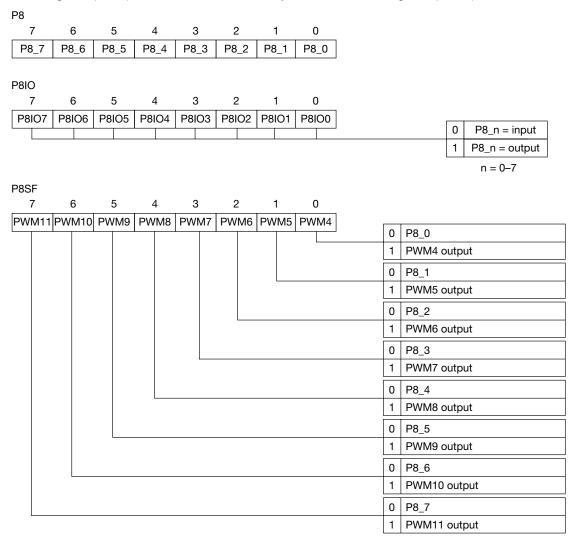


Figure 6-14 Configuration of P8, P8IO, and P8SF

Table 6-8 shows the content of the data that is read when a read instruction is executed to P8 according to the content of P8I0 and P8SF. If an arithmetic instruction, increment instruction, or instruction of that type (read-modify-write instruction) is executed to P8, the content of the pin or port data register is read according to specification by P8IO when reading, and data is written to the port data register when writing.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), Port 8 becomes a high impedance input port (P8IO = 00H, P8SF = 00H). The content of P8 becomes 00H.

Table 6-8 Read of P8

	P8IO	P8SF	Read Data
	0	0	Pin
P8_0-P8_7	1	0	Output latch
	*	1	Output data

[&]quot;*" indicates either "1" or "0".

6.12 Port 9 (P9)

Port 9 (P9_0 – P9_7) is an 8-bit I/O port. Input or output can be specified for each bit by the Port 9 mode register (P9IO).

In addition to the port function, a secondary function (serial port I/O, etc) is assigned to Port 9. Port function/secondary function is selected by the Port 9 secondary function control register (P9SF).

Figure 6-15 shows the configuration of the Port 9 data register (P9), the Port 9 mode register (P9IO), and the Port 9 secondary function control register (P9SF).

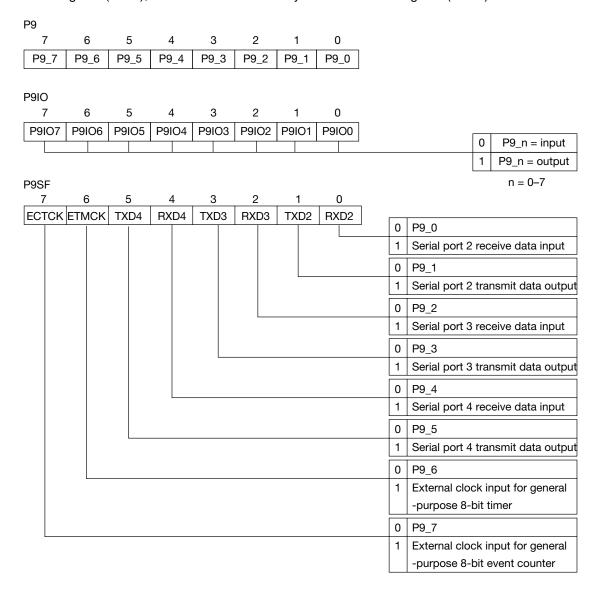


Figure 6-15 Configuration of P9, P9IO, and P9SF

If a read instruction is executed to P9 in which the input is specified (P9IOn = "0") by P9IO, the content of the pin is read. If a read instruction is executed to P9 in which the output is specified (P9IOn = "1"), the content of the port data register is read. If an arithmetic instruction, increment instruction, or instruction of that type (read-modify-write instruction) is executed to P9, the content of the pin or port data register is read according to specification by P9IO (when reading), and data is written to the port data register (when writing).

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), Port 9 becomes a high impedance input port (P9IO, P9SF = 00H). The content of P9 becomes 00H.

6.13 Port 10 (P10)

Port 10 (P10_0–P10_7) is an 8-bit I/O port. Input or output can be specified for each bit by the Port 10 mode register (P10IO). In addition to the port function, a secondary function (real time output, etc) is assigned to Port 10. Port function/secondary function is selected by the Port 10 secondary function control register (P10SF).

If the \overline{OE} pin (pin 71) is in "L level when P10_0–P10_4 are in output status, Port 10 outputs "H" or "L" level. But if the \overline{OE} pin (pin 71) is in "H" level, Port 10 goes into high impedance status.

Figure 6-16 shows the configuration of the Port 10 data register (P10), the Port 10 mode register (P10IO), and the Port 10 secondary function control register (P10SF).

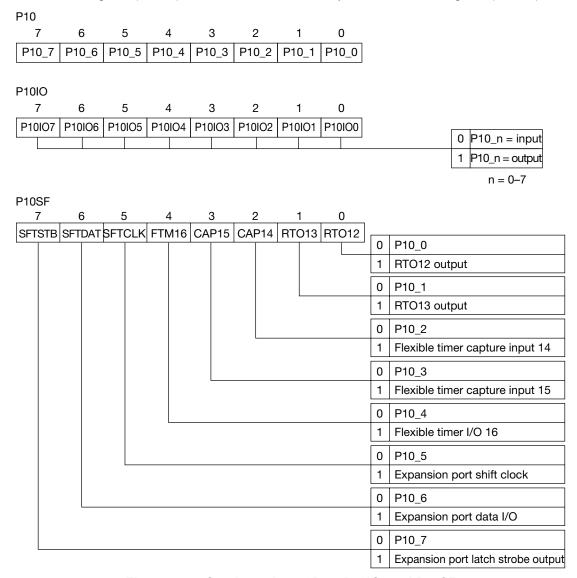


Figure 6-16 Configuration of P10, P10IO, and P10SF

Table 6-9 shows the content of the data that is read when a read instruction is executed to P10 according to the content of P10I0 and P10SF. If an arithmetic instruction, increment instruction, or instruction of that type (read-modify-write instruction) is executed to P10, the content of the pin or port data register is read according to specification by P10IO (when reading), and data is written to the port data register (when writing).

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), Port 10 becomes a high impedance input port (P10IO, P10SF = 00H). The content of P10 becomes 00H.

Table 6-9 Read of P10

	P10IO	P10SF	Read Data		
D40 0 D40 4	0	0	Pin		
P10_0, P10_1 P10_5, P10_7	1	0	Output latch		
1 10_0,1 10_1	*	1	Output data		
	0	0	Pin		
P10_2, P10_3	1	0	Output latch		
	*	1	Pin		
	0	0	Pin		
D10 4	1	0	Output latch		
P10_2, P10_3		4	Pin: if timer is in CAP mode		
	*	'	Output data: if timer is in RTO mode		
	0	0	Pin		
P10_6	1	0	Output latch		
1 10_0	*	1	Pin: if expansion port is in input mode Output data: if expansion port is in output mode		

[&]quot;*" indicates either "1" or "0".

6.14 Port 11 (P11)

Port 11 (P11_0–P11_7) is an 8-bit I/O port. Input or output can be specified for each bit by the Port 11 mode register (P11IO).

In addition to the port function, a secondary function (RAM monitor function) is assigned to port 11. The RAM monitor function is enabled when the \overline{EA} pin is set to "H" level.

Figure 6-17 shows the configuration of the Port 11 data register (P11) and the Port 11 mode register (P11IO).

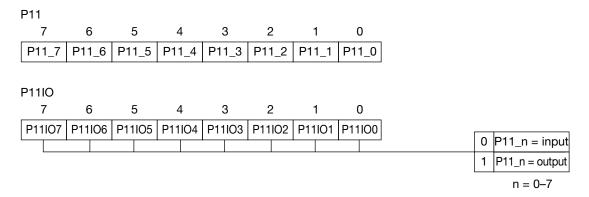


Figure 6-17 Configuration of P11 and P11IO

If a read instruction is executed to P11 in which the input is specified (P11IOn = "0") by P11IO, the content of the pin is read. If a read instruction is executed to P11 in which the output is specified (P11IOn = "1"), the content of the port data register is read. If an arithmetic instruction, increment instruction, or instruction of that type (read-modify-write instruction) is executed to P11, the content of the pin or port data register is read according to specification by P11IO (when reading), and data is written to the port data register (when writing).

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), Port 11 becomes a high impedance input port (P11IO = 00H). The content of P11 becomes 00H.

6.15 Port 12 (P12)

Port 12 (P12_0, P12_1) is a 2-bit I/O port. Input or output can be specified for each bit by the Port 12 mode register (P12IO).

In addition to the port function, a secondary function (for MSM66591, address 16 output of external program memory; for ML66592, address 16 and 17 output of external program memory) is assigned to Port 12. If the \overline{EA} pin is set to "L" level, in MSM66591 P12_0 operates as an address bus (address 16 output pin) of the external program memory, and in ML66592 P12_0 and P12_1 operate as address buses (address 16 and 17 output pins) of the external program memory.

If the \overline{OE} pin (pin 71) is in "L" level when Port 12 is in output status, Port 12 outputs "H" or "L" level, but if the \overline{OE} pin is in "H" level, Port 12 goes into high impedance status.

Figure 6-18 shows the configuration of the Port 12 data register (P12) and the Port 12 mode register (P12IO).

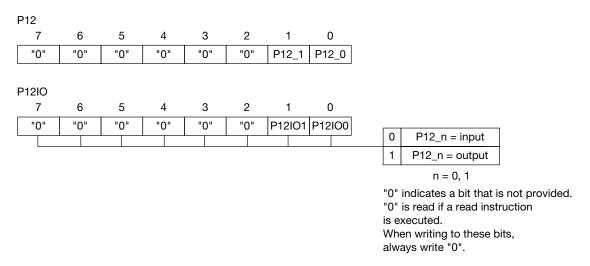


Figure 6-18 Configuration of P12 and P12IO

If a read instruction is executed to P12 in which input is specified (P12IOn = "0") by P12IO, the content of the pin is read. If a read instruction is executed to P12 in which output is specified (P12IOn = "0"), the content of the port data register is read. If an arithmetic instruction, increment instruction, or instruction of that type (read-modify-write instruction) is executed to P12, the content of the pin or port data register is read according to specification by P12IO (in the case of reading), and data is written to the port data register (in the case of writing).

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), Port 12 becomes a high impedance input port (P12IO = 00H). The content of P12 becomes 00H.

Chapter 7

Output Pin Control Pin (OE)

7

7. Output Pin Control Pin (OE)

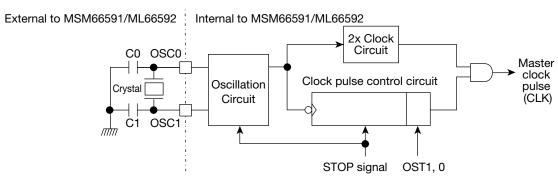
The MSM66591/ML66592 have an \overline{OE} pin (pin 71) to control the output of 47 pins, P0, P1, P2, P3_0-P3_3, P7_4-P7_7, P8, P10_0-P10_4, P12_0, and P12_1.

If the $\overline{\text{OE}}$ pin is in "H" level when P0, P1, P2, P3_0–P3_3, P7_4–P7_7, P8, P10_0–P10_4, P12_0, and P12_1 are configured to function as output pins, each pin goes into high impedance status, and if the $\overline{\text{OE}}$ pin is in "L" level, each pin outputs "L" or "H" level.

When P0, P1, P2, P3_0–P3_3, P7_4–P7_7, P8, P10_0–P10_4, P12_0, and P12_1 are specified to input, each pin functions as an input pin, regardless of the status of the $\overline{\text{OE}}$ pin.

The level of the $\overline{\text{OE}}$ pin can be read by testing bit 7 (OERD) of the peripheral control register (PRPHF) by the program.

Chapter 8


Clock Generation Circuit

8

8. Clock Generation Circuit

The clock generation circuit generates the master clock pulse (CLK) necessary for the MSM66591/ML66592. In other words, the clock generation circuit multiplies the clock generated by the oscillation circuit by a factor of 2, then supplies the obtained clock to the MSM66591/ML66592. A crystal oscillator or other required devices are connected to OSC0 (pin 42) and OSC1 (pin 43) pins.

Figure 8-1 shows an example of a crystal oscillation circuit.

[Notes]

- 1. The C0 and C1 values must be set according to the standard of the external crystal.
- 2. A ceramic resonator can be used in place of crystal.
- 3. Arrange the external components (crystal and capacitor) near the OSC0 and OSC1 pins.
- 4. Components not illustrated here may be required depending on the frequency band used.

Figure 8-1 An Example of a Crystal Oscillation Circuit Connection

If the master clock pulse is supplied externally, input to the OSC0 pin. Leave the OSC1 pin open at that time.

Figure 8-2 shows the connection example for external clock input.

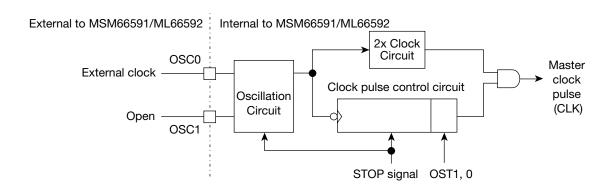


Figure 8-2 Connection Example for External Clock Input

The clock generation circuit can be stopped by STOP mode so that power consumption is further decreased.

If STOP mode is cleared by an interrupt request, the master clock pulse is transferred when the number of clocks specified by OST0 and OST1 (bits 4 and 5) of SBYCON have elapsed after oscillation starts.

If STOP mode is cleared by the RES pin input, the setting of OST0 and OST1 by SBYCON is invalid, therefore apply "L" level to the RES pin until at least 1 ms has elapsed after the original oscillation clock stabilizes.

Chapter 9

Time Base Counter (TBC)

9

9. Time Base Counter (TBC)

The MSM66591/ML66592 time base counter (TBC) is an 8-bit counter that uses as its input clock an overflow of the 4-bit auto-reload timer. The 4-bit auto-reload timer uses as its input the master clock pulse (CLK) generated by multiplying the original oscillation clock by 2.

The divided output of the TBC is used as the reference clock for the flexible timer, the timer for the serial port, and others.

The TBC is cleared to "0" at reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer (WDT) is overflown, or an operation code trap is generated), and from then on operates unless the supply of the original oscillation clock stops.

Figure 9-1 shows the configuration of TBC.

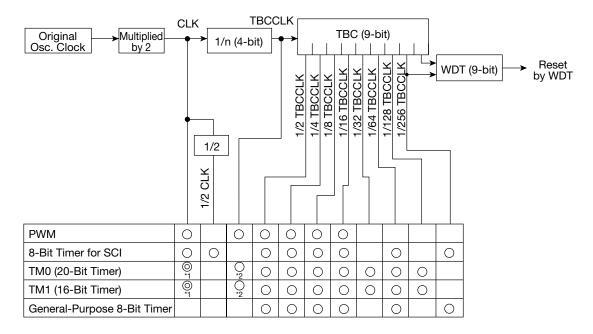


Figure 9-1 Configuration of TBC

- *1 CLK ("©" in the above figure) used for TM0 and TM1 is supplied to the timer data sequencer and to the timing controller of each timer register module.
- *2 If the 1/n (4-bit) counter is set as n = 1, and if the TBCCLK is selected for TM0 and TM1, the flexible timer does not operate normally. (However, the freerun counters TM0, TM0L, and TM1 operate normally.)

9.1 1/n Counter

The MSM66591/ML66592 have a 4-bit auto-reload timer that uses a CLK as the input clock, therefore the same clock pulse (TBCCLK) can be supplied to TBC, even if the original oscillation frequency is changed.

The 1/n counter consists of a 4-bit counter (TBCKDVC) and a 4-bit register (TBCKDVR) to store reload values.

	7	6	5	4	3	2	1	0
TBCKDVC			_	_				

TBCKDVC is a 4-bit counter that uses a CLK (clock generated by multiplying the original oscillation clock by 2) as the input clock. Write is invalid. Read is valid, but the high-order 4 bits will read "1" if read. At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), TBCKDVC becomes F0H.

	7	6	5	4	3	2	1	0
TBCKDVR	_	_	_	_				

TBCKDVR is a 4-bit register that stores reload values into TBCKDVC.

Write is valid, but write to high-order 4 bits is invalid. Read is valid, but the high order 4 bits will read "1" if read.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), TBCKDVR becomes F0H. At reset the 1/n counter divides the 1 CLK into 16, and supplies a 1/16 CLK to TBC as TBCCLK.

After writing a reload value to TBCKDVR, the dividing operation may delay for a maximum of 16 clocks of CLK, depending on the dividing ratio written to TBCKDVR.

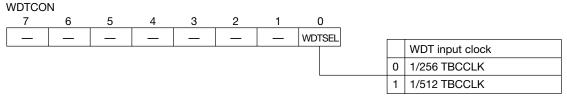
The following table shows 1/n counter correspondence between the dividing ratios and the values to be set to TBCKDVR.

Dividing ratio	Value to TBCKDVR	Dividing ratio	Value to TBCKDVR
1/1	FFH	1/9	F7H
1/2	FEH	1/10	F6H
1/3	FDH	1/11	F5H
1/4	FCH	1/12	F4H
1/5	FBH	1/13	F3H
1/6	FAH	1/14	F2H
1/7	F9H	1/15	F1H
1/8	F8H	1/16	F0H

Chapter 10

Watchdog Timer (WDT)

10


10. Watchdog Timer (WDT)

The watchdog timer (WDT) is a 9-bit counter that uses the overflow (1/256 TBCCLK or 1/512 TBCCLK) of the time base counter (TBC) as the input clock. It resets the device when program runaway is detected. The contents of the WDT can be cleared to "0" by the program, but the contents cannot be read or written.

10.1 WDT Control Register (WDTCON)

WDTCON is a 1-bit register that selects the WDT input clock.

Figure 10-1 shows the configuration of WDTCON.

"—" indicates a bit that is not provided.
"1" is read if a read instruction is executed.

Figure 10-1 Configuration of WDTCON

10.2 Operation of WDT

1/256 TBCCLK or 1/512 TBCCLK can be selected for the WDT input clock by the WDTSEL bit (bit 0) of the WDT control register (WDTCON).

The WDT stops its function at reset (when the \overline{RES} signal is input, the BRK instruction is executed, the WDT is overflown, and an operation code trap is generated).

The WDT is started by writing "3CH" to WDT (SFR address 27H) on SFR by the program. The WDT is cleared to "0" by writing "C3H" and "3CH" to WDT alternately.

If the WDT overflows, the CPU performs a reset process and 2 bytes of the content of the branch address stored in addresses 0004H–0005H (vector address of reset by WDT) are loaded to the program counter.

Figure 10-2 shows a block diagram of WDT.

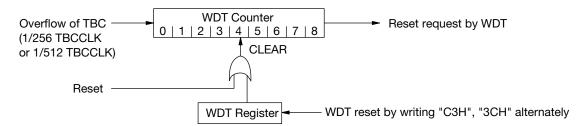


Figure 10-2 Block Diagram of WDT

10.3 Time until Overflow of WDT

When the master clock is f MHz and 1/256 TBCCLK is selected:

$$t_{WDT} = (1/f) \mu sec \times n \times 2^8 \times 2^9$$

n is the dividing value of the 4-bit auto-reload timer (1/n counter) of the TBC input.

If the WDT is cleared, a minus error of a maximum of

$$\Delta t_{WDT} = (1/f) \mu sec \times n \times 2^8$$

occurs, since the content of TBC does not change.

When the master clock of the MSM66591 is 24 MHz and n = 8, the result is

$$t_{WDT} = 43.69 \text{ msec}$$

$$\Delta t_{WDT} = 85.33 \,\mu sec$$

When the master clock of the ML66592 is 28 MHz and n = 8, the result is

$$t_{WDT} = 37.45 \text{ msec}$$

$$\Delta t_{WDT} = 73.14 \,\mu sec$$

10.4 Program Runaway Detection Timing Diagram

Figure 10-3 (a) shows an example of timing when a program is executed normally.

Figure 10-3 (b) shows an example of timing when program runaway occurs. Figure 10-4 (a), (b), and (c) show examples of program runaway.

(a) When program is executed normally

t_{WDT}

 t_{WDT}

 t_{WDT}

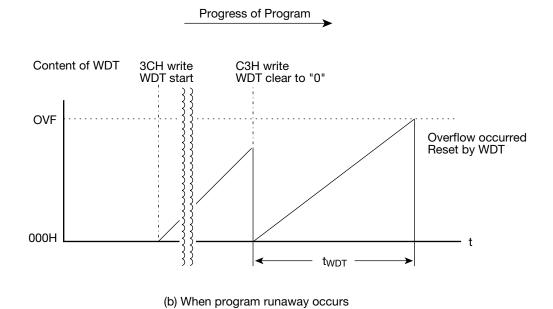


Figure 10-3 Example of Timing When Program Runaway is Detected

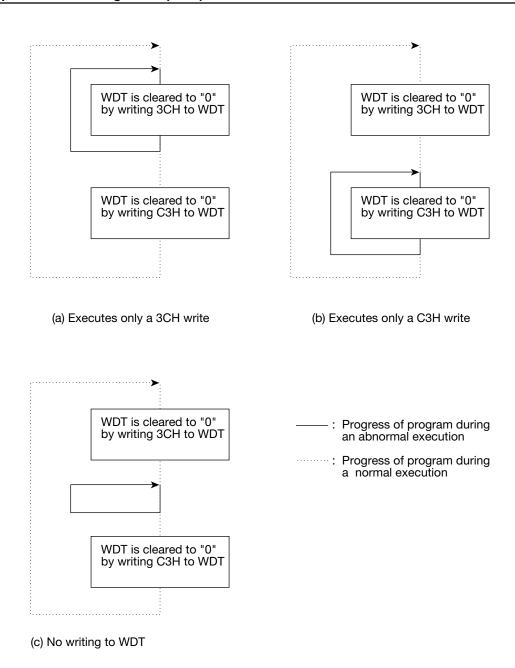


Figure 10-4 Examples of Program Runaway

Chapter 11

Flexible Timer (FTM)

11

11

11. Flexible Timer (FTM)

The MSM66591/ML66592 flexible timer (FTM) consists of a 20-bit counter, a 16-bit counter, four 20-bit registers, fourteen 16-bit registers, control registers, and other components.

The functions of the timer include:

- 20-bit capture modes: 4 (type A1)
- 16-bit capture modes: 2 (type A2)
- double buffer real-time output modes: 10 (type B)
- capture/real-time output mode (with 4-port RTO): 1 (type D)
- capture/real-time output mode: 1 (type E)

Figure 11-1 shows the configuration of FTM.

Table 11-1 shows the list of SFRs for controlling FTM.

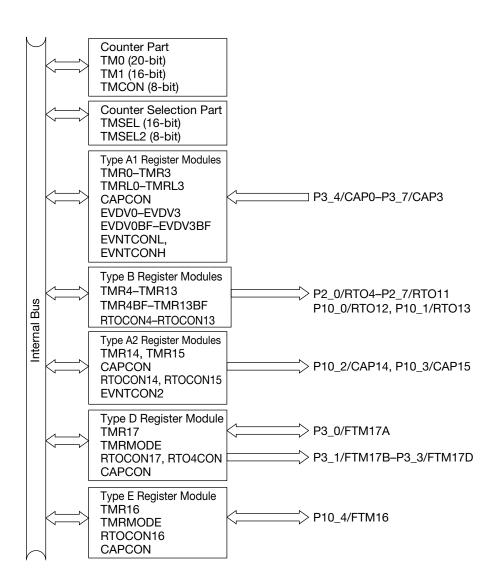


Figure 11-1 Configuration of FTM

Table 11-1 List of SFRs for Controlling FTM

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
008A 008B	Timer Register 0	_	TMR0			Undefined
008C 008D	Timer Register 1	_	TMR1	R		Undefined
008E 008F	Timer Register 2	_	TMR2	п		Undefined
0090 0091	Timer Register 3	_	TMR3			Undefined
0092	Timer Register 4	_	TMR4			0000
0094 0095	Timer Register 5	_	TMR5			0000
0096 0097	Timer Register 6	_	TMR6			0000
0098 0099	Timer Register 7	_	TMR7			0000
009A 009B	Timer Register 8	_	TMR8	R/W	16	0000
009C 009D	Timer Register 9	_	TMR9			0000
009E 009F	Timer Register 10	_	TMR10			0000
00A0 00A1	Timer Register 11	_	TMR11			0000
00A2 00A3	Timer Register 12	_	TMR12			0000
00A4 00A5	Timer Register 13	_	TMR13			0000
00A6 00A7	Timer Register 14	_	TMR14	R		Undefined
00A8 00A9	Timer Register 15	_	TMR15			Undefined
00AA 00AB	Timer Register 16	_	TMR16			0000
00AC 00AD	Timer Register 17	_	TMR17			0000
00AE 00AF	TMR4 Buffer Register	_	TMR4BF	R/W		0000
00B0 00B1	TMR5 Buffer Register	_	TMR5BF			0000
00B2 00B3	TMR6 Buffer Register	_	TMR6BF			0000
00B4 00B5	TMR7 Buffer Register	_	TMR7BF			0000

Table 11-1 List of SFRs for Controlling FTM (continued)

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
00B6	TMR8 Buffer Register	_	TMR8BF			0000
00B7	- Tourie Danier Hegieter		TIVITIODI			
00B8	TMR9 Buffer Register	_	TMR9BF			0000
00B9 00BA						
00BA 00BB	TMR10 Buffer Register	_	TMR10BF	R/W	16	0000
00BC	T10110 (D)		TMD44DE			0000
00BD	TMR11 Buffer Register	_	TMR11BF			0000
00BE	TMR12 Buffer Register	_	TMR12BF			0000
00BF	TWITTE Buildi Hogister		TIVITTIZDI			
00C0	TMR13 Buffer Register	_	TMR13BF			0000
00C1	Tivil (10 Dulle) Hegistel		TIVITTIODI		16	
00C2	Timer Setting Register	_	TMSEL	R/W	10	0000
00C3	Timer Setting negister		TWOLL			0000
00C4☆	Timer Setting Register 2	TMSEL2	_		8	FC
00C6☆	RTO Control Register 4	RTOCON4	_			F8
00C7☆	RTO Control Register 5	RTOCON5	_			F8
00C8☆	RTO Control Register 6	RTOCON6	_			F8
00C9☆	RTO Control Register 7	RTOCON7	_			F8
00CA☆	RTO Control Register 8	RTOCON8	_		0	F8
00CB☆	RTO Control Register 9	RTOCON9	_			F8
00CC☆	RTO Control Register 10	RTOCON10	_			F8
00CD☆	RTO Control Register 11	RTOCON11	_		8	F8
00CE☆	RTO Control Register 12	RTOCON12	_			F8
00CF☆	RTO Control Register 13	RTOCON13	_	R/W		F8
00D0☆	RTO Control Register 16	RTOCON16	_			F8
00D1☆	RTO Control Register 17	RTOCON17	_			F8
00D2	4-Port RTO Control Register	RTO4CON	_			00
00D3☆	Timer Counter 0 Low-order 4 Bits	TM0L	_			0F
00D4	Timor Countar O		T			0000
00D5	Timer Counter 0	_	TM0		40	0000
00D6	T' 0 1 1				16	2022
00D7	Timer Counter 1	_	TM1			0000
00D8	TMR0 Low-order 4 Bits	TMR0L	_			Undefined
00D9	TMR1 Low-order 4 Bits	TMR1L	_	_		Undefined
00DA	TMR2 Low-order 4 Bits	TMR2L	_	R	8	Undefined
00DB	TMR3 Low-order 4 Bits	TMR3L	_			Undefined

Some addresses are not consecutive.

Addresses in the address column marked by "\$\paraller{a}" indicate that the register has bits missing.

Table 11-1 List of SFRs for Controlling FTM (continued)

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
00DC	Timer Control Register	TMCON	_	R/W	8	00
00DD	Event Control Register 2	EVNTCON2	_			88
00DE	Event Control Register L	EVNTCONL	_			88
00DF	Event Control Register H	EVNTCONH	_			88
0170☆	Event Dividing Counter 0	EVDV0	_			C0
0171☆	Event Dividing Counter 1	EVDV1	_			C0
0172☆	Event Dividing Counter 2	EVDV2	_			C0
0173☆	Event Dividing Counter 3	EVDV3	_			C0
0174☆	Event Dividing Counter 14	EVDV14	_			C0
0175☆	Event Dividing Counter 15	EVDV15	_			C0
0176☆	EVDV0 Buffer Register	EVDV0BF	_			C0
0177☆	EVDV1 Buffer Register	EVDV1BF	_			C0
0178☆	EVDV2 Buffer Register	EVDV2BF	_			C0
0179☆	EVDV3 Buffer Register	EVDV3BF	_			C0
017A☆	EVDV14 Buffer Register	EVDV14BF	_			C0
017B☆	EVDV15 Buffer Register	EVDV15BF	_			C0
017C	Capture Control Register	_	CAPCON	R/W	16	0000
017D						
017E☆	TMR Mode Register	TMRMODE	_		8	F2

Some addresses are not consecutive.

Addresses in the address column marked by "\$\paraller{a}\$" indicate that the register has bits missing.

11.1 Configuration of Counter Part

The counter part consists of a 20-bit freerun counter (TM0, TM0L), a 16-bit freerun counter (TM1), an input clock selector for each freerun counter, a timer data sequencer to output as TMD the high-order 16-bits of TM0 and the TM1 values alternately at one-CLK intervals, and a control register (TMCON) to control the operation of TM0/TM1.

TM0 and TM1 generate interrupt requests when an overflow occurs.

Figure 11-2 shows the configuration of the counter part.

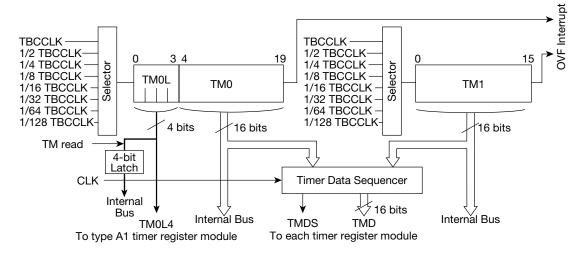


Figure 11-2 Configuration of Counter Part

Timer 0 is a 20-bit counter, the low-order 4 bits are TM0L, and the high-order 16 bits are TM0, and can be read/written by the program. However, if TM0 is read, the contents of TM0L are latched to the temporary register at the same time. If TM0L is read after that, the latched contents are read. Therefore if the data of Timer 0 is read in 20-bit length, read TM0 first, then TM0L. If TM0L is written, the low-order 4-bits are invalid. If TM0L is read, all "1s" are read from the low-order 4 bits. TM1 is a 16-bit counter, and can be read/written by the program.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), TM0 and TM1 become 0000H, TM0L becomes 0FH, and operation is stopped.

The input clocks of TM0L, TM0, and TM1 are selected as TBCCLK or 1/2 TBCCLK to 1/128 TBCCLK by the timer control register (TMCON).

TMCON is an 8-bit register, that selects the count clock of TM0L, TM0 and TM1, and also selects run/stop. At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), TMCON becomes 00H, TBCCLK is selected for the count clock of TM0L, TM0 and TM1, and operation is stopped.

The 4-bit output (TM0L4) of TM0L is connected to the timer register module type A1. The high-order 16-bit output of TM0, and the 16-bit output of TM1 are time-sharing outputs (TMD) by CLK, at the timer data sequencer, and are connected to each timer register module.

Figure 11-3 shows the configuration of TMCON, and Figure 11-4 shows the timing of the timer data sequencer.

TMCON

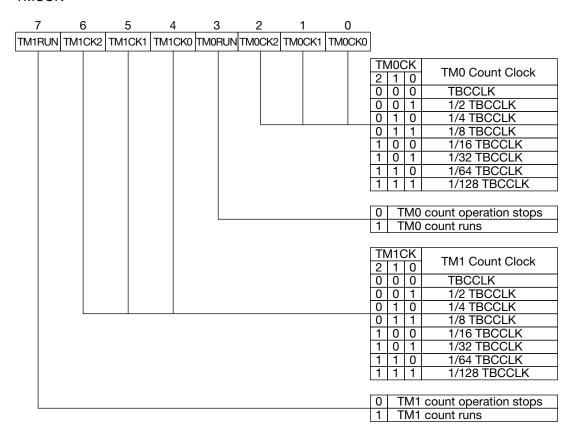


Figure 11-3 Configuration of TMCON

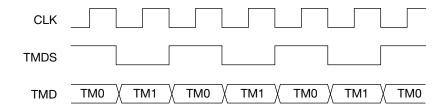
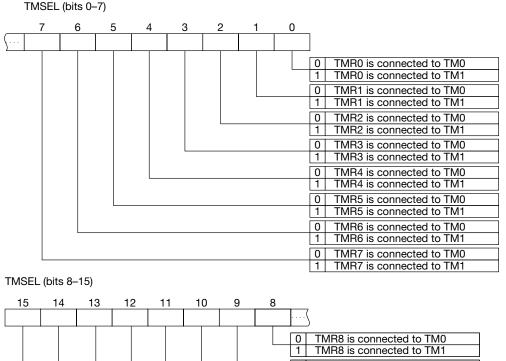


Figure 11-4 Output of Timer Data Sequencer

11.2 Counter Selection Part


The MSM66591/ML66592 have 18 timer register modules. Each timer register module can be connected to either one of the two freerun counters (TM0 and TM1). The selection is specified by the timer setting register (TMSEL) and timer setting register 2 (TMSEL2). TMSEL is a 16-bit register and TMSEL2 is a 2-bit register, both of which are read/write enabled. Timer register 0 (TMR0) through timer register 3 (TMR3) consist of 20 bits. TM0L4 is always connected to the low-order 4 bits regardless of the specification of TMSEL.

"1s" are read from bits 7-2 when TMSEL2 is read.

Note that <u>bit manipulation instructions such as SB and RB cannot be used, because TMSEL has only 16-bit access.</u>

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), TMSEL and TMSEL2 become 0000H and FCH respectively, and all timer register modules are connected to TM0.

Figure 11-5 shows the configuration of TMSEL, and Figure 11-6 the configuration of TMSEL2.

0 TMR9 is connected to TM0 TMR9 is connected to TM1 1 0 TMR10 is connected to TM0 TMR10 is connected to TM1 1 0 TMR11 is connected to TM0 1 TMR11 is connected to TM1 0 TMR12 is connected to TM0 TMR12 is connected to TM1 TMR13 is connected to TM0 0 TMR13 is connected to TM1 1 0 TMR14 is connected to TM0 TMR14 is connected to TM1 0 TMR15 is connected to TM0 TMR15 is connected to TM1

Figure 11-5 Configuration of TMSEL

TMSEL2 (bits 0-7)

7 6 5 4 3 2 1 0

— — — — — — T17SEL T16SEL

0 TMR16 is connected to TM0
1 TMR16 is connected to TM1
0 TMR17 is connected to TM0
1 TMR17 is connected to TM1
"—" indicates a bit that is not provided.

"1" is read if a read instruction is executed.

Figure 11-6 Configuration of TMSEL2

11.3 Type A1 Register Modules (TMR0–TMR3)

The MSM66591/ML66592 have four sets of type A1 register modules (TMR0–TMR3). The configuration is the same for all the sets, except for the address of registers on SFR.

11.3.1 Configuration of Type A1 Register Modules (TMR0-TMR3)

Type A1 register modules have a capture input function. Figure 11-7 shows the configuration of a type A1 register module.

Type A1 register modules consist of a 20-bit timer register (TMRn, TMRnL), a pin to input external events (CAPn), the edge detection of an external event, a divider to divide an external event, a timing controller, and control registers (CAPCON, EVNTCONL, EVNTCONH) to specify the operation of the valid edge of an external event and the operation of a divider.

If CAP0–CAP3 pins are used as a capture function, set the bit corresponding to the Port 3 secondary function control register to "1".

Figure 17-1 shows the configuration of type A1 register module.

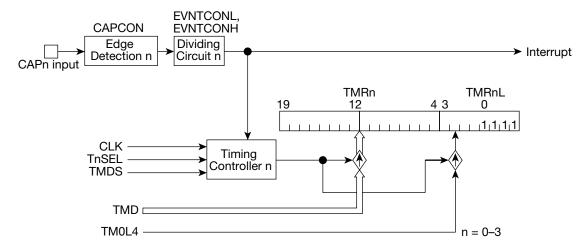


Figure 11-7 Configuration of Type A1 Register Module

[1] Timer Registers (TMR0, TMR0L–TMR3, TMR3L)

The timer register consists of 20 bits, that are divided into high-order 16 bits (TMR0–TMR3) and low-order 4 bits (TMR0L–TMR3L). The counter specified by TMSEL is connected to TMR0–TMR3, and the low-order 4 bits of the 20-bit counter are always connected to TMR0L–TMR3L.

If the specified valid edge is input to CAP0–CAP3 pins for the specified number of pulses, a capture event is generated. In that case, the 16-bits of the content of the counter specified by TMSEL are loaded to TMR0L–TMR3L, and the content of the low-order 4 bits of the 20-bit counter is loaded to TMR0L–TMR3L.

TMR0–TMR3 and TMR0L–TMR3L cannot be written, but can be read by the program. However, if TMR0L–TMR3L are read, the high-order 4 bits are valid, and "1" is read from the low-order 4 bits.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), TMR0–TMR3 and TMR0L–TMR3L become undefined.

[2] Capture Control Register (CAPCON)

CAPCON is a 16-bit register that specifies the valid edge of a signal that is input to the CAP0 (P3_4)–CAP3 (P3_7) pins, CAP14 (P10_2), CAP15 (P10_3), and, when TMR16 and TMR17 are in CAP mode, to FTM16 (P10_4) and FTM17A (P3_0) pins. Bits 0 to 7 of CAPCON are used to specify the valid edge of the signal that is input to the CAP0 (P3_4)–CAP3 (P3_7) pins.

Since CAPCON has only 16-bit access, bit manipulation instructions such as SB and RB cannot be used.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), CAPCON becomes 0000H, and CAP0–CAP3, CAP14, CAP15, FTM16, and FTM17A are specified to the falling edge.

Figure 11-8 shows the configuration of bits 0-7 of CAPCON.

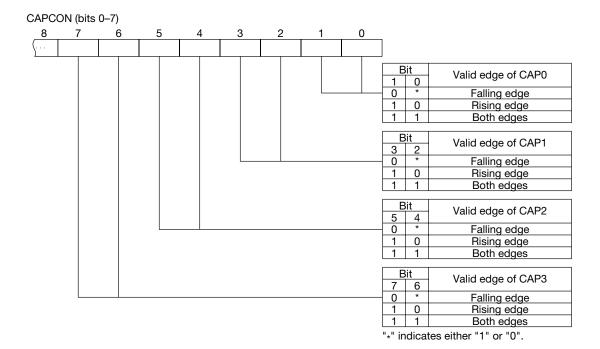


Figure 11-8 Configuration of Bits 0-7 of CAPCON

[3] Event Control Registers (EVNTCONL, EVNTCONH)

EVNTCONL and EVNTCONH are 8-bit registers that specify the dividing ratio (1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64) of the valid edge that is specified by the CAPCON of the signal that is input to CAP0 (P3_4)–CAP3 (P3_7) pins.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), both EVNTCONL and EVNTCONH become 88H, and a 1/1 division is specified.

Figure 11-9 shows the configuration of EVNTCONL, and Figure 11-10 the configuration of EVNTCONH.

EVNTCON	L										
7	6	5 4	4	3	2	1	0				
— T1	EV2 T1	EV1 T1	EV0	_	T0EV2	T0EV1	T0EV0				
								T	0E' 1	V 0	Dividing ratio of valid edge of CAP0 pin
								0	0	0	1/1 division
								0	0	1	1/2 division
								0	1	0	1/4 division
								0	1	1	1/8 division
								1	0	0	1/16 division
								1	0	1	1/32 division
								1	1	*	1/64 division
								T	<u>1E</u> \ 1	V 0	Dividing ratio of valid edge of CAP1 pin
								0	0	0	1/1 division
								0	0	1	1/2 division
								0	1	0	1/4 division
								0	1	1	1/8 division
								1	0	0	1/16 division
								1	0	1	1/32 division
								1	1	*	1/64 division

[&]quot;—" indicates a bit that is not provided.

Figure 11-9 Configuration of EVNTCONL

[&]quot;1" is read if a read instruction is executed.

[&]quot;*" indicates either "1" or "0".

[&]quot;—" indicates a bit that is not provided.

Figure 11-10 Configuration of EVNTCONH

[&]quot;1" is read if a read instruction is executed.

[&]quot;*" indicates either "1" or "0".

[4] Event Dividing Counters 0–3 (EVDV0–EVDV3)

EVDV0–EVDV3 are 6-bit counters that count the valid edge (specified by CAPCON) input to CAP0–CAP3 pins for the value specified by EVNTCONL and EVNTCONH.

Figure 11-11 shows the configuration of EVDVn (n = 0-3).

Figure 11-11 Configuration of EVDVn (n = 0-3)

Whatever data is written to EVDV0–EVDV3, the counter is cleared to "0". Read is valid, but "1" is read from the high-order 2 bits. EVDV0–EVDV3 are cleared to "0" when a capture event is generated.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, a watchdog timer is overflown, or an operation code trap is generated), EVDV0–EVDV3 become C0H.

[5] EVDV0–EVDV3 Buffer Registers (EVDV0BF–EVDV3BF)

EVDV0BF–EVDV3BF are 6-bit registers that hold the content of EVDV0–EVDV3 (content just prior to being cleared to "0") when a capture event is generated.

Figure 11-12 shows the configuration of EVDVnBF (n = 0-3).

	7	6	5	4	3	2	1	0
EVDVnBF		_						

Figure 11-12 Configuration of EVDVnBF (n = 0-3)

Write to EVDV0BF–EVDV3BF is valid, however write to the high-order 2-bits is invalid. Read is valid, however "1" is read from the high-order 2-bits.

If the content of EVNTCONL or EVNTCONH is updated and the dividing ratio is changed during a capture operation, it is necessary to check whether an interrupt was generated based on normal dividing, by testing the content of EVDVnBF at the beginning of the capture interrupt process program.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), EVDV0BF–EVDV3BF become C0H.

11.3.2 Operation of Type A1 Register Modules (TMR0-TMR3)

If the valid edge specified by CAPCON is input to CAP0–CAP3 pins when the TM specified by TMSEL is in RUN status, the divider divides the pulse in the dividing ratio specified by EVNTCON. In that case, an interrupt request by a capture event is generated, and at the same time, the content of the counter specified by TMSEL is loaded to TMRn, and the content of TM0L4 is loaded to TMRnL. Also the content of the dividing counter in the divider is loaded to buffer register EVDVnBF, and the content of the dividing counter EVDVn is cleared to "0". Input a capture event at the interval of 3 CLKs or more. (Capture operation may be performed only once even if the capture event is input twice or more at an interval of less than 3 CLKs.)

Figure 11-13 (a) and (b) shows capture operation timing examples.

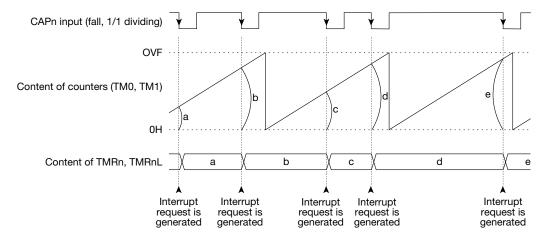


Figure 11-13 (a) Capture Operation Timing Example

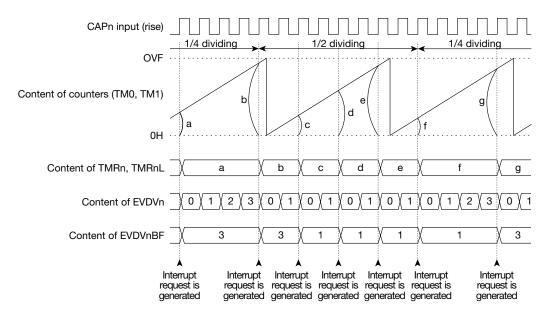


Figure 11-13 (b) Capture Operation Timing Example

If TM1 is selected as the timer for connecting to type A1 register module, 4 bits of TM0L are latched to TMRnL at the time TM1 is latched to TMRn.

Type A1 register modules have no "function to check a cycle of the timer counter between capture events," which is used for the capture function of type D and E register modules.

11.3.3 Capture Pin Dividing Circuit

The MSM66591/ML66592 type A1 timer register modules have a capture pin dividing circuit that can perform division from 1/1 to 1/64.

[1] Configuration of Dividing Circuit

The dividing circuit consists of the following:

- counter to divide valid pulses input to capture pin (EVDVn) (n = 0-3)
- register to set dividing ratio (EVNTCONL, EVNTCONH)
- comparison circuit to compare counter value and register value
- register to hold dividing counter value when an event is generated (EVDVnBF) (n = 0-3)

[2] Operation of Dividing Circuit

If valid edges (pulses) are input to a capture pin, EVDVn counts their number. If the counter value and the dividing value specified by EVNTCONL or EVNTCONH match, a capture event is generated.

If a capture event is generated, a capture interrupt request is generated, the counter value is loaded to the timer register, the EVDVn value is loaded to EVDVnBF, and EVDVn is cleared to "0". (n = 0-3)

[3] Operation to Switch Dividing Ratio

Since the dividing ratio is programmable, the dividing operation may differ, depending on the timing that changes the dividing ratio. In this case, the MSM66591/ML66592 operate as follows:

- 1) When the dividing ratio is changed from 1/N to 1/M (N > M), if a valid edge is input to a capture pin when:
- counter value C in the dividing circuit is $C \ge M-1$ (except when M=1) or
- M = 1

a capture event is generated.

If a valid edge is input to a capture pin when:

- counter value C in the dividing circuit is C < M 1 (except when M = 1)
- a capture event is not generated, and the counter value in the dividing circuit is incremented.
- 2) When the dividing ratio is changed from 1/N to 1/M (N < M), the dividing operation continues until the counter value becomes M, and a capture event is generated when the counter value becomes M.

11.4 Type A2 Register Modules (TMR14, TMR15)

The MSM66591/ML66592 have two sets of type A2 register modules (TMR14, TMR15). The configuration is the same for the two sets, except for the address of registers on SFR.

11.4.1 Configuration of Type A2 Register Modules (TMR14, TMR15)

Type A2 register modules have a 16-bit capture input function.

Type A2 register modules consist of a 16-bit timer register (TMRn), a pin to input external events (CAPn), the edge detection of an external event, a divider to divide an external event, a timing controller, and control registers (CAPCON, EVNTCON2) to specify the operation of the valid edge of an external event and the operation of a divider.

If CAP14 and CAP15 pins are used as a capture function, set the bit corresponding to the Port 10 secondary function control register to "1".

Figure 11-14 shows the configuration of a type A2 register module.

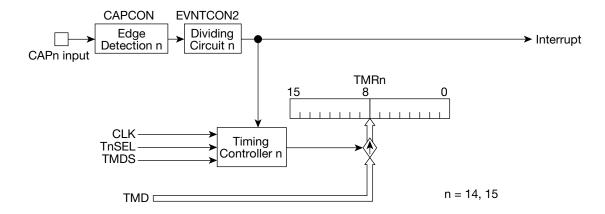


Figure 11-14 Configuration of Type A2 Register Module

[1] Timer Registers (TMR14, TMR15)

The timer registers consist of 16 bits. The counter specified by TMSEL is connected to TMR14 and TMR15. If the specified valid edge is input to CAP14 and CAP15 for the specified number of pulses, a capture event is generated. When a capture event is generated, the 16-bit content of the counter specified by TMSEL is loaded into TMR14 and TMR15.

The program can read from but not write to TMR14 and TMR15.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), TMR14 and TMR15 are undefined.

[2] Capture Control Register (CAPCON)

CAPCON is a 16-bit register that specifies the valid edge of a signal that is input to the CAP0 (P3_4)–CAP3 (P3_7) pins, CAP14 (P10_2), CAP15 (P10_3), and, when TMR16 and TMR17 are in CAP mode, to FTM16 (P10_4) and FTM17A (P3_0) pins. Bits 8 to 15 of CAPCON are used to specify the valid edge of the signal that is input to the CAP14 (P10_2), CAP15 (P10_3), FTM16 (P10_4), and FTM17A (P3_0) pins.

Since CAPCON has only 16-bit access, bit manipulation instructions such as SB and RB cannot be used.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), CAPCON becomes 0000H, and CAP0–CAP3, CAP14, CAP15, FTM16, and FTM17A are specified to the falling edge.

CAPCON (bits 8-15) 15 13 12 11 10 9 8 Bit Valid edge of CAP14 0 1 0 Falling edge Rising edge 1 0 1 1 Both edges Bit Valid edge of CAP15 3 2 Falling edge 0 Rising edge 1 0 1 1 Both edges Bit Valid edge of FTM16 (when in CAP mode) 5 4 0 Falling edge Rising edge 1 0 1 1 Both edges Bit Valid edge of FTM17 (when in CAP mode) 7 6 Falling edge 0 Rising edge 1 0

Figure 11-15 shows the configuration of bits 8–15 of CAPCON.

Figure 11-15 Configuration of Bits 8-15 of CAPCON

1

1

Both edges

"*" indicates either "1" or "0".

[3] Event Control Register 2 (EVNTCON2)

EVNTCON2 is an 8-bit register that specifies the dividing ratio (1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64) of the valid edge that is specified by the CAPCON of the signal that is input to CAP14 (P10_2) and CAP15 (P10_3) pins.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), EVNTCON2 becomes 88H, and a 1/1 division is specified.

Figure 11-16 shows the configuration of EVNTCON2.

EVNTC(ON2										
7	6	5	4	3	2	1	0				
	T15EV2 T	15EV1 T1	5EV0	_	T14EV2	T14EV1	T14EV0				
								T1 2 0 0 0 0 1 1	1 0 0 1 1 0 0	0 0 1 0 1 0	Dividing ratio of valid edge of CAP14 pin 1/1 division 1/2 division 1/4 division 1/8 division 1/16 division 1/32 division 1/64 division
								T1	15E	V 0	Dividing ratio of valid edge of CAP15 pin
								0	0	0	1/1 division
								0	0	1	1/2 division
								0	1	0	1/4 division
								0	1	1	1/8 division
								1	0	0	1/16 division
								1	0	1	1/32 division
								1	1	*	1/64 division

[&]quot;—" indicates a bit that is not provided.

Figure 11-16 Configuration of EVNTCON2

[&]quot;1" is read if a read instruction is executed.

[&]quot;*" indicates either "1" or "0".

[4] Event Dividing Counters 14, 15 (EVDV14, EVDV15)

EVDV14 and EVDV15 are 6-bit counters that count the valid edge (specified by CAPCON) input to CAP14 and CAP15 pins for the value specified by EVNTCON2.

Figure 11-17 shows the configuration of EVDVn (n = 14, 15).

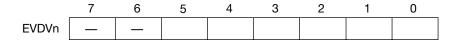


Figure 11-17 Configuration of EVDVn (n = 14, 15)

Whatever data is written to EVDV14 and EVDV15, the counter is cleared to "0". Read is valid, but "1" is read from the high-order 2 bits. EVDV14 and EVDV15 are cleared to "0" when a capture event is generated.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, a watchdog timer is overflown, or an operation code trap is generated), EVDV14 and EVDV15 become C0H.

[5] EVDV14, EVDV15 Buffer Registers (EVDV14BF, EVDV15BF)

EVDV14BF and EVDV15BF are 6-bit registers that hold the content of EVDV14 and EVDV15 (content just prior to being cleared to "0") when a capture event is generated.

Figure 11-18 shows the configuration of EVDVnBF (n = 14, 15).

	7	6	5	4	3	2	1	0
EVDVnBF		_						

Figure 11-18 Configuration of EVDVnBF (n = 14, 15)

Write to EVDV14BF and EVDV15BF is valid, however write to the high-order 2-bits is invalid. Read is valid, however "1" is read from the high-order 2-bits.

If the content of EVNTCON2 is updated and the dividing ratio is changed during a capture operation, it is necessary to check whether an interrupt was generated based on normal dividing, by testing the content of EVDVnBF at the beginning of the capture interrupt process program.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), EVDV14BF and EVDV15BF become C0H.

11.4.2 Operation of Type A2 Register Modules (TMR14, TMR15)

If the valid edge specified by CAPCON is input to CAP14 or CAP15 pin when the TM specified by TMSEL is in RUN status, the divider divides the pulse in the dividing ratio specified by EVNTCON2. In that case, an interrupt request by a capture event is generated, and at the same time, the content of the counter specified by TMSEL is loaded to TMRn. Also the content of the dividing counter in the divider is loaded to buffer register EVDVnBF, and the content of the dividing counter EVDVn is cleared to "0". Input a capture event at the interval of 3 CLKs or more. (Capture operation may be performed only once even if the capture event is input twice or more at an interval of less than 3 CLKs.)

Figure 11-19 (a) and (b) shows capture operation timing examples.

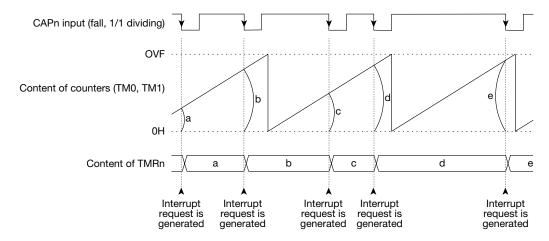


Figure 11-19 (a) Capture Operation Timing Example

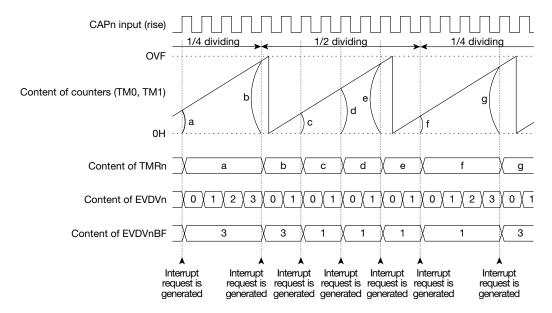


Figure 11-19 (b) Capture Operation Timing Example

Type A2 register modules have no "function to check a cycle of the timer counter between capture events," which is used for the capture function of type D and E register modules.

11.4.3 Capture Pin Dividing Circuit

The MSM66591/ML66592 type A2 timer register modules have a capture pin dividing circuit that can perform division from 1/1 to 1/64.

[1] Configuration of Dividing Circuit

The dividing circuit consists of the following:

- counter to divide valid pulses input to capture pin (EVDVn) (n = 14, 15)
- register to set dividing ratio (EVNTCON2)
- comparison circuit to compare counter value and register value
- register to hold dividing counter value when an event is generated (EVDVnBF) (n = 14, 15)

[2] Operation of Dividing Circuit

If valid edges (pulses) are input to a capture pin, EVDVn counts their number. If the counter value and the dividing value specified by EVNTCON2 match, a capture event is generated.

If a capture event is generated, a capture interrupt request is generated, the counter value is loaded to the timer register, the EVDVn value is loaded to EVDVnBF, and EVDVn is cleared to "0". (n = 14, 15)

[3] Operation to Switch Dividing Ratio

Since the dividing ratio is programmable, the dividing operation may differ, depending on the timing that changes the dividing ratio. In this case, the MSM66591/ML66592 operate as follows:

- 1) When the dividing ratio is changed from 1/N to 1/M (N > M), if the valid edge is input to a capture pin when:
- \bullet counter value C in the dividing circuit is $C \geq M-1$ (except when M=1) or
- M = 1

a capture event is generated.

If a valid edge is input to the capture pin when:

• counter value C in the dividing circuit is C < M - 1 (except when M = 1)

a capture event is not generated, and the counter value in the dividing circuit is incremented.

2) When the dividing ratio is changed from 1/N to 1/M (N < M), the dividing operation continues until the counter value becomes M, and a capture event is generated when the counter value becomes M.

11.5 Type B Register Modules (TMR4-TMR13)

The MSM66591/ML66592 have 10 sets of register modules type B (TMR4–TMR13). The configuration is the same for these 10 sets, except for the address of registers on SFR.

11.5.1 Configuration of Type B Register Modules (TMR4–TMR13)

Type B register modules have a double-buffer real-time output function.

Type B register modules consist of 16-bit timer registers (TMR4–TMR13, TMR4BF–TMR13BF), pins to output signals by the real-time output function (RTO4–RTO13), a timing controller, a comparator to compare timer counter and timer register values, and control registers (RTOCON4–RTOCON13), to control real-time output operations.

If RTO4–RTO13 pins are used for real-time output functions, set the corresponding bit of the Port 2 and Port 10 secondary function control registers to "1".

Figure 11-20 shows the configuration of a type B register module.

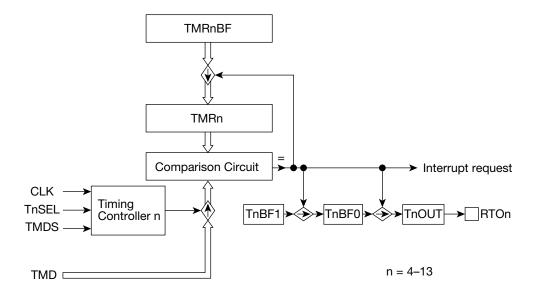


Figure 11-20 Configuration of Type B Register Module

[1] Timer Registers (TMR4–TMR13)

A timer register (TMR4–TMR13) consists of 16 bits. TMR4–TMR13 are constantly compared with the counter values specified by TMSEL, and if they match, the contents of TMR4BF, TMR13BF are loaded to the timer registers.

TMR4–TMR13 can be read/written by the program.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), TMR4–TMR13 become 0000H.

[2] Timer Register Buffer Registers (TMR4BF–TMR13BF)

A timer register buffer register (TMR4BF–TMR13BF) consists of 16 bits. If TMR4–TMR13 and the counter values specified by TMSEL match, the contents of TMR4BF–TMR13BF are loaded to TMR4–TMR13.

TMR4BF-TMR13BF can be read/written by the program.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), TMR4BF–TMR13BF become 0000H.

[3] Real-time Output Control Registers (RTOCON4–RTOCON13)

A real-time output control register (RTOCON4–RTOCON13) consists of 3 bits. If TMR4 –TMR13 and the counter values specified by TMSEL match, the content of TnBF0 (bit 1) is loaded to TnOUT (bit 0), and the content of TnBF1 (bit 2) is loaded to TnBF0 (bit 1).

Set, to TnBF0, the level for changing for the next event and set, to TnBF1, for changing for the event after the next.

RTOCON4–RTOCON13 can be read/written by the program. However, writing to the high-order 5 bits is invalid. "1s" are always read from the high-order 5 bits when read. If a read-modify-write instruction, such as SB, RB and XORB, is executed to RTOCON4–RTOCON13 just before the event generated by RTO, TnBF0 and TnOUT may not operate normally. (n = 4-13)

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, and an operation code trap is generated), RTOCON4–RTOCON13 become F8H.

Figure 11-21 shows the configuration of RTOCON4–RTOCON13.

RTOCON4-RTOCON13

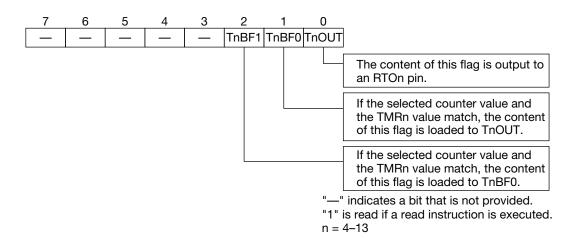


Figure 11-21 Configuration of RTOCON4-RTOCON13

11.5.2 Operation of Type B Register Modules (TMR4-TMR13)

Type B register modules have a double-buffer real-time output function. When the TM specified by TMSEL is in RUN status, TMR4–TMR13 are constantly compared with the specified counter value, and if they match, an interrupt request by real-time output is generated, and the content of TMR4BF–TMR13BF are loaded to TMR4–TMR13. Also the content of TnBF0 (bit 1) of RTOCON4–RTOCON13 is loaded to TnOUT (bit 0), and the content of TnBF1 (bit 2) is loaded to TnBF0 (bit 1). (n = 4–13)

Therefore set the time for the next event to TMR4–TMR13, and set the time for the event after the next event to TMR4BF–TMR13BF. Set the state for the next event to TnBF0, and set the state for the event after the next event to TnBF1. Then a one-shot pulse output can be controlled at one time.

Figure 11-22 shows a type B register module operation example.

If RTO4–RTO13 pins are used for real-time output functions, set the corresponding bit of the Port 2 and Port 10 secondary function control registers to "1".

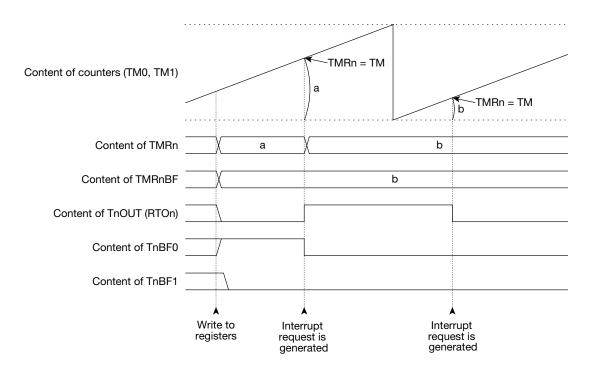


Figure 11-22 Type B Register Module Operation Example

11.6 Type D Register Module (TMR17)

The MSM66591/ML66592 have one set of type D register module (TMR17).

11.6.1 Configuration of Type D Register Module (TMR17)

Type D register module has three types of functions: 4-port output RTO, RTO, and 16-bit capture input.

Type D register module consists of 16-bit timer registers (TMR17), I/O pins (FTM17A–FTM17D) to either input capture signals or output signals by the real-time output function, a timing controller, a comparison circuit to compare timer counter and timer register values, a control register (TMRMODE) to specify the operation of the type D register module, and control registers (RTOCON17, RTO4CON, CAPCON) to control the operation of the type D register module.

Figure 11-23 shows the configuration of a type D register module.

If FTM17A–FTM17D pins are used for real-time output or for capture functions, set the corresponding bit of the Port 3 secondary function control register to "1".

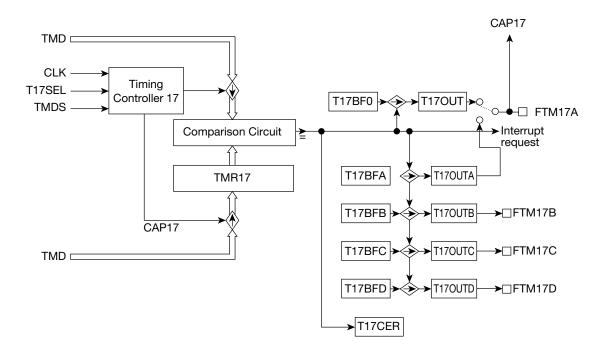


Figure 11-23 Configuration of Type D Register Module

[1] Timer Register (TMR17)

A timer register consists of 16 bits (TMR17). In the case of RTO operation, TMR17 is constantly compared with the counter value specified by TMSEL2. In the case of CAP operation, the counter value specified by TMSEL2 is loaded when a pin event is generated.

TMR17 can be read/written by the program. At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, and an operation code trap is generated), TMR17 becomes 0000H.

[2] Real-time Output Control Registers (RTOCON17, RTO4CON)

A real-time output control register (RTOCON17) consists of 3 bits. When TMR17 is in RTO mode, if TMR17 matches the counter value specified by TMSEL2, the content of TnBF0 (bit 1) is loaded to TnOUT (bit 0). Set the state for the next event to TnBF0.

4-port real-time output register (RTO4CON) consists of 8 bits. When TMR17 is in 4-port RTO mode, if TMR17 matches the counter value specified by TMSEL2, the content of T17BFA (bit 4)—T17BFD (bit 7) is loaded to T17OUTA (bit 0)—T17OUTD (bit 3). Set the state for the next event to T17BFA—T17BFD.

RTOCON17 and RTO4CON can be read/written by the program. Write to RTOCON17 is valid, however write to high-order 5 bits is invalid. Read is valid, however "1" is always read from the high-order 5 bits. If a read-modify-write instruction such as SB, RB, and XORB is executed to RTOCON17 or RTO4CON just prior to an event generated by RTO, TnBF0, TnOUT, T17BFA—T17BFD, and T17OUTA—T17OUTD may not operate normally.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), RTOCON17 becomes F8H, and RTO4CON becomes 00H.

Figure 11-24 shows the configuration of RTOCON17. Figure 11-25 shows the configuration of RTO4CON.

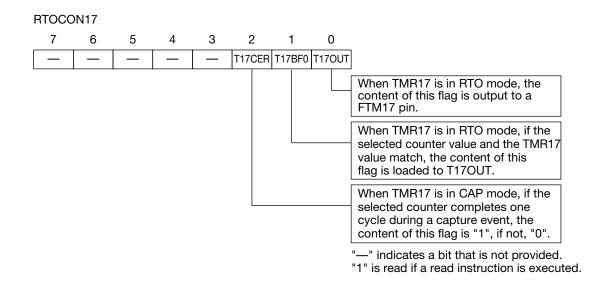
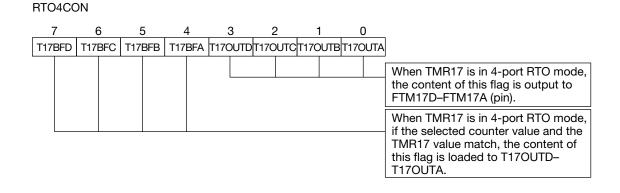
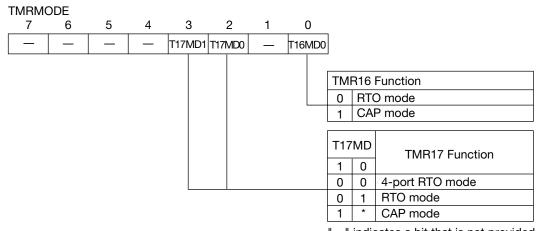


Figure 11-24 Configuration of RTOCON17




Figure 11-25 Configuration of RTO4CON

[3] TMR Mode Register (TMRMODE)

TMR mode register (TMRMODE) consists of 3 bits. TMRMODE sets the operational functions of TMR16 and TMR17. TMRMODE can be read/written by the program.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), TMRMODE becomes F2H, TMR16 is specified to RTO mode, and TMR17 is specified to 4-port output RTO mode.

Figure 11-26 shows the configuration of TMRMODE.

[&]quot;—" indicates a bit that is not provided.

Figure 11-26 Configuration of TMRMODE

[&]quot;1" is read if a read instruction is executed.

[&]quot;*" indicates either "1" or "0".

[4] Capture Control Register (CAPCON)

CAPCON is a 16-bit register that specifies the valid edge of a signal that is input to the CAP0 (P3_4)–CAP3 (P3_7) pins, CAP14 (P10_2), CAP15 (P10_3), and, when TMR16 and TMR17 are in CAP mode, to FTM16 (P10_4) and FTM17A (P3_0) pins. Bits 8–15 of CAPCON are used to specify the valid edge of a signal to be input to CAP14 (P10_2), CAP15 (P10_3), FTM16 (P10_4), and FTM17A (P3_0) pins.

CAPCON can be read/written by the program.

Note that bit manipulation instructions such as SB and RB cannot be used, because CAPCON has only 16-bit access.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), CAPCON becomes 0000H, and CAP0–CAP3, CAP14, CAP15, TMR16, and TMR17A are specified to falling edge.

Figure 11-27 shows the configuration of bits 8–15 of CAPCON.

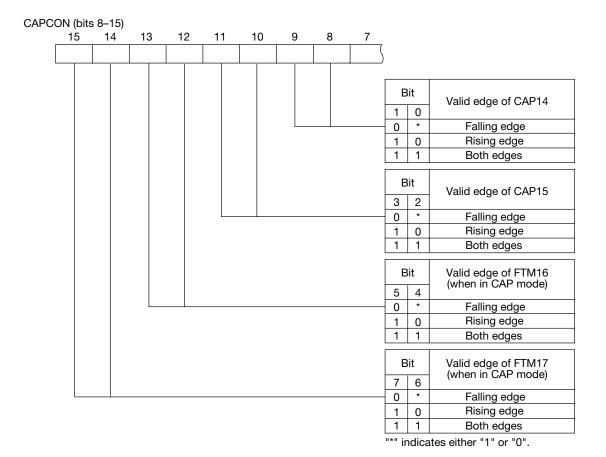


Figure 11-27 Configuration of Bits 8-15 of CAPCON

11.6.2 Operation of Type D Register Module (TMR17)

Three functions can be selected for a type D register module by TMRMODE.

- real-time output mode (RTO)
- 4-port real-time output mode (4-port RTO)
- 16-bit capture register mode (CAP)
- [1] Operation in Real-time Output Mode (RTO)

When the TM specified by TMSEL2 is in RUN status, TMR17 is constantly compared with the specified counter value, and if they match, an interrupt request by a real-time output is generated, and the contents of T17BF0 (bit 1) of RTOCON17 are loaded to T17OUT (bit 0).

Therefore set, to TMR17, the time for the next event and set, to T17BF0, the state for the next event. The RTO4CON function becomes invalid.

Figure 11-28 shows an example of a type D register module operation in RTO mode.

If FTM17A pin is used as RTO function, the bit corresponding to the Port-3 secondary function control register must be set to "1". In this case RTO4CON becomes invalid.

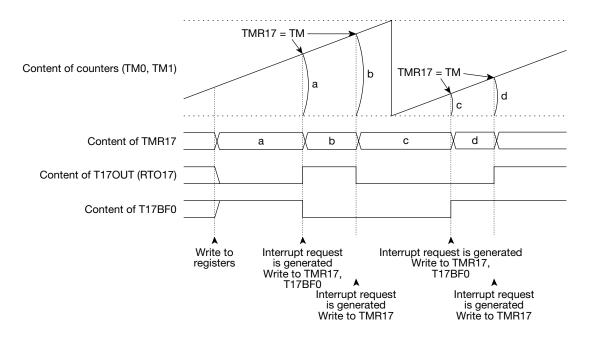


Figure 11-28 Example of Type D Register Module Operation in RTO Mode

[2] Operation in 4-Port Output Real-time Output Mode (4-Port RTO)

When the TM specified by TMSEL2 is in RUN status, TMR17 is constantly compared with the specified counter value, and if they match, an interrupt request by a real-time output is generated, and the contents of T17BFA-T17BFD (bits 4–7) of RTO4CON are loaded to T17OUTA-T17OUTD (bits 0–3).

Figure 11-29 shows an example of a register module type D operation in 4-port RTO mode.

If FTM17A–FTM17D pins are used as 4-port RTO function, the bit corresponding to the Port-3 secondary function control register must be set to "1". In this case RTOCON7 becomes invalid.

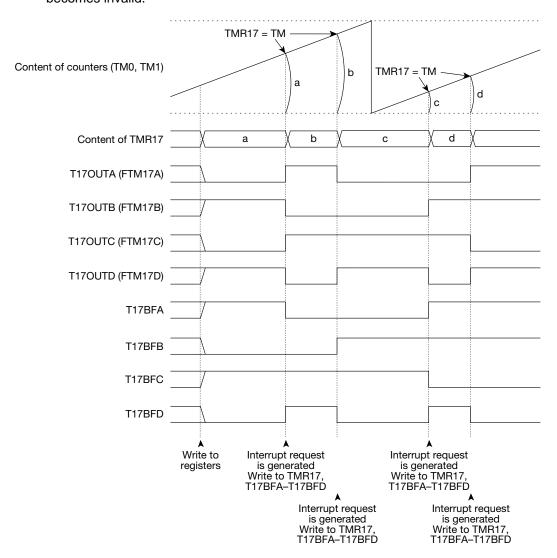


Figure 11-29 Example of Type D Register Module Operation in 4-Port RTO Mode

[3] Operation in CAP Mode

When the TM specified by TMSEL2 is in RUN status, if the valid edge specified by CAPCON is input to FTM17A pin, an interrupt request by a capture event is generated, and at the same time, the content counter specified by TMSEL2 is loaded to TMR17. Flag T17CER is provided in the register module type D. This flag checks whether the cycle of the selected counter between capture events is completed or not. If the counter cycle is completed since the last capture event generation (contents of TMR17), T17CER (bit 2) of RTOCON17 is set to "1" if the capture value is more than or equal to the "last capture value +1". This bit remains at "0" if the cycle is not completed (when the capture value is less than or equal to the last capture value).

The cycle flag is set to "1" at the timing of the next capture operation after the above mentioned condition is met. Note that when capture operations are not performed, the cycle flag is not set even if the counter cycle is completed.

Figure 11-30 shows a capture operation timing example.

If FTM17A pin is used for CAP functions, set the corresponding bit of the Port 3 secondary function control registers to "1". When in CAP mode, RTOCON17 and RTO4CON are invalid.

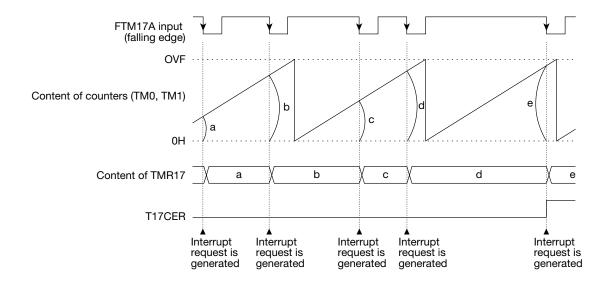


Figure 11-30 Example of Type D Register Module Operation in CAP Mode

11.7 Type E Register Module (TMR16)

The MSM66591/ML66592 have one set of type E register module (TMR16).

11.7.1 Configuration of Type E Register Module (TMR16)

Type E register module has two types of functions: RTO and 16-bit capture input.

Type E register module consists of 16-bit timer register (TMR16), I/O pins (FTM16) to either input capture signals or output signals by the real-time output function, a timing controller, a comparison circuit to compare timer counter and timer register values, a control register (TMRMODE) to specify the operation of a type E register module, and control registers (RTOCON16, CAPCON) to control the operation of the type E register module.

Figure 11-31 shows the configuration of a register module type E.

If FTM16 pin is used for real-time output or for capture functions, set the corresponding bit of the Port 10 secondary function control register to "1".

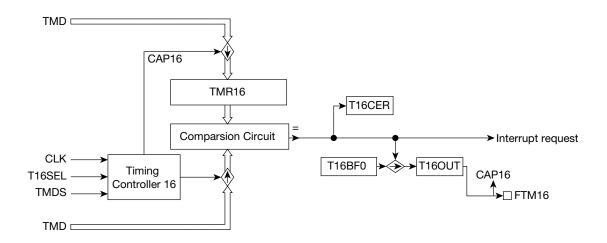


Figure 11-31 Configuration of Type E Register Module

[1] Timer Register (TMR16)

A timer register consists of 16 bits (TMR16). In the case of RTO operation, TMR16 is constantly compared with the counter value specified by TMSEL2. In the case of CAP mode, the counter value specified by TMSEL2 is loaded to the timer register when a pin event is generated.

TMR16 can be read/written by the program. At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), TMR16 becomes 0000H.

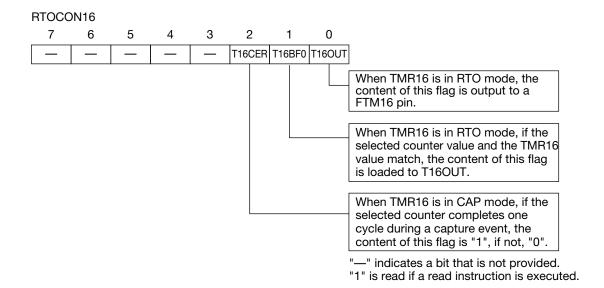
[2] Real-time Output Control Register (RTOCON16)

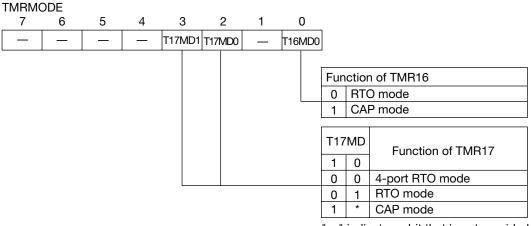
A real-time output control register (RTOCON16) consists of 3 bits. When TMR16 is in RTO mode, if TMR16 matches the counter value specified by TMSEL2, the content of T16BF0 (bit 1) is loaded to T16OUT (bit 0). Set the state for the next event to T16BF0.

RTOCON16 can be read/written by the program. Write is valid, however write to high-order 5 bits is invalid. Read is valid, however "1" is always read from the high-order 5 bits. If a read-modify-write instruction, such as SB, RB, and XORB, is executed to RTOCON16 just prior to an event generated by RTO, T16BF0 and T16OUT may not operate normally.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), RTOCON16 becomes F8H.

Figure 11-32 shows the configuration of RTOCON16.




Figure 11-32 Configuration of RTOCON16

[3] TMR Mode Register (TMRMODE)

TMR mode register (TMRMODE) consists of 3 bits. TMRMODE sets the operational functions of TMR16 and TMR17. TMRMODE can be read/written by the program.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), TMRMODE becomes F2H, TMR16 is specified to RTO mode, and TMR17 is specified to 4-port output RTO mode.

Figure 11-33 shows the configuration of TMRMODE.

[&]quot;—" indicates a bit that is not provided.

Figure 11-33 Configuration of TMRMODE

[&]quot;1" is read if a read instruction is executed.

[&]quot;*" indicates either "1" or "0".

[4] Capture Control Register (CAPCON)

CAPCON is a 16-bit register that specifies the valid edge of a signal that is input to the CAP0 (P3_4)–CAP3 (P3_7) pins, CAP14 (P10_2), CAP15 (P10_3), and, when TMR16 and TMR17 are in CAP mode, to FTM16 (P10_4) and FTM17A (P3_0) pins. Bits 8–15 of CAPCON are used to specify the valid edge of a signal to be input to CAP14 (P10_2), CAP15 (P10_3), FTM16 (P10_4), and FTM17A (P3_0) pins.

CAPCON can be read/written by the program.

Note that bit manipulation instructions such as SB and RB cannot be used, because CAPCON has only 16-bit access.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), CAPCON becomes 0000H, and CAP0–CAP3, CAP14, CAP15, TMR16, and TMR17A are specified to falling edge.

Figure 11-34 shows the configuration of bits 8–15 of CAPCON.

CAPCO	N (bits 8	3–15)								
15	14	13	12	11	10	9	8	7		
									(
								1	it 0	Valid edge of CAP14
								0	*	Falling edge
								1	0	Rising edge
								1	1	Both edges
								3	it 2	Valid edge of CAP15
								0	*	Falling edge
					•			1	0	Rising edge
								1	1	Both edges
								В	Bit	Valid edge of FTM16
								5	4	(CAP mode)
								0	*	Falling edge
								1	0	Rising edge
								1	1	Both edges
								Bit 7 6		Valid edge of FTM17 (CAP mode)
								0	*	Falling edge
								1	0	Rising edge
								1	1	Both edges

[&]quot;*" indicates either "1" or "0".

Figure 11-34 Configuration of Bits 8-15 of CAPCON

11.7.2 Operation of Type E Register Module (TMR16)

Two functions can be selected for a type E register module by TMRMODE.

- real-time output mode (RTO)
- 16-bit capture mode (CAP)
- [1] Operation in Real-time Output Mode (RTO)

When the TM specified by TMSEL2 is in RUN status, TMR16 is constantly compared with the specified counter value, and if they match, an interrupt request by a real-time output is generated, and the contents of T16BF0 (bit 1) of RTOCON16 are loaded to T16OUT (bit 0).

Therefore set the time for the next event to TMR16 and set the state for the next event to T16BF0.

Operation in RTO mode of a type E register module is the same as the RTO mode of a register module type D. (See Figure 11-28.)

If FTM16 pin is used for RTO functions, set the corresponding bit of the Port 10 secondary function control register to "1".

[2] Operation in CAP Mode

When the TM specified by TMSEL2 is in RUN status, if the valid edge specified by CAPCON is input to FTM16 pin, an interrupt request by a capture event is generated, and at the same time, the content counter specified by TMSEL2 is loaded to TMR16. If the counter cycle is completed (= if the register value and the counter value match) since the last capture event generation (contents of TMR16), T16CER (bit 2) of RTOCON16 is set to "1". It remains at "0" if the cycle is not completed.

The operation in CAP mode of type E register module is the same as that in CAP mode of type D register module. (See Figure 11-30.)

If FTM16 pin is used for CAP mode, set the corresponding bit of the Port 10 secondary function control register to "1". When in CAP mode, RTOCON16 is invalid.

11.8 RTO Mode Output Timing Changes

Figure 11-35 shows an example of RTO mode output timing changes of register modules type B, type D, and type E.

Figure 11-35 uses the RTO output function of type B register module as an example. TM1 is incremented every 1/5 CLK. When the content of TMRn is 100H, the match signal of TM1 and TMRn becomes H level while the content of TM1 is 100H. TMRn and the RTO output pin change at the fall of the match signal, and by the AND signal of the TM1 clock pulse. The corresponding interrupt request flag is set at the latter half of M1S1 (signal to indicate the beginning of an instruction).

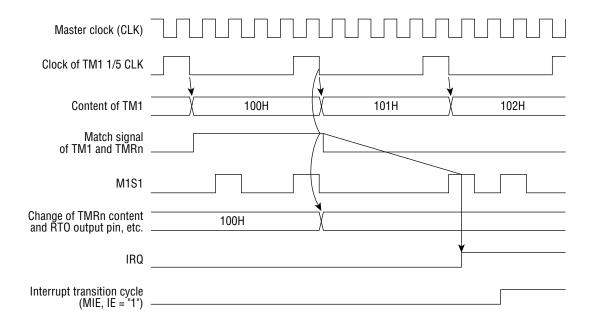


Figure 11-35 Example of Type B Register Module Output Timing Changes

Chapter 12

General-Purpose 8-Bit Timer Function

12. General-Purpose 8-Bit Timer Function

The MSM66591/ML66592 have one general-purpose 8-bit timer (GTM) and one general-purpose 8-bit event counter (GEVC).

Table 12-1 lists the GTM control SFRs.

Table 12-1 GTM Control SFRs

	Address[H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
	004E☆	General-Purpose 8-Bit Timer Interrupt Control Register	GTINTCON	_			F0
Ī	016A☆	General-Purpose 8-Bit Timer Control Register	GTMCON	_			30
Ī	016B	General-Purpose 8-Bit Event Counter	GEVC	_	R/W	8	00
	016C	General-Purpose 8-Bit Timer Counter	GTMC	_			00
	016D	General-Purpose 8-Bit Timer Register	GTMR	_			00

Addresses in the address column marked by "par indicate that the register has bits missing.

12.1 General-Purpose 8-Bit Timer (GTM)

The general-purpose 8-bit timer consists of an 8-bit timer counter (GTMC), an 8-bit timer register (GTMR) that stores the reload values of GTMC, and a general-purpose 8-bit timer control register (GTMCON) that controls operations. Figure 12-1 shows the configuration of GTM.

General-purpose 8-bit timer interrupts and general-purpose 8-bit event counter interrupts are assigned to the same interrupt vector. Indication of whether each individual interrupt request has been generated or not and whether to enable or disable generation of each individual interrupt request are specified by the general-purpose 8-bit timer interrupt control register (GTINTCON).

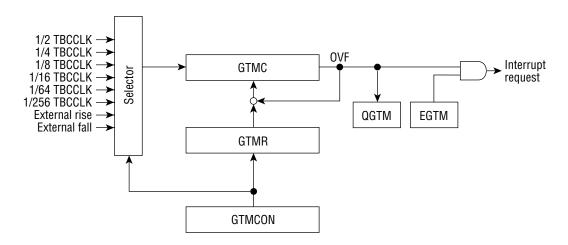


Figure 12-1 Configuration of GTM

[Note]

When the general purpose 8-bit timer, used in external clock mode, is switched to STOP mode, and when STOP mode is cleared by an interrupt, the 8-bit timer counter (GTMC) may be incremented by 1 depending on the input level of the external clock (P9_6/ETMCK pin) at that time.

[1] General-Purpose 8-Bit Timer Counter (GTMC)

The GTMC is an 8-bit counter that generates an interrupt request when an overflow occurs, and at the same time, the content of the general-purpose 8-bit timer register (GTMR) is loaded. The count clock of GTMC is selected by the low-order 3 bits of the general-purpose 8-bit timer control register (GTMCON).

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), GTMC becomes 00H, and the count operation stops. In STOP mode and if external clock (P9_6/ETMCK pin) is specified as the counter clock of GTMC, GTMC counts at the falling edge of the count clock.

[2] General-Purpose 8-Bit Timer Register (GTMR)

GTMR is an 8-bit register, and its content is loaded to GTMC when a GTMC overflow occurs. At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), GTMR becomes 00H.

[3] General-Purpose 8-Bit Timer Control Register (GTMCON)

GTMCON is an 8-bit register that selects the count clock of GTMC and controls the start/stop of the count operation using the low-order 4 bits. It also selects the count clock of GEVC and controls the start/stop of the count operation using the high-order 2 bits.

If external clock is selected as the counter clock of GTMC, GTMC counts inputs to the P9 6/ETMCLK pin.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), GTMCON becomes 30H, a 1/2 TBCCLK is selected as the count clock of GTMC, and the count operation stops. The external clock rising edge is selected as the count clock of GEVC, and the count operation stops.

Figure 12-2 shows the configuration of GTMCON.

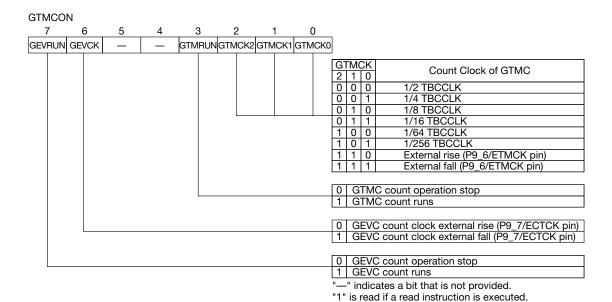


Figure 12-2 Configuration of GTMCON

[4] General-Purpose 8-Bit Timer Interrupt Control Register (GTINTCON)

GTINTCON is an 8-bit register that controls the generation of interrupts for the general-purpose 8-bit timer and general-purpose 8-bit event counter.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), GTINTCON becomes F0H.

Figure 12-3 shows the configuration of GTINTCON.

[Description of Each Bit]

• EGTM (bit 0)

The EGTM bit enables or disables the generation of interrupt requests by the general-purpose 8-bit timer (GTMC).

When this bit is "0", interrupts are disabled. When "1", interrupts are enabled.

• QGTM (bit 1)

QGTM indicates whether an interrupt request has been generated by the general-purpose 8-bit timer (GTMC).

When this bit is "0", no interrupt request has been generated. When "1", an interrupt request has been generated.

• EEVC (bit 2)

EEVC enables or disables the generation of interrupt requests by the general-purpose 8-bit event counter (GEVC).

When this bit is "0", interrupts are disabled. When "1", interrupts are enabled.

• QEVC (bit 3)

QEVC indicates whether an interrupt request has been generated by the general-purpose 8-bit event counter (GEVC).

When this bit is "0", no interrupt request has been generated. When "1", an interrupt request has been generated.

GTINTCON 7 6 5 4 3 2 1 0 — — — — QEVC EEVC QGTM EGTM 0 GTMC interrupt request generation: disabled 1 GTMC interrupt request generation: no 1 GTMC interrupt request generation: yes 0 GEVC interrupt request generation: disabled 1 GEVC interrupt request generation: enabled 0 GEVC interrupt request generation: enabled 1 GEVC interrupt request generation: no 1 GEVC interrupt request generation: yes "—" indicates a bit that is not provided. "1" is read if a read instruction is executed.

Figure 12-3 GTINTCON Configuration

12.2 General-Purpose 8-Bit Event Counter (GEVC)

The general-purpose 8-bit event counter consists of an 8-bit counter (GEVC), and an 8-bit general-purpose 8-bit timer control register (GTMCON) that controls operations.

Figure 12-4 shows the configuration of GEVC.

General-purpose 8-bit timer interrupts and general-purpose 8-bit event counter interrupts are assigned to the same interrupt vector. Indication of whether each individual interrupt request has been generated or not and whether to enable or disable generation of each individual interrupt request are specified by the general-purpose 8-bit timer interrupt control register (GTINTCON).

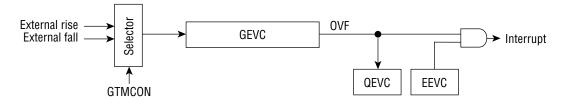


Figure 12-4 Configuration of GEVC

[Note]

When the general-purpose 8-bit counter is set to STOP mode, and when STOP mode is cleared by an interrupt, the 8-bit event counter (GEVC) may be incremented by 1 depending on the input level of the external clock (P9_7/ECTCK pin) at that time.

[1] General-Purpose 8-Bit Event Counter (GEVC)

The GEVC is an 8-bit counter that generates an interrupt request when an overflow occurs. The count clock of the GEVC is selected by the high-order 2 bits of the general-purpose 8-bit timer control register (GTMCON).

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), the GEVC becomes 00H, and the count operation stops. In STOP mode, the GEVC operates at the falling edge of the external clock.

[2] General-Purpose 8-Bit Timer Control Register (GTMCON)

The GTMCON is an 8-bit register that counts inputs to the P9_7/ECTCK pin. It selects the count clock of the GTMC and controls the start/stop of the count operation using the low-order 4 bits. It also selects the count clock of the GEVC and controls the start/stop of the count operation using the high-order 2 bits. GEVC counts inputs to the P9_7/ECTCK pin.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), the GTMCON becomes 30H, a 1/2 TBCCLK is selected as the count clock of the GTMC, and the count operation stops. The external clock rising edge is selected as the count clock of the GEVC, and the count operation stops.

Figure 12-2 (page 12-4) shows the configuration of the GTMCON.

[3] General-Purpose 8-Bit Timer Interrupt Control Register (GTINTCON)

GTINTCON is an 8-bit register that controls the generation of interrupts for the general-purpose 8-bit timer and general-purpose 8-bit event counter.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), GTINTCON becomes F0H.

Figure 12-3 (page 12-5) shows the configuration of GTINTCON.

[Description of Each Bit]

• EGTM (bit 0)

The EGTM bit enables or disables the generation of interrupt requests by the general-purpose 8-bit timer (GTMC).

When this bit is "0", interrupts are disabled. When "1", interrupts are enabled.

• QGTM (bit 1)

QGTM indicates whether an interrupt request has been generated by the general-purpose 8-bit timer (GTMC).

When this bit is "0", no interrupt request has been generated. When "1", an interrupt request has been generated.

• EEVC (bit 2)

EEVC enables or disables the generation of interrupt requests by the general-purpose 8-bit event counter (GEVC).

When this bit is "0", interrupts are disabled. When "1", interrupts are enabled.

• QEVC (bit 3)

QEVC indicates whether an interrupt request has been generated by the general-purpose 8-bit event counter (GEVC).

When this bit is "0", no interrupt request has been generated. When "1", an interrupt request has been generated.

Chapter 13

PWM Functions

13. PWM Functions

The MSM66591/ML66592 have 12 channels of PWM functions. PWM consists of a count clock dividing circuit, a 16-bit counter, three 16-bit registers, various control registers, etc.

If the master clock is 24 MHz, a 10.6 μ sec (valid bit length: 8 bits) to 838.9 msec (valid bit length: 16 bits) cycle can be selected by combining the input clock of the PWM counter and a valid bit length.

Figure 13-1 shows the configuration of PWM. Table 13-1 lists the PWM control SFRs.

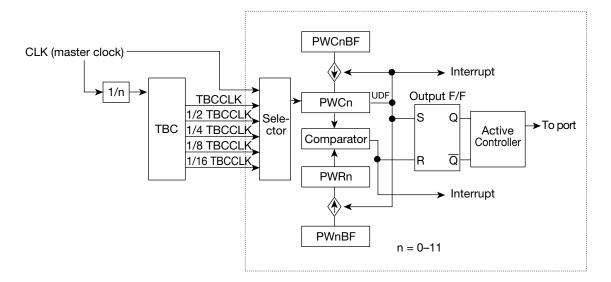


Figure 13-1 Configuration of PWM

Table 13-1 PWM Control SFRs

Address [H]	Name	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]	
0050 0051	PWM Counter 0/ PWC0 Buffer Register	_	PWC0/ PWC0BF			FFFF
0052	PWM Counter 1/		PWC1/		-	
0053	PWC1 Buffer Register	_	PWC1BF			FFFF
0054	PWM Counter 2/		PWC2/			
0055	PWC2 Buffer Register	_	PWC2BF			FFFF
0056	PWM Counter 3/		PWC3/		-	FFFF
0057	PWC3 Buffer Register	_	PWC3BF			FFFF
0058	PWM Counter 4/		PWC4/			FFFF
0059	PWC4 Buffer Register	_	PWC4BF			FFFF
005A	PWM Counter 5/		PWC5/			FFFF
005B	PWC5 Buffer Register	_	PWC5BF	R/W		ГГГГ
005C	PWM Counter 6/		PWC6/	(*1)		FFFF
005D	PWC6 Buffer Register	_	PWC6BF	(- /		ГГГ
005E	PWM Counter 7/		PWC7/			FFFF
005F	PWC7 Buffer Register	_	PWC7BF			1111
0060	PWM Counter 8/		PWC8/			FFFF
0061	PWC8 Buffer Register	_	PWC8BF			
0062	PWM Counter 9/		PWC9/			FFFF
0063	PWC9 Buffer Register	_	PWC9BF			
0064	PWM Counter 10/		PWC10/			FFFF
0065	PWC10 Buffer Register		PWC10BF			
0066	PWM Counter 11/		PWC11/			FFFF
0067	PWC11 Buffer Register		PWC11BF		16	
0068	PWM Register 0/		PWR0/		'	0000
0069	PWR0 Buffer Register		PW0BF			
006A	PWM Register 1/	_	PWR1/			0000
006B	PWR1 Buffer Register		PW1BF		-	
006C	PWM Register 2/ PWR2 Buffer Register	_	PWR2/			0000
006D	PWM Register 3/		PW2BF		-	
006E 006F	PWR3 Buffer Register	_	PWR3/			0000
	PWM Register 4/		PW3BF		-	
0070 0071	PWR4 Buffer Register	_	PWR4/ PW4BF			0000
0071	PWM Register 5/		PWR5/			
0072	PWR5 Buffer Register	_	PW5BF	R/W		0000
0074	PWM Register 6/		PWR6/			
0075	PWR6 Buffer Register	_	PW6BF	(*2)		0000
0076	PWM Register 7/		PWR7/			
0077	PWR7 Buffer Register	_	PW7BF			0000
0078	PWM Register 8/		PWR8/			
0079	PWR8 Buffer Register	_	PW8BF			0000
007A	PWM Register 9/		PWR9/			0000
007B	PWR9 Buffer Register	_	PW9BF			0000
007C	PWM Register 10/		PWR10/			0000
007D	PWR10 Buffer Register	_	PW10BF			0000
007E	PWM Register 11/		PWR11/			0000
007F	PWR11 Buffer Register	_	PW11BF			0000

^{*1} The counter value is read if a read instruction is executed, and data is written to the buffer if a write instruction is executed.

^{*2} The register value is read if a read instruction is executed, and data is written to the buffer if a write instruction is executed.

13

Table 13-1 PWM Control SFRs (continued)

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
0080☆	DWMDLINI Dogistor	PWRUNL	PWRUN			00
0081	PWMRUN Register	PWRUNH	PWRUN			F0
0082☆	DIAMA Internation Designation O	PWINTQ0L	DWINTOO			00
0083	PWM Interrupt Register 0	PWINTQ0H	PWINTQ0	R/W	8/16	F0
0084☆	DIAMA list sum and Dismisters 4	PWINTQ1L	DWANTO			00
0085	PWM Interrupt Register 1	PWINTQ1H	PWINTQ1			F0
0086	PWM Interrupt Enable	PWINTE0L	DWINTEO			00
0087	Register 0	PWINTE0H	PWINTE0			F0
0088☆	PWM Interrupt Enable	PWINTE1L	DWWITE			00
0089	Register 1	PWINTE1H	PWINTE1			F0
0160	PWM Control Register 0	PWCON0	_			00
0161	PWM Control Register 1	PWCON1	_		8	00
0162	PWM Control Register 2	PWCON2	_			00
0163	PWM Control Register 3	PWCON3	_	R/W		00
0164	PWM Control Register 4	PWCON4	_			00
0165	PWM Control Register 5	_			00	

Some addresses are not consecutive.

Addresses in the address column marked by " \updownarrow " indicate that the register has bits missing.

13.1 Configuration of PWM

The MSM66591/ML66592 have 12 sets of PWM functions (PWM0–PWM11). PWM0–PWM11 have the same configuration except for the SFR address.

PWM consists of 16-bit counters (PWC0–PWC11), 16-bit counter buffer registers (PWC0BF–PWC11BF), 16-bit registers (PWR0–PWR11), 16-bit buffer registers (PW0BF–PW11BF), a comparison circuit for PWC0–PWC11 and PWR0–PWR11, an output F/F, and various control registers (PWINTQ0, PWINTQ1, PWINTE0, PWINTE1, PWCON0–PWCON5 and PWRUN) that control operations.

If PWM0–PWM11 pins are used for PWM functions, set the corresponding bit of the Port 7 and Port 8 secondary function control registers to "1". If the \overline{OE} pin is in "L" level, PWM0–PWM11 pins operate (outputs) as a PWM function, but if the \overline{OE} pin is in "H" level, PWM0–PWM11 pins go into high impedance status.

[1] PWM Counters (PWC0–PWC11)

PWC0–PWC11 are 16-bit down counters. The input clock can be selected from among the master clock, TBCCLK, 1/2 TBCCLK, 1/4 TBCCLK, 1/8 TBCCLK, and 1/16 TBCCLK. If an underflow occurs when the corresponding PWnRUN bit is "1" and PWC0–PWC11 are in count operations, the PWM counter generates an interrupt request (PWC0 and PWC1, PWC2 and PWC3, PWC4 and PWC5, PWC6 and PWC7, PWC8 and PWC9, PWC10 and PWC11 are common), and the contents of the 16-bit PWM counter buffer register are loaded to the PWM counters. The PWM counter then loads the content of the 16-bit PWM buffer register to the 16-bit PWM register, and sets the output F/F to "1".

PWC0–PWC11 can be read, but cannot be written, by the program. However, if PWC0BF–PWC11BF are written when the corresponding PWnRUN bit is "0" (stop status), the 16-bit contents are written to PWC0–PWC11 as well.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), PWC0–PWC11 become FFFFH.

[2] PWM Counter Buffer Registers (PWC0BF–PWC11BF)

PWC0BF–PWC11BF are 16-bit registers for setting cycles (for storing the reload values for PWC0–PWC11). If PWC0–PWC11 underflow, the contents of PWC0BF–PWC11BF are loaded to the 16-bit PWM counter.

PWC0BF–PWC11BF can be read, but cannot be written, by the program. If PWC0BF–PWC11BF are written to when the corresponding PWnRUN bit is "0" (stop status), the contents of 16-bits are written to PWC0–PWC11 as well.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), PWC0BF–PWC11BF become FFFFH.

[3] PWM Registers (PWR0–PWR11)

PWR0–PWR11 are 16-bit registers that store the duty values to output. If PWC0–PWC11 underflow, the contents of the 16-bit PWM buffer register are loaded to PWR0–PWR11.

PWR0–PWR11 can be read, but cannot be written, by the program. However, if the corresponding PWnRUN bit is "0" (stop status), and PW0BF–PW11BF are written to, the contents of 16 bits are written to PWR0–PWR11 as well.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), PWR0–PWR11 become 0000H.

[4] PWM Buffer Registers (PW0BF–PW11BF)

PW0BF–PW11BF are 16-bit registers. If PWC0–PWC11 underflow, the contents of the PWM buffer register are loaded to the PWM register. PW0BF–PW11BF can be written, but cannot be read, by the program. If the corresponding PWnRUN bit is "0" (stop status), and PW0BF–PW11BF are written to, the contents of 16-bits are written to PWR0–PWR11 as well.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), PW0BF–PW11BF become 0000H.

[5] Comparison Circuit

The comparison circuit constantly compares the content of PWC0–PWC11 and that of PWR0–PWR11 when the corresponding PWnRUN bit is "1". It generates an interrupt request (PWM0 and PWM1, PWM2 and PWM3, PWM4 and PWM5, PWM6 and PWM7, PWM8 and PWM9, PWM10 and PWM11 are common) and resets the output F/F if contents of PWC0–PWC11 and PWR0–PWR11 match.

[6] Output F/F

The output F/F is set to "1" when the corresponding PWnRUN bit is set to "1", and when PWC0–PWC11 underflow. The output F/F is set to "0" when the contents of PWC0–PWC11 and PWR0–PWR11 match.

[7] PWM Control Registers (PWCON0–PWCON5)

PWCON0–PWCON5 are 8-bit registers that specify the count clock of PWC0–PWC11, and specify the output logic for PWM0–PWM11. PWCON0 specifies for PWM0 and PWM1, PWCON1 specifies for PWM2 and PWM3, PWCON2 specifies for PWM4 and PWM5, PWCON3 for specifies for PWM6 and PWM7, PWCON4 specifies for PWM8 and PWM9, and PWCON5 specifies for PWM10 and PWM11.

Figure 13-2 shows the configuration of PWCON0; Figure 13-3 shows the configuration of PWCON1; Figure 13-4 shows the configuration of PWCON2; Figure 13-5 shows the configuration of PWCON3; Figure 13-6 shows the configuration of PWCON4; Figure 13-7 shows the configuration of PWCON5.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), PWCON0–PWCON5 become 00H, and PWC0–PWC11 select the master clock as the count clock and PWM0–PWM11 select high active.

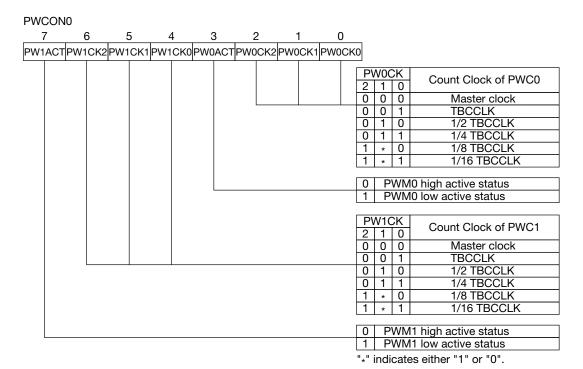


Figure 13-2 Configuration of PWCON0

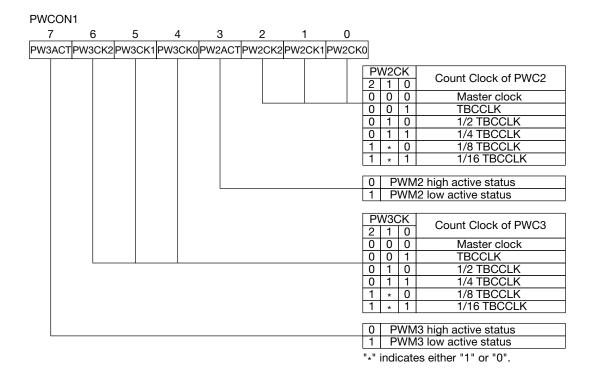


Figure 13-3 Configuration of PWCON1

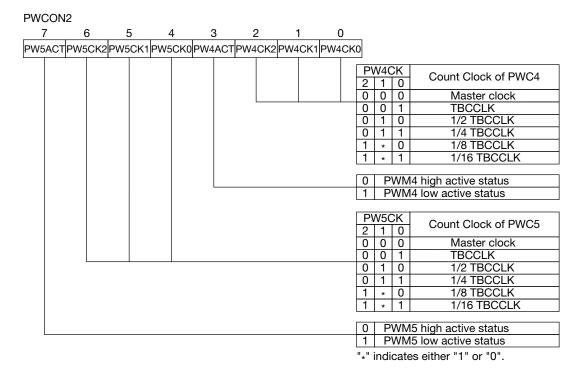


Figure 13-4 Configuration of PWCON2

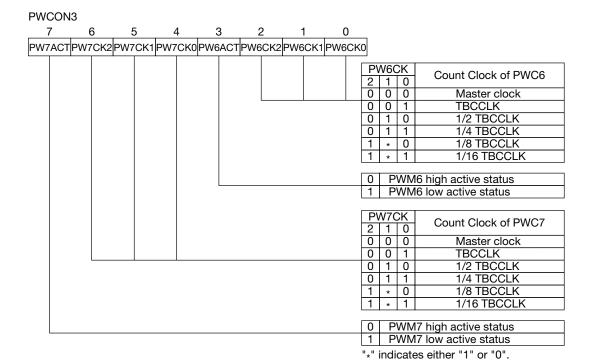


Figure 13-5 Configuration of PWCON3

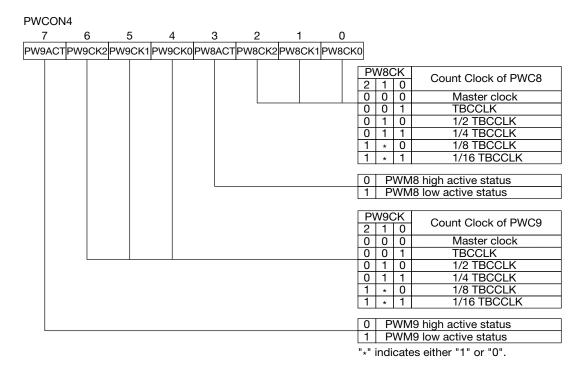


Figure 13-6 Configuration of PWCON4

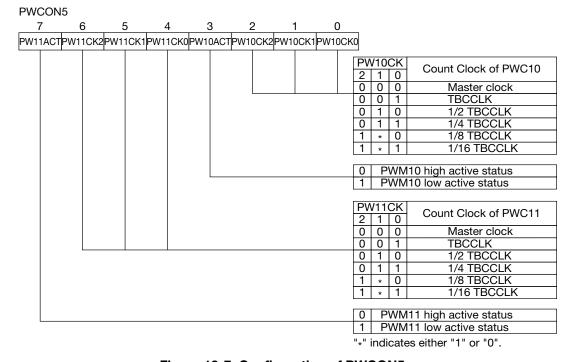


Figure 13-7 Configuration of PWCON5

[8] PWMRUN Register (PWRUN)

PWRUN consists of an 8-bit register (PWRUNL) and a 4-bit register (PWRUNH). It controls the run/stop of PWC0–PWC11 counter operations.

Figure 13-8 shows the configuration of PWRUNL, and Figure 13-9 the configuration of PWRUNH.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), PWRUNL and PWRUNH become 00H and F0H respectively, and PWC0–PWC11 stop the count operation.

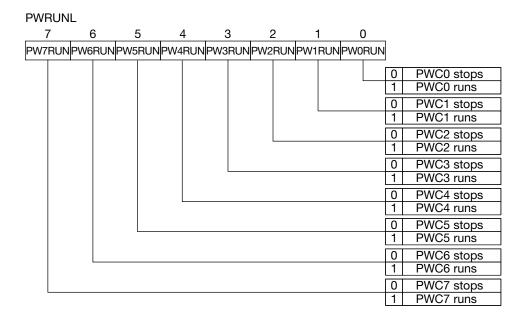
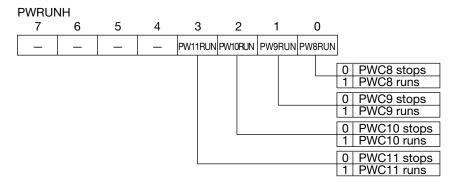



Figure 13-8 Configuration of PWRUNL

[&]quot;-" indicates a bit that is not provided.

Figure 13-9 Configuration of PWRUNH

[&]quot;1" is read if a read instruction is executed.

[9] PWM Interrupt Registers (PWINTQ0, PWINTQ1)

Each interrupt request of PWM0–PWM11 is generated when an underflow of PWC0–PWC11 is generated or when the content of PWC0–PWC11 and that of PWR0–PWR11 match.

The interrupt vectors corresponding to the interrupt requests generated by PWM0–PWM11 are shared by PWM0 and PWM1, by PWM2 and PWM3, by PWM4 and PWM5, by PWM6 and PWM7, by PWM8 and PWM9, and by PWM10 and PWM11.

PWINTQ0 and PWINTQ1 are 16-bit registers. PWINTQ0 consists of 8-bit registers PWINTQ0L and PWINTQ0H, and PWINTQ1 consists of 8-bit registers PWINTQ1L and PWINTQ1H. PWINTQ0 are flags (individual interrupt request flag) that are set to "1" if an underflow of PWC0–PWC11 is generated. PWINTQ1 are flags (individual interrupt request flags) that are set to "1" if the contents of PWC0–PWC11 and PWR0–PWR11 match. The bits of PWINTQ0 and PWINTQ1 do not become "0" automatically, even if a corresponding interrupt occurs. Therefore it is necessary to reset them to "0" by the program.

If an underflow of PWC0–PWC11 and a match of the content of PWC0–PWC11 and that of PWR0–PWR11 occur concurrently (when PWR = 0000H is set), the interrupt request by an underflow of PWC0–PWC11 is given priority. Therefore, only the corresponding bit of PWINTQ0 is set to "1" and the corresponding bit of PWINTQ1 is not.

Figure 13-10 shows the configuration of PWINTQ0L, Figure 13-11 the configuration of PWINTQ0H, Figure 13-12 the configuration of PWINTQ1L, and Figure 13-13 the configuration of PWINTQ1H.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), PWINTQ0 and PWINTQ1 become F000H.

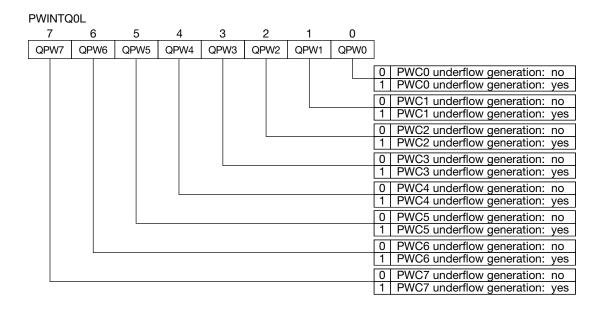
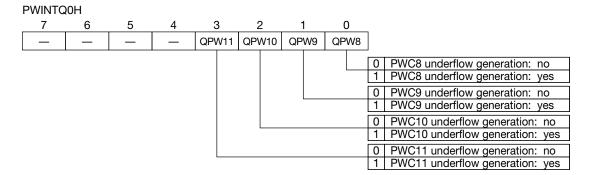



Figure 13-10 Configuration of PWINTQ0L

[&]quot;-" indicates a bit that is not provided.

Figure 13-11 Configuration of PWINTQ0H

[&]quot;1" is read if a read instruction is executed.

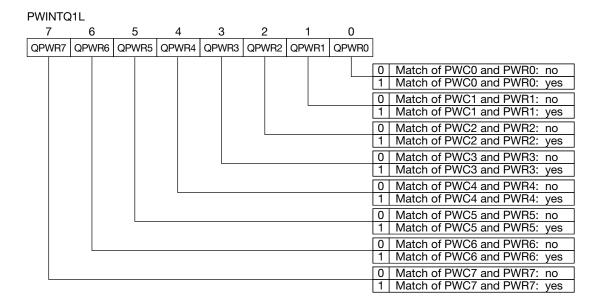
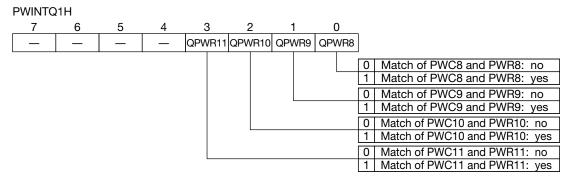



Figure 13-12 Configuration of PWINTQ1L

[&]quot;-" indicates a bit that is not provided.

Figure 13-13 Configuration of PWINTQ1H

[&]quot;1" is read if a read instruction is executed.

[10] PWM Interrupt Enable Registers (PWINTE0, PWINTE1)

PWINTE0 and PWINTE1 are 16-bit registers. PWINTE0 consists of 8-bit registers PWINTE0L and PWINTE0H, and PWINTE1 consists of 8-bit registers PWINTE1L and PWINTE1H. PWINTE0 is a register that controls enable/disable of the interrupt request by PWC0–PWC11 undferflow generation. PWINTE1 is a register that controls enable/disable of the interrupt request by matching of the contents of PWC0–PWC11 and PWR0–PWR11.

Figure 13-14 shows the configuration of PWINTE0L, Figure 13-15 the configuration of PWINTE0H, Figure 13-16 the configuration of PWINTE1L, and Figure 13-17 the configuration of PWINTE1H.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), PWINTE0 and PWINTE1 become F000H, and the interrupt request of PWM0–PWM11 is disabled.

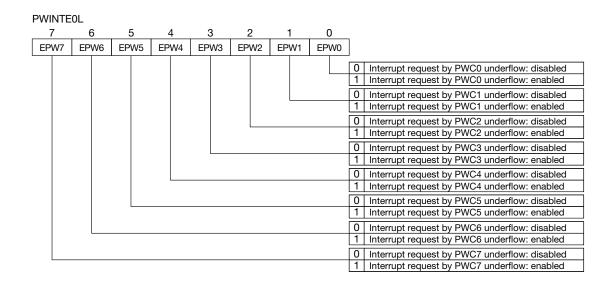
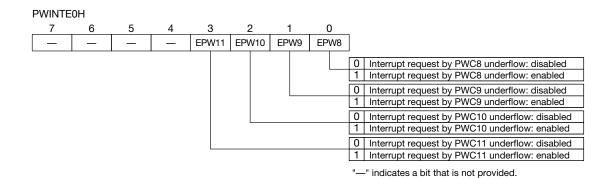



Figure 13-14 Configuration of PWINTE0L

"1" is read if a read instruction is executed.

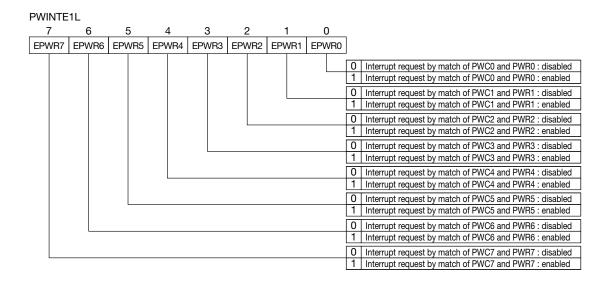


Figure 13-16 Configuration of PWINTE1L

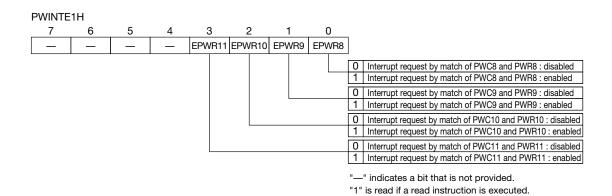


Figure 13-17 Configuration of PWINTE1H

13.2 Operation of PWM

PWM0–PWM11 control duty within a specific cycle (determined by the count clock of PWC0–PWC11 or by the contents of PWC0–PWC11 and PWC0BF–PWC11BF).

PWM is started by setting the corresponding RUN bit to "1". If the RUN bit becomes "1", the output F/F is set to "1" at the same time, and "H" level is output to the PWM output pin (in the case of high active status.) If the contents of the corresponding PWC0–PWC11 and PWR0–PWR11 match, the output F/F is set to "0", "L" level is output to the PWM output pin and an individual interrupt request flag is set to "1". If PWC0–PWC11 generate an underflow, the output F/F is set to "1", "H" level is output to the PWM output pin, an individual interrupt request flag is set to "1", and, at the same time, the contents of PWC0BF–PWC11BF and PW0BF–PW11BF are loaded to PWC0–PWC11 and PWR0–PWR11, respectively. This operation is repeated, and the duty-controlled waveform is output from the PWM output pin until the RUN bit is set to "0".

If an underflow of PWC0–PWC11 and a match of the contents of PWC0–PWC11 and PWR0–PWR11 occur concurrently (when PWR = 0000H is set), the interrupt request by an underflow of PWC0–PWC11 is given priority. Therefore, only the individual interrupt request flag by the underflow of PWC0–PWC11 is set to "1"; the individual interrupt request flag by the match of the contents of PWC0–PWC11 and PWR0–PWR11 is not set to "1".

The duty immediately after PWM start may become shorter (only 1 cycle), depending on the selected count clock of PWC0–PWC11. Refer to the following example.

Count Clock	Maximum Errors
Master Clock (CLK)	0
TBCCLK	-(TBCCLK - 1 CLK)
1/2 TBCCLK	-(1/2 TBCCLK - 1 CLK)
1/4 TBCCLK	-(1/4 TBCCLK - 1 CLK)
1/8 TBCCLK	-(1/8 TBCCLK - 1 CLK)
1/16 TBCCLK	-(1/16 TBCCLK - 1 CLK)
1/32 TBCCLK	-(1/32 TBCCLK - 1 CLK)

If a different clock is used for the PWC clock with the equal value set for PWCn and PWCnBF (n = 0-11) and PWnRUN bit is set to "1" at the same time, the cycle will be equal, however a synchronization shift may occur.

If the PWCn and PWCnBF (n = 0–11) values are both FFFFH, and in high active status, PWM becomes 1/65536 duty output when PWR is FFFFH. If the PWR value is decreased, the output duty ("H" level period) increases. If the PWR value is 0000H, output becomes 65536/65536 at 100% duty. 0/65536, which is 0% duty, cannot be implemented in a PWM block.

The calculation of a PWM cycle is shown below.

$$f_{(PWM)} = f_{(OSC)} \times PWCLK \times \frac{1}{N+1}$$
 $f_{(PWM)}$: cycle of PWM (Hz)

f_(OSC): master clock frequency (Hz)

PWCLK: input clock of PWM

N: PWCn and PWCnBF value (n = 0-11)

[Example]

Master clock frequency: 24 MHz; input clock of PWM: TBCCLK (dividing ratio of the 1/n counter: 1/4); PWCnBF value: 00FFH

$$f_{(PWM)} = 24,000,000 \times 1/4 \times 1/(255 + 1) = 93,750 \text{ Hz} \cong (10.67 \text{ }\mu\text{sec})$$

Figure 13-18 shows an example of PWM output operation. Figure 13-19 shows an example of a PWM output timing change.

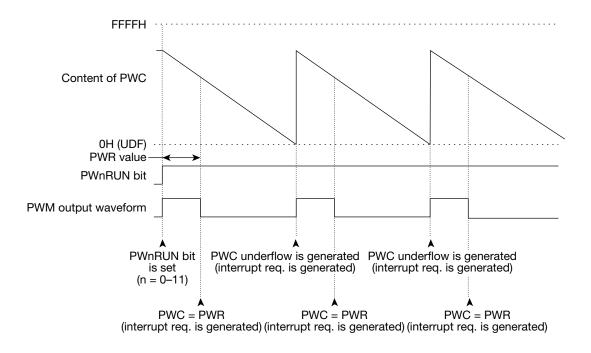


Figure 13-18 PWM Output Operation Example (in high active status)

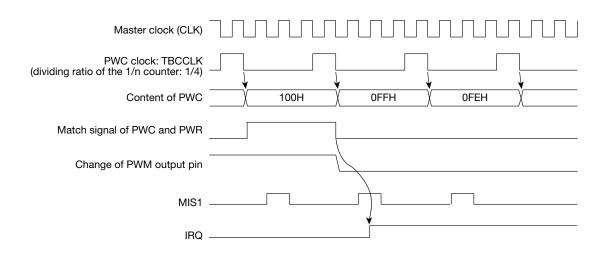


Figure 13-19 PWM Output Timing Change Example

Chapter 14

Baud Rate Generator Functions

14. Baud Rate Generator Functions

The MSM66591/ML66592 have five serial communication functions: the UART serial ports 0, 2, 3, 4 and the synchronous/UART serial port 1. Each serial port has 8-bit timers (S0TM, S1TM, S2TM, S3TM, S4TM) that can be used as baud rate generators. When not used as baud rate generators, these timers can be used as 8-bit auto reload timers.

The basic configuration of S0TM, S1TM, S2TM, S3TM and S4TM is the same, except for the address of registers located in the SFR area.

Interrupts for S0TM, S1TM, S2TM, S3TM and S4TM are assigned to the same interrupt vector. The generation of individual interrupt requests are enabled or disabled by bit 3 (ESTMn) of each timer control register (SnCON). Verification of whether an interrupt request has been generated is performed based on bit 2 (QSTMn) of each timer control register. (n = 0-4)

Figure 14-1 shows the configuration of S0TM, S1TM, S2TM, S3TM and S4TM. Table 14-1 lists the S0TM, S1TM, S2TM, S3TM and S4TM control SFRs.

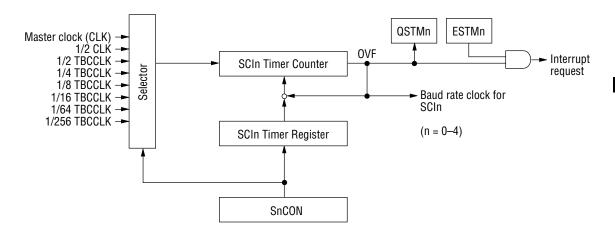


Figure 14-1 Configuration of S0TM, S1TM, S2TM, S3TM, S4TM

Table 14-1 S0TM, S1TM, S2TM, S3TM, S4TM Control SFRs

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]	
0120	SCI0 Timer		COTM			0000	
0121	SCIO Timer	_	S0TM			0000	
0122	COM Times		CATM			0000	
0123	SCI1 Timer	_	S1TM			0000	
0124	COIO Time ou		COTM		16	0000	
0125	SCI2 Timer	_	S2TM		16	0000	
0126	COIO Time ou	COTM				0000	
0127	SCI3 Timer	_	S3TM	R/W		0000	
0128	COLA Time or				0000		
0129	SCI4 Timer	_	S4TM			0000	
012A☆	SCI0 Timer Control Register	SOCON	и —			02	
012B☆	SCI1 Timer Control Register	S1CON —				02	
012C☆	SCI2 Timer Control Register	S2CON	S2CON —		8	02	
012D☆	SCI3 Timer Control Register	S3CON	_			02	
012E☆	SCI4 Timer Control Register	S4CON	_			02	

Some addresses are not consecutive.

Addresses in the address column marked by "x" indicate that the register has bits missing.

14.1 Configuration of SCI0 Timer (S0TM)

The SCI0 timer (S0TM) consists of an 8-bit SCI0 timer counter, an 8-bit SCI0 timer register that stores the reload values of the SCI0 timer counter, and a control register (S0CON) that specifies the timer counter operations.

[1] SCI0 Timer Counter (low-order 8 bits of 16-bit register S0TM)

The SCI0 timer counter is an 8-bit counter. When S0TM overflows, an interrupt request is generated, and the content of the 8-bit SCI0 timer register is loaded to SCI0 timer counter. The count clock of S0TM is selected by the high-order 3 bits (bits 5–7) of the 8-bit SCI0 timer control register (S0CON).

[2] SCI0 Timer Register (high-order 8 bits of 16-bit register S0TM)

The SCI0 timer register is an 8-bit register. The content of the register is loaded to the SCI0 timer counter when the counter overflows.

The SCI0 timer counter and SCI0 timer register are accessible only as a 16-bit S0TM which uses the SCI0 timer counter as its low-order 8 bits and the SCI0 timer register as its high-order 8 bits.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S0TM becomes 0000H, and the count operation stops.

[3] SCI0 Timer Control Register (S0CON)

S0CON is an 8-bit register. The high-order 4 bits (bits 4–7) select the count clock of S0TM, and controls the start/stop of the count operation. The low-order 2 bits (bits 2 and 3) perform interrupt related controls. The least significant bit (bit 0) specifies the mode of S0TM.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S0CON becomes 02H, a CLK is selected as the count clock of S0TM, the auto reload timer mode is selected, and operation stops.

Figure 14-2 shows the configuration of S0CON.

<Description of Each Bit>

• S0MOD (bit 0)

This bit specifies the operation mode of S0TM. If this bit is "0", S0TM operates in auto reload timer mode. If "1", S0TM operates in SCI0 baud rate generator mode.

QSTM0 (bit 2)

This bit becomes "1" if an SCI0 timer counter overflow is generated. Since this bit does not become "0" automatically after an interrupt process is executed, it is necessary to set to "0" by the program.

• ESTM0 (bit 3)

This bit enables/disables an interrupt request generation by an SCI0 timer counter overflow. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• S0RUN (bit 4)

This bit specifies the RUN/STOP of the SCI0 timer counter. If this bit is "0", the SCI0 timer counter stops, and if "1", it runs.

• S0CK0-S0CK2 (bits 5-7)

These three bits specify the count clock of the SCI0 timer counter.

S0CON										
7	6	5	4	3	2	1	0			
S0CK2	S0CK1	S0CK0	S0RUN	ESTM0	QSTM0	_	SOMOD			
								0 1 0 1	SOTI SCIO SCIO requ SCIO	M auto-reload timer mode M baud rate generator mode for SCI0 D timer counter overflow generation:no D timer counter overflow generation:yes D timer counter overflow interrupt lest generation disabled D timer counter overflow interrupt
								0	•	est generation enabled timer counter count operation STOP
								1) timer counter count operation RUN
								S(2)CK 1 0	Count Clock of S0TM
								0	0 0	Master clock (CLK)
								0	0 1	1/2 CLK
								0	1 0	1/2 TBCCLK
								0	$\frac{1}{2} \frac{1}{2}$	1/4 TBCCLK
								-11	0 0	1/8 TBCCLK
								1	0 1 1 0	1/16 TBCCLK 1/64 TBCCLK
								1	1 1	1/256 TBCCLK

[&]quot;—" indicates a bit that is not provided.

Figure 14-2 Configuration of S0CON

[&]quot;1" is read if a read instruction is executed.

14.2 Operation of SCI0 Timer

Basically the SCI0 timer operates as an auto reload timer. If the 8-bit SCI0 timer counter overflows, the value of the 8-bit SCI0 timer register is loaded to the counter. At the same time, an interrupt request by overflow is generated. The calculation of the baud rate when SCI0 is used as the baud rate generator is shown below.

$$B = f_{(BRG)} \times \frac{1}{256 - D} \times \frac{1}{16}$$

B: baud rate

f_(BRG): S0TM count clock frequency (Hz)

D: reload value (0 to 255)

Even if the reload value is written to the SCI0 timer register, the content of the SCI0 timer counter does not change. If the SCI0 timer is used as the auto reload timer (baud rate generator) from the beginning of an operation, it is necessary to write the same value to both the SCI0 timer counter and SCI0 timer register by the program.

14.3 Configuration of SCI1 Timer (S1TM)

The SCI1 timer (S1TM) consists of an 8-bit SCI1 timer counter, an 8-bit SCI1 timer register that stores the reload values of the SCI1 timer counter, and a control register (S1CON) that specifies S1TM operations.

[1] SCI1 Timer Counter (low-order 8 bits of 16-bit register S1TM)

The SCI1 timer counter is an 8-bit counter. When S1TM overflows, an interrupt request is generated, and the content of the 8-bit SCI1 timer register is loaded to SCI1 timer counter. The count clock of S1TM is selected by the high-order 3 bits (bits 5–7) of the 8-bit SCI1 timer control register (S1CON).

[2] SCI1 Timer Register (high-order 8 bits of 16-bit register S1TM)

The SCI1 timer register is an 8-bit register. The content of the register is loaded to the SCI1 timer counter when the counter overflows.

The SCI1 timer counter and SCI1 timer register are accessible only as a16-bit S1TM which uses the SCI1 timer counter as its low-order 8 bits and the SCI1 timer register as its high-order 8 bits.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S1TM becomes 0000H, and the count operation stops.

[3] SCI1 Timer Control Register (S1CON)

S1CON is an 8-bit register. The high-order 4 bits (bits 4–7) select the count clock of S1TM, and control the start/stop of the count operation. The low-order 2 bits (bits 2, 3) perform interrupt related controls. The least significant bit (bit 0) specifies the mode of S1TM.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S1CON becomes 02H, a CLK is selected as the count clock of S1TM, the auto-reload timer mode is selected, and operation stops.

Figure 14-3 shows the configuration of S1CON.

<Description of Each Bit>

• S1MOD (bit 0)

This bit specifies the operation mode of S1TM. If this bit is "0", S1TM operates in auto reload mode. If "1", S1TM operates in SCI1 baud rate generator mode.

• QSTM1 (bit 2)

This bit becomes "1" if an SCI1 timer counter overflow is generated. Since this bit does not become "0" automatically after an interrupt process is executed, it is necessary to set to "0" by the program.

ESTM1 (bit 3)

This bit enables/disables an interrupt request generation by an SCI1 timer counter overflow. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• S1RUN (bit 4)

This bit specifies the RUN/STOP of the SCI1 timer counter. If this bit is "0", the SCI1 timer counter stops, and if "1", it runs.

• S1CK0-S1CK2 (bits 5-7)

These three bits specify the count clock of the SCI1 timer counter.

S1CON										
7	6	5	4	3	2	1	0			
S1CK2	S1CK1	S1CK0	S1RUN	ESTM1	QSTM1	_	S1MOD			
								0 1 0	S1T SCI	M auto-reload timer mode M baud rate generator mode for SCI1 1 timer counter overflow generation:no
								0	SCI	1 timer counter overflow generation:yes 1 timer counter overflow interrupt Lest generation disabled
								1	SCI	1 timer counter overflow interrupt uest generation enabled
								0		1 timer counter count operation STOP 1 timer counter count operation RUN
								S ⁻	1CK 1 0	Count Clock of S1TM
								0	0 0	
								0	0 1	1/2 CLK
								0	1 0	
								0	1 1	1/4 TBCCLK
								1	0 0	
								1	0 1	1/16 TBCCLK 1/64 TBCCLK
								1	1 1	1/256 TBCCLK

[&]quot;—" indicates a bit that is not provided.

Figure 14-3 Configuration of S1CON

[&]quot;1" is read if a read instruction is executed.

14.4 Operation of SCI1 Timer

Basically the SCI1 timer operates as the auto-reload timer. If the 8-bit timer counter (S1TM) overflows, the value of the 8-bit register (S1TMR) is loaded. At the same time, an interrupt request by an overflow is generated. The calculation of the baud rate when SCI1 is used as the baud rate generator is shown below.

UART mode:
$$B = f_{(BRG)} \times \frac{1}{256 - D} \times \frac{1}{16}$$
 B: baud rate

f_(BRG): S1TM count clock frequency (Hz)

D: reload value (0 to 255)

Synchronous mode:
$$B = f_{(BRG)} \times \frac{1}{256 - D} \times \frac{1}{4}$$
 B: baud rate

f_(BRG): S1TM count clock frequency (Hz)

D: reload value (0 to 255)

Even if the reload value is written to the SCI1 timer register, the content of the SCI1 timer counter does not change. If the SCI1 timer is used as the auto reload timer (baud rate generator) from the beginning of operation, it is necessary to write the same value to both the SCI1 timer counter and SCI1 timer register through programming.

14.5 Configuration of SCI2 Timer (S2TM)

The SCI2 timer (S2TM) consists of an 8-bit SCI2 timer counter, an 8-bit SCI2 timer register that stores the reload values of the SCI2 timer counter, and a control register (S2CON) that specifies S2TM operations.

[1] SCI2 Timer Counter (low-order 8 bits of 16-bit register S2TM)

The SCI2 timer counter is an 8-bit counter. When S2TM overflows, an interrupt request is generated, and the content of the 8-bit SCI2 timer register is loaded to SCI2 timer counter. The count clock of S2TM is selected by the high-order 3 bits (bits 5–7) of the 8-bit SCI2 timer control register (S2CON).

[2] SCI2 Timer Register (high-order 8 bits of 16-bit register S2TM)

The SCI2 timer register is an 8-bit register. The content of the register is loaded to the SCI2 timer counter when the counter overflows.

The SCI2 timer counter and SCI2 timer register are accessible only as a 16-bit S2TM which uses the SCI2 timer counter as its low-order 8 bits and the SCI2 timer register as its high-order 8 bits.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S2TM becomes 0000H, and the count operation stops.

[3] SCI2 Timer Control Register (S2CON)

S2CON is an 8-bit register. The high-order 4 bits (bits 4–7) select the count clock of S2TM, and controls the start/stop of the count operation. The low-order 2 bits (bits 2 and 3) perform interrupt related controls. The least significant bit (bit 0) specifies the mode of S2TM.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S2CON becomes 02H, a CLK is selected as the count clock of S2TM, the auto reload timer mode is selected, and operation stops.

Figure 14-4 shows the configuration of S2CON.

<Description of Each Bit>

• S2MOD (bit 0)

This bit specifies the operation mode of S2TM. If this bit is "0", S2TM operates in auto reload timer mode. If "1", S2TM operates in SCI2 baud rate generator mode.

• QSTM2 (bit 2)

This bit becomes "1" if an SCI2 timer counter overflow is generated. Since this bit does not become "0" automatically after an interrupt process is executed, it is necessary to set to "0" by the program.

ESTM2 (bit 3)

This bit enables/disables an interrupt request generation by an SCI2 timer counter overflow. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• S2RUN (bit 4)

This bit specifies the RUN/STOP of the SCI2 timer counter. If this bit is "0", the SCI2 timer counter stops, and if "1", it runs.

• S2CK0-S2CK2 (bits 5-7)

These three bits specify the count clock of the SCI2 timer counter.

S2CON											
7	6	5	4	3	2	1	0				
S2CK2	S2CK1	S2CK0	S2RUN	ESTM2	QSTM2	_	S2MOD				
								0			1 auto-reload timer mode
								1	S2	2TN	I baud rate generator mode for SCI2
								0	SC	CI2	timer counter overflow generation:no
								1	SC)l2 ·	timer counter overflow generation:yes
								0			timer counter overflow interrupt
								٠	_	_	est generation disabled
											timer counter overflow interrupt
								'	re	que	est generation enabled
								0	SC	CI2	timer counter count operation STOP
								1	SC	CI2	timer counter count operation RUN
								S 2	2Cł 1	0	Count Clock of S2TM
								0	0	0	Master clock (CLK)
								0	0	1	1/2 CLK
								0	1	0	1/2 TBCCLK
								0	1	1	1/4 TBCCLK
								1	0	0	1/8 TBCCLK
								1	0	1	1/16 TBCCLK
								1	1	0	1/64 TBCCLK
								1	1	1	1/256 TBCCLK

[&]quot;—" indicates a bit that is not provided.

Figure 14-4 Configuration of S2CON

[&]quot;1" is read if a read instruction is executed.

14.6 Operation of SCI2 Timer

Basically the SCI2 timer operates as an auto reload timer. If the 8-bit SCI2 timer counter overflows, the value of the 8-bit SCI2 timer register is loaded to the counter. At the same time, an interrupt request by overflow is generated. The calculation of the baud rate when SCI2 is used as the baud rate generator is shown below.

$$B = f_{(BRG)} \times \frac{1}{256 - D} \times \frac{1}{16}$$
 B: baud rate
$$f_{(BRG)}$$
: S2TM count clock frequency (Hz) D: reload value (0 to 255)

Even if the reload value is written to the SCI2 timer register, the content of the SCI2 timer counter does not change. If the SCI2 timer is used as the auto reload timer (baud rate generator) from the beginning of an operation, it is necessary to write the same value to both the SCI2 timer counter and SCI2 timer register through programming.

14.7 Configuration of SCI3 Timer (S3TM)

The SCI3 timer (S3TM) consists of an 8-bit SCI3 timer counter, an 8-bit SCI3 timer register that stores the reload values of the SCI3 timer counter, and a control register (S3CON) that specifies S3TM operations.

[1] SCI3 Timer Counter (low-order 8 bits of 16-bit register S3TM)

The SCI3 timer counter is an 8-bit counter. When S3TM overflows, an interrupt request is generated, and the content of the 8-bit SCI3 timer register is loaded to SCI3 timer counter. The count clock of S3TM is selected by the high-order 3 bits (bits 5–7) of the 8-bit SCI3 timer control register (S3CON).

[2] SCI3 Timer Register (high-order 8 bits of 16-bit register S3TM)

The SCI3 timer register is an 8-bit register. The content of the register is loaded to the SCI3 timer counter when the counter overflows.

The SCI3 timer counter and SCI3 timer register are accessible only as a 16-bit S3TM which uses the SCI3 timer counter as its low-order 8 bits and the SCI3 timer register as its high-order 8 bits.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S3TM becomes 0000H, and the count operation stops.

[3] SCI3 Timer Control Register (S3CON)

S3CON is an 8-bit register. The high-order 4 bits (bits 4–7) select the count clock of S3TM, and controls the start/stop of the count operation. The low-order 2 bits (bits 2 and 3) perform interrupt related controls. The least significant bit (bit 0) specifies the mode of S3TM.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S3CON becomes 02H, a CLK is selected as the count clock of S3TM, the auto reload timer mode is selected, and operation stops.

Figure 14-5 shows the configuration of S3CON.

<Description of Each Bit>

• S3MOD (bit 0)

This bit specifies the operation mode of S3TM. If this bit is "0", S3TM operates in auto reload timer mode. If "1", S3TM operates in SCI3 baud rate generator mode.

• QSTM3 (bit 2)

This bit becomes "1" if an SCI3 timer counter overflow is generated. Since this bit does not become "0" automatically after an interrupt process is executed, it is necessary to set to "0" by the program.

ESTM3 (bit 3)

This bit enables/disables an interrupt request generation by an SCI3 timer counter overflow. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• S3RUN (bit 4)

This bit specifies the RUN/STOP of the SCI3 timer counter. If this bit is "0", the SCI3 timer counter stops, and if "1", it runs.

• S3CK0-S3CK2 (bits 5-7)

These three bits specify the count clock of the SCI3 timer counter.

S3CON										
7	6	5	4	3	2	1	0			
S3CK2	S3CK1	S3CK0	S3RUN	ESTM3	QSTM3	_	S3MOD			
								0 1 0 1 0 1	SST SCIS SCIS requ SCIS requ SCIS	M auto-reload timer mode M baud rate generator mode for SCI3 3 timer counter overflow generation:no 8 timer counter overflow generation:yes 3 timer counter overflow interrupt uest generation disabled 3 timer counter overflow interrupt uest generation enabled 3 timer counter count operation STOP 3 timer counter count operation RUN
								Si 2 0 0 0 0 1 1 1 1 1 1 1 1	3CK 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0	Count Clock of S3TM Master clock (CLK) 1/2 CLK 1/2 TBCCLK 1/4 TBCCLK 1/8 TBCCLK 1/16 TBCCLK

[&]quot;—" indicates a bit that is not provided.

Figure 14-5 Configuration of S3CON

[&]quot;1" is read if a read instruction is executed.

14.8 Operation of SCI3 Timer

Basically the SCI3 timer operates as an auto reload timer. If the 8-bit SCI3 timer counter overflows, the value of the 8-bit SCI3 timer register is loaded to the counter. At the same time, an interrupt request by overflow is generated. The calculation of the baud rate when SCI3 is used as the baud rate generator is shown below.

$$B = f_{(BRG)} \times \frac{1}{256 - D} \times \frac{1}{16}$$

B: baud rate

f_(BRG): S3TM count clock frequency (Hz)

D: reload value (0 to 255)

Even if the reload value is written to the SCI3 timer register, the content of the SCI3 timer counter does not change. If the SCI3 timer is used as the auto reload timer (baud rate generator) from the beginning of an operation, it is necessary to write the same value to both the SCI3 timer counter and SCI3 timer register through programming.

14.9 Configuration of SCI4 Timer (S4TM)

The SCI4 timer (S4TM) consists of an 8-bit SCI4 timer counter, an 8-bit SCI4 timer register that stores the reload values of the SCI4 timer counter, and a control register (S4CON) that specifies S4TM operations.

[1] SCI4 Timer Counter (low-order 8 bits of 16-bit register S4TM)

The SCI4 timer counter is an 8-bit counter. When S4TM overflows, an interrupt request is generated, and the content of the 8-bit SCI4 timer register is loaded to SCI4 timer counter. The count clock of S4TM is selected by the high-order 3 bits (bits 5–7) of the 8-bit SCI4 timer control register (S4CON).

[2] SCI4 Timer Register (high-order 8 bits of 16-bit register S4TM)

The SCI4 timer register is an 8-bit register. The content of the register is loaded to the SCI4 timer counter when the counter overflows.

The SCI4 timer counter and SCI4 timer register are accessible only as a 16-bit S4TM which uses the SCI4 timer counter as its low-order 8 bits and the SCI4 timer register as its high-order 8 bits.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S4TM becomes 0000H, and the count operation stops.

[3] SCI4 Timer Control Register (S4CON)

S4CON is an 8-bit register. The high-order 4 bits (bits 4–7) select the count clock of S4TM, and controls the start/stop of the count operation. The low-order 2 bits (bits 2 and 3) perform interrupt related controls. The least significant bit (bit 0) specifies the mode of S4TM.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S4CON becomes 02H, a CLK is selected as the count clock of S4TM, the auto reload timer mode is selected, and operation stops.

Figure 14-6 shows the configuration of S4CON.

<Description of Each Bit>

• S4MOD (bit 0)

This bit specifies the operation mode of S4TM. If this bit is "0", S4TM operates in auto reload timer mode. If "1", S4TM operates in SCI4 baud rate generator mode.

• QSTM4 (bit 2)

This bit becomes "1" if an SCI4 timer counter overflow is generated. Since this bit does not become "0" automatically after an interrupt process is executed, it is necessary to set to "0" by the program.

ESTM4 (bit 3)

This bit enables/disables an interrupt request generation by an SCI4 timer counter overflow. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• S4RUN (bit 4)

This bit specifies the RUN/STOP of the SCI4 timer counter. If this bit is "0", the SCI4 timer counter stops, and if "1", it runs.

• S4CK0-S4CK2 (bits 5-7)

These three bits specify the count clock of the SCI4 timer counter.

S4CON												
7	6	5	4	3	2	1	0					
S4CK2	S4CK1	S4CK0	S4RUN	ESTM4	QSTM4	_	S4MOD					
								0	S4	ΙΤΝ	1 auto-reload timer mode	
								1	S4	ΙTΝ	I baud rate generator mode for SCI4	
								0			timer counter overflow generation:no	
								1	SC	C14	timer counter overflow generation:yes	
								n			timer counter overflow interrupt	
								٥			est generation disabled	
								1			timer counter overflow interrupt	
									re	que	est generation enabled	
								0			timer counter count operation STOP	
								1 SCI4 timer counter count operation RUN				
								S 2	4Cł	o	Count Clock of S4TM	
								0	0	0	Master clock (CLK)	
								0	0	1	1/2 CLK	
								0	1	0	1/2 TBCCLK	
								0	1	1	1/4 TBCCLK	
								1	U	U	1/8 TBCCLK	
								1	1	1	1/16 TBCCLK	
								1	1	0	1/64 TBCCLK 1/256 TBCCLK	
								- 1	- 1	1	1/230 1 DOULK	

[&]quot;—" indicates a bit that is not provided.

Figure 14-6 Configuration of S4CON

[&]quot;1" is read if a read instruction is executed.

14.10 Operation of SCI4 Timer

Basically the SCI4 timer operates as an auto reload timer. If the 8-bit SCI4 timer counter overflows, the value of the 8-bit SCI4 timer register is loaded to the counter. At the same time, an interrupt request by overflow is generated. The calculation of the baud rate when SCI4 is used as the baud rate generator is shown below.

$$B = f_{(BRG)} \times \frac{1}{256 - D} \times \frac{1}{16}$$

B: baud rate

f_(BRG): S4TM count clock frequency (Hz)

D: reload value (0 to 255)

Even if the reload value is written to the SCI4 timer register, the content of the SCI4 timer counter does not change. If the SCI4 timer is used as the auto reload timer (baud rate generator) from the beginning of an operation, it is necessary to write the same value to both the SCI4 timer counter and SCI4 timer register through programming.

Chapter 15

Serial Port Functions

15. Serial Port Functions

The MSM66591/ML66592 have five channels of serial ports (SCI0, SCI1, SCI2, SCI3, SCI4). Each has a dedicated baud rate generator, and the communication speeds can be set independently.

Each has a transmit and receive side. The communication mode for SCI0, SCI2, SCI3, and SCI4 is UART mode only, and that for SCI1 is UART mode and synchronous mode. In UART mode, serial data transfer is performed by the controlled start and stop bits. In synchronous mode, a serial data transfer is performed synchronizing with the controlled shift clock.

Each UART mode and synchronous mode has a normal mode (transfer bit length is fixed to 8 bits), and a multiprocessor communication mode (multiprocessor system is configured by the serial bus).

In addition, UART mode has on the receive side a single buffer mode and a 4-stage buffer mode. Single buffer mode has a single stage of receive buffer, and 4-stage buffer mode has four stages of receive buffers (ring buffer type).

Synchronous mode has a master mode to generate the internal MSM66591/ML66592 shift clock, and a slave mode to receive the shift clock supply that is external.

Table 15-1 lists the serial port modes.

Table 15-1 Serial Port Mode

		LIADT Marda	Normal Mode					
		UART Mode	Multiprocessor Communication Mode					
	Transmit		Normal Mode	Master Mode				
	Side	Synchronous Mode	Normal Wode	Slave Mode				
		(Function of SCI1)	Multiprocessor	Master Mode				
			Communication Mode	Slave Mode				
				Normal Mode				
	Receive Side	UART Mode	Single Buffer Mode	Multiprocessor				
Serial			Single Buller Mode	Communication				
Port				Mode				
				Normal Mode				
			4-Stage Buffer Mode	Multiprocessor				
			(receive only)	Communication				
				Mode				
			Normal Mode	Master Mode				
		Synchronous Mode	Normal Wode	Slave Mode				
		(Function of SCI1)	Multiprocessor	Master Mode				
			Communication Mode	Slave Mode				

[Note]

Synchronous mode is only provided for SCI1, and not provided for SCI0, SCI2, SCI3, and SCI4.


4-stage buffer mode is provided for SCI0, SCI2, SCI3, and SCI4; it is not provided for SCI1.

15.1 Configuration of Serial Ports

SCI0, SCI1, SCI2, SCI3, and SCI4 have the same basic configuration. They consist of:

- baud rate generators to control the transfer speed (S0TM, S1TM, S2TM, S3TM, S4TM: see Chapter 14)
- control registers to control transmit/receive operations (SR0CON, SR1CON, SR2CON, SR3CON, SR4CON, ST0CON, ST1CON, ST2CON, ST3CON, ST4CON)
- buffer registers to set transmit/receive data (S0BUFm, S1BUF, S2BUFm, S3BUFm, S4BUFm: m = 0-3)
- status registers (S0STATm, S1STAT, S2STATm, S3STATm, S4STATm: m = 0-2)
- a transmit register and a receive register

Figure 15-1 shows the configuration of SCI0, SCI2, SCI3, and SCI4. Figure 15-2 shows the configuration of SCI1. Table 15-2 lists the serial port control SFRs.

n = 0, 1, 2, 3, 4

Figure 15-1 Configuration of SCIn (n = 0, 2, 3, 4)

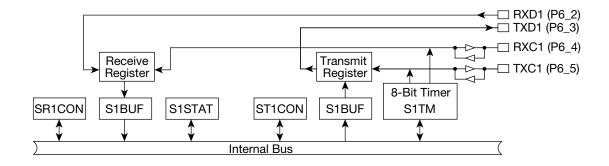


Figure 15-2 Configuration of SCI1

Table 15-2 Serial Port Control SFRs

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
0026	SCI1 Transmit/Receive Buffer Register	S1BUF	_			Undefined
0027	SCI1 Status Register	S1STAT	_	R/W		00
0028	SCI0 Transmit/Receive Buffer Register 0	S0BUF0	_			Undefined
0029	SCI0 Receive Buffer Register 1	S0BUF1	_			Undefined
002A	SCI0 Receive Buffer Register 2	S0BUF2	_	R		Undefined
002B	SCI0 Receive Buffer Register 3	S0BUF3	_			Undefined
002C	SCI2 Transmit/Receive Buffer Register 0	S2BUF0	_	R/W		Undefined
002D	SCI2 Receive Buffer Register 1	S2BUF1	_			Undefined
002E	SCI2 Receive Buffer Register 2	S2BUF2	_	R		Undefined
002F	SCI2 Receive Buffer Register 3	S2BUF3	_			Undefined
0030	SCI3 Transmit/Receive Buffer Register 0	S3BUF0	_	R/W		Undefined
0031	SCI3 Receive Buffer Register 1	S3BUF1	_			Undefined
0032	SCI3 Receive Buffer Register 2	S3BUF2	_	R		Undefined
0033	SCI3 Receive Buffer Register 3	S3BUF3	_			Undefined
0034	SCI4 Transmit/Receive Buffer Register 0	S4BUF0	_	R/W		Undefined
0035	SCI4 Receive Buffer Register 1	S4BUF1	_			Undefined
0036	SCI4 Receive Buffer Register 2	S4BUF2	_	R	- 8	Undefined
0037	SCI4 Receive Buffer Register 3	S4BUF3	_			Undefined
0038	SCI0 Status Register 0	S0STAT0	_			00
0039☆	SCI0 Interrupt Control Register	SR0INT	_			01
003A	SCI2 Status Register 0	S2STAT0	_			00
003B☆	SCI2 Interrupt Control Register	SR2INT	_			01
003C	SCI3 Status Register 0	S3STAT0	_			00
003D☆	SCI3 Interrupt Control Register	SR3INT	_			01
003E	SCI4 Status Register 0	S4STAT0	_			00
003F☆	SCI4 Interrupt Control Register	SR4INT	_			01
0130☆	SCI0 Transmit Control Register	ST0CON	_	R/W		8A
0131☆	SCI1 Transmit Control Register	ST1CON	_	□/ V V		88
0132☆	SCI2 Transmit Control Register	ST2CON	_			8A
0133☆	SCI3 Transmit Control Register	ST3CON	_			8A
0134☆	SCI4 Transmit Control Register	ST4CON	_			8A
0138☆	SCI0 Receive Control Register	SR0CON	_			12
0139☆	SCI1 Receive Control Register	SR1CON	_			80
013A☆	SCI2 Receive Control Register	SR2CON	_			12
013B☆	SCI3 Receive Control Register	SR3CON	_			12
013C☆	SCI4 Receive Control Register	SR4CON	_			12

Some addresses are not consecutive.

Addresses in the address column marked by "\$\paraller{}" indicate that the register has bits missing.

Table 15-2 Serial Port Control SFRs (continued)

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
0190☆	SCI0 Status Register 1	S0STAT1	_			11
0191☆	SCI0 Status Register 2	S0STAT2	_		8	C1
0192☆	SCI2 Status Register 1	S2STAT1	_	R/W		11
0193☆	SCI2 Status Register 2	S2STAT2	_			C1
0194☆	SCI3 Status Register 1	S3STAT1	_			11
0195☆	SCI3 Status Register 2	S3STAT2	_			C1
0196☆	SCI4 Status Register 1	S4STAT1	_			11
0197☆	SCI4 Status Register 2	S4STAT2	_			C1

Some addresses are not consecutive.

Addresses in the address column marked by "\$\paraller{a}\$" indicate that the register has bits missing.

15.2 Serial Port Control Registers

15.2.1 Control Registers for SCI0

[1] SCI0 Transmit Control Register (ST0CON)

STOCON is a 5-bit register that controls SCI0 transmit operations.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ST0CON becomes 8AH, the SCI0 transmit operation is in UART normal mode, at 8-bit data length, 2 stop bits, and no parity.

When changing the contents of ST0CON, do so after transmission is completed. If ST0CON is changed before a transmission is completed, the current and future transmission is not normally performed.

The 4-stage buffer mode is not provided for the transmit side.

Figure 15-3 shows the configuration of ST0CON.

<Description of Each Bit>

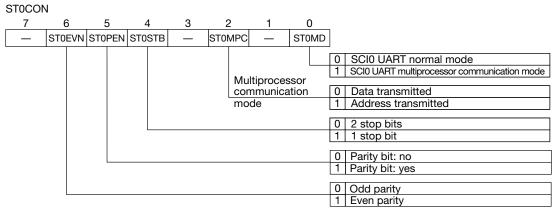
• ST0MD (bit 0)

This bit specifies the transmit operation mode of SCIO.

• ST0MPC (bit 2)

If SCI0 transmits in UART multiprocessor communication mode, this bit specifies which is transmitted, data or an address. The transmit data length is 8 bits. If this bit is "0", data is transmitted, and if "1", an address is transmitted.

• ST0STB (bit 4)


This bit specifies the stop bit of SCI0 to either 1 stop bit or 2 stop bits. If this bit is "0", SCI0 transmits at 2 stop bits, and if "1", SCI0 transmits at 1 stop bit.

• STOPEN (bit 5)

This bit specifies whether a parity bit is included when SCI0 transmits. If this bit is "0", SCI0 transmits without a parity bit, and if "1", SCI0 transmits with a parity bit.

ST0EVN (bit 6)

This bit specifies the logic of the parity bit when SCI0 transmits. If this bit is "0", an odd parity is selected, and if "1", an even parity is selected.

[&]quot;—" indicates a bit that is not provided.

Figure 15-3 Configuration of ST0CON

[&]quot;1" is read if a read instruction is executed.

[2] SCI0 Receive Control Register (SR0CON)

SR0CON is a 5-bit register that controls SCI0 receive operations.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), SR0CON becomes 12H, the SCI0 operation is in UART normal mode, at 8-bit data length, no parity, and receive is disabled.

When changing the contents of SR0CON, do so after resetting SR0REN (bit 7) to "0". If the SR0CON is changed before resetting SR0REN (bit 7) to "0", the current and future receive is not normally performed.

Figure 15-4 shows the configuration of SR0CON.

<Description of Each Bit>

• SR0MD (bit 0)

This bit specifies the receive operation mode of SCI0.

• SR0MPC (bit 2)

If SCI0 receives in UART multiprocessor communication mode, this bit specifies which is received, data or an address. The receive data length is 8 bits. If this bit is "0", data is received, and if "1", an address is received.

• SR0EXP (bit 3)

This bit specifies the SCI0 receive buffer mode. If this bit is "0", only S0BUF0 is enabled as a receive buffer (single buffer mode), and if "1", S0BUF0, S0BUF1, S0BUF2, and S0BUF3 are enabled as a receive buffer (4-stage buffer mode).

During the 4-stage buffer mode, the receive buffers operate as a ring buffer.

• SR0PEN (bit 5)

This bit specifies whether a parity bit is included when SCI0 receives. If this bit is "0", SCI0 receives without a parity bit, and if "1", SCI0 receives with a parity bit.

• SR0EVN (bit 6)

This bit specifies the logic of the parity bit when SCI0 receives. If this bit is "0", SCI0 receives at odd parity, and if "1", SCI0 receives at even parity.

SR0REN (bit 7)

This bit specifies enable/disable of SCI0 receive. If this bit is "0", SCI0 receive is disabled, and if "1", SCI0 receive is enabled.

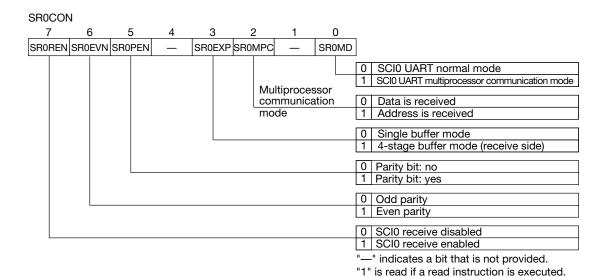


Figure 15-4 Configuration of SR0CON

[3] SCI0 Transmit/Receive Buffer Register (S0BUF0)

S0BUF0 is an 8-bit register that holds transmit/receive data during a serial port transmit/receive operation. S0BUF0 has a double structure, in which the contents are different in read/write. If in read, S0BUF0 functions as a receive buffer, and if in write, S0BUF0 functions as a transmit buffer.

When a receive operation ends, the content of the receive register is transferred to the S0BUF0 receive buffer, and a receive interrupt request is generated at the same time. The content of the S0BUF0 receive buffer is held until the next receive operation ends.

When receive mode is in UART multiprocessor communication mode, and if receive data is ignored, the content of S0BUF0 is not updated even at completion of the receive operation, and a receive interrupt request is not generated.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S0BUF0 becomes undefined.

[4] SCI0 Receive Buffer Registers (S0BUF1, S0BUF2, S0BUF3)

S0BUF1, S0BUF2, and S0BUF3 are 8-bit registers that store valid received data when the SR0EXP bit of SR0CON is set to "1" (4-stage buffer mode).

These registers are read-only and cannot be written to. During the 4-stage buffer mode, at the completion of each 1-byte reception, the contents of the receive register are transferred to a receive buffer register in the order of S0BUF0, S0BUF1, S0BUF2, S0BUF3, S0BUF0, etc. At the same time, a receive interrupt request is generated. (Ring Buffer Type)

When the receive mode is the UART multiprocessor communication mode and the received data is ignored, the contents of S0BUF1, S0BUF2, and S0BUF3 will not be updated and a receive interrupt request will not be generated even after completion of a receive operation.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), the contents of S0BUF1, S0BUF2, and S0BUF3 are undefined.

[5] SCI0 Transmit and Receive Registers

The SCI0 transmit and receive registers are two 8-bit shift registers that actually perform shift operations during a transmit/receive operation.

The transmit and receive registers and the transmit/receive buffer registers have a double structure. If a receive operation ends, during single buffer mode the data received by the receive register is transferred to S0BUF0, and during 4-stage buffer mode it is transferred to S0BUF0, S0BUF1, S0BUF2, and S0BUF3 in this order, and a receive interrupt request is generated.

The transmit and receive registers cannot be read/written by the program.

[6] SCI0 Status Register 0 (S0STAT0)

The high-order 4 bits of S0STAT0 is the transmit-ready/receive-ready interrupt request control register of the serial port. The low-order 4 bits of S0STAT0 is the register that holds the status (normal/abnormal) when the serial port receive operation is completed.

The low-order 4 bits of S0STAT0 are updated when receive ends. Once S0STAT0 is set to "1" ("1": error occurred), it is not reset to "0" even if an error does not occur when the next receive ends. Therefore reset to "0" any bits that are "1" of the low-order 4 bits of S0STAT0 by the program when a receive ends.

The contents of S0BUF0 must be read before resetting OERR00 (bit 1) of the low-order 4 bits of S0STAT0. Otherwise, the OERR00 flag is set to "1" again irrespective of occurrence of an overrun error in next receive operation.

During the 4-stage buffer mode, an overrun error flag, parity error flag, and multiprocessor communication flag are provided for each buffer. However, with a 4-stage buffer, only 1 bit is provided for the framing error flag. Therefore, the framing error flag will be set at the time when even 1 byte of the received data has a framing error.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S0STAT0 becomes 00H.

Figure 15-5 shows the configuration of S0STAT0.

<Description of Each Bit>

• FERR0 (bit 0)

If the stop bit received by SCI0 is "0", this bit is set to "1" interpreting that frame synchronization is incorrect. (Framing error)

• OERR00 (bit 1)

This bit is set to "1" if the data transferred to S0BUF0 for the previous reception has not yet been read by the CPU when the receive operation of SCI0 ends. However, new receive data is loaded to S0BUF0 even if this occurs. (Overrun error)

• PERR00 (bit 2)

The parity of data received by SCIO and the parity bit appended to and transferred with data are compared, and if they do not match, this bit is set to "1". (Parity error)

• MERR00 (bit 3)

This bit is set to "1" if an address is sent while receiving data in SCI0 UART multiprocessor communication mode. This means that if the MPC bit (of the data that is transferred when the SR0MPC bit of SR0CON is "0") is "1", MERR00 is set, interpreting this as a multiprocessor communication error.

• RV0IE0 (bit 4)

This bit enables/disables the generation of an SCI0 receive ready interrupt request. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• RV0IRQ0 (bit 5)

This bit is set to "1" if an SCI0 receive ready is generated. This bit is not automatically reset to "0" even if an interrupt process is executed, therefore set it to "0" by the program.

• TR0IE (bit 6)

This bit enables/disables the generation of an SCI0 transmit ready interrupt request. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• TR0IRQ (bit 7)

This bit is set to "1" if an SCI0 transmit ready is generated. This bit is not automatically reset to "0" even if an interrupt process is executed, therefore set it to "0" by the program.

Figure 15-5 Configuration of S0STAT0

[7] SCI0 Status Register 1 (S0STAT1)

If the SR0EXP bit of SR0CON is set to "1" (4-stage buffer mode), the 6-bit S0STAT1 register stores the status (normal/abnormal) of the serial transfer when a serial port receive operation is completed.

During the 4-stage buffer mode, if there is an error in the receive data transferred to S0BUF1, the lower 3 bits of S0STAT1 (bits 1–3) are updated when reception of that data is complete; if there is an error in the receive data transferred to S0BUF2, the upper 3 bits of S0STAT1 (bits 5–7) are updated when reception of that data is complete. Once S0STAT1 is set to "1" ("1": error occurred), it is not reset to "0" even if that error has not occurred at completion of the next reception. Therefore, with the program, reset to "0" any S0STAT1 bits that are "1" after reception is complete. Read the contents of S0BUF1 and S0BUF2 before resetting the OERR01 and OERR02 flags in S0STAT1. If the contents of S0BUF1 and S0BUF2 are not read, the OERR01 and OERR02 flags will be set to "1" again regardless of whether an overrun error occurs in the next receive operation.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S0STAT1 becomes 11H.

Figure 15-6 shows the configuration of S0STAT1.

<Description of Each Bit>

• OERR01 (bit 1)

When an SCI0 receive operation is complete and the receive data is transferred into S0BUF1, OERR01 is set to "1" if the data transferred into S0BUF1 for the previous reception has not yet been read by the CPU. New receive data is loaded into S0BUF1 even if OERR01 has been set. (Overrun error)

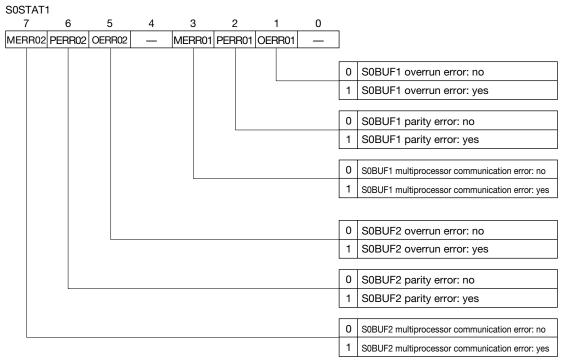
• PERR01 (bit 2)

With SCI0, the parity of data received by S0BUF1 is compared to the parity bit appended to and transferred with the data. If they do not match, PERR01 is set to "1". (Parity error)

• MERR01 (bit 3)

During the SCI0 UART multiprocessor communication mode, MERR01 is set to "1" if an address is transmitted while S0BUF1 is receiving data. In other words, when the MPC bit (of the data that is transferred when the SR0MPC bit of SR0CON is "0") is "1", MERR01 is set to "1", interpreting this as a multiprocessor communication error.

• OERR02 (bit 5)


When an SCI0 receive operation is complete and the receive data is transferred into S0BUF2, OERR02 is set to "1" if the data transferred into S0BUF2 for the previous reception has not yet been read by the CPU. New receive data is loaded into S0BUF2 even if OERR02 has been set. (Overrun error)

• PERR02 (bit 6)

With SCI0, the parity of data received by S0BUF2 is compared to the parity bit appended to and transferred with the data. If they do not match, PERR02 is set to "1". (Parity error)

MERR02 (bit 7)

During the SCI0 UART multiprocessor communication mode, MERR02 is set to "1" if an address is transmitted while S0BUF2 is receiving data. In other words, when the MPC bit (of the data that is transferred when the SR0MPC bit of SR0CON is "0") is "1", MERR02 is set to "1", interpreting this as a multiprocessor communication error.

[&]quot;—" indicates a bit that is not provided.

Figure 15-6 Configuration of S0STAT1

[&]quot;1" is read if a read instruction is executed.

[8] SCI0 Status Register 2 (S0STAT2)

If the SR0EXP bit of SR0CON is set to "1" (4-stage buffer mode), the lower 3 bits of S0STAT2 store the status (normal/abnormal) of the serial transfer when a serial port receive operation is completed. The upper 2 bits of S0STAT2 monitor the counter that indicates the receive buffer into which receive data will be transferred at completion of the next receive operation.

During the 4-stage buffer mode, if there is an error in the receive data transferred to S0BUF3, the lower 3 bits of S0STAT2 (bits 1–3) are updated when reception of that data is complete. Once the lower 3 bits of S0STAT2 are set to "1" ("1": error occurred), they are not reset to "0" even if that error has not occurred at completion of the next reception. Therefore, with the program, reset to "0" any bits that are "1" of the lower 3 bits of S0STAT2 after reception is complete. Read the contents of S0BUF3 before resetting the OERR03 flag in the lower 3 bits of S0STAT2. If the contents of S0BUF3 are not read, the OERR03 flag will be set to "1" again regardless of whether an overrun error occurs in the next receive operation.

Bits 4 and 5 of S0STAT2 are read-only and cannot be written to. During the 4-stage buffer mode, the next receive buffer into which data will be transferred (S0BUF0, S0BUF1, S0BUF2, S0BUF3) can be verified by reading bits 4 and 5 of S0STAT2.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S0STAT2 becomes C1H.

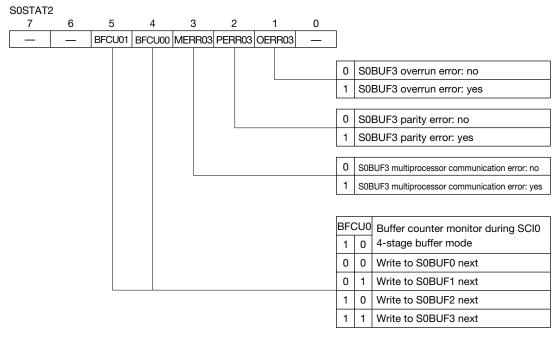
Figure 15-7 shows the configuration of S0STAT2.

<Description of Each Bit>

• OERR03 (bit 1)

When an SCI0 receive operation is complete and the receive data is transferred into S0BUF3, OERR03 is set to "1" if the data transferred into S0BUF3 for the previous reception has not yet been read by the CPU. New receive data is loaded into S0BUF3 even if OERR03 has been set. (Overrun error)

• PERR03 (bit 2)


With SCI0, the parity of data received by S0BUF3 is compared to the parity bit appended to and transferred with the data. If they do not match, PERR03 is set to "1". (Parity error)

• MERR03 (bit 3)

During the SCI0 UART multiprocessor communication mode, MERR03 is set to "1" if an address is transmitted while S0BUF3 is receiving data. In other words, when the MPC bit (of the data that is transferred when the SR0MPC bit of SR0CON is "0") is "1", MERR03 is set to "1", interpreting this as a multiprocessor communication error.

• BFCU00 (bit 4), BFCU01 (bit 5)

During the 4-stage buffer mode, BFCU00 and BFCU01 monitor the buffer counter that indicates the receive buffer into which receive data will be transferred (S0BUF0, S0BUF1, S0BUF2, S0BUF3) at completion of the next receive operation. BFCU00 and BFCU01 are read-only and cannot be written to.

[&]quot;—" indicates a bit that is not provided.

Figure 15-7 Configuration of S0STAT2

[&]quot;1" is read if a read instruction is executed.

[9] SCI0 Interrupt Control Register (SR0INT)

When SCI0 is in the 4-stage buffer mode (SR0EXP bit of SR0CON is "1"), the 7-bit SR0INT register controls the receive-ready interrupt requests for each receive buffer (S0BUF0 to S0BUF3).

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), SR0INT becomes 01H.

RV0IRQ0 (bit 4) of SR0INT monitors RV0IRQ0 (bit 3) of S0STAT0. During the 4-stage buffer mode, by reading SR0INT once, it is possible to verify which buffer has generated a receive-ready. This bit is read-only and writes are ignored. To clear (write to) this bit, write to RV0IRQ0 (bit 5) of S0STAT0.

Figure 15-8 shows the configuration of SR0INT.

<Description of Each Bit>

• RV0IE1 (bit 1)

This bit enables or disables the generation of SCI0 S0BUF1 receive-ready interrupt requests. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• RV0IE2 (bit 2)

This bit enables or disables the generation of SCI0 S0BUF2 receive-ready interrupt requests. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• RV0IE3 (bit 3)

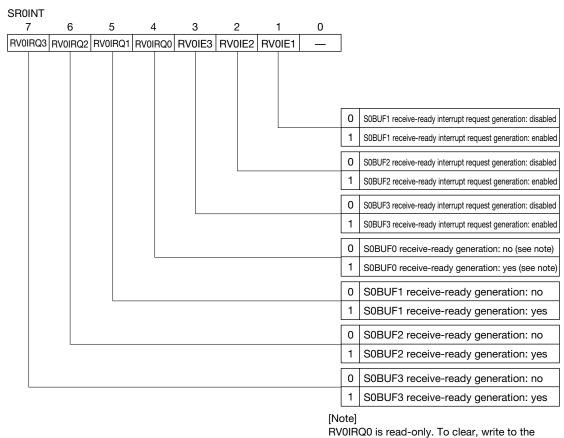
This bit enables or disables the generation of SCI0 S0BUF3 receive-ready interrupt requests. If this bit is "1", generation is enabled, and if "0", generation is disabled.

RV0IRQ0 (bit 4)

This bit monitors RV0IRQ0 of S0STAT0. (Read-only)

This bit is set to "1" when an SCI0 S0BUF0 receive-ready is generated. To clear this bit to "0", clear RV0IRQ0 of S0STAT0.

RV0IRQ1 (bit 5)


This bit is set to "1" when an SCI0 S0BUF1 receive-ready is generated. This bit is not automatically cleared to "0" even when an SCI0 interrupt is processed, so clear it by the program.

RV0IRQ2 (bit 6)

This bit is set to "1" when an SCI0 S0BUF2 receive-ready is generated. This bit is not automatically cleared to "0" even when an SCI0 interrupt is processed, so clear it by the program.

RV0IRQ3 (bit 7)

This bit is set to "1" when an SCI0 S0BUF3 receive-ready is generated. This bit is not automatically cleared to "0" even when an SCI0 interrupt is processed, so clear it by the program.

RV0IRQ0 bit of S0STAT0.

Figure 15-8 Configuration of SR0INT

[&]quot;—" indicates a bit that is not provided.

[&]quot;1" is read if a read instruction is executed.

15.2.2 Control Registers for SCI1

[1] SCI1 Transmit Control Register (ST1CON)

ST1CON is a 6-bit register that controls SCI1 transmit operations.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ST1CON becomes 88H, the SCI1 transmit operation is in UART normal mode, at 8-bit data length, 2 stop bits, and no parity.

When changing the contents of ST1CON, do so after transmission is completed. If ST1CON is changed before a transmission is completed, the current and future transmission is not normally performed.

Figure 15-9 shows the configuration of ST1CON.

<Description of Each Bit>

• ST1MD0, 1 (bits 0, 1)

These bits specify the transmit operation mode of SCI1.

• ST1MPC (bit 2)

If SCI1 transmits in UART/synchronous multiprocessor communication mode, bit 2 (ST1MPC) specifies which is transmitted, data or an address. The transmit data length is fixed at 8 bits. If bit 2 (ST1MPC) is "0", data is transmitted, and if "1", an address is transmitted.

• ST1STB/ST1MST (bit 4)

The function of bit 4 differs depending on the operation mode specified by bit 1 and 0. When SCI1 transmits in UART mode, bit 4 (ST1STB) specifies the stop bit of SCI1 either as a 1 stop bit or 2 stop bits. If bit 4 (ST1STB) is "0", SCI1 transmits at 2 stop bits, and if "1", SCI1 transmits at 1 stop bit. When SCI1 transmits in synchronous mode, bit 4 (ST1MST) selects slave mode/master mode. If bit 4 (ST1MST) is "0", slave mode is selected, and if "1", master mode is selected.

• ST1PEN (bit 5)

This bit specifies whether a parity bit is included when SCI1 transmits. If this bit is "0", SCI1 transmits without a parity bit, and if "1", SCI1 transmits with a parity bit.

• ST1EVN (bit 6)

This bit specifies the logic of a parity bit when SCI1 transmits. If this bit is "0", SCI1 transmits at odd parity, and if "1", SCI1 transmits at even parity.

[&]quot;—" indicates a bit that is not provided.

Figure 15-9 Configuration of ST1CON

[&]quot;1" is read if a read instruction is executed.

[2] SCI1 Receive Control Register (SR1CON)

SR1CON is 7-bit register that controls the SCI1 receive operations.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), SR1CON becomes 08H, the SCI1 receive operation is in UART normal mode, at 8-bit data length, no parity, and receive is disabled.

When changing the contents of SR1CON, do so after resetting SR1REN (bit 7) to "0". If SR1CON is changed before resetting SR1REN to "0", the current and future receive is not normally performed.

Figure 15-10 shows the configuration of SR1CON.

<Description of Each Bit>

• SR1MD0, 1 (bits 0, 1)

These two bits specify the receive operation mode of SCI1.

• SR1MPC (bit 2)

If SCI1 receives in UART/synchronous multiprocessor communication mode, bit 2 (SR1MPC) specifies which is received, data or an address. The receive data is 8-bit data length.

If bit 2 (SR1MPC) is "0", data is received, and if "1", an address is received.

• SR1MST (bit 4)

The function of bit 4 differs depending on the operation mode specified by bits 1 and 0. When SCI1 receives in UART mode, bit 4 is meaningless. When SCI1 receives in synchronous mode, slave mode is selected if bit 4 is "0", and master mode is selected if bit 4 is "1".

SR1PEN (bit 5)

This bit specifies whether a parity bit is included when SCI1 receives. If this bit is "0", SCI1 receives without a parity bit, and if "1", SCI1 receives with a parity bit.

• SR1EVN (bit 6)

This bit specifies the logic of a parity bit when SCI1 receives. If this bit is "0", SCI1 receives at odd parity, and if "1", SCI1 receives at even parity.

SR1REN (bit 7)

This bit specifies enable/disable of SCI1 receive. If this bit is "0", SCI1 receive is disabled, and if "1", SCI1 receive is enabled.

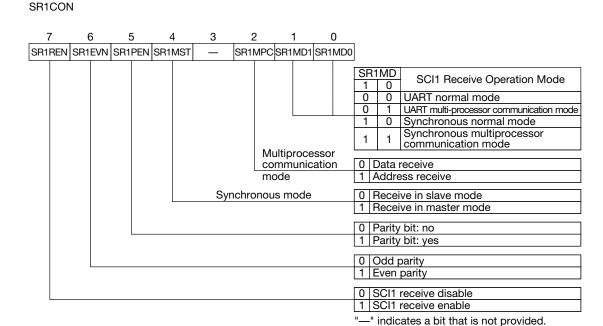


Figure 15-10 Configuration of SR1CON

"1" is read if a read instruction is executed.

[3] SCI1 Transmit/Receive Buffer Register (S1BUF)

S1BUF is an 8-bit register that holds transmit/receive data during a serial port transmit/receive operation. S1BUF has a double structure, in which the content is different in READ/WRITE. If in read, S1BUF functions as a receive buffer, and if in write, S1BUF functions as a transmit buffer.

When a receive operation ends, the content of the receive register is transferred to the S1BUF receive buffer, and a receive interrupt request is generated at the same time. The content of the S1BUF receive buffer is held until the next receive operation ends.

When receive mode is in UART/synchronous multiprocessor communication mode, if data has been received instead of reception of an address and if the receive data is ignored, the content of S1BUF is not updated even at completion of the receive operation, also a receive interrupt request is not generated.

The 4-stage buffer mode is not provided for SCI1.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S1BUF becomes undefined.

[4] SCI1 Transmit and Receive Registers

The SCI1 transmit and receive registers are two 8-bit shift registers that actually perform shift operations during a transmit/receive operation.

The transmit and receive registers and transmit/receive buffer register (S1BUF) have a double structure. When a receive operation ends, the data received by the receive register is transferred to S1BUF, and a receive interrupt request is generated.

The transmit and receive registers cannot be read/written by the program.

[5] SCI1 Status Register (S1STAT)

The high-order 4 bits of S1STAT is the transmit-ready/receive-ready interrupt request control register of the serial port. The low-order 4 bits of S1STAT is the register that holds the status (normal/abnormal) when the serial port receive operation is completed.

The low-order 4-bits of S1STAT are updated when receive ends. Once S1STAT is set ("1": error occurred), it is not reset to "0" even if an error does not occur when the next receive ends. Therefore reset to "0" any bits that are "1" of the low-order 4 bits of S1STAT by the program when a receive ends.

The contents of S1BUF must be read before resetting OERR1 (bit 1) of the low-order 4 bits of S1STAT to "0". Otherwise, the OERR1 flag is set to "1" again irrespective of occurrence of an overrun error in next receive operation.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S1STAT becomes 00H.

Figure 15-11 shows the configuration of S1STAT.

<Description of Each Bit>

• FERR1 (bit 0)

If the stop bit received by SCI1 is "0", this bit is set to "1" interpreting that frame synchronization is incorrect. (Framming error)

• OERR1 (bit 1)

This bit is set to "1" if the previously received data is not read by the CPU when the receive operation of SCI1 ends. However, new receive data is loaded to S1BUF even if this occurs. (Overrun error)

• PERR1 (bit 2)

The parity of data received by SCI1 and the parity bit appended to and transferred with data are compared, and if they do not match, this bit is set to "1". (Parity error)

• MERR1 (bit 3)

This bit is set to "1" if an address is sent while receiving data in SCI1 UART/synchronous multiprocessor communication mode. This means that if the MPC bit (of the data that is transferred when the SR1MPC bit of SR1CON is "0") is "1", MERR1 is set, interpreting this as a multiprocessor communication error.

• RV1IE (bit 4)

This bit enables/disables the generation of an SCI1 receive ready interrupt request. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• RV1IRQ (bit 5)

This bit is set to "1" if an SCI1 receive ready is generated. This bit is not automatically reset to "0" even if an interrupt process is executed, therefore set it to "0" by the program.

• TR1IE (bit 6)

This bit enables/disables the generation of an SCI1 transmit ready interrupt request. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• TR1IRQ (bit 7)

This bit is set to "1" if an SCI1 transmit ready is generated. This bit is not automatically reset to "0" even if an interrupt process is executed, therefore set it to "0" by the program.

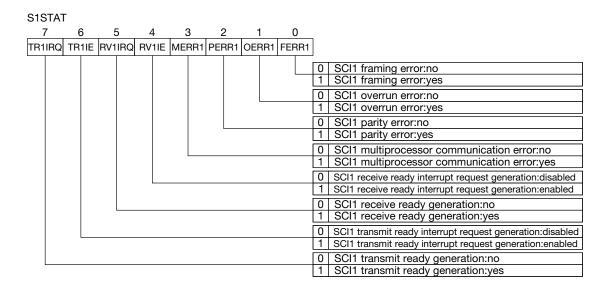


Figure 15-11 Configuration of S1STAT

15.2.3 Control Registers for SCI2

[1] SCI2 Transmit Control Register (ST2CON)

ST2CON is a 5-bit register that controls SCI2 transmit operations.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ST2CON becomes 8AH, the SCI2 transmit operation is in UART normal mode, at 8-bit data length, 2 stop bits, and no parity.

When changing the contents of ST2CON, do so after transmission is completed. If ST2CON is changed before a transmission is completed, the current and future transmission is not normally performed.

The 4-stage buffer mode is not provided for the transmit side.

Figure 15-12 shows the configuration of ST2CON.

<Description of Each Bit>

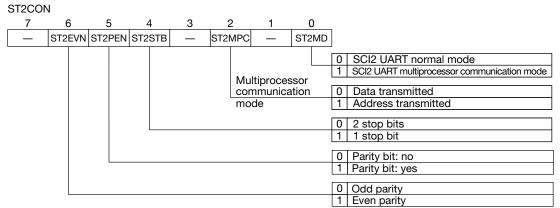
• ST2MD (bit 0)

This bit specifies the transmit operation mode of SCI2.

• ST2MPC (bit 2)

If SCI2 transmits in UART multiprocessor communication mode, this bit specifies which is transmitted, data or an address. The transmit data length is 8 bits. If this bit is "0", data is transmitted, and if "1", an address is transmitted.

• ST2STB (bit 4)


This bit specifies the stop bit of SCI2 to either 1 stop bit or 2 stop bits. If this bit is "0", SCI2 transmits at 2 stop bits, and if "1", SCI2 transmits at 1 stop bit.

• ST2PEN (bit 5)

This bit specifies whether a parity bit is included when SCI2 transmits. If this bit is "0", SCI2 transmits without a parity bit, and if "1", SCI2 transmits with a parity bit.

• ST2EVN (bit 6)

This bit specifies the logic of the parity bit when SCI2 transmits. If this bit is "0", an odd parity is selected, and if "1", an even parity is selected.

[&]quot;—" indicates a bit that is not provided.

Figure 15-12 Configuration of ST2CON

[&]quot;1" is read if a read instruction is executed.

[2] SCI2 Receive Control Register (SR2CON)

SR2CON is a 5-bit register that controls SCI2 receive operations.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), SR2CON becomes 12H, the SCI2 operation is in UART normal mode, at 8-bit data length, no parity, and receive is disabled.

When changing the contents of SR2CON, do so after resetting SR2REN (bit 7) to "0". If the SR2CON is changed before resetting SR2REN (bit 7) to "0", the current and future receive is not normally performed.

Figure 15-13 shows the configuration of SR2CON.

<Description of Each Bit>

• SR2MD (bit 0)

This bit specifies the receive operation mode of SCI2.

• SR2MPC (bit 2)

If SCI2 receives in UART multiprocessor communication mode, this bit specifies which is received, data or an address. The receive data length is 8 bits. If this bit is "0", data is received, and if "1", an address is received.

• SR2EXP (bit 3)

This bit specifies the SCI2 receive buffer mode. If this bit is "0", only S2BUF0 is enabled as a receive buffer (single buffer mode), and if "1", S2BUF0, S2BUF1, S2BUF2, and S2BUF3 are enabled as a receive buffer (4-stage buffer mode).

During the 4-stage buffer mode, the receive buffers operate as a ring buffer.

• SR2PEN (bit 5)

This bit specifies whether a parity bit is included when SCI2 receives. If this bit is "0", SCI2 receives without a parity bit, and if "1", SCI2 receives with a parity bit.

• SR2EVN (bit 6)

This bit specifies the logic of the parity bit when SCI2 receives. If this bit is "0", SCI2 receives at odd parity, and if "1", SCI2 receives at even parity.

SR2REN (bit 7)

This bit specifies enable/disable of SCI2 receive. If this bit is "0", SCI2 receive is disabled, and if "1", SCI2 receive is enabled.

SR2CO	N							
7	6	5	4	3	2	1	0	
SR2REN	SR2EVN	SR2PEN	_	SR2EXP	SR2MPC	_	SR2MD	
						iltiproce: mmunica de		0 SCI2 UART normal mode 1 SCI2 UART multiprocessor communication mode 0 Data is received 1 Address is received 0 Single buffer mode 1 4-stage buffer mode (receive side) 0 Parity bit: no 1 Parity bit: yes 0 Odd parity 1 Even parity 0 SCI2 receive disabled 1 SCI2 receive enabled
								1 JOIZ TECTIVE CHADIEU

[&]quot;—" indicates a bit that is not provided.

Figure 15-13 Configuration of SR2CON

[&]quot;1" is read if a read instruction is executed.

[3] SCI2 Transmit/Receive Buffer Register (S2BUF0)

S2BUF0 is an 8-bit register that holds transmit/receive data during a serial port transmit/receive operation. S2BUF0 has a double structure, in which the contents are different in read/write. If in read, S2BUF0 functions as a receive buffer, and if in write, S2BUF0 functions as a transmit buffer.

When a receive operation ends, the content of the receive register is transferred to the S2BUF0 receive buffer, and a receive interrupt request is generated at the same time. The content of the S2BUF0 receive buffer is held until the next receive operation ends.

When receive mode is in UART multiprocessor communication mode, and if receive data is ignored, the content of S2BUF0 is not updated even at completion of the receive operation, and a receive interrupt request is not generated.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S2BUF0 becomes undefined.

[4] SCI2 Receive Buffer Registers (S2BUF1, S2BUF2, S2BUF3)

S2BUF1, S2BUF2, and S2BUF3 are 8-bit registers that store valid received data when the SR2EXP bit of SR2CON is set to "1" (4-stage buffer mode).

These registers are read-only and cannot be written to. During the 4-stage buffer mode, at the completion of each 1-byte reception, the contents of the receive register are transferred to a receive buffer register in the order of S2BUF0, S2BUF1, S2BUF2, S2BUF3, S2BUF0, etc. At the same time, a receive interrupt request is generated. (Ring Buffer Type)

When the receive mode is the UART multiprocessor communication mode and the received data is ignored, even after completion of a receive operation, the contents of S2BUF1, S2BUF2, and S2BUF3 will not be updated and a receive interrupt request will not be generated.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), the contents of S2BUF1, S2BUF2, and S2BUF3 are undefined.

[5] SCI2 Transmit and Receive Registers

The SCI2 transmit and receive registers are two 8-bit shift registers that actually perform shift operations during a transmit/receive operation.

The transmit and receive registers and the transmit/receive buffer registers have a double structure. If a receive operation ends, the data received by the receive register is transferred to S2BUF, and a receive interrupt request is generated.

The transmit and receive registers cannot be read/written by the program.

[6] SCI2 Status Register 0 (S2STAT0)

The high-order 4 bits of S2STAT0 is the transmit-ready/receive-ready interrupt request control register of the serial port. The low-order 4 bits of S2STAT0 is the register that holds the status (normal/abnormal) when the serial port receive operation is completed.

The low-order 4 bits of S2STAT0 are updated when receive ends. Once S2STAT0 is set to "1" ("1": error occurred), it is not reset to "0" even if an error does not occur when the next receive ends. Therefore reset to "0" any bits that are "1" of the low-order 4 bits of S2STAT0 by the program when a receive ends.

The contents of S2BUF0 must be read before resetting OERR20 (bit 1) of the low-order 4 bits of S2STAT0. Otherwise, the OERR20 flag is set to "1" again irrespective of occurrence of an overrun error in next receive operation.

During the 4-stage buffer mode, an overrun error flag, parity error flag, and multiprocessor communication flag are provided for each buffer. However, with a 4-stage buffer, only 1 bit is provided for the framing error flag. Therefore, the framing error flag will be set at the time when even 1 byte of the received data has a framing error.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S2STAT0 becomes 00H.

Figure 15-14 shows the configuration of S2STAT0.

<Description of Each Bit>

• FERR2 (bit 0)

If the stop bit received by SCI2 is "0", this bit is set to "1" interpreting that frame synchronization is incorrect. (Framing error)

• OERR20 (bit 1)

This bit is set to "1" if the data transferred to S2BUF0 for the previous reception has not yet been read by the CPU when the receive operation of SCI2 ends. However, new receive data is loaded to S2BUF0 even if this occurs. (Overrun error)

PERR20 (bit 2)

The parity of data received by SCI0 and the parity bit appended to and transferred with data are compared, and if they do not match, this bit is set to "1". (Parity error)

• MERR20 (bit 3)

This bit is set to "1" if an address is sent while receiving data in SCI2 UART multiprocessor communication mode. This means that if the MPC bit (of the data that is transferred when the SR2MPC bit of SR2CON is "0") is "1", MERR20 is set, interpreting this as a multiprocessor communication error.

• RV2IE0 (bit 4)

This bit enables/disables the generation of an SCI2 receive ready interrupt request. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• RV2IRQ0 (bit 5)

This bit is set to "1" if an SCI2 receive ready is generated. This bit is not automatically reset to "0" even if an interrupt process is executed, therefore set it to "0" by the program.

• TR2IE (bit 6)

This bit enables/disables the generation of an SCI2 transmit ready interrupt request. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• TR2IRQ (bit 7)

This bit is set to "1" if an SCI2 transmit ready is generated. This bit is not automatically reset to "0" even if an interrupt process is executed, therefore set it to "0" by the program.

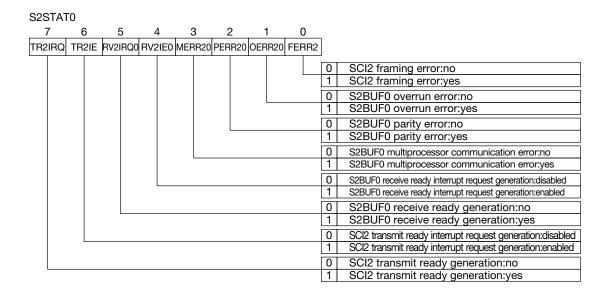


Figure 15-14 Configuration of S2STAT0

[7] SCI2 Status Register 1 (S2STAT1)

If the SR2EXP bit of SR2CON is set to "1" (4-stage buffer mode), the 6-bit S2STAT1 register stores the status (normal/abnormal) of the serial transfer when a serial port receive operation is completed.

During the 4-stage buffer mode, if there is an error in the receive data transferred to S2BUF1, the lower 3 bits of S2STAT1 (bits 1–3) are updated when reception of that data is complete; if there is an error in the receive data transferred to S2BUF2, the upper 3 bits of S2STAT1 (bits 5–7) are updated when reception of that data is complete. Once S2STAT1 is set to "1" ("1": error occurred), it is not reset to "0" even if that error has not occurred at completion of the next reception. Therefore, with the program, reset to "0" any S2STAT1 bits that are "1" after reception is complete. Read the contents of S2BUF1 and S2BUF2 before resetting the OERR21 and OERR22 flags in S2STAT1. If the contents of S2BUF1 and S2BUF2 are not read, the OERR21 and OERR22 flags will be set to "1" again regardless of whether an overrun error occurs in the next receive operation.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S2STAT1 becomes 11H.

Figure 15-15 shows the configuration of S2STAT1.

<Description of Each Bit>

• OERR21 (bit 1)

When an SCI2 receive operation is complete and the receive data is transferred into S2BUF1, OERR21 is set to "1" if the data transferred into S2BUF1 for the previous reception has not yet been read by the CPU. New receive data is loaded into S2BUF1 even if OERR21 has been set. (Overrun error)

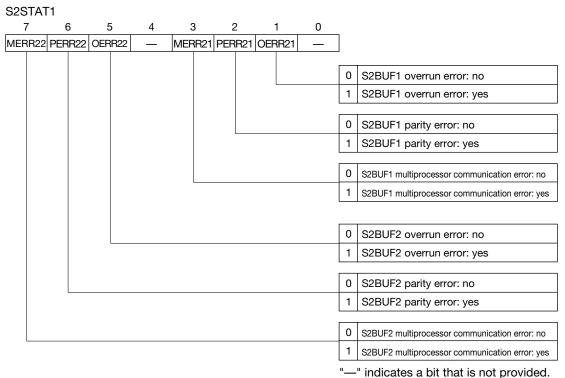
• PERR21 (bit 2)

With SCI2, the parity of data received by S2BUF1 is compared to the parity bit appended to and transferred with the data. If they do not match, PERR21 is set to "1". (Parity error)

• MERR21 (bit 3)

During the SCI2 UART multiprocessor communication mode, MERR21 is set to "1" if an address is transmitted while S2BUF1 is receiving data. In other words, when the MPC bit (of the data that is transferred when the SR2MPC bit of SR2CON is "0") is "1", MERR21 is set to "1", interpreting this as a multiprocessor communication error.

• OERR22 (bit 5)


When an SCI2 receive operation is complete and the receive data is transferred into S2BUF2, OERR22 is set to "1" if the data transferred into S2BUF2 for the previous reception has not yet been read by the CPU. New receive data is loaded into S2BUF2 even if OERR22 has been set. (Overrun error)

• PERR22 (bit 6)

With SCI2, the parity of data received by S2BUF2 is compared to the parity bit appended to and transferred with the data. If they do not match, PERR22 is set to "1". (Parity error)

• MERR22 (bit 7)

During the SCI2 UART multiprocessor communication mode, MERR22 is set to "1" if an address is transmitted while S2BUF2 is receiving data. In other words, when the MPC bit (of the data that is transferred when the SR2MPC bit of SR2CON is "0") is "1", MERR22 is set to "1", interpreting this as a multiprocessor communication error.

"1" is read if a read instruction is executed.

Figure 15-15 Configuration of S2STAT1

[8] SCI2 Status Register 2 (S2STAT2)

If the SR2EXP bit of SR2CON is set to "1" (4-stage buffer mode), the lower 3 bits of S2STAT2 store the status (normal/abnormal) of the serial transfer when a serial port receive operation is completed. The upper 2 bits of S2STAT2 monitor the counter that indicates the receive buffer into which receive data will be transferred at completion of the next receive operation.

During the 4-stage buffer mode, if there is an error in the receive data transferred to S2BUF3, the lower 3 bits of S2STAT2 (bits 1–3) are updated when reception of that data is complete. Once the lower 3 bits of S2STAT2 are set to "1" ("1": error occurred), they are not reset to "0" even if that error has not occurred at completion of the next reception. Therefore, with the program, reset to "0" any bits that are "1" of the lower 3 bits of S2STAT2 after reception is complete. Read the contents of S2BUF3 before resetting the OERR23 flag in the lower 3 bits of S2STAT2. If the contents of S2BUF3 are not read, the OERR23 flag will be set to "1" again regardless of whether an overrun error occurs in the next receive operation.

Bits 4 and 5 of S2STAT2 are read-only and cannot be written to. During the 4-stage buffer mode, the next receive buffer into which data will be transferred (S2BUF0, S2BUF1, S2BUF2, S2BUF3) can be verified by reading bits 4 and 5 of S2STAT2.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S2STAT2 becomes C1H.

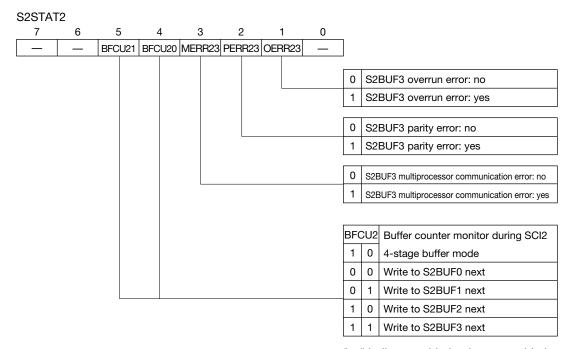
Figure 15-16 shows the configuration of S2STAT2.

<Description of Each Bit>

• OERR23 (bit 1)

When an SCI2 receive operation is complete and the receive data is transferred into S2BUF3, OERR23 is set to "1" if the data transferred into S2BUF3 for the previous reception has not yet been read by the CPU. New receive data is loaded into S2BUF3 even if OERR23 has been set. (overrun error)

• PERR23 (bit 2)


With SCI2, the parity of data received by S2BUF3 is compared to the parity bit appended to and transferred with the data. If they do not match, PERR23 is set to "1". (parity error)

• MERR23 (bit 3)

During the SCI2 UART multiprocessor communication mode, MERR23 is set to "1" if an address is transmitted while S2BUF3 is receiving data. In other words, when the MPC bit (of the data that is transferred when the SR2MPC bit of SR2CON is "0") is "1", MERR23 is set to "1", interpreting this as a multiprocessor communication error.

• BFCU20 (bit 4), BFCU21 (bit 5)

During the 4-stage buffer mode, BFCU20 and BFCU21 monitor the buffer counter that indicates the receive buffer into which receive data will be transferred (S2BUF0, S2BUF1, S2BUF2, S2BUF3) at completion of the next receive operation. BFCU20 and BFCU21 are read-only and cannot be written to.

[&]quot;—" indicates a bit that is not provided.

Figure 15-16 Configuration of S2STAT2

[&]quot;1" is read if a read instruction is executed.

[9] SCI2 Interrupt Control Register (SR2INT)

When SCI2 is in the 4-stage buffer mode (SR2EXP bit of SR2CON is "1"), the 7-bit SR2INT register controls the receive-ready interrupt requests for each receive buffer (S2BUF0 to S2BUF3).

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), SR2INT becomes 01H.

RV2IRQ0 (bit 4) of SR2INT monitors RV2IRQ0 (bit 3) of S2STAT0. During the 4-stage buffer mode, by reading SR2INT once, it is possible to verify which buffer has generated a receive-ready. This bit is read-only and writes are ignored. To clear (write to) this bit, write to RV2IRQ0 (bit 5) of S2STAT0.

Figure 15-17 shows the configuration of SR2INT.

<Description of Each Bit>

• RV2IE1 (bit 1)

This bit enables or disables the generation of SCI2 S2BUF1 receive-ready interrupt requests. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• RV2IE2 (bit 2)

This bit enables or disables the generation of SCI2 S2BUF2 receive-ready interrupt requests. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• RV2IE3 (bit 3)

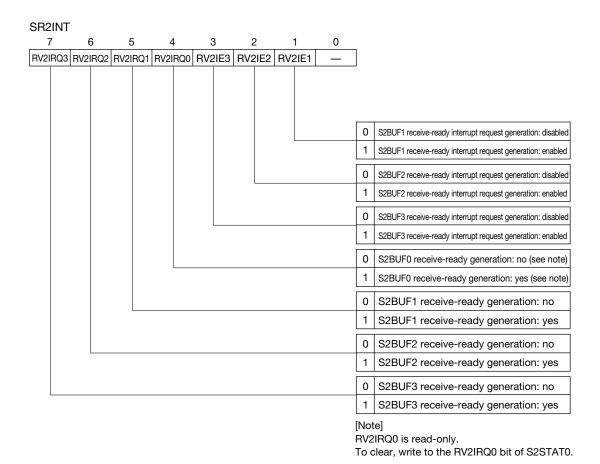
This bit enables or disables the generation of SCI2 S2BUF3 receive-ready interrupt requests. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• RV2IRQ0 (bit 4)

This bit monitors RV2IRQ0 of S2STAT0. (Read-only)

This bit is set to "1" when an SCI2 S2BUF0 receive-ready is generated. To clear this bit to "0", clear RV2IRQ0 of S2STAT0.

• RV2IRQ1 (bit 5)


This bit is set to "1" when an SCI2 S2BUF1 receive-ready is generated. This bit is not automatically cleared to "0" even when an SCI2 interrupt is processed, so clear it by the program.

• RV2IRQ2 (bit 6)

This bit is set to "1" when an SCI2 S2BUF2 receive-ready is generated. This bit is not automatically cleared to "0" even when an SCI2 interrupt is processed, so clear it by the program.

• RV2IRQ3 (bit 7)

This bit is set to "1" when an SCI2 S2BUF3 receive-ready is generated. This bit is not automatically cleared to "0" even when an SCI2 interrupt is processed, so clear it by the program.

[&]quot;—" indicates a bit that is not provided.

Figure 15-17 Configuration of SR2INT

[&]quot;1" is read if a read instruction is executed.

15.2.4 Control Registers for SCI3

[1] SCI3 Transmit Control Register (ST3CON)

ST3CON is a 5-bit register that controls SCI3 transmit operations.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ST3CON becomes 8AH, the SCI3 transmit operation is in UART normal mode, at 8-bit data length, 2 stop bits, and no parity.

When changing the contents of ST3CON, do so after transmission is completed. If ST3CON is changed before a transmission is completed, the current and future transmission is not normally performed.

The 4-stage buffer mode is not provided for the transmit side.

Figure 15-18 shows the configuration of ST3CON.

<Description of Each Bit>

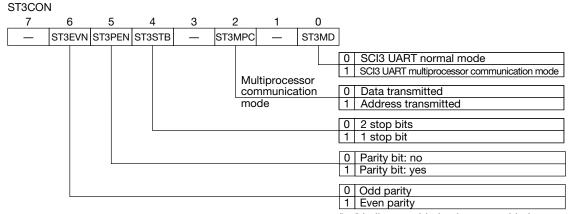
• ST3MD (bit 0)

This bit specifies the transmit operation mode of SCI3.

• ST3MPC (bit 2)

If SCI3 transmits in UART multiprocessor communication mode, this bit specifies which is transmitted, data or an address. The transmit data length is 8 bits. If this bit is "0", data is transmitted, and if "1", an address is transmitted.

• ST3STB (bit 4)


This bit specifies the stop bit of SCI3 to either 1 stop bit or 2 stop bits. If this bit is "0", SCI3 transmits at 2 stop bits, and if "1", SCI3 transmits at 1 stop bit.

• ST3PEN (bit 5)

This bit specifies whether a parity bit is included when SCI3 transmits. If this bit is "0", SCI3 transmits without a parity bit, and if "1", SCI3 transmits with a parity bit.

• ST3EVN (bit 6)

This bit specifies the logic of the parity bit when SCI3 transmits. If this bit is "0", an odd parity is selected, and if "1", an even parity is selected.

[&]quot;—" indicates a bit that is not provided.

Figure 15-18 Configuration of ST3CON

[&]quot;1" is read if a read instruction is executed.

[2] SCI3 Receive Control Register (SR3CON)

SR3CON is a 5-bit register that controls SCI3 receive operations.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), SR3CON becomes 12H, the SCI3 operation is in UART normal, single buffer mode, at 8-bit data length, no parity, and receive is disabled.

When changing the contents of SR3CON, do so after resetting SR3REN (bit 7) to "0". If the SR3CON is changed before resetting SR3REN (bit 7) to "0", the current and future receive is not normally performed.

Figure 15-19 shows the configuration of SR3CON.

<Description of Each Bit>

• SR3MD (bit 0)

This bit specifies the receive operation mode of SCI3.

• SR3MPC (bit 2)

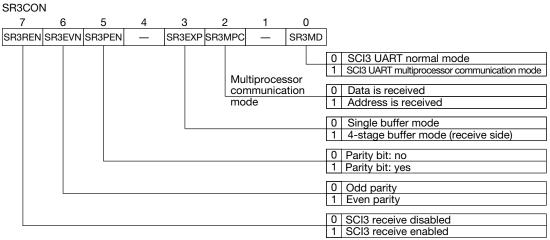
If SCI3 receives in UART multiprocessor communication mode, this bit specifies which is received, data or an address. The receive data length is 8 bits. If this bit is "0", data is received, and if "1", an address is received.

• SR3EXP (bit 3)

This bit specifies the SCI3 receive buffer mode. If this bit is "0", only S3BUF0 is enabled as a receive buffer (single buffer mode), and if "1", S3BUF0, S3BUF1, S3BUF2, and S3BUF3 are enabled as a receive buffer (4-stage buffer mode).

During the 4-stage buffer mode, the receive buffers operate as a ring buffer.

• SR3PEN (bit 5)


This bit specifies whether a parity bit is included when SCI3 receives. If this bit is "0", SCI3 receives without a parity bit, and if "1", SCI3 receives with a parity bit.

• SR3EVN (bit 6)

This bit specifies the logic of the parity bit when SCI3 receives. If this bit is "0", SCI3 receives at odd parity, and if "1", SCI3 receives at even parity.

SR3REN (bit 7)

This bit specifies enable/disable of SCI3 receive. If this bit is "0", SCI3 receive is disabled, and if "1", SCI3 receive is enabled.

[&]quot;—" indicates a bit that is not provided.

Figure 15-19 Configuration of SR3CON

[&]quot;1" is read if a read instruction is executed.

[3] SCI3 Transmit/Receive Buffer Register (S3BUF0)

S3BUF0 is an 8-bit register that holds transmit/receive data during a serial port transmit/receive operation. S3BUF0 has a double structure, in which the contents are different in read/write. If in read, S3BUF0 functions as a receive buffer, and if in write, S3BUF0 functions as a transmit buffer.

When a receive operation ends, the content of the receive register is transferred to the S3BUF0 receive buffer, and a receive interrupt request is generated at the same time. The content of the S3BUF0 receive buffer is held until the next receive operation ends.

When receive mode is in UART multiprocessor communication mode, and if receive data is ignored, the content of S3BUF0 is not updated even at completion of the receive operation, and a receive interrupt request is not generated.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S3BUF0 becomes undefined.

[4] SCI3 Receive Buffer Registers (S3BUF1, S3BUF2, S3BUF3)

S3BUF1, S3BUF2, and S3BUF3 are 8-bit registers that store valid received data when the SR3EXP bit of SR3CON is set to "1" (4-stage buffer mode).

These registers are read-only and cannot be written to. During the 4-stage buffer mode, at the completion of each 1-byte reception, the contents of the receive register is transferred to a receive buffer register in the order of S3BUF0, S3BUF1, S3BUF2, S3BUF3, S3BUF0, etc. At the same time, a receive interrupt request is generated. (Ring Buffer Type)

When the receive mode is the UART multiprocessor communication mode and the received data is ignored, even after completion of a receive operation, the contents of S3BUF1, S3BUF2, and S3BUF3 will not be updated and a receive interrupt request will not be generated.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), the contents of S3BUF1, S3BUF2, and S3BUF3 are undefined.

[5] SCI3 Transmit and Receive Registers

The SCI3 transmit and receive registers are two 8-bit shift registers that actually perform shift operations during a transmit/receive operation.

The transmit and receive registers and the transmit/receive buffer registers have a double structure. If a receive operation ends, the data received by the receive register is transferred to S3BUF, and a receive interrupt request is generated.

The transmit and receive registers cannot be read/written by the program.

[6] SCI3 Status Register 0 (S3STAT0)

The high-order 4 bits of S3STAT0 is the transmit-ready/receive-ready interrupt request control register of the serial port. The low-order 4 bits of S3STAT0 is the register that holds the status (normal/abnormal) when the serial port receive operation is completed.

The low-order 4 bits of S3STAT0 are updated when receive ends. Once S3STAT0 is set to "1" ("1": error occurred), it is not reset to "0" even if an error does not occur when the next receive ends. Therefore reset to "0" any bits that are "1" of the low-order 4 bits of S3STAT0 by the program when a receive ends.

The contents of S3BUF0 must be read before resetting OERR30 (bit 1) of the low-order 4 bits of S3STAT0. Otherwise, the OERR30 flag is set to "1" again irrespective of occurrence of an overrun error in next receive operation.

During the 4-stage buffer mode, an overrun error flag, parity error flag, and multiprocessor communication flag are provided for each buffer. However, with a 4-stage buffer, only 1 bit is provided for the framing error flag. Therefore, the framing error flag will be set at the time when even 1 byte of the received data has a framing error.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S3STAT0 becomes 00H.

Figure 15-20 shows the configuration of S3STAT0.

<Description of Each Bit>

• FERR3 (bit 0)

If the stop bit received by SCI3 is "0", this bit is set to "1" interpreting that frame synchronization is incorrect. (Framing error)

• OERR30 (bit 1)

This bit is set to "1" if the data transferred to S3BUF0 for the previous reception has not yet been read by the CPU when the receive operation of SCI3 ends. However, new receive data is loaded to S3BUF0 even if this occurs. (Overrun error)

PERR30 (bit 2)

The parity of data received by SCI3 and the parity bit appended to and transferred with data are compared, and if they do not match, this bit is set to "1". (Parity error)

• MERR30 (bit 3)

This bit is set to "1" if an address is sent while receiving data in SCI3 UART multiprocessor communication mode. This means that if the MPC bit (of the data that is transferred when the SR3MPC bit of SR3CON is "0") is "1", MERR30 is set, interpreting this as a multiprocessor communication error.

• RV3IE0 (bit 4)

This bit enables/disables the generation of an SCI3 receive ready interrupt request. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• RV3IRQ0 (bit 5)

This bit is set to "1" if an SCI3 receive ready is generated. This bit is not automatically reset to "0" even if an interrupt process is executed, therefore set it to "0" by the program.

• TR3IE (bit 6)

This bit enables/disables the generation of an SCI3 transmit ready interrupt request. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• TR3IRQ (bit 7)

This bit is set to "1" if an SCI3 transmit ready is generated. This bit is not automatically reset to "0" even if an interrupt process is executed, therefore set it to "0" by the program.

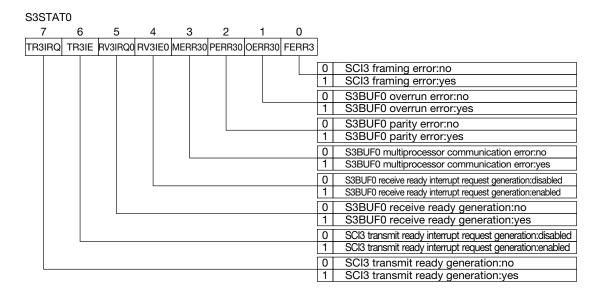


Figure 15-20 Configuration of S3STAT0

[7] SCI3 Status Register 1 (S3STAT1)

If the SR3EXP bit of SR3CON is set to "1" (4-stage buffer mode), the 6-bit S3STAT1 register stores the status (normal/abnormal) of the serial transfer when a serial port receive operation is completed.

During the 4-stage buffer mode, if there is an error in the receive data transferred to S3BUF1, the lower 3 bits of S3STAT1 (bits 1–3) are updated when reception of that data is complete; if there is an error in the receive data transferred to S3BUF2, the upper 3 bits of S3STAT1 (bits 5–7) are updated when reception of that data is complete. Once S3STAT1 is set to "1" ("1": error occurred), it is not reset to "0" even if that error has not occurred at completion of the next reception. Therefore, with the program, reset to "0" any S3STAT1 bits that are "1" after reception is complete. Read the contents of S3BUF1 and S3BUF2 before resetting the OERR31 and OERR32 flags in S3STAT1. If the contents of S3BUF1 and S3BUF2 are not read, the OERR31 and OERR32 flags will be set to "1" again regardless of whether an overrun error occurs in the next receive operation.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S3STAT1 becomes 11H.

Figure 15-21 shows the configuration of S3STAT1.

<Description of Each Bit>

• OERR31 (bit 1)

When an SCI3 receive operation is complete and the receive data is transferred into S3BUF1, OERR31 is set to "1" if the data transferred into S3BUF1 for the previous reception has not yet been read by the CPU. New receive data is loaded into S3BUF1 even if OERR31 has been set. (Overrun error)

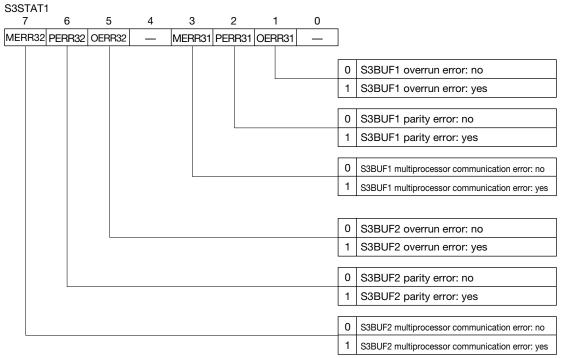
• PERR31 (bit 2)

With SCI3, the parity of data received by S3BUF1 is compared to the parity bit appended to and transferred with the data. If they do not match, PERR31 is set to "1". (Parity error)

• MERR31 (bit 3)

During the SCI3 UART multiprocessor communication mode, MERR31 is set to "1" if an address is transmitted while S3BUF1 is receiving data. In other words, when the MPC bit (of the data that is transferred when the SR3MPC bit of SR3CON is "0") is "1", MERR31 is set to "1", interpreting this as a multiprocessor communication error.

• OERR32 (bit 5)


When an SCI3 receive operation is complete and the receive data is transferred into S3BUF2, OERR32 is set to "1" if the data transferred into S3BUF2 for the previous reception has not yet been read by the CPU. New receive data is loaded into S3BUF2 even if OERR32 has been set. (Overrun error)

• PERR32 (bit 6)

With SCI3, the parity of data received by S3BUF2 is compared to the parity bit appended to and transferred with the data. If they do not match, PERR32 is set to "1". (Parity error)

• MERR32 (bit 7)

During the SCI3 UART multiprocessor communication mode, MERR32 is set to "1" if an address is transmitted while S3BUF2 is receiving data. In other words, when the MPC bit (of the data that is transferred when the SR3MPC bit of SR3CON is "0") is "1", MERR32 is set to "1", interpreting this as a multiprocessor communication error.

[&]quot;—" indicates a bit that is not provided.

Figure 15-21 Configuration of S3STAT1

[&]quot;1" is read if a read instruction is executed.

[8] SCI3 Status Register 2 (S3STAT2)

If the SR3EXP bit of SR3CON is set to "1" (4-stage buffer mode), the lower 3 bits of S3STAT2 store the status (normal/abnormal) of the serial transfer when a serial port receive operation is completed. The upper 2 bits of S3STAT2 monitor the counter that indicates the receive buffer into which receive data will be transferred at completion of the next receive operation.

During the 4-stage buffer mode, if there is an error in the receive data transferred to S3BUF3, the lower 3 bits of S3STAT2 (bits 1–3) are updated when reception of that data is complete. Once the lower 3 bits of S3STAT2 are set to "1" ("1": error occurred), they are not reset to "0" even if that error has not occurred at completion of the next reception. Therefore, with the program, reset to "0" any bits that are "1" of the lower 3 bits of S3STAT2 after reception is complete. Read the contents of S3BUF3 before resetting the OERR33 flag in the lower 3 bits of S3STAT2. If the contents of S3BUF3 are not read, the OERR33 flag will be set to "1" again regardless of whether an overrun error occurs in the next receive operation.

Bits 4 and 5 of S3STAT2 are read-only and cannot be written to. During the 4-stage buffer mode, the next receive buffer into which data will be transferred (S3BUF0, S3BUF1, S3BUF2, S3BUF3) can be verified by reading bits 4 and 5 of S3STAT2.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S3STAT2 becomes C1H.

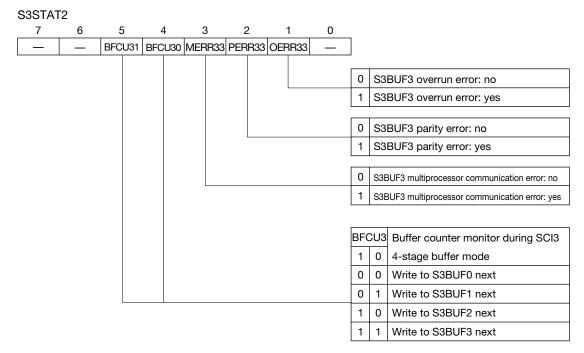
Figure 15-22 shows the configuration of S3STAT2.

<Description of Each Bit>

• OERR33 (bit 1)

When an SCI3 receive operation is complete and the receive data is transferred into S3BUF3, OERR33 is set to "1" if the data transferred into S3BUF3 for the previous reception has not yet been read by the CPU. New receive data is loaded into S3BUF3 even if OERR33 has been set. (Overrun error)

• PERR33 (bit 2)


With SCI3, the parity of data received by S3BUF3 is compared to the parity bit appended to and transferred with the data. If they do not match, PERR33 is set to "1". (Parity error)

• MERR33 (bit 3)

During the SCI3 UART multiprocessor communication mode, MERR33 is set to "1" if an address is transmitted while S3BUF3 is receiving data. In other words, when the MPC bit (of the data that is transferred when the SR3MPC bit of SR3CON is "0") is "1", MERR33 is set to "1", interpreting this as a multiprocessor communication error.

• BFCU30 (bit 4), BFCU31 (bit 5)

During the 4-stage buffer mode, BFCU30 and BFCU31 monitor the buffer counter that indicates the receive buffer into which receive data will be transferred (S3BUF0, S3BUF1, S3BUF2, S3BUF3) at completion of the next receive operation. BFCU30 and BFCU31 are read-only and cannot be written to.

[&]quot;—" indicates a bit that is not provided.

Figure 15-22 Configuration of S3STAT2

[&]quot;1" is read if a read instruction is executed.

[9] SCI3 Interrupt Control Register (SR3INT)

When SCI3 is in the 4-stage buffer mode (SR3EXP bit of SR3CON is "1"), the 7-bit SR3INT register controls the receive-ready interrupt requests for each receive buffer (S3BUF0 to S3BUF3).

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), SR3INT becomes 01H.

RV3IRQ0 (bit 4) of SR3INT monitors RV3IRQ0 (bit 3) of S3STAT0. During the 4-stage buffer mode, by reading SR3INT once, it is possible to verify which buffer has generated a receive-ready. This bit is read-only and writes are ignored. To clear (write to) this bit, write to RV3IRQ0 (bit 5) of S3STAT0.

Figure 15-23 shows the configuration of SR3INT.

<Description of Each Bit>

• RV3IE1 (bit 1)

This bit enables or disables the generation of SCI3 S3BUF1 receive-ready interrupt requests. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• RV3IE2 (bit 2)

This bit enables or disables the generation of SCI3 S3BUF2 receive-ready interrupt requests. If this bit is "1", generation is enabled, and if "0", generation is disabled.

RV3IE3 (bit 3)

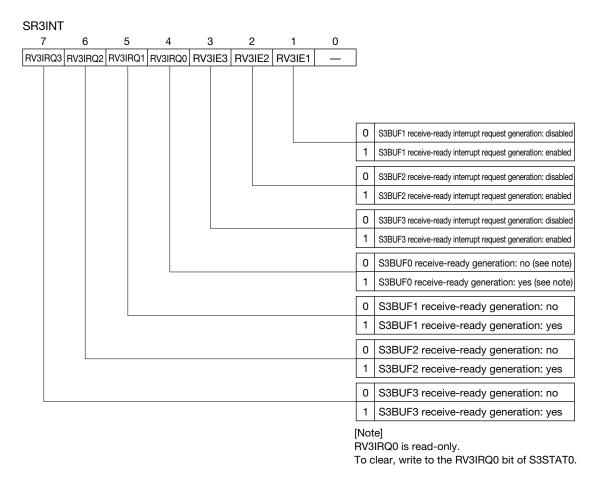
This bit enables or disables the generation of SCI3 S3BUF3 receive-ready interrupt requests. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• RV3IRQ0 (bit 4)

This bit monitors RV3IRQ0 of S3STAT0. (Read-only)

This bit is set to "1" when an SCI3 S3BUF0 receive-ready is generated. To clear this bit to "0", clear RV3IRQ0 of S3STAT0.

• RV3IRQ1 (bit 5)


This bit is set to "1" when an SCI3 S3BUF1 receive-ready is generated. This bit is not automatically cleared to "0" even when an SCI3 interrupt is processed, so clear it by the program.

• RV3IRQ2 (bit 6)

This bit is set to "1" when an SCI3 S3BUF2 receive-ready is generated. This bit is not automatically cleared to "0" even when an SCI3 interrupt is processed, so clear it by the program.

• RV3IRQ3 (bit 7)

This bit is set to "1" when an SCI3 S3BUF3 receive-ready is generated. This bit is not automatically cleared to "0" even when an SCI3 interrupt is processed, so clear it by the program.

[&]quot;—" indicates a bit that is not provided.

Figure 15-23 Configuration of SR3INT

[&]quot;1" is read if a read instruction is executed.

15.2.5 Control Registers for SCI4

[1] SCI4 Transmit Control Register (ST4CON)

ST4CON is a 5-bit register that controls SCI4 transmit operations.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ST4CON becomes 8AH, the SCI4 transmit operation is in UART normal mode, at 8-bit data length, 2 stop bits, and no parity.

When changing the contents of ST4CON, do so after transmission is completed. If ST4CON is changed before a transmission is completed, the current and future transmission is not normally performed.

The 4-stage buffer mode is not provided for the transmit side.

Figure 15-24 shows the configuration of ST4CON.

<Description of Each Bit>

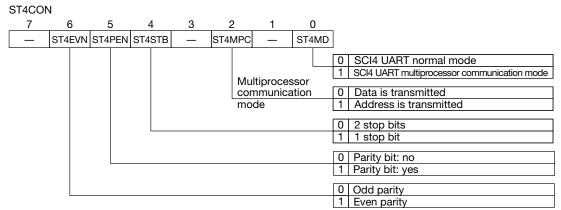
• ST4MD (bit 0)

This bit specifies the transmit operation mode of SCI4.

• ST4MPC (bit 2)

If SCI4 transmits in UART multiprocessor communication mode, this bit specifies which is transmitted, data or an address. The transmit data length is 8 bits. If this bit is "0", data is transmitted, and if "1", an address is transmitted.

• ST4STB (bit 4)


This bit specifies the stop bit of SCI4 to either 1 stop bit or 2 stop bits. If this bit is "0", SCI4 transmits at 2 stop bits, and if "1", SCI4 transmits at 1 stop bit.

• ST4PEN (bit 5)

This bit specifies whether a parity bit is included when SCI4 transmits. If this bit is "0", SCI4 transmits without a parity bit, and if "1", SCI4 transmits with a parity bit.

• ST4EVN (bit 6)

This bit specifies the logic of the parity bit when SCI4 transmits. If this bit is "0", an odd parity is selected, and if "1", an even parity is selected.

[&]quot;—" indicates a bit that is not provided.

Figure 15-24 Configuration of ST4CON

[&]quot;1" is read if a read instruction is executed.

[2] SCI4 Receive Control Register (SR4CON)

SR4CON is a 5-bit register that controls SCI4 receive operations.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), SR4CON becomes 12H, the SCI4 operation is in UART normal, single buffer mode, at 8-bit data length, no parity, and receive is disabled.

When changing the contents of SR4CON, do so after resetting SR4REN (bit 7) to "0". If the SR4CON is changed before resetting SR4REN (bit 7) to "0", the current and future receive is not normally performed.

Figure 15-25 shows the configuration of SR4CON.

<Description of Each Bit>

SR4MD (bit 0)

This bit specifies the receive operation mode of SCI4.

SR4MPC (bit 2)

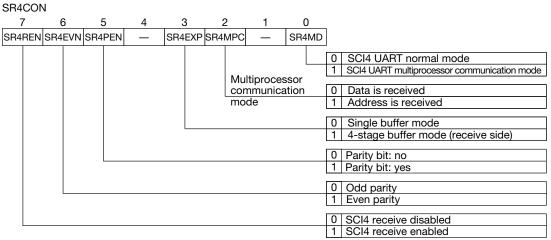
If SCI4 receives in UART multiprocessor communication mode, this bit specifies which is received, data or an address. The receive data length is 8 bits. If this bit is "0", data is received, and if "1", an address is received.

• SR4EXP (bit 3)

This bit specifies the SCI4 receive buffer mode. If this bit is "0", only S4BUF0 is enabled as a receive buffer (single buffer mode), and if "1", S4BUF0, S4BUF1, S4BUF2, and S4BUF3 are enabled as a receive buffer (4-stage buffer mode).

During the 4-stage buffer mode, the receive buffers operate as a ring buffer.

• SR4PEN (bit 5)


This bit specifies whether a parity bit is included when SCI4 receives. If this bit is "0", SCI4 receives without a parity bit, and if "1", SCI4 receives with a parity bit.

• SR4EVN (bit 6)

This bit specifies the logic of the parity bit when SCI4 receives. If this bit is "0", SCI4 receives at odd parity, and if "1", SCI4 receives at even parity.

• SR4REN (bit 7)

This bit specifies enable/disable of SCI4 receive. If this bit is "0", SCI4 receive is disabled, and if "1", SCI4 receive is enabled.

[&]quot;—" indicates a bit that is not provided.

Figure 15-25 Configuration of SR4CON

[&]quot;1" is read if a read instruction is executed.

[3] SCI4 Transmit/Receive Buffer Register (S4BUF0)

S4BUF0 is an 8-bit register that holds transmit/receive data during a serial port transmit/receive operation. S4BUF0 has a double structure, in which the contents are different in read/write. If in read, S4BUF0 functions as a receive buffer, and if in write, S4BUF0 functions as a transmit buffer.

When a receive operation ends, the content of the receive register is transferred to the S4BUF0 receive buffer, and a receive interrupt request is generated at the same time. The content of the S4BUF0 receive buffer is held until the next receive operation ends.

When receive mode is in UART multiprocessor communication mode, and if receive data is ignored, the content of S4BUF0 is not updated even at completion of the receive operation, and a receive interrupt request is not generated.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S4BUF0 becomes undefined.

[4] SCI4 Receive Buffer Registers (S4BUF1, S4BUF2, S4BUF3)

S4BUF1, S4BUF2, and S4BUF3 are 8-bit registers that store valid received data when the SR4EXP bit of SR4CON is set to "1" (4-stage buffer mode).

These registers are read-only and cannot be written to. During the 4-stage buffer mode, at the completion of each 1-byte reception, the contents of the receive register is transferred to a receive buffer register in the order of S4BUF0, S4BUF1, S4BUF2, S4BUF3, S4BUF0, etc. At the same time, a receive interrupt request is generated. (Ring Buffer Type)

When the receive mode is the UART multiprocessor communication mode and the received data is ignored, even after completion of a receive operation, the contents of S4BUF1, S4BUF2, and S4BUF3 will not be updated and a receive interrupt request will not be generated.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), the contents of S4BUF1, S4BUF2, and S4BUF3 are undefined.

[5] SCI4 Transmit and Receive Registers

The SCI4 transmit and receive registers are two 8-bit shift registers that actually perform shift operations during a transmit/receive operation.

The transmit and receive registers and the transmit/receive buffer registers have a double structure. If a receive operation ends, the data received by the receive register is transferred to S4BUF, and a receive interrupt request is generated.

The transmit and receive registers cannot be read/written by the program.

[6] SCI4 Status Register 0 (S4STAT0)

The high-order 4 bits of S4STAT0 is the transmit-ready/receive-ready interrupt request control register of the serial port. The low-order 4 bits of S4STAT0 is the register that holds the status (normal/abnormal) when the serial port receive operation is completed.

The low-order 4 bits of S4STAT0 are updated when receive ends. Once S4STAT0 is set to "1" ("1": error occurred), it is not reset to "0" even if an error does not occur when the next receive ends. Therefore reset to "0" any bits that are "1" of the low-order 4 bits of S4STAT0 by the program when a receive ends.

The contents of S4BUF0 must be read before resetting OERR40 (bit 1) of the low-order 4 bits of S4STAT0. Otherwise, the OERR40 flag is set to "1" again irrespective of occurrence of an overrun error in next receive operation.

During the 4-stage buffer mode, an overrun error flag, parity error flag, and multiprocessor communication flag are provided for each buffer. However, with a 4-stage buffer, only 1 bit is provided for the framing error flag. Therefore, the framing error flag will be set at the time when even 1 byte of the received data has a framing error.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S4STAT0 becomes 00H.

Figure 15-26 shows the configuration of S4STAT0.

<Description of Each Bit>

• FERR4 (bit 0)

If the stop bit received by SCI4 is "0", this bit is set to "1" interpreting that frame synchronization is incorrect. (Framing error)

• OERR40 (bit 1)

This bit is set to "1" if the data transferred to S4BUF0 for the previous reception has not yet been read by the CPU when the receive operation of SCI4 ends. However, new receive data is loaded to S4BUF0 even if this occurs. (Overrun error)

PERR40 (bit 2)

The parity of data received by SCI4 and the parity bit appended to and transferred with data are compared, and if they do not match, this bit is set to "1". (Parity error)

• MERR40 (bit 3)

This bit is set to "1" if an address is sent while receiving data in SCI4 UART multiprocessor communication mode. This means that if the MPC bit (of the data that is transferred when the SR4MPC bit of SR4CON is "0") is "1", MERR40 is set, interpreting this as a multiprocessor communication error.

• RV4IE0 (bit 4)

This bit enables/disables the generation of an SCI4 receive ready interrupt request. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• RV4IRQ0 (bit 5)

This bit is set to "1" if an SCI4 receive ready is generated. This bit is not automatically reset to "0" even if an interrupt process is executed, therefore set it to "0" by the program.

• TR4IE (bit 6)

This bit enables/disables the generation of an SCI4 transmit ready interrupt request. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• TR4IRQ (bit 7)

This bit is set to "1" if an SCI4 transmit ready is generated. This bit is not automatically reset to "0" even if an interrupt process is executed, therefore set it to "0" by the program.

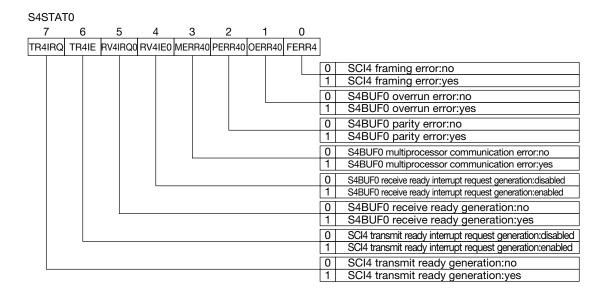


Figure 15-26 Configuration of S4STAT0

[7] SCI4 Status Register 1 (S4STAT1)

If the SR4EXP bit of SR4CON is set to "1" (4-stage buffer mode), the 6-bit S4STAT1 register stores the status (normal/abnormal) of the serial transfer when a serial port receive operation is completed.

During the 4-stage buffer mode, if there is an error in the receive data transferred to S4BUF1, the lower 3 bits of S4STAT1 (bits 1–3) are updated when reception of that data is complete; if there is an error in the receive data transferred to S4BUF2, the upper 3 bits of S4STAT1 (bits 5–7) are updated when reception of that data is complete. Once S4STAT1 is set to "1" ("1": error occurred), it is not reset to "0" even if that error has not occurred at completion of the next reception. Therefore, with the program, reset to "0" any S4STAT1 bits that are "1" after reception is complete. Read the contents of S4BUF1 and S4BUF2 before resetting the OERR41 and OERR42 flags in S4STAT1. If the contents of S4BUF1 and S4BUF2 are not read, the OERR41 and OERR42 flags will be set to "1" again regardless of whether an overrun error occurs in the next receive operation.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S4STAT1 becomes 11H.

Figure 15-27 shows the configuration of S4STAT1.

<Description of Each Bit>

• OERR41 (bit 1)

When an SCI4 receive operation is complete and the receive data is transferred into S4BUF1, OERR41 is set to "1" if the data transferred into S4BUF1 for the previous reception has not yet been read by the CPU. New receive data is loaded into S4BUF1 even if OERR41 has been set. (Overrun error)

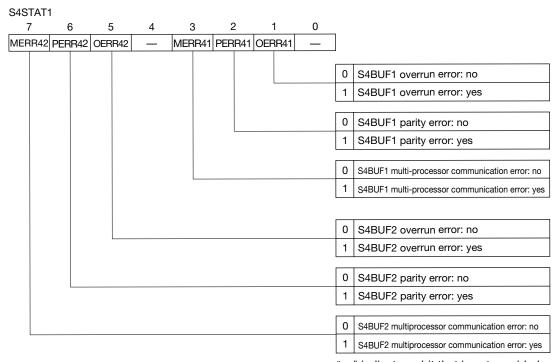
• PERR41 (bit 2)

With SCI4, the parity of data received by S4BUF1 is compared to the parity bit appended to and transferred with the data. If they do not match, PERR41 is set to "1". (Parity error)

MERR41 (bit 3)

During the SCI4 UART multiprocessor communication mode, MERR41 is set to "1" if an address is transmitted while S4BUF1 is receiving data. In other words, when the MPC bit (of the data that is transferred when the SR4MPC bit of SR4CON is "0") is "1", MERR41 is set to "1", interpreting this as a multiprocessor communication error.

OERR42 (bit 5)


When an SCI4 receive operation is complete and the receive data is transferred into S4BUF2, OERR42 is set to "1" if the data transferred into S4BUF2 for the previous reception has not yet been read by the CPU. New receive data is loaded into S4BUF2 even if OERR42 has been set. (Overrun error)

• PERR42 (bit 6)

With SCI4, the parity of data received by S4BUF2 is compared to the parity bit appended to and transferred with the data. If they do not match, PERR42 is set to "1". (Parity error)

• MERR42 (bit 7)

During the SCI4 UART multiprocessor communication mode, MERR42 is set to "1" if an address is transmitted while S4BUF2 is receiving data. In other words, when the MPC bit (of the data that is transferred when the SR4MPC bit of SR4CON is "0") is "1", MERR42 is set to "1", interpreting this as a multiprocessor communication error.

[&]quot;—" indicates a bit that is not provided.

"1" is read if a read instruction is executed.

Figure 15-27 Configuration of S4STAT1

[8] SCI4 Status Register 2 (S4STAT2)

If the SR4EXP bit of SR4CON is set to "1" (4-stage buffer mode), the lower 3 bits of S4STAT2 store the status (normal/abnormal) of the serial transfer when a serial port receive operation is completed. The upper 2 bits of S4STAT2 monitor the counter that indicates the receive buffer into which receive data will be transferred at completion of the next receive operation.

During the 4-stage buffer mode, if there is an error in the receive data transferred to S4BUF3, the lower 3 bits of S4STAT2 (bits 1–3) are updated when reception of that data is complete. Once the lower 3 bits of S4STAT2 are set to "1" ("1" : error occurred), they are not reset to "0" even if that error has not occurred at completion of the next reception. Therefore, with the program, reset to "0" any bits that are "1" of the lower 3 bits of S4STAT2 after reception is complete. Read the contents of S4BUF3 before resetting the OERR43 flag in the lower 3 bits of S4STAT2. If the contents of S4BUF3 are not read, the OERR43 flag will be set to "1" again regardless of whether an overrun error occurs in the next receive operation.

Bits 4 and 5 of S4STAT2 are read-only and cannot be written to. During the 4-stage buffer mode, the next receive buffer into which data will be transferred (S4BUF0, S4BUF1, S4BUF2, S4BUF3) can be verified by reading bits 4 and 5 of S4STAT2.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), S4STAT2 becomes C1H.

Figure 15-28 shows the configuration of S4STAT2.

<Description of Each Bit>

• OERR43 (bit 1)

When an SCI4 receive operation is complete and the receive data is transferred into S4BUF3, OERR43 is set to "1" if the data transferred into S4BUF3 for the previous reception has not yet been read by the CPU. New receive data is loaded into S4BUF3 even if OERR43 has been set. (Overrun error)

• PERR43 (bit 2)

With SCI4, the parity of data received by S4BUF3 is compared to the parity bit appended to and transferred with the data. If they do not match, PERR43 is set to "1". (Parity error)

• MERR43 (bit 3)

During the SCI4 UART multiprocessor communication mode, MERR43 is set to "1" if an address is transmitted while S4BUF3 is receiving data. In other words, when the MPC bit (of the data that is transferred when the SR4MPC bit of SR4CON is "0") is "1", MERR43 is set to "1", interpreting this as a multiprocessor communication error.

• BFCU40 (bit 4), BFCU41 (bit 5)

During the 4-stage buffer mode, BFCU40 and BFCU41 monitor the buffer counter that indicates the receive buffer into which receive data will be transferred (S4BUF0, S4BUF1, S4BUF2, S4BUF3) at completion of the next receive operation. BFCU40 and BFCU41 are read-only and cannot be written to.

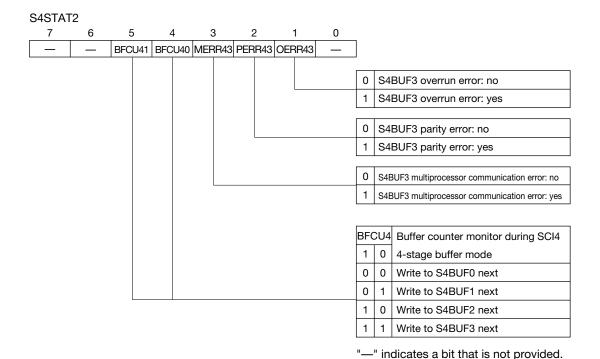


Figure 15-28 Configuration of S4STAT2

[&]quot;1" is read if a read instruction is executed.

[9] SCI4 Interrupt Control Register (SR4INT)

When SCI4 is in the 4-stage buffer mode (SR4EXP bit of SR4CON is "1"), the 7-bit SR4INT register controls the receive-ready interrupt requests for each receive buffer (S4BUF0 to S4BUF3).

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), SR4INT becomes 01H.

RV4IRQ0 (bit 4) of SR4INT monitors RV4IRQ0 (bit 3) of S4STAT0. During the 4-stage buffer mode, by reading SR4INT once, it is possible to verify which buffer has generated a receive-ready. This bit is read-only and writes are ignored. To clear (write to) this bit, write to RV4IRQ0 (bit 5) of S4STAT0.

Figure 15-29 shows the configuration of SR4INT.

<Description of Each Bit>

• RV4IE1 (bit 1)

This bit enables or disables the generation of SCI4 S4BUF1 receive-ready interrupt requests. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• RV4IE2 (bit 2)

This bit enables or disables the generation of SCI4 S4BUF2 receive-ready interrupt requests. If this bit is "1", generation is enabled, and if "0", generation is disabled.

• RV4IE3 (bit 3)

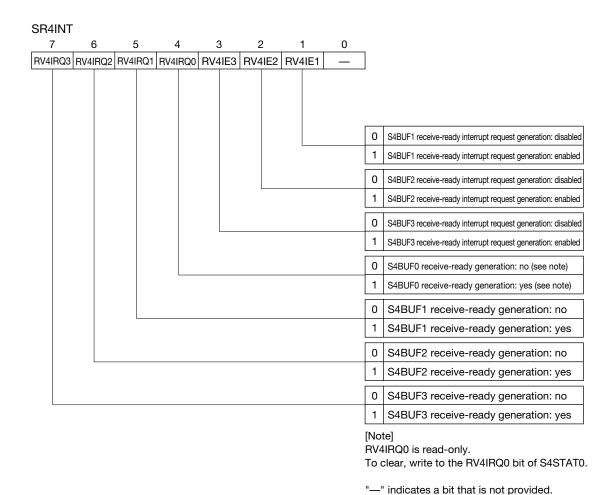
This bit enables or disables the generation of SCI4 S4BUF3 receive-ready interrupt requests. If this bit is "1", generation is enabled, and if "0", generation is disabled.

RV4IRQ0 (bit 4)

This bit monitors RV4IRQ0 of S4STAT0. (Read-only)

This bit is set to "1" when an SCI4 S4BUF0 receive-ready is generated. To clear this bit to "0", clear RV4IRQ0 of S4STAT0.

• RV4IRQ1 (bit 5)


This bit is set to "1" when an SCI4 S4BUF1 receive-ready is generated. This bit is not automatically cleared to "0" even when an SCI4 interrupt is processed, so clear it by the program.

RV4IRQ2 (bit 6)

This bit is set to "1" when an SCI4 S4BUF2 receive-ready is generated. This bit is not automatically cleared to "0" even when an SCI4 interrupt is processed, so clear it by the program.

• RV4IRQ3 (bit 7)

This bit is set to "1" when an SCI4 S4BUF3 receive-ready is generated. This bit is not automatically cleared to "0" even when an SCI4 interrupt is processed, so clear it by the program.

[&]quot;1" is read if a read instruction is executed.

Figure 15-29 Configuration of SR4INT

15.3 Operation of Serial Ports

15.3.1 Transmit Operation

<UART Normal Mode>

The receive operation in this mode is shared by SCI0 and SCI1.

The clock pulse (BRGn), generated by the baud rate generator (SnTM), is divided by 16 to generate the transmit shift clock (STnCLK) (refer to Figure 15-30).

The transmit circuit controls the transfer of transmit data synchronizing with STnCLK.

The transmit operation is started with a signal to write transmit data to SnBUF0, (WSnBUF: write instruction to SnBUF0, for example, a signal that is output if "STB A, SnBUF0" is executed) as a trigger.

If WSnBUF is generated, a transmit start signal (LSTnSF) is generated after 1 CLK (master clock).

The content of SnBUF0 is transferred to the transmit register at the fall of LSTnSF. At this time, the transmit operation starts, and the STnFREE signal that indicates transmitting is set to "L" level.

Then a transmit interrupt (TXnREADY) request is generated synchronizing with the signal (M1S1) that indicates the beginning of an instruction execution, and the interrupt request flag (QSCIn) is set to "1". When STnFREE becomes "L" level, a start bit is generated synchronizing with the fall of the next STnCLK, and the TXDn pin changes from "H" to "L" level at the rising edge of next CLK.

Hereafter, transmit data (LSB first) and a parity bit are added according to the specification of STnCON, and a stop bit is finally added, and a 1 frame transmission ends.

In the MSM66591/ML66592 serial port transmit circuit, SnBUF0 and the transmit register have a double structure, so that the next data can be written to SnBUF0 during a transmission.

In this case, when a 1 frame transmission ends with a stop bit, the start bit of the next transmission is generated, and the TXDn pin becomes "L" level.

In this mode, the default level on the TXDn pin is "H" level (when the corresponding bit of the port secondary function register = "1").

[Note] n = 0-4.

<UART Multiprocessor Communication Mode>

In UART multiprocessor communication mode, transmission is controlled by the same timing as UART normal mode. The differences follow.

An MPC bit ("1": address transmitted; "0": data transmitted) is added between the end
of data (MSB bit) and the parity bit.

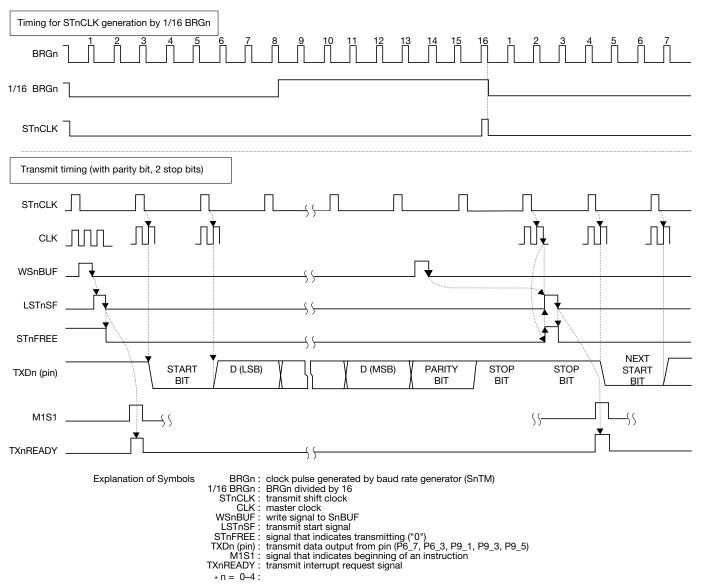


Figure 15-30 Example of Timing Diagram in Transmit UART Normal Mode

<Synchronous Normal Master Mode (SCI1 only)>

The clock pulse (BRG1), generated by the baud rate generator (S1TM), is divided by 4 to generate the transmit shift clock (ST1CLK) (refer to Figure 15-31).

The transmit circuit controls the transfer of transmit data synchronizing with ST1CLK.

The transmit operation is started with a signal to write transmit data to S1BUF, (WS1BUF: write signal to S1BUF. For example, a signal that is output if "STB A, S1BUF" is executed) as a trigger.

If WS1BUF is generated, a transmit start signal (LST1SF) is generated after 1 CLK (master clock).

The content of S1BUF is transferred to the transmit register at the fall of LST1SF.

At this time, the transmit operation starts, and the ST1FREE signal that indicates transmitting is set to "L" level.

Then a transmit interrupt (TX1READY) request is generated synchronizing with the signal (M1S1) that indicates the beginning of an instruction execution, and the interrupt request flag (QSCI1) is set to "1".

When ST1FREE becomes "L" level, the transmit shift clock is output from the TXC1 pin in synchronization with the falling edge of the second ST1CLK, and at the rising edge of next CLK, bit 0 (LSB first) of the transmit data is output from the TXD1 pin.

Hereafter, transmit data and a parity bit are added synchronizing with TXC1 (ST1CLK), according to the specification of ST1CON, and a 1 frame transmission ends.

TXD1 changes immediately before the fall of TXC1 (variable according to the S1TM set value and the original oscillation clock).

In this way the receive side fetches TXD1 at the rise of TXC1.

In this mode, the default level on TXD1 pin is "H" level (when the corresponding bit of the port secondary function register = "1").

<Synchronous Multiprocessor Communication Master Mode (SCI1 only)>

In synchronous multiprocessor communication master mode, transmit is controlled by the same timing as synchronous normal master mode. The differences are shown below.

• An MPC bit ("1": address transmitted; "0": data transmitted) is added between the end of data (MSB bit) and the parity bit.

[Note] SCI0, SCI2, SCI3, and SCI4 do not have synchronous mode.

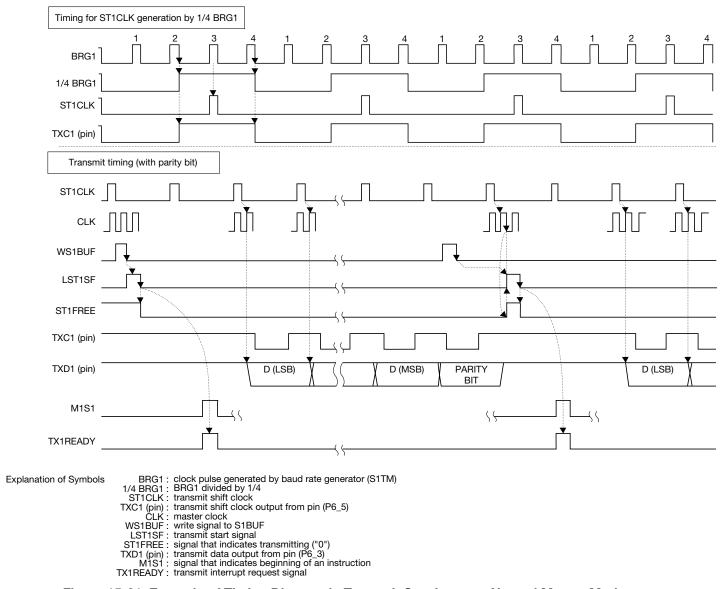


Figure 15-31 Example of Timing Diagram in Transmit Synchronous Normal Master Mode

<Synchronous Normal Slave Mode (SCI1 only)>

In slave mode, the transmit clock is input externally. The edge is detected synchronizing with a CLK to generate ST1CLK (refer to Figure 15-32).

The transmit circuit controls the transfer of the transmit data synchronizing with ST1CLK.

The transmit operation is started with a signal to write transmit data to S1BUF (WS1BUF: write instruction to S1BUF. For example, a signal that is output if "STB A, S1BUF" is executed) as the trigger.

If WS1BUF is generated, a transmit start signal (LST1SF) is generated after 1 CLK (master clock).

The content of S1BUF is transferred to the transmit register at the fall of LST1SF.

At this time, the transmit operation starts, and the ST1FREE signal that indicates transmitting is set to "L" level.

Then a transmit interrupt (TX1READY) request is generated synchronizing with the signal (M1S1) that indicates the beginning of an instruction execution, and the interrupt request flag (QSCI1) is set to "1".

When ST1FREE becomes "L" level, at the rising edge of next CLK, bit 0 (LSB first) is output from the TXD1 pin. Bit 1 of the transmit data is output from the TXD1 pin at the rising edge of next CLK after the fall of ST1CLK.

Hereafter, transmit data and a parity bit are added synchronizing with TXC1 (ST1CLK), according to the specification of ST1CON, and a 1 frame transmission ends.

TXD1 changes after the fall of ST1CLK, that detects the edge of TXC1, which is input externally.

In this way the receive side fetches TXD1 at the rise of TXC1.

<Synchronous Multiprocessor Communication Slave Mode (SCI1 only)>

In synchronous multiprocessor communication slave mode, the transmit is controlled by the same timing as synchronous normal slave mode. The differences are shown below.

• An MPC bit ("1": address transmitted; "0": data transmitted) is added between the end of data (MSB bit) and the parity bit.

[Note] SCI0, SCI2, SCI3, and SCI4 do not have synchronous mode.

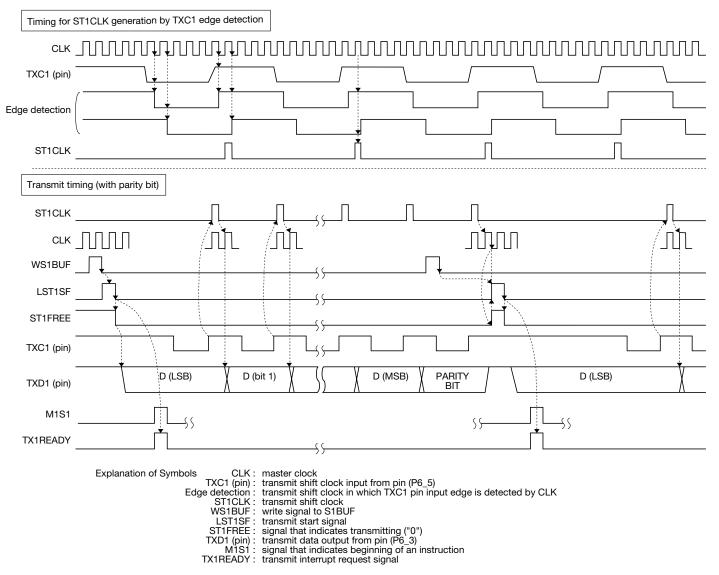


Figure 15-32 Example of Timing Diagram in Transmit Synchronous Normal Slave Mode

15.3.2 Receive Operation

The UART mode used by the SCI0, SCI2, SCI3, and SCI4 serial ports on the receive side has a single buffer mode and a 4-stage buffer mode. Single buffer mode has a single stage of receive buffer, and 4-stage buffer mode has four stages of receive buffers. SCI1 has single buffer mode only.

[1] Single Buffer Mode

<UART Normal Mode>

The clock pulse (BRGn), generated by the baud rate generator (SnTM), is divided by 16 to generate the receive shift clock (SRnCLK) (refer to Figure 15-33). The 1/16 dividing circuit stops in reset status until the receive operation starts.

The 7th, 8th and 9th pulses of the 1/16 division become the input sampling clock of the RXDn pin, and the 10th pulse becomes SRnCLK. The receive circuit controls the fetching of the receive data, synchronizing with SRnCLK.

The receive operation is started (SRnREN of SRnCON must be "1" at this time) when the RXDn pin is changed from "H" to "L" level, and the SRnFREE signal that indicates receiving is set to "L" level.

When SRnFREE becomes "L" level, the 1/16 dividing circuit, that has been stopped in reset status, operates, and the start bit ("L" level) is sampled by 3 sampling clocks of the 1/16 division (7th, 8th and 9th). If 2 or more sampling clocks are in "L" level, the start bit is judged as valid, and the receive operation continues. If 2 or more sampling clocks are in "H" level, the start bit is judged as invalid, and the receive operation is initialized (SRnFREE becomes "H" level), and then stops.

Receive data is sampled by 3 sampling clocks of the 1/16 division (7th, 8th and 9th), and 2 or more values of the sampled values are shifted in to the receive register as receive data by the 10th pulse (SRnCLK).

Hereafter, receive data continues to be received according to the specification of SRnCON. The stop bit is received, the receive operation ends, and the LSRnBUF signal is generated.

The receive operation ends when the first stop bit is detected, regardless of whether the stop bit of the receive data is 1 bit or 2 bits.

If LSRnBUF is generated, the content of the receive register (receive data) is transferred to SnBUF, an overrun error, framing error and parity error (if parity bit exists) are set, a receive interrupt request signal (RXnREADY) is generated synchronizing with the M1S1 signal, which indicates the beginning of an instruction, and the interrupt request flag (QSCIn) is set to "1".

<UART Multiprocessor Communication Mode>

In UART multiprocessor communication mode, receive is controlled by the same timing as UART normal mode. The differences are shown below.

- Setting of multiprocessor communication error
- If SRnMPC of SRnCON is "0", receive data is accepted regardless of the MPC bit of
 the receive data. When SRnMPC of SRnCON is "1", receive data is accepted if the
 MPC bit of receive data is "1", but receive data is not accepted if the MPC bit of
 receive data is "0". This means that data shifted in the shift register will not be loaded
 to SnBUF, and also that an interrupt request will not be generated.

[Note] n = 0-4.

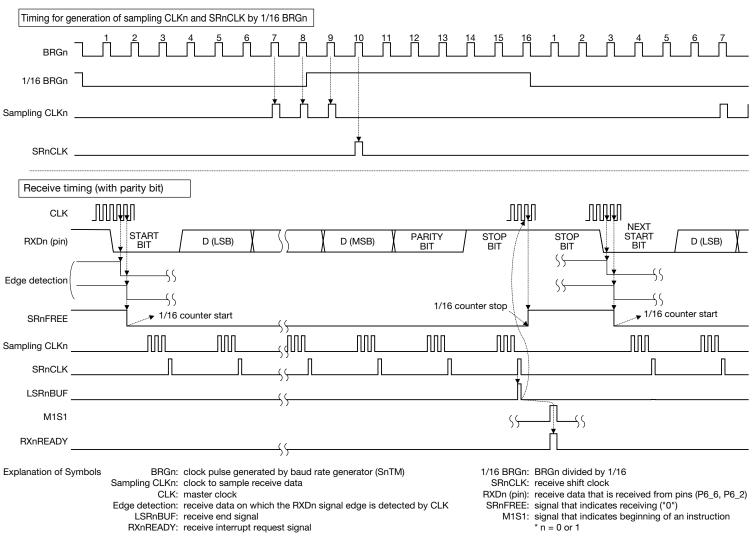


Figure 15-33 Example of Timing Diagram in Receive UART Normal Mode

<Synchronous Normal Master Mode (SCI1 only)>

The clock pulse (BRG1), generated by the baud rate generator (S1TM), is divided by 4 to generate the receive shift clock (SR1CLK), and the receive data sampling clock is generated (refer to Figure 15-34).

The 2nd pulse of the 1/4 division becomes the input sampling clock of the RXD1 pin, and the 3rd pulse becomes SR1CLK. The receive circuit controls the fetching of the receive data synchronizing with SR1CLK.

The receive operation is started when SR1REN of SR1CON is set to "1", and the SR1FREE signal, that indicates receiving, is set to "L" level.

When SR1FREE becomes "L" level, the receive shift clock is output from the RXC1 pin synchronizing with the next SR1CLK. The receive data just sampled is shifted in the receive register by the next SR1CLK.

Sampling of receive data is performed only once.

When the receive shift clock rises, SR1CLK is generated, and receive data is shifted in the receive register. Therefore the transmit side transmits the transmit data synchronizing with the fall of the transmit shift clock.

Hereafter, the receive shift clock is output from the RXC1 pin according to the specification of SR1CON, and receive data is sequentially shifted in the receive register.

If the final output of the receive shift clock ends, the receive end signal LSR1BUF is generated synchronizing with the next SR1CLK.

If LSR1BUF is generated, the content of the receive register (receive data) is transferred to S1BUF, an overrun error and parity error (if parity bit exists) are set, the receive interrupt request signal (RX1READY) is generated synchronizing with the M1S1 signal that indicates the beginning of an instruction, and the interrupt request flag (QSCI1) is set to "1". Then SR1FREE becomes "H" level, SR1REN of SR1CON becomes "0", and the receive operation ends.

<Synchronous Multiprocessor Communication Master Mode (SCI1 only)>

In synchronous multiprocessor communication master mode, receive is controlled by the same timing as synchronous normal master mode. The differences are shown below.

- Setting of multiprocessor communication error
- If SR1MPC of SR1CON is "0", receive data is accepted regardless of the MPC bit of receive data. When SR1MPC of SR1CON is "1", receive data is accepted if the MPC bit of receive data is "1", but receive data is not accepted if the MPC bit of receive data is "0". This means that data shifted in the shift register will not be loaded to S1BUF, and also that an interrupt request wii not be generated.

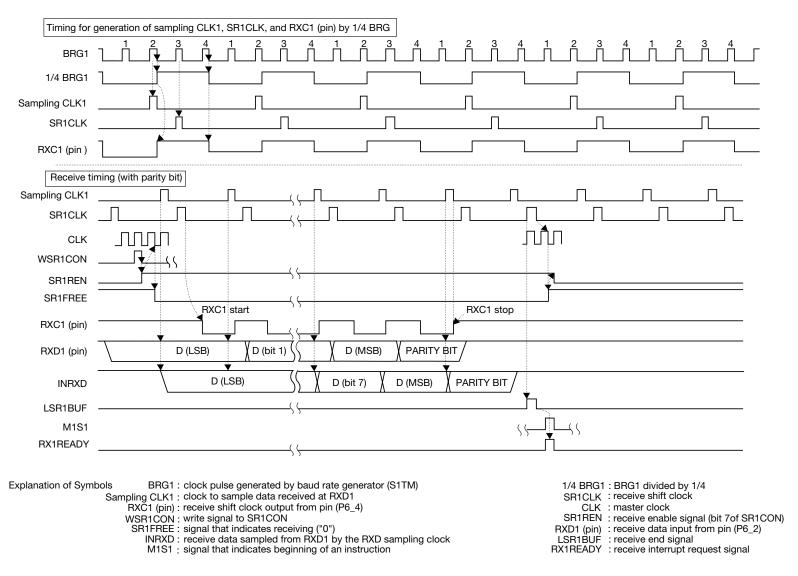


Figure 15-34 Example of Timing Diagram in Receive Synchronous Normal Master Mode

<Synchronous Normal Slave Mode (SCI1 only)>

The receive operation starts when SR1REN of SR1CON is set to "1" by the program. SR1FREE, that indicates receiving, becomes "L" level, and the receive shift clock to input to the RXC1 pin is accepted (refer to Figure 15-35).

The receive shift clock detects the edge synchronizing with the CLK to generate SR1CLK.

Receive data is controlled synchronizing with SR1CLK.

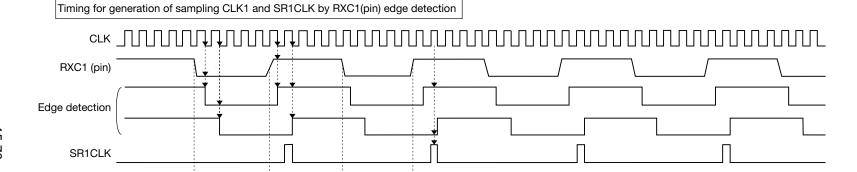
If the RXC1 pin becomes "L" level, and then becomes "H" level, the receive shift clock SR1CLK is generated by the edge detection circuit.

If SR1CLK is generated, the receive data just sampled the RXD1 pin is shifted in the receive register.

The RXD1 pin is sampled while the RXC1 pin is in "L" level. The timing to shift in the receive register occurs after the RXC1 pin rises. Therefore the transmit side transmits data synchronizing with the fall of the RXC1 pin, which is the fall of the transmit shift clock.

Hereafter, receive data is shifted in the receive register sequentially, synchronizing with the receive shift clock, which is input according to the specification of SR1CON.

If the receive shift clock finally rises, SR1CLK acquired by edge detection is generated, and the final receive data is input. Then 1 CLK later, the receive end signal LSR1BUF is generated.


If LSR1BUF is generated, the content of the receive register (receive data) is transferred to S1BUF, an overrun error and parity error (if parity bit exists) are set, the receive interrupt request signal (RX1READY) is generated, synchronizing with the M1S1 signal that indicates the beginning of an instruction, and the interrupt request flag (QSCI1) is set to "1". Then SR1FREE becomes "H" level. At this time SR1REN of SR1CON does not become "L" level, and the receive operation starts again if the next receive shift clock is input.

<Synchronous Multiprocessor Communication Slave Mode (SCI1 only)>

In synchronous multiprocessor communication slave mode, receive is controlled by the same timing as synchronous normal slave mode. The differences are shown below.

- Setting of multiprocessor communication error
- If SR1MPC of SR1CON is "0", receive data is accepted regardless of the MPC bit of receive data. When SR1MPC of SR1CON is "1", receive data is accepted if the MPC bit of receive data is "1", but receive data is not accepted if the MPC bit of receive data is "0". This means that data shifted in the shift register will not be loaded to S1BUF, and also that an interrupt request will not be generated.

Sampling CLK1 -

Explanation of Symbols

ols CLK: master clock
RXC1 (pin): receive shift clock input from pin (P6_4)
Edge detection: receive shift clock in which RXC1 pin input edge is detected by CLK
SR1CLK: receive shift clock
Sampling CLK1: clock to sample receive data

RXC1"L"period

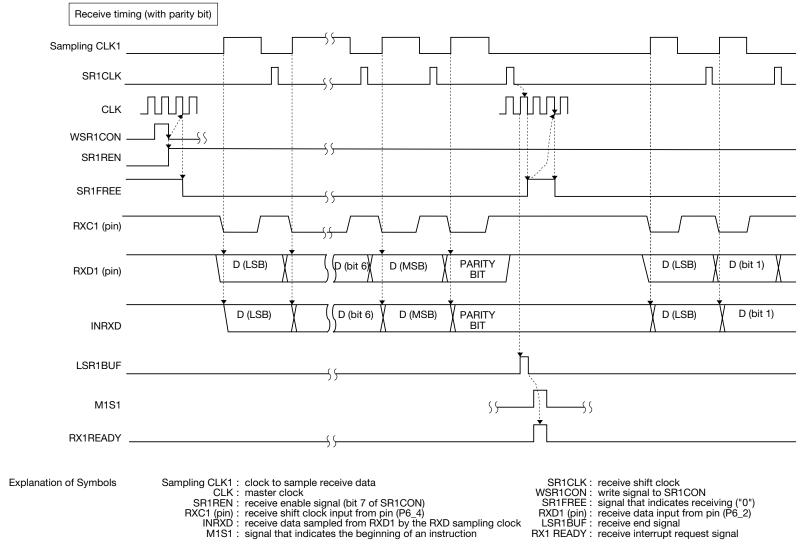


Figure 15-35 Example of Timing Diagram in Receive Synchronous Normal Slave Mode (2)

[2] 4-Stage Buffer Mode

The 4-stage buffer mode is entered by setting SRnEXP (bit 3) of SRnCON. During the 4-stage buffer mode, consecutive reception of up to a maximum of 4 bytes is possible. After 4 bytes are received, they can be collectively processed by an interrupt.

<4-Stage Buffer Mode with UART Reception: SCI0 Example>

During the 4-stage buffer mode, the receive buffers form a ring buffer configuration. At the completion of each 1-byte reception, the contents of the receive register (receive data) are transferred to a receive buffer in the order of S0BUF0, S0BUF1, S0BUF2, S0BUF3, S0BUF0, etc. Therefore, data is received up to the S0BUFn receive buffer (where n=0 to 3). After processing that data, if reception is continued, data is received beginning from the S0BUF(n+1) buffer.

For example, after receiving data up to S0BUF1 and processing that data, the next data reception begins with S0BUF2. Or, after receiving data up to S0BUF3 and processing that data, the next data reception begins with S0BUF0.

After receiving data up to S0BUFn and processing that data, if it is desired to receive m consecutive bytes ($m \le 4$) of data and then process that data by an interrupt, since an interrupt will be generated after data is received in the S0BUF(n + 1) through S0BUF(n + 1) through S0BUF(n + 1) buffers, enable interrupt requests for S0BUF(n + 1), the last buffer to receive data, and then receive the data.

For example, after completing processing up to S0BUF2, if it is desired to receive 3 consecutive bytes of data and then process that data by an interrupt, since the 3 bytes of data will be received in the order of S0BUF3, S0BUF0, and S0BUF1, enable interrupt generation only for S0BUF1, the last buffer to receive data, and then begin the data reception. To enable interrupt generation for S0BUF1, set RV0IE1 (SCI0 receive interrupt enable flag) of SR0INT to "1". In this case, after reception is completed for S0BUF3 through S0BUF1, an SCI0 receive complete interrupt request is generated, and the SCI0 receive interrupt request flags (RV0IRQ1 of SR0INT and QSCI0 of IRQ1L) are set.

Because a parity error flag, multiprocessor communication flag and overrun error flag are provided for each receive buffer (4 bits in total), data reception errors can be verified by reading the error flags that correspond to buffers. The framing error flag consists of 1 bit. If a framing error occurs even in just 1 byte of the received data, the framing error flag will be set to "1" at that time.

If 5 or more bytes of data are consecutively received, new data will overwrite the previous data, beginning with the receive buffer that received the first data. At that time, if the data transferred to the receive buffer during the previous receive operation has not been read by the CPU, the overrun error flag of each receive buffer will be set to "1".

After a framing or other error has occurred, read BFCU00 (bit 4) and BFCU01 (bit 5) of S0STAT2 to verify which receive buffer will data be transferred to at the completion of the next reception.

Receive timing in 1 frame of the 4-stage buffer mode is controlled in the same manner as reception in the single buffer mode.

SCI2, SCI3 and SCI4 also operate in the same manner.

Figure 15-36 shows a timing example of the 4-stage buffer mode with UART reception.

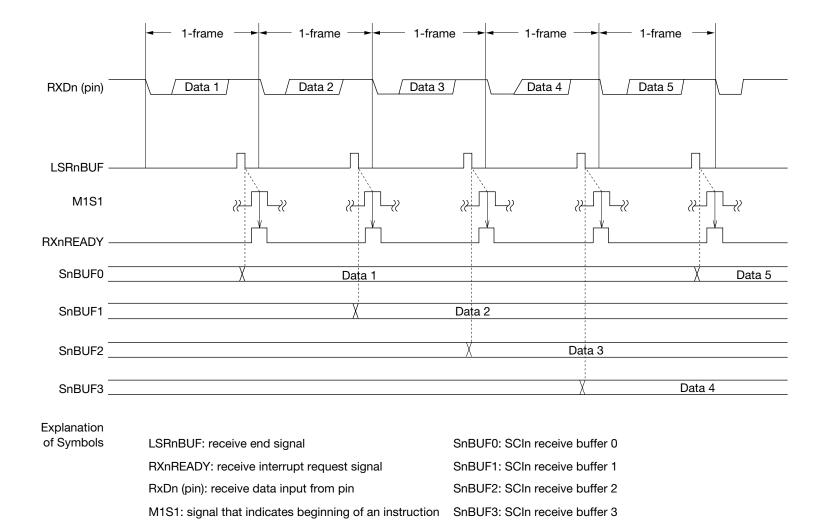


Figure 15-36 Example of Timing Diagram in Receive UART 4-Stage Buffer Mode

n = 0, 2, 3, 4

Chapter 16

A/D Converter Functions

16. A/D Converter Functions

The MSM66591/ML66592 have two sets of 10-bit A/D converters that support 12 channels of analog input, A/D Converter 0 (ADC0) and A/D Converter 1 (ADC1).

The basic configuration of A/D converter 0 and A/D converter 1 is the same, with the only difference being the address of registers located in the SFR area.

Each A/D converter has three modes of operation: a scan mode that sequentially converts selected multiple channels, a select mode that converts one selected channel, and a hard select mode that activates the select mode when an interrupt request is generated.

A successive approximation method using the Sample & Hold function is utilized to convert analog quantities to digital quantities. The converted result is stored in the A/D result registers (ADCR0–ADCR23).

Corresponding to ch0-ch23, pins AI0-AI23 are available as analog input-only pins.

Operation of the A/D converters is controlled by control registers located in the SFR area (ADCON0L, ADCON0H, ADCON1L and ADCON1H).

Interrupts by the A/D converters in the scan, select or hard select modes are assigned to the same interrupt vector. The generation of each interrupt factor (Yes/No) and interrupt generation (Enable/Disable) are controlled by two 6-bit A/D interrupt control registers (ADINTCON0 and ADINTCON1).

Figures 16-1 and 16-2 show the configurations of A/D Converter 0 and A/D Converter 1, respectively. Table 16-1 lists the SFRs for A/D converter control.

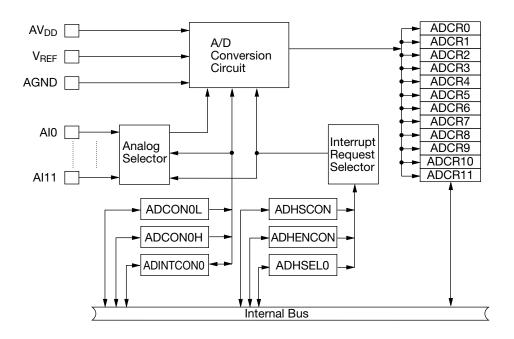


Figure 16-1 Configuration of A/D Converter 0 (ADC0)

For A/D converter specifications, see Chapter 25, "Electrical Characteristics."

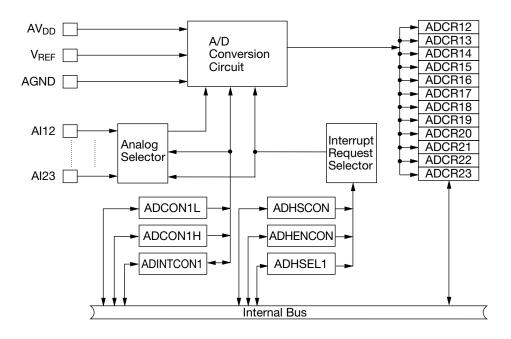


Figure 16-2 Configuration of A/D Converter 1 (ADC1)

Table 16-1 A/D Converter Contol SFR List

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
00E0	A/D Result Register 0	_	ADCR0			Undefined
00E1	A/D Result Register 1	_	ADCR1			Undefined
00E2	A/D Result Register 2	_	ADCR2			Undefined
00E3	A/D Result Register 3	_	ADCR3			Undefined
00E4	A/D Result Register 4	_	ADCR4			Undefined
00E5	A/D Result Register 5	_	ADCR5	*0.44	16	Undefined
00E6	A/D Result Register 6	_	ADCR6	*R/W		Undefined
00E7	A/D Result Register 7	_	ADCR7			Undefined
00E8	A/D Result Register 8	_	ADCR8			Undefined
00E9	A/D Result Register 9	_	ADCR9			Undefined
00EA	A/D Result Register 10	_	ADCR10			Undefined
00EB	A/D Result Register 11	_	ADCR11			Undefined
00EC☆	A/D0 Control Register L	ADCON0L	_			80
00ED☆	A/D0 Control Register H	ADCON0H	_	R/W	8	80
00EE☆	A/D Interrupt Control Register 0	ADINTCON0	_	H/ VV		C0
00EF	A/D Hard Select Enable Register	ADHENCON	_			00
00F0	A/D Result Register 12	_	ADCR12			Undefined
00F1	A/D Result Register 13	_	ADCR13			Undefined
00F2	A/D Result Register 14	_	ADCR14		16	Undefined
00F3	A/D Result Register 15	_	ADCR15			Undefined
00F4	A/D Result Register 16	_	ADCR16			Undefined
00F5	A/D Result Register 17	_	ADCR17			Undefined
00F6	A/D Result Register 18	_	ADCR18	*R/W		Undefined
00F7	A/D Result Register 19	_	ADCR19			Undefined
00F8	A/D Result Register 20	_	ADCR20			Undefined
00F9	A/D Result Register 21	_	ADCR21			Undefined
00FA	A/D Result Register 22	_	ADCR22			Undefined
00FB	A/D Result Register 23	_	ADCR23			Undefined
00FC☆	A/D1 Control Register L	ADCON1L	_			80
00FD☆	A/D1 Control Register H	ADCON1H	_	D 0.47		80
00FE☆	A/D Interrupt Control Register 1	ADINTCON1	_	R/W	8	C0
00FF☆	A/D Hard Select Software Control Register	ADHSCON	_			FC
0158			ADUIGELO			0000
0159	A/D Hard Select Register 0	_	ADHSEL0	D // /	40	0000
015A	A/D Hand Oals at Danier		ADUIOEL 4	R/W	16	0000
015B	A/D Hard Select Register 1		ADHSEL1			0000

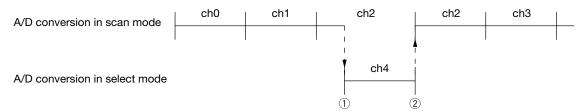
[Notes]

- Some addresses are not consecutive.
- 2. Addresses in the address column marked by "" indicate that the register has bits missing.
- 3. *R/W indicates a special operation. Data can be written to the even number A/D result registers (ADCR0, 2, 4, 6, 8, 10 and ADCR12, 14, 16, 18, 20, 22) and odd number A/D result registers (ADCR1, 3, 5, 7, 9, 11 and ADCR13, 15, 17, 19, 21, 23) separately in the following way:
 - When data is written to ADCR0, the data is also written to ADCR0-ADCR10 at the same time; when data is written to ADCR12, the data is also written to ADCR12-ADCR22 at the same time.
 - When data is written to ADCR1, the data is also written to ADCR1-ADCR11; when data is written to ADCR13 at the same time, the data is also written to ADCR13-ADCR23 at the same time.

16.1 Configuration of A/D Converter

Since the basic configurations of the A/D converter 0 and the A/D converter 1 are the same, this section chiefly explains the configuration of A/D converter 0.

The A/D converter has three operation modes: scan mode, select mode, and hard select mode.


[1] Scan Mode

In scan mode, A/D conversion is sequentially performed from any channel out of ch0–ch11 to ch11 (from any of ch12–ch23 to ch23 for A/D converter 1). The scan mode is mainly controlled by the A/D control register L (ADCON0L, ADCON1L). In scan mode, the scan mode provides the selection whether to stop A/D conversion at the end of A/D conversion for ch11 (ch23 for A/D converter 1) or to restart A/D conversion automatically from the first channel specified.

[2] Select Mode

In select mode, any channel of ch0–ch11 (any of ch12–ch23 for A/D converter 1) is specified, and A/D conversion is performed for the specified channel. The select mode is mainly controlled by the A/D control register H (ADCON0H, ADCON1H).

It is also possible to operate select mode during scan mode operation. In this case, A/D conversion for a channel that A/D conversion is progressing for in scan mode, is suspended at that point when select mode is specified, and A/D conversion for the channel specified in select mode is performed. When A/D conversion in select mode ends, A/D conversion in scan mode restarts from the suspended channel.

- A/D conversion for ch2 is suspended.
 A/D conversion for ch4 in select mode starts.
- A/D conversion for ch4 ends.
 A/D conversion from ch2 in scan mode restarts.

Figure 16-3 Timing Diagram During Select Mode Operation in Scan Mode

[3] Hard Select Mode

The hard select mode specifies a channel from ch0 to ch3 (from ch12 to ch15 for A/D converter 1) and performs A/D conversion of the channel when an interrupt request is generated.

The A/D hard select mode is controlled by the A/D hard select register 0 (ADHSEL0), A/D hard select register 1 (ADHSEL1), and A/D hard select enable register (ADHENCON).

An interrupt source to activate the A/D hard select mode is set to each channel (ch0-ch3 and ch12-ch15) of the ADHSEL0 and ADHSEL1. An effective channel (ch0-ch3 and ch12-ch15) under the A/D hard select mode is set to the ADHENCON.

The change of the interrupt cause of a current channel during hard select mode operation is invalid.

Table 16-2 lists the interrupt causes to activate the A/D hard select mode.

Table 16-2 Interrupt Causes To Activate A/D Hard Select Mode

Priority	Interrupt Cause
1	PWC0/PWC1 underflow or match
2	PWC2/PWC3 underflow or match
3	PWC4/PWC5 underflow or match
4	PWC6/PWC7 underflow or match
5	PWC0/PWC1 match
6	PWC2/PWC3 match
7	PWC4/PWC5 match
8	PWC6/PWC7 match
9	CAP0 event generation
10	CAP1 event generation
11	GTMC/GEVC overflow
12	CAP15 event generation
13	FTM16 event generation
14	FTM17 event generation
15	Soft 0 (bit 0 of ADHSCON set by the program)
16	Soft 1 (bit 1 of ADHSCON set by the program)

The channels from ch0 to ch3 and ch12 to ch15 are prioritized as shown in Table 16-3.

Table 16-3 A/D Conversion Mode Priorities

Mode	Priority
Hard select mode ch0 (ch12)	High
Hard select mode ch1 (ch13)	
Hard select mode ch2 (ch14)	
Hard select mode ch3 (ch15)	
Select Mode	
Scan Mode	Low

If a higher priority mode A/D conversion request is generated while a lower priority mode A/D conversion is being performed, the ongoing A/D conversion is suspended and restarts after completion of the requested convension.

If, during execution of A/D conversion, a request for A/D conversion in the same mode (interrupt source) as the ongoing A/D conversion is generated, the ongoing A/D conversion is given priority and the generated A/D conversion request is ignored.

Figure 16-4 shows the configuration of A/D hard select mode.

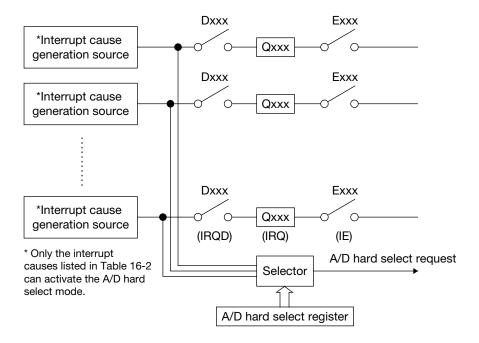


Figure 16-4 A/D Hard Select Mode Configuration

16.2 Control Register of A/D Converter

[1] A/D Control Register 0L (ADCON0L)

ADCONOL is a 7-bit register that primarily controls the scan mode of the A/D converter.

Figure 16-5 shows the configuration of ADCONOL.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ADCON0L becomes 80H.

<Description of Each Bit>

ADSNM00–ADSNM03 (bit 0–bit 3)

These 4 bits specify the scan channel in scan mode.

Change the scan channel after setting ADRUN0 (bit 4) to "0". When ADRUN0 is "1" (when A/D conversion is running in scan mode), changing the scan channel is invalid.

• ADRUN0 (bit 4)

This bit specifies RUN/STOP of A/D conversion in scan mode.

If this bit is "1", A/D conversion RUN is selected, and if "0", A/D conversion STOP is selected. When A/D conversion STOP is selected by setting SCNC0 (bit 6) to "1" after a scan cycle is completed, ADRUN0 does not automatically become "0", even if A/D conversion stops after a scan cycle is completed.

• SNEX0 (bit 5)

This bit specifies the A/D conversion start factor in scan mode.

If this bit is "0", the next conversion starts when the A/D conversion is over. If this bit is "1", 1 channel A/D conversion starts at each valid edge of the external interrupt input pin (INT1). At this time, bit 1 of the Port 6 secondary function control register must be set to to "1", and the INT1 pin must be set to the secondary function.

Operation examples 1, 2 and 3 when SNEX0 is set to "1" are shown below.

- 1. In the case of an initial start, ADRUN0 is set to "1", and at the same time the first channel of the scan channel is A/D converted. Then the 2nd or later channels of the scan channels are sequentially A/D converted, synchronizing with the valid edge of INT1.
- 2. When A/D conversion is stopped after the completion of a scan channel cycle, if A/D conversion is restarted by setting INTSN0 to "0" by the program, A/D conversion starts from the first channel of the scan channels, synchronizing with the valid edge of INT1.
- 3. In other cases, set ADRUN0 and SNEX0 to "0" simultaneously by the program, and set ADRUN0 and SNEX0 simultaneously to "1" by the program again. In this case the first channel of the scan channels is A/D converted as soon as ADRUN0 becomes "1". After that, A/D conversion is performed in synchronization with the valid edge of INT1.

• SCNC0 (bit 6)

This bit specifies the operation after a scan channel cycle is completed.

If this bit is "0", A/D conversion starts from the first channel again, after a scan channel cycle is completed. If this bit is "1", A/D conversion stops after the scan channel cycle is completed. ADRUN0 (bit 4), however, does not become "0".

Use the following procedure (1) or (2) to perform the A/D conversion again.

- (1) Set INTSN0 of ADINCON0 bit 0 to "0" by the program.
- (2) Set SCNC0 to "0" by the program.

In this procedure the next conversion start mode is entered.

(Note that setting ADRUN0 to "1" again by the program does not start A/D conversion again.)

ADCON	0L													
7	6	5	4	. 3	3	2	1	1	0					
_	SCNC0	SNEX0	ADRI	JN0 ADSN	IM03 AD	SNM02	2 ADSI	VM01	ADSNM0	0				
											0 0 0 1 1 1 1 0	1 0 0 1 1 0 0 1 1 0	0 0 1 0 1 0 1 0 1 0 1	A/D Converter 0 Scan Channel ch0-ch11 ch1-ch11 ch2-ch11 ch3-ch11 ch4-ch11 ch5-ch11 ch6-ch11 ch7-ch11 ch8-ch11 ch9-ch11 ch10, ch11
										1		*	*	Setting inhibited
										0				node A/D conversion STOP node A/D conversion RUN
										0		_		nversion starts when conversion ends nversion starts at valid edge of INT1
										Next conversion starts when cycle is complete				
										Conversion stops when cycle is completed				
	"—" indicates a bit that is not provided.								s a bit that is not provided.					

Figure 16-5 Configuration of ADCON0L

"1" is read if a read instruction is executed.

[2] A/D Control Register 1L (ADCON1L)

ADCON1L is a 7-bit register that primarily controls the scan mode of the A/D converter.

Figure 16-6 shows the configuration of ADCON1L.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ADCON1L becomes 80H.

<Description of Each Bit>

ADSNM10–ADSNM13 (bit 0–bit 3)

These 4 bits specify the scan channel in scan mode.

Change the scan channel after setting ADRUN1 (bit 4) to "0". When ADRUN1 is "1" (when A/D conversion is running in scan mode), changing the scan channel is invalid.

• ADRUN1 (bit 4)

This bit specifies RUN/STOP of A/D conversion in scan mode.

If this bit is "1", A/D conversion RUN is selected, and if "0", A/D conversion STOP is selected. When A/D conversion STOP is selected by setting SCNC1 (bit 6) to "1" after a scan cycle is completed, ADRUN1 does not automatically become "0", even if A/D conversion stops after a scan cycle is completed.

• SNEX1 (bit 5)

This bit specifies the A/D conversion start factor in scan mode.

If this bit is "0", the next conversion starts when the A/D conversion is over. If this bit is "1", 1 channel A/D conversion starts at each valid edge of the external interrupt input pin (INT1). At this time, bit 1 of the Port 6 secondary function control register must be set to to "1", and the INT1 pin must be set to the secondary function.

Operation examples 1, 2 and 3 when SNEX1 is set to "1" are shown below.

- 1. In the case of an initial start, ADRUN1 is set to "1", and at the same time the first channel of the scan channel is A/D converted. Then the 2nd or later channels of the scan channels are sequentially A/D converted, synchronizing with the valid edge of INT1.
- 2. When A/D conversion is stopped after the completion of a scan channel cycle, if A/D conversion is restarted by setting INTSN1 to "0" by the program, A/D conversion starts from the first channel of the scan channels, synchronizing with the valid edge of INT1.
- 3. In other cases, set ADRUN1 and SNEX1 to "0" simultaneously by the program, and set ADRUN1 and SNEX1 simultaneously to "1" by the program again. In this case the first channel of the scan channels is A/D converted as soon as ADRUN1 becomes "1". After that, A/D conversion is performed in synchronization with the valid edge of INT1.

• SCNC1 (bit 6)

V DOONIAL

This bit specifies the operation after a scan channel cycle is completed.

If this bit is "0", A/D conversion starts from the first channel again, after a scan channel cycle is completed. If this bit is "1", A/D conversion stops after the scan channel cycle is completed. ADRUN1 (bit 4), however, does not become "0".

Use the following procedure (1) or (2) to perform the A/D conversion again.

- (1) Set INTSN1 of ADINCON1 bit 0 to "0" by the program.
- (2) Set SCNC1 to "0" by the program.

In this procedure the next conversion start mode is entered.

(Note that setting ADRUN1 to "1" again by the program does not start A/D conversion again.)

ADCON	1L													
7	6	5	4	3	2	1		0						
_	SCNC1	SNEX1	ADRUN1	ADSNM13	ADSNM12	ADSNN	И11 AD	SNM10						
									ADS 3 2 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0	0 0 1 1 0 0 1 1 0	1 0 1 0 1 0 1 0 1 0	A/D Converter 1 Scan Channel ch12-ch23 ch13-ch23 ch14-ch23 ch15-ch23 ch16-ch23 ch17-ch23 ch18-ch23 ch19-ch23 ch20-ch23 ch21-ch23 ch21-ch23 ch23		
								L	1 1	*	*	Setting inhibited		
									0			node A/D conversion STOP		
								L	1	Sca	11 11	node A/D conversion RUN		
									0			nversion starts when conversion ends		
								L	1	Nex	co	nversion starts at valid edge of INT1		
									0			nversion starts when cycle is completed		
								L	1			sion stops when cycle is completed		
												s a bit that is not provided.		
											"1" is read if a read instruction is executed.			

Figure 16-6 Configuration of ADCON1L

[3] A/D Control Register 0H (ADCON0H)

The ADCON0H is a 7-bit register that primarily controls the select mode of the A/D converter 0.

Figure 16-7 shows the configuration of ADCON0H.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ADCON0H becomes 80H.

<Description of Each Bit>

ADSTM00–ADSTM03 (bit 0–bit 3)

These 4 bits specify the A/D conversion channel in select mode.

Change the select channel after setting STS0 (bit 4) to "0". When STS0 is "1" (when A/D conversion is running in select mode), changing the select channel is invalid.

• STS0 (bit 4)

This bit specifies RUN/STOP of A/D conversion in select mode.

If this bit is "1", A/D conversion of the channel specified by ADSTM00–ADSTM03 (bit 0–bit 3) starts. This bit becomes "0" when A/D conversion ends.

• ADTM00, ADTM01 (bit 5, bit 6)

These 2 bits specify the number of clocks required for A/D conversion per channel.

Basically, the more the number of clocks required for A/D conversion is increased (i.e. the longer the time required for A/D conversion is made), the higher the accuracy will be.

Changing the number of clocks during A/D conversion is ignored.

ADCON	ЭH											
7	6	5	4	3	2	1	0	_				
_	ADTM01	ADTM00	STS0	ADSTM03	ADSTM02	ADSTM01	ADSTM00					
								- A	DST	M0)	
								3	2		0	A/D Converter 0 Select Channel
								0	0 () (0	ch0
								0	0 (1	ch1
								0	0	_	0	ch2
								0	0	-	1	ch3
								0	1 (0	ch4
								0	1 (1	ch5
								0	1	_	0 1	ch6 ch7
								1	0 (_	0	ch8
								1	0 (_	1	ch9
								1	0	_	o l	ch10
								1	0	_	1	ch11
								1	-	-	*	Setting inhibited
								0	Se	lec	t n	node A/D conversion STOP
								1	Se	lec	t n	node A/D conversion RUN
								AD	TMC)		umber of clocks for A/D
								1	0		(conversion per channel (f = 24 MHz)
								0	0			512 CLK (21.3 μs)
		, l						0	1			384 ČLK
								1	*			256 CLK

[&]quot;*" indicates either "0" or "1".

Figure 16-7 Configuration of ADCON0H

[&]quot;—" indicates a bit that is not provided.

[&]quot;1" is read if a read instruction is executed.

[4] A/D Control Register 1H (ADCON1H)

The ADCON1H is a 7-bit register that primarily controls the select mode of the A/D converter 1.

Figure 16-8 shows the configuration of ADCON1H.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ADCON1H becomes 80H.

<Description of Each Bit>

ADSTM10–ADSTM13 (bit 0–bit 3)

These 4 bits specify the A/D conversion channel in select mode.

Change the select channel after setting STS1 (bit 4) to "0". When STS1 is "1" (when A/D conversion is running in select mode), changing the select channel is invalid.

• STS1 (bit 4)

This bit specifies RUN/STOP of A/D conversion in select mode.

If this bit is "1", A/D conversion of the channel specified by ADSTM10–ADSTM13 (bit 0–bit 3) starts. This bit becomes "0" when A/D conversion ends.

• ADTM10, ADTM11 (bit 5, bit 6)

These 2 bits specify the number of clocks required for A/D conversion per channel.

Basically, the more the number of clocks required for A/D conversion is increased (i.e. the longer the time required for A/D conversion is made), the higher the accuracy will be.

Changing the number of clocks during A/D conversion is ignored.

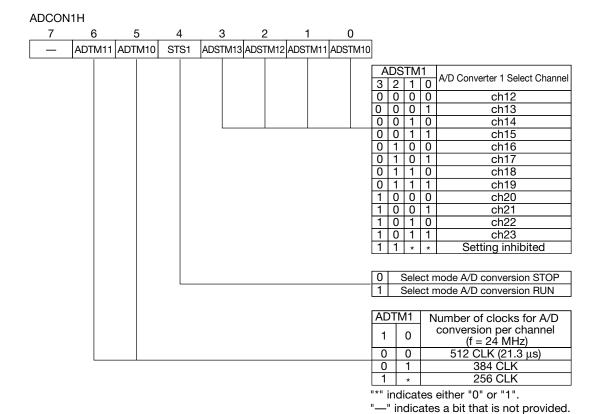


Figure 16-8 Configuration of ADCON1H

"1" is read if a read instruction is executed.

[5] A/D Interrupt Control Register 0 (ADINTCON0)

ADINTCON0 is a 6-bit register that primarily controls the interrupt request generation of the A/D converter 0.

Figure 16-9 shows the configuration of ADINTCON0.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ADINTCON0 becomes C0H.

<Description of Each Bit>

• INTSN0 (bit 0)

This bit indicates the completion of a scan channel cycle.

If this bit is "0", a cycle is not completed, and if "1", a cycle is completed. The phrase "cycle is completed" indicates that the A/D conversion of ch11 is completed. This bit must be reset to "0" by the program.

• INTST0 (bit 1)

This bit indicates the end of A/D conversion in select mode.

If this bit is "1", A/D conversion has ended. This bit must be reset to "0" by the program.

• ADSNIE0 (bit 2)

This bit specifies enable/disable of an interrupt request generation when a scan channel cycle is completed.

If this bit is "0", the interrupt request generation is disabled, and if "1", is enabled. The phrase "cycle is completed" indicates that the A/D conversion of ch11 is completed.

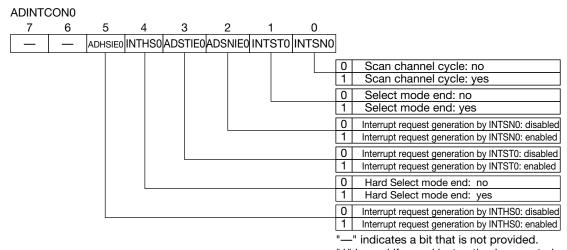
• ADSTIE0 (bit 3)

This bit specifies enable/disable of an interrupt request generation to end A/D conversion in select mode.

If this bit is "0", the interrupt request generation is disabled, and if "1", is enabled.

• INTHS0 (bit 4)

This bit indicates the end of A/D conversion in hard select mode.


"1" on this bit indicates end of A/D conversion in hard select mode.

This bit must be reset to "0" by the program.

• ADHSIE0 (bit 5)

This bit specifies enable/disable of an interrupt request generation to end A/D conversion in hard select mode.

If this bit is "0", the interupt request generation is disabled, and if "1", is enabled.

"1" is read if a read instruction is executed.

Figure 16-9 Configuration of ADINTCON0

[6] A/D Interrupt Control Register 1 (ADINTCON1)

ADINTCON1 is a 6-bit register that primarily controls the interrupt request generation of the A/D converter 1.

Figure 16-10 shows the configuration of ADINTCON1.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ADINTCON1 becomes C0H.

<Description of Each Bit>

• INTSN1 (bit 0)

This bit indicates the completion of a scan channel cycle.

If this bit is "0", a cycle is not completed, and if "1", a cycle is completed. The phrase "cycle is completed" indicates that the A/D conversion of ch23 is completed. This bit must be reset to "0" by the program.

• INTST1 (bit 1)

This bit indicates the end of A/D conversion in select mode.

If this bit is "1", A/D conversion has ended. This bit must be reset to "0" by the program.

• ADSNIE1 (bit 2)

This bit specifies enable/disable of an interrupt request generation when a scan channel cycle is completed.

If this bit is "0", the interrupt request generation is disabled, and if "1", is enabled. The phrase "cycle is completed" indicates that the A/D conversion of ch23 is completed.

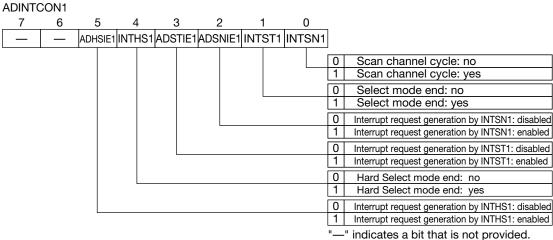
• ADSTIE1 (bit 3)

This bit specifies enable/disable of an interrupt request generation to end A/D conversion in select mode.

If this bit is "0", the interrupt request generation is disabled, and if "1", is enabled.

• INTHS1 (bit 4)

This bit indicates the end of A/D conversion in hard select mode.


"1" on this bit indicates end of A/D conversion in hard select mode.

This bit must be reset to "0" by the program.

• ADHSIE1 (bit 5)

This bit specifies enable/disable of an interrupt request generation to end A/D conversion in hard select mode.

If this bit is "0", the interupt request generation is disabled, and if "1", is enabled.

[&]quot;1" is read if a read instruction is executed.

Figure 16-10 Configuration of ADINTCON1

[7] A/D Hard Select Register 0 (ADHSEL0)

The ADHSEL0 register is used to set an interrupt cause to activate the hard select mode of A/D converter 0 to individual channels. Channel 0, channel 1, channel 2, and channel 3 each have 4 bits (total of 16 bits).

Figures 16-11 and 16-12 show the configurations of ADHSELO.

Since only 16-bit data is accessible to ADHSEL0, bit manipulation instructions such as SB and RB cannot be executed.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ADHSEL0 becomes 0000H.

<Description of Each Bit>

• ADHSEL0 bit 0-bit 3

These four bits are used to set an A/D hard select mode activation interrupt cause to channel 0.

ADHSEL0 bit 4-bit 7

These four bits are used to set an A/D hard select mode activation interrupt cause to channel 1.

ADHSEL0 bit 8-bit 11

These four bits are used to set an A/D hard select mode activation interrupt cause to channel 2.

• ADHSEL0 bit 12-bit 15

These four bits are used to set an A/D hard select mode activation interrupt cause to channel 3.

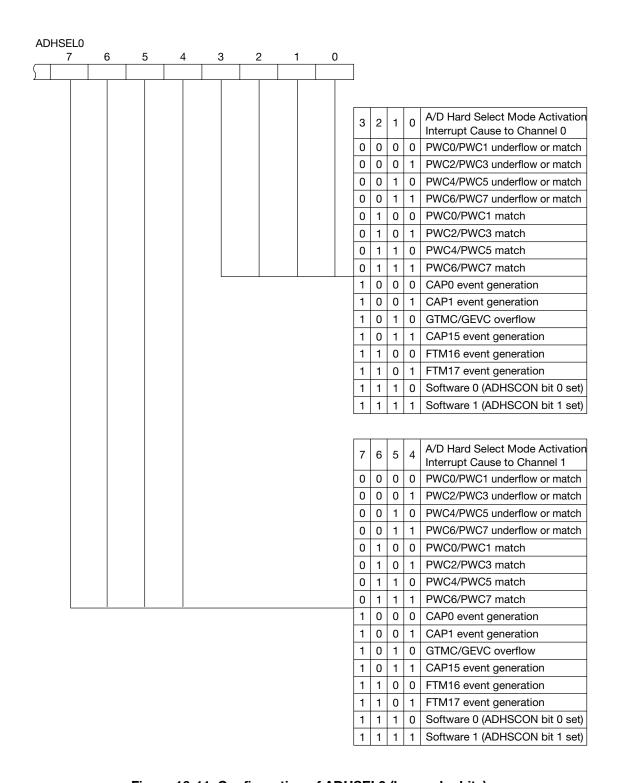


Figure 16-11 Configuration of ADHSEL0 (low-order bits)

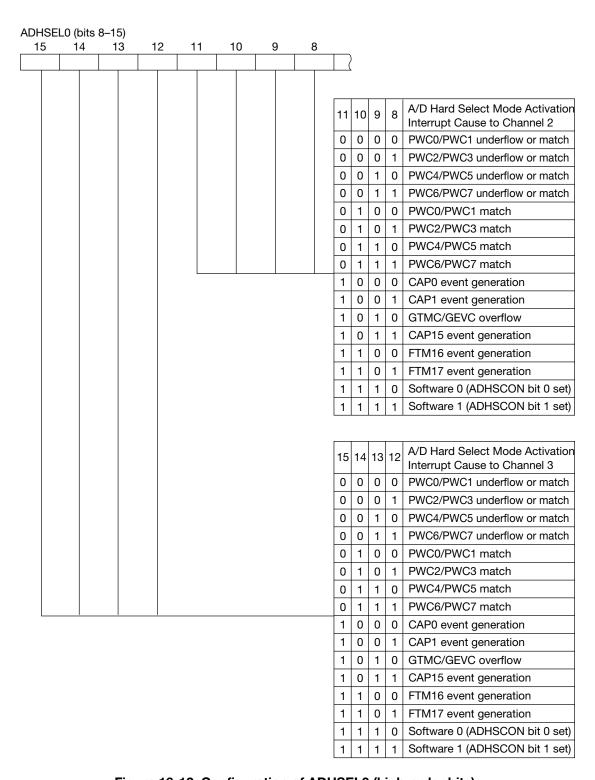


Figure 16-12 Configuration of ADHSEL0 (high-order bits)

[8] A/D Hard Select Register 1 (ADHSEL1)

The ADHSEL1 register is used to set an interrupt cause to activate the hard select mode of A/D converter 1 to individual channels. Channel 12, channel 13, channel 14, and channel 15 each have 4 bits (total of 16 bits).

Figures 16-13 and 16-14 show the configurations of ADHSEL1.

Since only 16-bit data is accessible to ADHSEL1, bit manipulation instructions such as SB and RB cannot be executed.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ADHSEL1 becomes 0000H.

<Description of Each Bit>

• ADHSEL1 bit 0-bit 3

These four bits are used to set an A/D hard select mode activation interrupt cause to channel 12.

ADHSEL1 bit 4-bit 7

These four bits are used to set an A/D hard select mode activation interrupt cause to channel 13.

ADHSEL1 bit 8-bit 11

These four bits are used to set an A/D hard select mode activation interrupt cause to channel 14.

• ADHSEL1 bit 12-bit 15

These four bits are used to set an A/D hard select mode activation interrupt cause to channel 15.

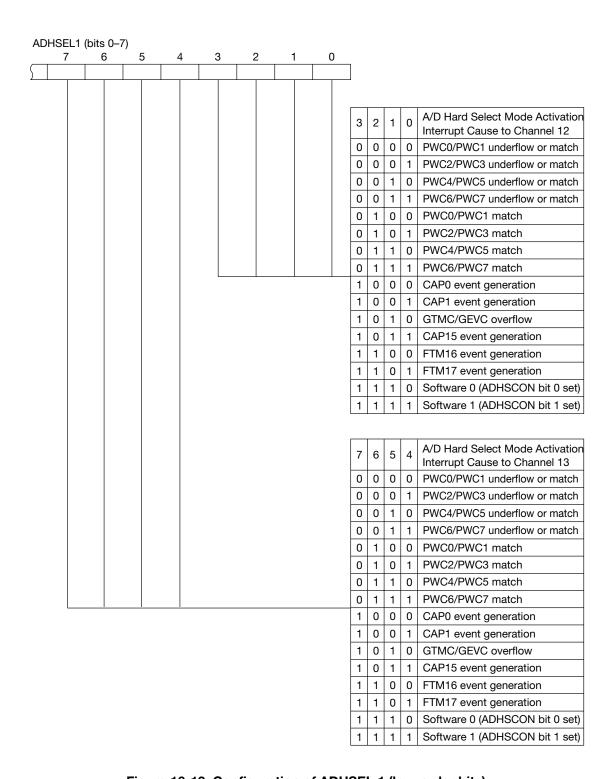


Figure 16-13 Configuration of ADHSEL 1 (low-order bits)

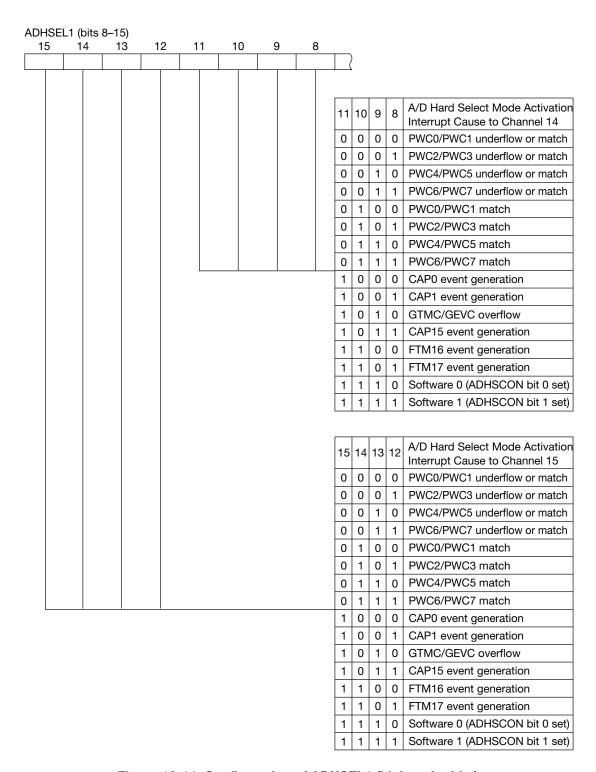
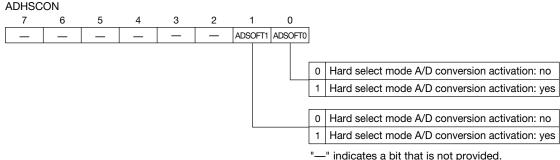


Figure 16-14 Configuration of ADHSEL1 (high-order bits)

[9] A/D Hard Select Software-Control Register (ADHSCON)

ADHSCON is a 2-bit register that activates, through software, A/D conversion in the A/D hard select mode.

Writing a "1" to bit 1 or bit 0 of ADHSCON starts A/D conversion in the A/D hard select mode.


Since these bits are not automatically cleared, they must be cleared by the software. A/D conversion activated by these bits will begin after the rising edge of these bits is detected. Therefore, once started, if conversion is to be restarted, first clear these bits and then write a value of "1".

If a "1" is written to these bits during A/D conversion in the A/D hard select mode, the next A/D conversion is reserved and will start after the present A/D conversion is completed.

If "1" is written to bit 1 and bit 0 simultaneously, A/D conversion in the hard select mode due to bit 1 (software 1) and A/D conversion in the hard select mode due to bit 0 (software 0) will be performed consecutively.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ADHSCON becomes FCH.

Figure 16-15 shows the configuration of ADHSCON.

— indicates a bit that is not provided.

Figure 16-15 Configuration of ADHSCON

[&]quot;1" is read if a read instruction is executed.

[10] A/D Hard Select Enable Register (ADHENCON)

ADHENCON is an 8-bit register that controls enable/disable of the hard select mode for each channel (ch0, ch1, ch2, ch3, ch12, ch13, ch14, ch15).

Figure 16-16 shows the configuration of ADHENCON.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ADHENCON becomes 00H.

<Description of Each Bit>

ADHENC0 (bit 0)

This bit enables or disables hard select A/D conversion on channel 0. If this bit is "1", the hard select of channel 0 is enabled, and if "0", disabled.

• ADHENC1 (bit 1)

This bit enables or disables hard select A/D conversion on channel 1.

If this bit is "1", the hard select of channel 1 is enabled, and if "0", disabled.

• ADHENC2 (bit 2)

This bit enables or disables hard select A/D conversion on channel 2. If this bit is "1", the hard select of channel 2 is enabled, and if "0", disabled.

• ADHENC3 (bit 3)

This bit enables or disables hard select A/D conversion on channel 3. If this bit is "1", the hard select of channel 3 is enabled, and if "0", disabled.

• ADHENC12 (bit 4)

This bit enables or disables hard select A/D conversion on channel 12.

If this bit is "1", the hard select of channel 12 is enabled, and if "0", disabled.

• ADHENC13 (bit 5)

This bit enables or disables hard select A/D conversion on channel 13. If this bit is "1", the hard select of channel 13 is enabled, and if "0", disabled.

• ADHENC14 (bit 6)

This bit enables or disables hard select A/D conversion on channel 14. If this bit is "1", the hard select of channel 14 is enabled, and if "0", disabled.

ADHENC15 (bit 7)

This bit enables or disables hard select A/D conversion on channel 15.

If this bit is "1", the hard select of channel 15 is enabled, and if "0", disabled.

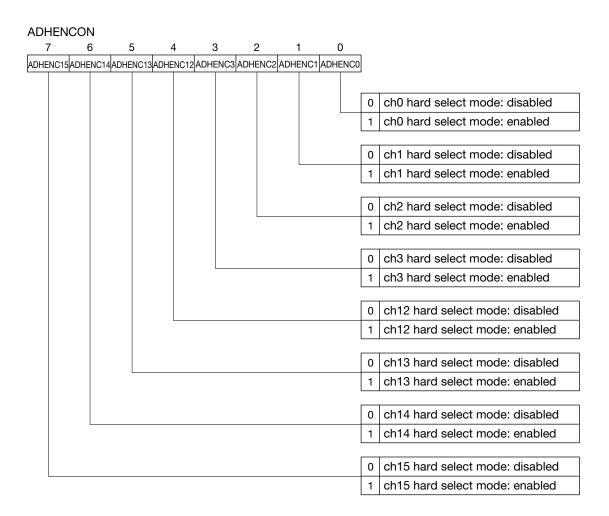


Figure 16-16 Configuration of ADHENCON

[11] A/D Result Registers (ADCR0-ADCR23)

The A/D result registers are 16-bit registers that store A/D conversion results. Conversion results are stored in the upper 10 bits (bit 15–bit 6) of the A/D result registers.

A/D conversion results of ch0–ch23 (AI0–AI23) are stored in the A/D result register having the same number as the channel number. (For example, conversion results of the AI0 input are stored in ADCR0 and conversion results of the AI12 input are stored in ADCR12.)

A/D result registers (ADCR0–ADCR23) are word accessible only. When read, the upper 8 bits of the 10-bit data in the A/D result register are read as the word's upper 8 bits of data; the lower 2 bits of the result register enter the upper 2 bits of the word's lower 8 bits of data, and the lower 6 bits of the word's lower 8 bits of data are all read as "1s".

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), ADCR0–ADCR23 are undefined.

ADCRn registers are divided into even and odd numbered ADCR registers. Data can be written to multiple registers in the same group at one time.

When data is written to ADCR0, the data is simultaneously written to ADCR0, 2, 4, 6, 8, and 10. When data is written to ADCR1, the data is simultaneously written to ADCR1, 3, 5, 7, 9, and 11. When data is written to ADCR12, the data is simultaneously written to ADCR12, 14, 16, 18, 20, and 22. When data is written to ADCR13, the data is simultaneously written to ADCR13, 15, 17, 19, 21, and 23. Writing to only a specific ADCR is not possible.

Figure 16-17 shows the configuration of ADCRn (n = 0-23).

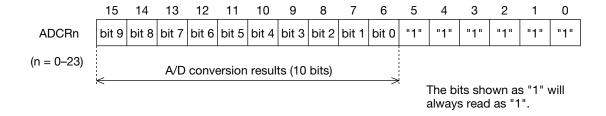
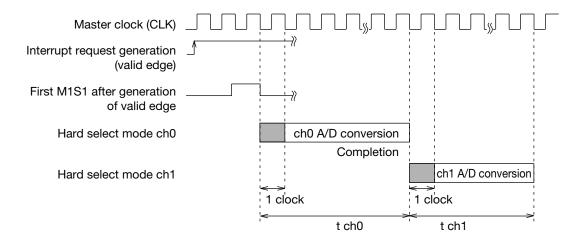


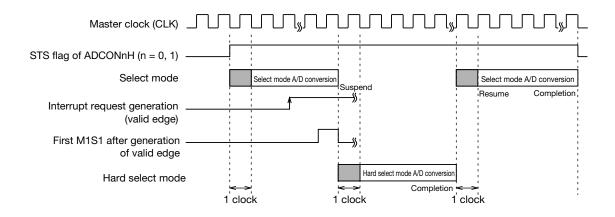
Figure 16-17 Configuration of ADCRn (n = 0-23)

16.3 Generated Timing of the A/D Hard Select Mode

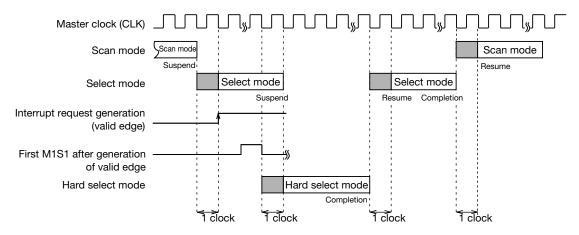

A/D conversion in the A/D hard select mode is activated 1 CLK after the interrupt request flag (IRQF) is set in synchronization with the first M1S1 signal following the generation of any peripheral event (matching, overflow, etc.).

[1] Activation of Multiple A/D Conversions after Generation of an Interrupt Request

An outline of operation is shown below for the case when the A/D hard select mode is activated with the same trigger for ch0 and ch1.

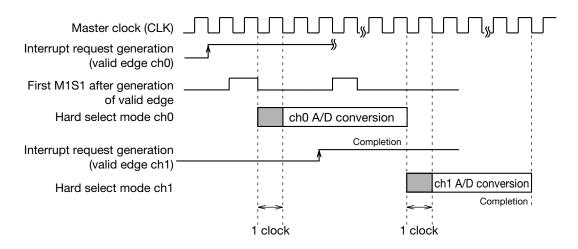

When A/D hard select modes of different priority levels (ch0, ch1) are activated by the same edge, A/D conversion of the higher priority ch0 begins 1 clock after the M1S1 signal, and A/D conversion of the lower priority ch1 begins 1 clock after completion of the ch0 conversion.

Shaded areas of the figure below indicate dummy cycles required for the start of conversion.


[2] Activation of Hard Select Mode A/D Conversion during Select Mode Operation

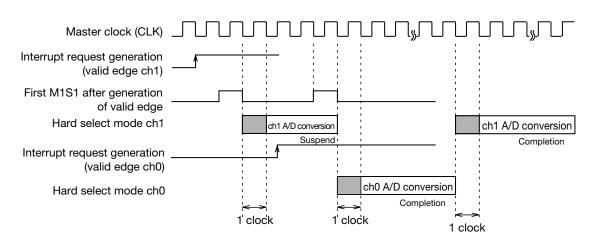
When the valid edge for the hard select mode occurs during select mode operation, the select mode is suspended and 1 clock after the first M1S1 signal following generation of the activation request, A/D conversion in the hard select mode is activated. After completion of A/D conversion in the hard select mode, A/D conversion in the suspended select mode is resumed.

[3] Activation of Hard Select Mode during Select Mode Operation Where Select Mode Was Activated during Scan Mode Operation


When the select mode is activated during scan mode operation, the scan mode is immediately suspended and 1 clock later, A/D conversion in the select mode begins. If an activation request for the hard select mode is generated during operation of that select mode, the select mode is suspended and 1 clock after the first M1S1 signal following generation of the activation request, A/D conversion in the hard select mode begins. After completion of A/D conversion in the hard select mode, A/D conversion in the suspended select mode is resumed. And 1 clock after completion of the A/D conversion in the select mode, A/D conversion in the suspended scan mode is resumed.

[4] Hard Select Mode Contention

a) ch1 (low priority) request is generated after ch0 (high priority) activation


When a low priority hard select mode activation request is generated during A/D conversion in a high priority hard select mode, the request is placed on hold. A/D conversion in the low priority hard select mode will begin 1 clock after the A/D conversion in the high priority hard select mode is completed.

b) ch0 (high priority) request is generated after ch1 (low priority) activation

When a high priority hard select mode activation request is generated during A/D conversion in a low priority hard select mode, the low priority hard select mode is suspended and 1 clock after the first M1S1 signal following generation of the activation request, A/D conversion begins in the high priority hard select mode.

1 clock after completion of that A/D conversion, A/D conversion in the suspended low priority hard select mode is resumed.

Chapter 17

Transition Detector Functions

17. Transition Detector Functions

The MSM66591/ML66592 have eight transition detector functions, which detect the valid edges (rise, fall, both edges) of an input pin.

If the valid edge specified by TRNSCON is input to TRNS0–TRNS7 pins, the corresponding bit 0 to bit 7 of the transition detector (TRNSIT) is set to "1". Reset the bit of TRNSIT to "0" by the program.

TRNS0–TRNS7 pins are assigned as secondary functions of P4_0–P4_7 of Port 4. Therefore the corresponding bit of the Port 4 secondary function control register must be set to "1" to access the transition detector function.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), TRNSIT becomes 00H.

If the secondary function of Port 4 is selected, TRNSIT may become undefined, depending on the status of TRNS0–TRNS7 pins. When using transition detector functions, set the Port 4 secondary function control register to "1", and then reset the corresponding bit of TRNSIT to "0".

Table 17-1 lists the transition detector control SFRs.

Table 17-1 Transition Detector Control SFRs

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
004F	Transition Detector	TRNSIT	_		8	00
016E	TRNS Control Register	_	TRNSCON	R/W	16	0000
016F	Tring Control Register	_	THINGCOIN		10	0000

[Note] Addresses above are not consecutive.

17.1 Transition Detector Control Register (TRNSCON)

TRNSCON is an 16-bit register that specifies the valid edges for TRNS0–TRNS7 pins.

Since only 16-bit data is accessible to TRNSCON, bit manipulation instructions such as SB and RB can not be executed.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), TRNSCON becomes 0000H, and the falling edge is specified as the valid edge.

Figure 17-1 shows the configuration of TRNSCON (low-order bits), and Figure 17-2 shows the configuration of TRNSCON (high-order bits).

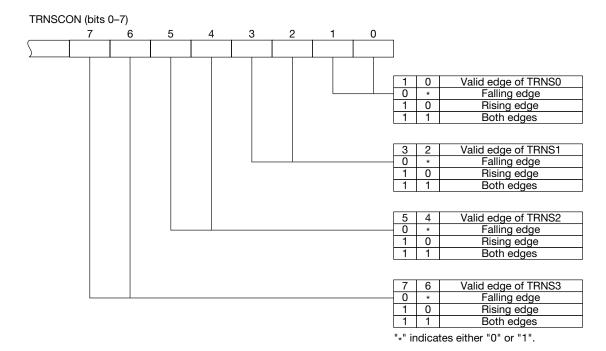


Figure 17-1 Configuration of TRNSCON (low-order bits)

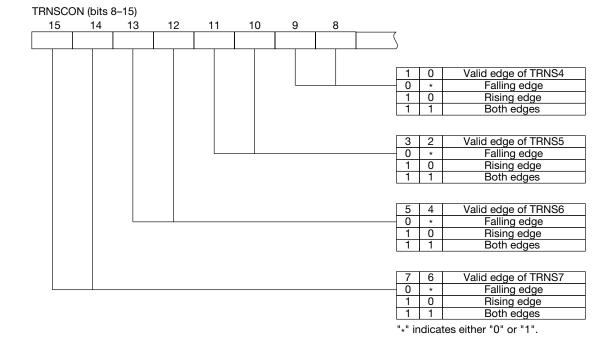


Figure 17-2 Configuration of TRNSCON (high-order bits)

17.2 Transition Detector Register (TRNSIT)

TRNSIT is an 8-bit register that indicates that the valid edge specified by TRNSCON has been input to a TRNS pin.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), TRNSIT becomes 00H.

If the secondary function of Port 4 is selected, TRNSIT may become undefined, depending on the status of the TRNS0–TRNS7 pins. When using the transition detector, set the Port 4 secondary function control register to "1", and then reset the corresponding bit of TRNSIT to "0".

Figure 17-3 shows the configuration of TRNSIT.

TRNSIT									
7	6	5	4	3	2	1	0	_	
TRNSF7	TRNSF6	TRNSF5	TRNSF4	TRNSF3	TRNSF2	TRNSF	1 TRNSF	0	
								0 1 0 1 0 1 0 1 0 1	Valid edge not input to TRNS0 pin Valid edge input to TRNS0 pin Valid edge not input to TRNS1 pin Valid edge input to TRNS1 pin Valid edge input to TRNS1 pin Valid edge not input to TRNS2 pin Valid edge input to TRNS2 pin Valid edge not input to TRNS3 pin Valid edge input to TRNS3 pin Valid edge input to TRNS4 pin Valid edge input to TRNS4 pin Valid edge input to TRNS5 pin Valid edge input to TRNS5 pin Valid edge not input to TRNS6 pin Valid edge not input to TRNS6 pin
								0	Valid edge input to TRNS6 pin Valid edge not input to TRNS7 pin
								1	Valid edge input to TRNS7 pin

[&]quot;—" indicates a bit that is not provided.

Figure 17-3 Configuration of TRNSIT

[&]quot;1" is read if a read instruction is executed.

Chapter 18

Peripheral Functions

18. Peripheral Functions

The MSM66591/ML66592 have the following three functions for use in a peripheral IC.

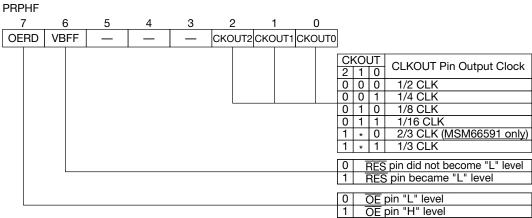
- A. clockout function
- B. RES pin valid level detection function
- C. OE pin monitor function

18.1 Clockout Function

The clockout function outputs the divided master clock of the MSM66591/ML66592 from the CLKOUT pin (secondary function of P5_6). The dividing ratio of the master clock is specified by the low-order 3 bits (bits 0, 1, 2) of the peripheral control register (PRPHF). There are six types of dividing ratios: 2/3, 1/2, 1/3, 1/4, 1/8, and 1/16 of the master clock. The master clock (CLK) is the frequency generated by multiplying the original oscillation clock by 2. 2/3 CLK is only available in the MSM66591.

If the CLKOUT pin is used, bit 6 of the Port 5 secondary function control register must be set to "1".

18.2 RES Pin Valid Level Detection Function


The $\overline{\text{RES}}$ pin valid level detection function is a flag that is set to "1" when the $\overline{\text{RES}}$ pin becomes "L" level, and is assigned to bit 6 (VBFF) of PRPHF. VBFF is reset to "0" by the program only. Setting VBFF to "1" by the program is invalid.

18.3 OE Pin Monitor Function

The \overline{OE} pin monitor function is a flag (OERD) that constantly monitors the input level of the \overline{OE} pin (pin 71), and is assigned to bit 7 of PRPHF.

If OERD is read, the level of the \overline{OE} pin is read. Writing to OERD is invalid.

Figure 18-1 shows the configuration of PRPHF.

[&]quot;—" indicates a bit that is not provided.

Figure 18-1 Configuration of PRPHF

[&]quot;1" is read if a read instruction is executed.

[&]quot;*" indicates either "0" or "1".

Chapter 19

External Interrupt Request Function

19

19. External Interrupt Request Function

The MSM66591/ML66592 have four inputs for external interrupt requests, which can be classified into two types. One type is a maskable interrupt, and there are three (INTO, INT1, INT2). The other type is a nonmaskable interrupt, and there is one (NMI).

INT0 and INT1 are assigned as secondary functions of P6_0 and P6_1 of Port 6 respectively. INT2 is assigned as a secondary function of P5_5 of Port 5. If INT0, INT1, and INT2 are used, set the corresponding bit of the Port 6 secondary function control register to "1".

A dedicated pin (pin 1) is provided for NMI.

The valid edge of INT0, INT1, and INT2 can be specified using the external interrupt control register (EXICON).

The valid edge of NMI can be specified using the NMI control register (NMICON).

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), EXICON becomes C0H, and "L" level is specified as the valid edge of the INT0, INT1, and INT2 pins. Also, NMICON becomes 3CH or BCH, depending on the state of the NMI pin at reset, and the fall is specified as the valid edge of the NMI pin.

Figure 19-1 shows the configuration of EXICON. Figure 19-2 shows the configuration of NMICON.

Bit 7 of NMICON monitors the NMI pin, and bit 6 is an MIPF that enables or disables all maskable interrupt priorities.

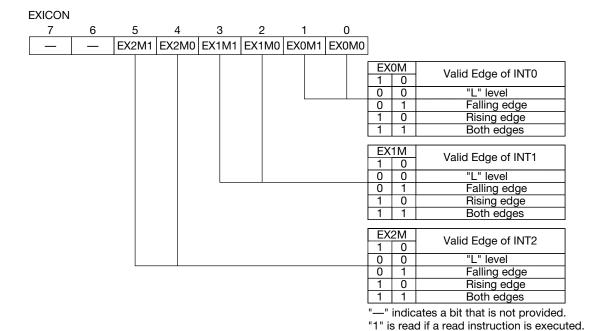
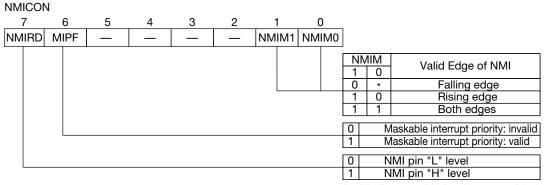



Figure 19-1 Configuration of EXICON

[&]quot;—" indicates a bit that is not provided.

Writing to bit 7 is invalid.

Figure 19-2 Configuration of NMICON

[&]quot;1" is read if a read instruction is executed.

[&]quot;*" indicates either "0" or "1".

Chapter 20

Interrupt Request Processing Function

20. Interrupt Request Processing Function

The MSM66591/ML66592 have 67 types of interrupt causes (external 4, internal 63), which are assigned to 39 vectors. One external interrupt is nonmaskable. Also four levels of interrupt priorities can be set for maskable interrupts.

Table 20-1 lists the interrupt control SFRs.

Table 20-1 Interrupt Control SFRs

Address [H]	Name	Abbreviated Name (BYTE)	Abbreviated Name (WORD)	R/W	8/16-Bit Operation	Reset State [H]
0040	Intervenent Description O	IRQ0L	IDOO			00
0041	Interrupt Request Register 0	IRQ0H	IRQ0		8/16	00
0042	Intervent Descriptor 1	IRQ1L	IDO4		6/10	00
0043	Interrupt Request Register 1	IRQ1H	IRQ1			00
0044☆	Interrupt Request Register 2	IRQ2L	_		8	C0
0046	Interrupt Enable Register 0	IE0L	IE0			00
0047	Interrupt Enable Register 0	IE0H	IEU		8/16	00
0048	Interrupt Enable Register 1	IE1L	IE1		0, 10	00
0049	Interrupt Enable Negister 1	IE1H	IEI			00
004A☆	Interrupt Enable Register 2	IE2L	_		8	C0
0140	Interrupt Priority Control	IP00L	IP00			00
0141	Register 00 IP00H				00	
0142	Interrupt Priority Control	Priority Control IP01L IP01				00
0143	Register 01	IP01H	IFUI	R/W	8/16	00
0144	Interrupt Priority Control	IP10L	IP10		6/10	00
0145	Register 10	IP10H	IFIU			00
0146	Interrupt Priority Control	IP11L	IP11			00
0147	Register 11	IP11H	IFII			00
0148☆	Interrupt Priority Control Register 20	IP20L	_		8	C0
0149☆	Interrupt Priority Control Register 21	IP21L	_		0	C0
0150	Interrupt Request Flag	IRQD0L	IDODO			00
0151	Disable Register 0	able Register 0 IRQD0H			8/16	00
0152	Interrupt Request Flag	IRQD1L	IBOD1		0/10	00
0153	Disable Register 1	IRQD1H	IRQD1			00
0154☆	Interrupt Request Flag Disable Register 2	IRQD2L	_			C0
0109☆	External Interrupt Control Register	EXICON	_		8	C0
014A☆	NMI Control Register	NMICON	_			3C or BC

Some addresses are not consecutive.

Addresses in the address column marked by "\$\partial \text{indicate that the register has bits missing.}

20.1 Non-maskable Interrupt (NMI)

An NMI cannot be masked at all. If the specified valid edge is detected by bit 0 and 1 of NMICON, the CPU immediately starts the NMI interrupt process.

The only exception when an NMI is masked is for the period of time until execution of the first instruction is finished after reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated).

After reset this function prevents the possibility of an NMI being accepted before the system stack pointer (SSP) value becomes the appropriate value.

By inputting an instruction to set the SSP value as the appropriate value to the first instruction after reset using the program, the possibility of an NMI before the SSP value becomes the appropriate value is eliminated.

If an NMI is generated, the hardware automatically performs a series of processes, which include:

- Saving program counter (PC)
- Saving accumulator (ACC)
- Saving local register base (LRB)
- Saving program status word (PSW)
- · Resetting the NMI request flag
- · Disabling maskable interrupt acceptance
- · Disabling multiple interrupt by the NMI itself
- Loading value written to vector tables (0008H, 0009H) to the program counter, then executing the first instruction of the NMI process.

<u>Fourteen cycle are required to shift to each of these NMI process.</u> However, if the program memory space is extended to 128K bytes (MSM66591) or 192K bytes (ML66592) by setting bit 1 (LROM) of MEMSCON to "1", <u>17 cycles</u> are required because cycles required to save the code segment register (CSR) are added.

An RTI instruction is needed at the end of the NMI interrupt routine.

If the RTI instruction is executed, the hardware automatically performs a series of processes, which include:

- Restoring program status word (PSW)
- Restoring local register base (LRB)
- Restoring accumulator (ACC)
- Restoring program counter (PC)
- Clearing disabling maskable interrupt acceptance
- Clearing disabling multiple interrupt by the NMI itself

then ending the NMI routine.

Figure 20-1 shows examples of saving and restoring PC, ACC, LRB and PSW.

[Note] If the program memory space is extended to 128K bytes (MSM66591) or 192K bytes (ML66592) by setting bit 1 (LROM) of MEMSCON to "1", the code segment register (CSR), in addition to the above registers, is saved and restored.

At INT (Program memory space is 64K bytes)

07F7H		SSP→07F7H		07F7H		1
07F8H		07F8H	PSWL	07F8H	PSWL	-
07F9H		07F9H	PSWH	07F9H	PSWH	1
07FAH		07FAH	LRBL	07FAH	LRBL	
07FBH		07FBH	LRBH	07FBH	LRBH	1
07FCH		07FCH	ACCL	07FCH	ACCL	
07FDH		07FDH	ACCH	07FDH	ACCH	
07FEH		07FEH	PCL	07FEH	PCL	
SSP→07FFH		07FFH	PCH	SSP→07FFH	PCH	
	(Before savin	ng)	(After saving)		(After RTI ex	ecution)

• At INT (Program memory space is 128K bytes)

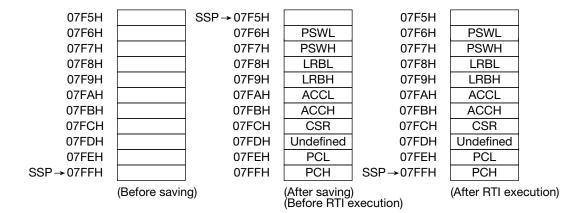
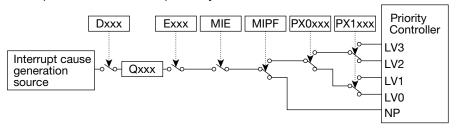


Figure 20-1 Examples of Saving and Restoring PC, ACC, LRB, and PSW

20.2 Maskable Interrupt

A maskable interrupt is generated by various causes such as internal peripheral hardware and external pin inputs.


A maskable interrupt is controlled by:

- (1) Register (IRQD) that enables/disables IRQ flag to be set to "1" by the interrupt request generated by each factor.
- ② Register (IRQ) that is set to "1" by the interrupt request generated by each cause, that is enabled by IRQD.
- ③ Register (IE) that enables/disables the interrupt provided by each cause.
- 4 Flag (MIE) that enables/disables generation of all maskable interrupts.
- (5) Flag (MIPF) that enables/disables all priorities.
- 6 Register (IPX0, IPX1) that sets the priority level.

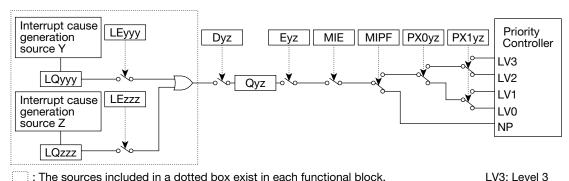

Figure 20-2 shows a conceptual diagram of maskable interrupt control.

Table 20-2 lists the vector addresses and bit symbols for maskable interrupts.

[One interrupt vector for one interrupt cause]

[One interrupt vector for two interrupt cause]

: The sources included in a dotted box exist in each functional block.

LV2: Level 2 LV1: Level 1 LV0: Level 0 NP: No priority

Figure 20-2 Conceptual Diagram of Maskable Interrupt Control

Table 20-2 Vector Addresses and Bit Symbols for Maskable Interrupts

bit	Interrupt Cause	Vector Address [H]	IRQD	IRQ	IE	IPX0	IPX1
0	External interrupt 0 (INT0)	000A	DINT0	QINT0	EINT0	P0INT0	P1INT0
1	TM0 overflow	000C	DTM0OV	QTM0OV	ETM0OV	P0TM0OV	P1TM0OV
2	TM1 overflow	000E	DTM1OV	QTM1OV	ETM1OV	P0TM1OV	P1TM1OV
3	CAP0 event generation	0010	DCAP0	QCAP0	ECAP0	P0CAP0	P1CAP0
4	CAP1 event generation	0012	DCAP1	QCAP1	ECAP1	P0CAP1	P1CAP1
5	CAP2 event generation	0014	DCAP2	QCAP2	ECAP2	P0CAP2	P1CAP2
6	CAP3 event generation	0016	DCAP3	QCAP3	ECAP3	P0CAP3	P1CAP3
7	Double-buffer RTO4 event generation	0018	DRTO4	QRTO4	ERTO4	P0RTO4	P1RTO4
8	Double-buffer RTO5 event generation	001A	DRTO5	QRTO5	ERTO5	P0RTO5	P1RTO5
9	Double-buffer RTO6 event generation	001C	DRTO6	QRTO6	ERTO6	P0RTO6	P1RTO6
10	Double-buffer RTO7 event generation	001E	DRTO7	QRTO7	ERTO7	P0RTO7	P1RTO7
11	Double-buffer RTO8 event generation	0020	DRTO8	QRTO8	ERTO8	P0RTO8	P1RTO8
12	Double-buffer RTO9 event generation	0022	DRTO9	QRTO9	ERTO9	P0RTO9	P1RTO9
13	Double-buffer RTO10 event generation	0024	DRTO10	QRTO10	ERTO10	P0RTO10	P1RTO10
14	Double-buffer RTO11 event generation	0026	DRTO11	QRTO11	ERTO11	P0RTO11	P1RTO11
15	Serial port 1 transmit/receive ready	0028	DSCI1	QSCI1	ESCI1	P0SCI1	P1SCI1
16	S0TM/S1TM/S2TM/S3TM/S4TM overflow	002A	DSTMOV	QSTMOV	ESTMOV	P0STMOV	P1STMOV
17	GTMC/GEVC overflow	002C	DGTMOV	QGTMOV	EGTMOV	P0GTMOV	P1GTMOV
18	A/D1 scan/select/hard select conversion completed	002E	DAD1	QAD1	EAD1	P0AD1	P1AD1
19	A/D0 scan/select/hard select conversion completed	0030	DAD0	QAD0	EAD0	P0AD0	P1AD0
20	PWC0/PWC1 underflow, or matching	0032	DPW01	QPW01	EPW01	P0PW01	P1PW01
21	PWC2/PWC3 underflow, or matching	0034	DPW23	QPW23	EPW23	P0PW23	P1PW23
22	Serial port 0 transmit/receive ready	0036	DSCI0	QSCI0	ESC10	P0SCI0	P1SCI0
23	External interrupt 1 (INT1)	0038	DINT1	QINT1	EINT1	P0INT1	P1INT1
24	Double-buffer RTO12 event generation	003A	DRTO12	QRTO12	ERTO12	P0RTO12	P1RTO12
25	Double-buffer RTO13 event generation	003C	DRTO13	QRTO13	ERTO13	P0RTO13	P1RTO13
26	PWC4/PWC5 underflow, or matching	003E	DPW45	QPW45	EPW45	P0PW45	P1PW45
27	PWC6/PWC7 underflow, or matching	0040	DPW67	QPW67	EPW67	P0PW67	P1PW67
28	CAP 14 event generation	0042	DCAP14	QCAP14	ECAP14	P0CAP14	P1CAP14
29	CAP 15 event generation	0044	DCAP15	QCAP15	ECAP15	P0CAP15	P1CAP15
30	Flexible timer 16 event generation	0046	DFTM16	QFTM16	EFTM16	P0FTM16	P1FTM16
31	Flexible timer 17 event generation	0048	DFTM17	QFTM17	EFTM17	P0FTM17	P1FTM17
32	PWC8/PWC9 underflow, or matching	006A	DPW89	QPW89	EPW89	P0PW89	P1PW89
33	PWC10/PWC11 underflow, or matching	006C	DPW1011	QPW1011	EPW1011	P0PW1011	P1PW1011
34	Serial port 2 transmit/receive ready	006E	DSCI2	QSCI2	ESCI2	P0SCI2	P1SCI2
35	Serial port 3 transmit/receive ready	0070	DSCI3	QSCI3	ESCI3	P0SCI3	P1SCI3
36	Serial port 4 transmit/receive ready	0072	DSCI4	QSCI4	ESCI4	P0SCI4	P1SCI4
37	SIO5 event generation, externali nterrupt (INT2)	0074	DSCI5	QSCI5	ESCI5	P0SCI5	P1SCI5

[1] Interrupt Request Flag Disable Register IRQD (IRQD0L, IRQD0H, IRQD1L, IRQD1H, IRQD2L)

The IRQD is a register that enables/disables the corresponding bit of the IRQ to be set to "1" by the interrupt signal from each interrupt generation source. If a bit of IRQD is "1", the corresponding bit of IRQ is not set, even if the corresponding interrupt generation source generated an interrupt request. If a bit of IRQD is "0", the corresponding bit of IRQ is set to "1" by the interrupt request from the corresponding interrupt generation source.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), IRQD0L, IRQD0H, IRQD1L, and IRQD1H become 00H, IRQD2L becomes C0H, and enable the corresponding bit of IRQ to be set to "1" by an interrupt signal from each interrupt generation source.

[2] Interrupt Request Register IRQ (IRQ0L, IRQ0H, IRQ1L, IRQ1H, IRQ2L)

IRQ becomes "1" synchronizing with the M1S1 signal if an interrupt signal is generated from each interrupt generation source enabled by IRQD, and becomes "0" automatically during an interrupt transition cycle if an interrupt is accepted.

A bit of IRQ can be set to "1" or "0" by the program.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), IRQ0L, IRQ0H, IRQ1L, and IRQ1H become 00H, and IRQ2L becomes C0H.

[3] Interrupt Enable Register IE (IE0L, IE0H, IE1L, IE1H, IE2L)

The IE is a register that specifies an interrupt generation enable/disable independently. If a bit of IE is "0", the corresponding interrupt generation is disabled. If a bit of IE is "1", the corresponding interrupt generation is enabled.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), IE0L, IE0H, IE1L, and IE1H become 00H, and IE2L becomes C0H.

[4] Master Interrupt Enable Flag (MIE)

The MIE is a 1-bit flag on PSW. MIE specifies enable/disable of all maskable interrupt generation. If MIE is "0", all maskable interrupt generation is disabled. If MIE is "1", the generation of all independently enabled interrupts are enabled.

[5] Master Interrupt Priority Flag (MIPF)

The MIPF is a 1-bit flag assigned to bit 6 of NMICON. MIPF specifies valid/invalid of all maskable interrupt priorities. If MIPF is "0", priority by IPX0 and IPX1 becomes invalid, and interrupt generation is controlled only by IE and MIE. If MIPF is "1", four types of priority, level 0–level 3, are given to all maskable interrupts by IPX0 and IPX1.

[6] Interrupt Priority Control Register IPX0 (IP00L, IP00H, IP10L, IP10H, IP20L), IPX1 (IP01L, IP01H, IP11L, IP11H, IP21L)

As a pair IPX0 and IPX1 specify the priority of maskable interrupts. If the corresponding bit of IPX0 and IPX1 for a maskable interrupt is PX0xxx and PX1xxx, the priority given to the maskable interrupt is as follows.

PX1xxx	PX0xxx	Priority				
0	0	Level 0	(low)			
0	1	Level 1	<u> </u>			
1	0	Level 2	\			
1	1	Level 3	(high)			

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), IP00L, IP00H, IP10L, IP10H, IP01L, IP01H, IP11L, and IP11H become 00H, and IP20L and IP21L become C0H.

20.3 Operation of Maskable Interrupt

When an interrupt request signal is generated, the logic to notify about interrupt request generation to the judgment logic of an interrupt priority functions as follows:

- Interrupt request signal is output from an interrupt generation source.
- If the corresponding bit of IRQD is "1", the interrupt request signal is ignored, and nothing occurs to this interrupt. If the corresponding bit of IRQD is "0", the corresponding IRQ bit becomes "1". The IRQ bit can also be set to "1" by executing a write instruction.
- If either the corresponding IE bit or the MIE on PSW is "0" when the IRQ bit is "1", interrupt generation wait status occurs. When the IRQ bit is "1", the judgment logic of an interrupt priority functions if both the corresponding IE bit and the MIE on the PSW are "1".

The judgment logic of an interrupt priority functions as follows.

- If MIPF on PSW is "0", the judgment logic of an interrupt priority does not function, and an interrupt is immediately generated.
 - If MIPF on PSW is "1", one of level 0 to level 3 priorities is assigned to the interrupt according to the corresponding bit of IPX0 and IPX1.
- If no interrupt has been executed when an interrupt generation request is sent to the judgment logic of an interrupt priority, the interrupt is immediately generated.
- If one or more interrupts are in execution when an interrupt generation request is sent to the judgment logic of an interrupt priority, and if the priority of the interrupt to be requested is higher than the highest priority of the interrupt in execution, the interrupt is immediately generated.
- If one or more interrupts are in execution when an interrupt generation request is sent to the judgment logic of an interrupt priority, and if the priority of the interrupt to be requested is the same as or lower than the highest priority of the interrupts in execution, the interrupt generation wait status occurs.

Generated Process Interrupt in execution	Level 0 Interrupt Request	Level 1 Interrupt Request	Level 2 Interrupt Request	Level 3 Interrupt Request	NMI Request
Process except interrupt	O:interrupt generated	O:interrupt generated	O:interrupt generated	O:interrupt generated	O:interrupt generated
Level 0 interrupt process	X:interrupt wait	O:interrupt generated	O:interrupt generated	O:interrupt generated	O:interrupt generated
Level 1 interrupt process	X:interrupt wait	X:interrupt wait	O:interrupt generated	O:interrupt generated	O:interrupt generated
Level 2 interrupt process	X:interrupt wait	X:interrupt wait	X:interrupt wait	O:interrupt generated	O:interrupt generated
Level 3 interrupt process	X:interrupt wait	X:interrupt wait	X:interrupt wait	X:interrupt wait	O:interrupt generated
NMI process	X:interrupt wait	X:interrupt wait	X:interrupt wait	X:interrupt wait	X:interrupt wait

[Note]

If interrupts occur at the same time, the one with the highest priority level has the priority. If interrupts with the same priority level occur at the same time, the one with the lower interrupt vector address has the priority.

If a maskable interrupt is generated, the hardware automatically performs a series of processes, which include:

- Saving program counter (PC)
- Saving accumulator (ACC)
- Saving local register base (LRB)
- Saving program status word (PSW)
- Resetting IRQ that generated maskable interrupt process
- Resetting MIE on PSW (MIE ← "0" = acceptance of maskable interrupt disabled)
- Storing interrupt priority level (acceptance of interrupt with same or lower level priority disabled)
- Loading value written to vector table to program counter and then executing the first instruction of a maskable interrupt process.

Fourteen cycles are required to shift to each maskable interrupt process (Interrupt transition cycle).

However, if the program memory space is 128K bytes (MSM66591) or 192K bytes (ML66592) by setting bit 1 (LROM) of MEMSCON to "1", 17 cycles are required because cycles required to save the code segment register (CSR) are added.

When an interrupt generation condition is fulfilled by setting IRQ, IE, IP, or MIPF to "1" by an instruction, the actual generation of the interrupt occurs after the execution of the next instruction after the instruction that set the IRQ, IE, IP, or MIPF to "1".

It is necessary to execute an RTI instruction at the end of a maskable interrupt routine. If an RTI instruction is executed, the hardware automatically performs a series of processes, which include:

- Deleting highest level of stored interrupt priority level
- Restoring program status word (PSW) (MIE ← "1")
- Restoring local register base (LRB)
- Restoring accumulator (ACC)
- Restoring program counter (PC)

and then ending the maskable interrupt routine.

[Note] If the program memory space is expanded to 128K bytes (MSM66591) or 192K bytes (ML66592) by setting bit 1 (LROM) of MEMSCON to "1", the code segment register (CSR) is saved or returned from.

Figure 20-1 (page 20-3) shows examples of saving and restoring PC, ACC, LRB and PSW.

Chapter 21

Bus Port Functions

21. Bus Port Functions

The MSM66591/ML66592 can externally expand up to 128K bytes (MSM66591) or 256K bytes (ML66592) of program memory (ROM usually) by setting the $\overline{\text{EA}}$ pin to a "L" level.

The external program memory is accessed using the bus port functions of Port 0 (P0), Port 1 (P1), and Port 12 (P12_0, P12_1 (ML66592 only)) and the secondary functions of Port 7 (ALE, PSEN).

21.1 Bus Port (P0, P1, P12_0, P12_1) Functions

P0, P1, P12_0 and P12_1 (ML66592 only) have secondary functions as a bus port, in addition to the primary functions as an I/O port.

P0, P1, P12_0 and P12_1 (ML66592 only) automatically switch their function from a primary function to a secondary function or vice versa if the \overline{EA} pin is at "L" level.

21.1.1 Operation of P0, P1, P12_0 and P12_1 During a Program Memory Access

When the internal program memory is accessed (EA pin is at "H" level), P0, P1, P12_0 and P12_1 operate as an I/O port.

When the external program memory is accessed (EA pin is at "L" level), P0 operates as a port that outputs lower addresses and that inputs instruction. P1, P12_0 and P12_1 (ML66592 only) operate as ports that output higher addresses.

Table 21-1 shows the operation of P0, P1, P12_0 and P12_1 during a program memory access.

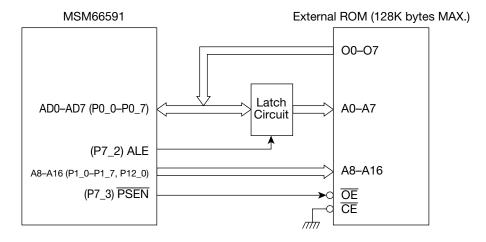
Table 21-1 Operation of P0, P1, P12_0 and P12_1 During a Program Memory Access

EA Pin	Access	Target	Operation of P0	Operation of P1,
LATIII	Memory	Address	Operation of to	P12_0, P12_1 ^{*1}
"H" level	Internal program		Input/out	
"L" level	External program	00000H-1FFFDH*2	Low-order address output, program data input	High-order address output

^{*1} P12_1 is only for the ML66592.

21

^{*2 00000}H-3FFFDH for the ML66592.


21.2 External Memory Access

21.2.1 External Program Memory Access

The MSM66591 can access a maximum of 128K bytes (00000H–1FFFDH) of program memory space using a 16-bit program counter and a 1-bit code segment register (CSR). When the $\overline{\text{EA}}$ pin is low, external program memory is accessed to 00000H–1FFFDH.

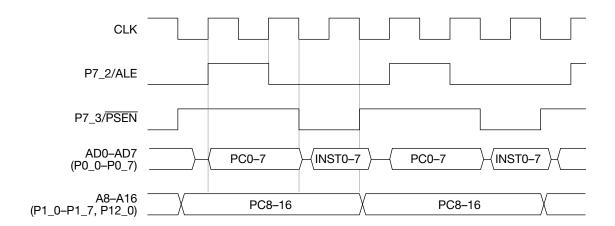
By using a 16-bit program counter and a 2-bit code segment register (CSR), the ML66592 can access a maximum of 192K bytes (00000H–2FFFDH) of program memory space internally and a maximum of 256K bytes (0000H–3FFDH) of program memory space externally. When the $\overline{\text{EA}}$ pin is low, external program memory is accessed to 00000H–3FFFDH.

The Figure 21-1 shows the external program memory (ROM) connection example.

[Note] Since in the ML66592 address 17 (A17) is output from the P12_1 pin, connect the P12_1 pin to A17 of the external ROM. Up to 256K bytes can be accessed.

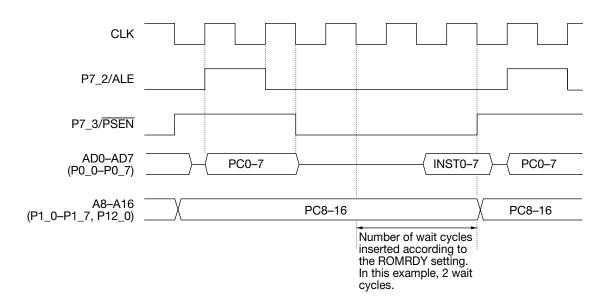
Figure 21-1 External ROM Connection Example (MSM66591)

21.2.2 External Program Memory Access Timing


Figures 21-2 and 21-3 show external program memory access timing.

The MSM66591/ML66592 have a function to insert a wait cycle when the external memory access time is slow. (READY function: see 5.2). Use this function according to the access time of the external memory required for use.

However, unlike access to the internal memory, one cycle is automatically inserted for every one-byte-access to the external memory.


ROMRDY is a register to specify the number of cycles to be inserted in addition to the above one cycle.

For actual AC characteristics, see Chapter 25, "Electrical Characteristics."

[Note] 1 wait cycle is automatically inserted into the CPU in this case as well. In the ML66592, the timing for A17 (address 17) is the same as A8–A16.

Figure 21-2 External Program Memory Access Timing (No Wait Cycles)

[Note] 3 (= 1 + 2) wait cycles are automatically inserted into the CPU in this case as well. In the ML66592, the timing for A17 (address 17) is the same as A8–A16.

Figure 21-3 External Program Memory Access Timing (2 Wait Cycles)

Chapter 22

Expansion Port

22

22. Expansion Port

The MSM66591/ML66592 have a 1-channel internal expansion port for the external expansion of general-purpose ports.

The expansion port expands port functions by outputting parallel data of the internal registers as synchronous serial data, and by externally converting serial data to parallel data.

External parallel data can also be input as synchronous serial data and converted to parallel data internally. Data input and output uses pin P10_6/SFTDAT, the shift clock output uses pin P10_5/SFTCLK, and the external latch strobe uses pin P10_7/SFTSTB. The data length is selectable as 8 bits or 16 bits. Connection of devices such as a 74HC165 is assumed for external input and a 74HC595 is assumed for external output of the expansion port. Because expansion port functions are assigned as secondary functions of Port 10, corresponding bits of the Port 10 secondary function control register must be set to "1" to use expansion port functions.

22.1 Expansion Port Configuration

The expansion port consists of a 16-bit shift register that exchanges data with the exterior, a 16-bit buffer register (EXTPD) for the shift register, EXTPCON to control operation, and a control circuit.

Figure 22-1 shows the configuration of the expansion port.

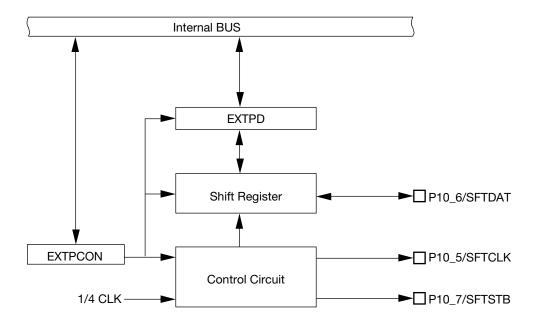


Figure 22-1 Expansion Port Configuration

22.2 Expansion Port Control Register (EXTPCON)

The expansion port control register (EXTPCON) is a 3-bit register that controls the function of the expansion port.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), EXTPCON becomes F8H.

Figure 22-2 shows the configuration of EXTPCON.

<Description of Each Bit>

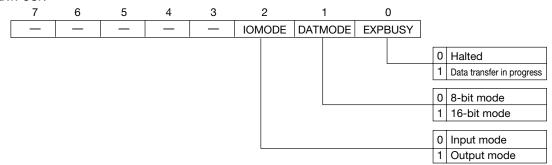
• EXPBUSY (bit 0)

This BUSY flag indicates that a data transfer is in progress.

This bit is read-only, and writes are ignored.

• DATMOD (bit 1)

This bit specifies the bit length of the data transfer.


If "0", 8 bits of data are transferred. If "1", 16 bits of data are transferred.

• IOMOD (bit 2)

This bit specifies the data transfer direction.

If "0", data is input. If "1", data is output.

EXTPCON

[&]quot;—" indicates a bit that is not provided.

Figure 22-2 EXTPCON Configuration

[&]quot;1" is read if a read instruction is executed.

22.3 Expansion Port Register (EXTPD)

The expansion port register (EXTPD) is a 16-bit buffer register that exchanges data with the exterior via the shift register. 8-bit access is also possible for this register, though only for the lower 8 bits as EXTPDL. Note that if 8-bit data is written to EXTPDL, data at "00H" will be written to the higher 8 bits of EXTPD.

During the input mode, a data transfer (input) is started by reading this register.

During the output mode, a data transfer (output) is started by writing to this register.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), EXTPD becomes 0000H.

22.4 Expansion Port Operation

[1] Input Mode

In the input mode, it is assumed that a 74HC165 or other shift register is connected externally.

Reading EXPTD causes the transfer (input) to start and the EXPBUSY flag to change to "1". When EXPTD is read, the latch strobe (SFTSTB) changes to a "L" level.

Next, when the shift clock (SFTCLK) rises, external data (SFTDAT) is input. When SFTCLK falls, external data is latched internally, and at the same time, SFTSTB changes to a "H" level. External data changes in sync with the rise of SFTCLK and is latched internally in sync with the fall of SFTCLK. When SFTCLK outputs 8 clocks, the transfer (input) is completed, the shift register contents are loaded into EXTPD, and the EXPBUSY flag changes to "0". SFTCLK is fixed at 1/4 CLK (1/4 of the internal clock).

During the 16-bit mode, SFTCLK outputs 16 clocks and 16-bit transfers are performed.

Figure 22-3 shows the timing of the inputs mode (8-bit mode).

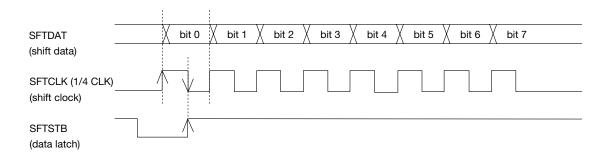


Figure 22-3 Input Mode Timing (8-Bit Mode Example)

27

[2] Output Mode

In the output mode, it is assumed that a 74HC595 or other shift register is connected externally.

Writing data to EXPTD causes the transfer (output) to start and the EXPBUSY flag to change to "1". When data is written to EXPTD, shift data is output in sync with the fall of the shift clock (SFTCLK). It is assumed that data is captured externally in sync with the rise of SFTCLK. When SFTCLK outputs 8 clocks, the transfer (output) is completed. At the same time, SFTSTB changes to a "L" level. 1 shift clock later SFTSTB changes to a "H" level and data is latched externally. (During this 1 shift clock interval, the shift clock is not output.) And at the same time that SFTSTB changes to a "H" level, the EXPBUSY flag becomes "0". SFTCLK is fixed at 1/4 CLK (1/4 of the internal clock).

During the 16-bit mode, SFTCLK outputs 16 clocks and 16-bit transfers are performed.

Figure 22-4 shows the timing of the output mode.

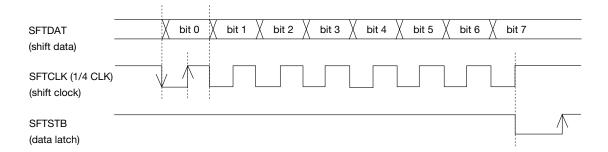


Figure 22-4 Output Mode Timing (8-Bit Mode Example)

Chapter 23

Serial Port with FIFO (SCI5)

23

23. Serial Port with FIFO (SCI5)

The MSM66591/ML66592 have an internal Serial I/O (SCI5) Port with dedicated FIFO that is used for serial synchronous communication with the CAN controller. SCI5 transmits and receives data in 8-bit units in synchronization with the clock specified by SCI5 control register 0 (SCI5CON0).

Since an internal 8-stage FIFO functions as a transmit-receive buffer, consecutive transmission or reception of a maximum of 8 bytes is possible. After data transmission is completed, an SCI5 interrupt request is generated.

With SCI5, the shift clock for data transfer is output from pin P5_2/SCLK, transmit data is output from pin P5_1/SDOUT, and receive data is input from pin P5_0/SDIN.

A chip select pin (P5_4/ \overline{CS}), a read and write control pin (P5_3/RWB), a WAIT pin (P5_7/WAIT) with BUSY signal input, and an interrupt input pin (P5_5/INT2) are provided for use with the CAN controller.

If SCI5 is to be used, set the following pins to their secondary function: P5_0/SDIN, P5_1/SDOUT, P5_2/SCLK, P5_3/RWB, P5_4/CS, P5_5/INT2, and P5_7/WAIT.

23.1 SCI5 Configuration

SCI5 consists of a data buffer FIFO, an 8-bit SFDOUT register that writes to the FIFO, an 8-bit SFDIN register that reads FIFO data, an 8-bit SFADR register that specifies the CAN controller address to access, a shift register that performs serial transfers, 8-bit SCI5CON0 and SCI5CON1 registers that control SCI5 operation, and a control circuit.

Figure 23-1 shows the configuration of SCI5.

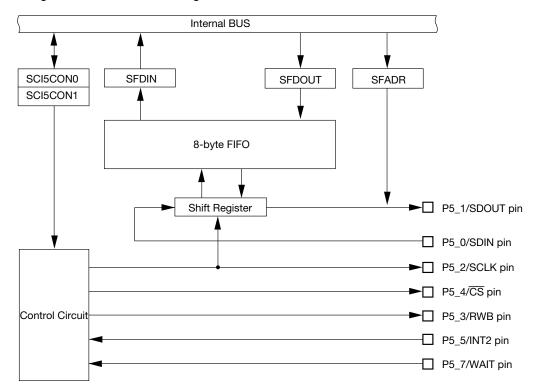


Figure 23-1 SCI5 Configuration (Serial I/O with FIFO)

23.2 SCI5 Control Register 0 (SCI5CON0)

The SCI5 control register 0 (SCI5CON0) is a 7-bit register that controls SCI5 operation.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), SCI5CON0 becomes 10H.

Figure 23-2 shows the configuration of SCI5CON0.

<Description of Each Bit>

• S5CK0-S5CK2 (bits 0-2)

These bits select the SCI5 shift clock.

The selected shift clock is output from pin P5 2/SCLK.

• S5RES (bit 3)

This flag is used to initialize the SCI5's FIFO pointer.

If this flag is set to "1", the FIFO pointer will be initialized. After initialization, this flag is automatically cleared. This flag is used to initialize the FIFO pointer when communication is cut off.

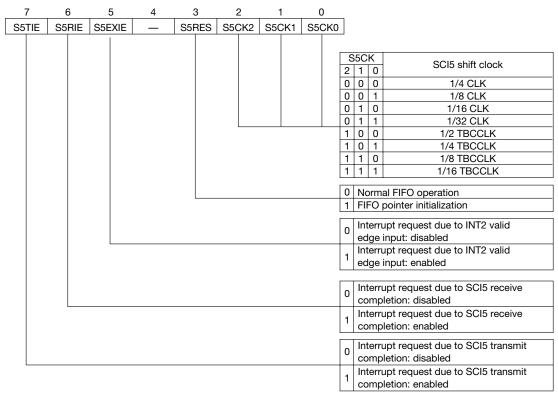
• S5EXIE (bit 5)

This flag enables or disables the generation of interrupt requests by the valid edge of external interrupt 2 (INT2).

If this bit is set to "1", the generation of interrupt requests is enabled. If set to "0", the generation of interrupt requests is disabled.

• S5RIE (bit 6)

This flag enables or disables the generation of interrupt requests at the completion of SCI5 reception.


If this bit is set to "1", the generation of interrupt requests is enabled. If set to "0", the generation of interrupt requests is disabled.

• S5TIE (bit 7)

This flag enables or disables the generation of interrupt requests at the completion of SCI5 transmission.

If this bit is set to "1", the generation of interrupt requests is enabled. If set to "0", the generation of interrupt requests is disabled.

SCI5CON0

[&]quot;—" indicates a bit that is not provided.

Figure 23-2 SCI5CON0 Configuration

23

[&]quot;1" is read if a read instruction is executed.

23.3 SCI5 Control Register 1 (SCI5CON1)

The SCI5 control register 1 (SCI5CON1) is a 6-bit register that controls SCI5 operation.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), SCI5CON1 becomes C0H.

Figure 23-3 shows the configuration of SCI5CON1.

<Description of Each Bit>

• S5RN0-S5RN3 (bits 0-3)

These bits specify the number of bytes of receive data during reception.

These bits are ignored during transmission.

• TENR (bit 4)

This flag starts reception. Setting this bit to "1" will start reception.

When the number of data bytes specified by S5RN0–S5RN3 are received, this bit is automatically cleared.

If this bit is cleared during a reception, the reception is immediately suspended and SCI5 is initialized.

• TENT (bit 5)

00150011

This flag starts transmission. Setting this bit to "1" will start transmission.

When the number of data bytes written to the SFDOUT transmit buffer are transmitted, this bit is automatically cleared.

If this bit is cleared during a transmission, the transmission is immediately suspended and SCI5 is initialized.

SCI5CON1												
7 6	3	5	4	3	2	1	0					
_ -	- T	ENT	TENR	S5RN3	S5RN2	S5RN1	S5RN0					
									S5	RN		Number of
								3	2	1	0	SCI5 receive bytes
								0	0	0	0	Prohibited setting
								0	0	0	1	1 byte
								0	0	1	0	2 bytes
								0	0	1	1	3 bytes
								0	1	0	0	4 bytes
								0	1	0	1	5 bytes
								0	1	1	0	6 bytes
								0	1	1	1	7 bytes
								1	*	*	*	8 bytes
								0	Re	ecep	tior	n complete
								1	St	art r	ece	ption
									T-		!	
								0	_			sion complete
								1	St	art t	rans	smission

[&]quot;—" indicates a bit that is not provided.

Figure 23-3 SCI5CON1 Configuration

[&]quot;1" is read if a read instruction is executed.

[&]quot;*" indicates either "1" or "0".

23.4 SCI5 Interrupt Register (SCI5INT)

The SCI5 interrupt register (SCI5INT) is a 3-bit register that controls SCI5 interrupts.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), SCI5INT becomes 1FH.

Figure 23-4 shows the configuration of SCI5INT.

<Description of Each Bit>

• S5EXIRQ (bit 5)

When a valid edge is input to external interrupt 2 (INT2), this individual interrupt request flag becomes "1".

Because this flag is not automatically cleared even when an interrupt is processed, it must be cleared by the program.

• S5RIRQ (bit 6)

When SCI5 reception is complete, this individual interrupt request flag becomes "1". Because this flag is not automatically cleared even when an interrupt is processed, it must be cleared by the program.

• S5TIRQ (bit 7)

When SCI5 transmission is complete, this individual interrupt request flag becomes "1".

Because this flag is not automatically cleared even when an interrupt is processed, it must be cleared by the program.

SCI5INT									
7	6	5	4	3	2	1	0		
S5TIRQ	S5RIRQ	S5EXIRQ	_	_	_	_	_		
									Interrupt request generation due to INT2 pin input: no
									Interrupt request generation due to INT2 pin input: yes
								1 1	Interrupt request generation due to SCI5 reception complete: no
									Interrupt request generation due to SCI5 reception complete: yes
									Interrupt request generation due to SCI5 transmission complete: no
								1	Interrupt request generation due to SCI5 transmission complete: yes

[&]quot;—" indicates a bit that is not provided.

"1" is read if a read instruction is executed.

Figure 23-4 SCI5INT Configuration

23

23.5 Serial Address Output Register (SFADR)

The 8-bit serial address output register (SFADR) specifies the leading address on the CAN controller side. The leading address is accessed when data is transmitted to and received from the CAN controller.

When the CAN controller is to be accessed, for both transmission and reception, the address written to SFADR is output from the SDOUT pin, and then the data transmission or reception is performed.

At reset (when the \overline{RES} signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), SFADR becomes 00H.

Figure 23-5 shows the configuration of SFADR.

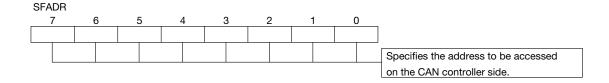


Figure 23-5 SFADR Configuration

23.6 Serial Data Input Register (SFDIN)

The serial data input register (SFDIN) is an 8-bit register used to read the data (stored in the FIFO) received from the CAN controller. This register is read-only. Do not attempt to write to this register.

Data is received from the SDIN pin into the shift register, and when 1 byte of data is arranged in the shift register, it is automatically transferred to the FIFO. After the number of bytes specified by S5RN0–S5RN3 of SCI5CON1 are received, a receive complete interrupt is generated. By reading the FIFO via SFDIN during processing of an interrupt, data can be read in order beginning with the first received data.

This register cannot be read during a serial transmission or reception.

At reset (when the RES signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), SFDIN becomes undefined.

Figure 23-6 shows the configuration of SFDIN.

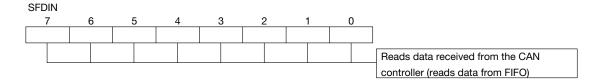


Figure 23-6 SFDIN Configuration

23.7 Serial Data Output Register (SFDOUT)

The serial data output register (SFDOUT) is an 8-bit register used to write transmit data (8 bytes max.) to the CAN controller. This register is write-only. Do not attempt to read the contents that were written.

Data written to SFDOUT is first stored in the 8-byte FIFO. If transmission is enabled, data stored in the FIFO is transferred in order to the shift register and then output from the SDOUT pin.

This register cannot be written to during a serial transmission or reception.

At reset (when the $\overline{\text{RES}}$ signal is input, the BRK instruction is executed, the watchdog timer is overflown, or an operation code trap is generated), SFDOUT becomes undefined.

Figure 23-7 shows the configuration of SFDOUT.

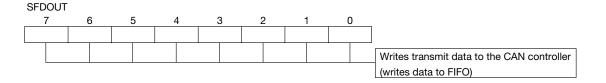


Figure 23-7 SFDOUT Configuration

23

23.8 SCI5 Operation

During a data transfer, the clock selected by bits 0–2 of SCI5CON0 (S5CK0–S5CK2) becomes the shift clock for SCI5 (SCI5 clock) and is output from the SCLK pin.

Transmit data is synchronized to the falling edge of the SCI5 clock and output LSB first from the SDOUT pin. Receive data is synchronized to the rising edge of the SCI5 clock and input LSB first from the SDIN pin. It is assumed that, regarding external devices, the serial-in data (receive data) changes at the falling edge of the SCI5 clock and the serial-out data (transmit data) is captured at the rising edge of the SCI5 clock.

When writing data to the CAN controller, write the leading transmit address (1 byte) to the SCI5's SFADR, and then write the transmit data (1–8 bytes) to the SFDOUT register.

When the transmit enable flag (bit 5 of SCI5CON1: TENT) is set to "1", the \overline{CS} (chip select) pin and RWB (read/write) pin first change to "L" levels. Next, the leading address (1 byte) is output from the SDOUT pin to the CAN controller. Then, the number of bytes of data written to the SFDOUT register are transmitted from the SDOUT pin. (There is an interval between address-data transfers and between data-data transfers.)

After all the data written to the SFDOUT register has been completely transmitted, the $\overline{\text{CS}}$ pin and RWB pin change to "H" levels, the TENT bit is reset to "0", and an interrupt request flag (QSIO5) is set to "1" at the beginning of the next instruction (M1S1). In this case, it is assumed that on the CAN controller side, transmit data has been written to consecutive addresses beginning with the leading address that was transmitted first.

If the TENT bit is reset to "0" during a transfer, the transmission is immediately suspended and SCI5 initialized. In this case, the transmission contents are not saved.

When reading data from the CAN controller, write the leading receive address (1 byte) to the SCI5's SFADR, and then write the number of receive data bytes (1–8 bytes) to bits 0–3 of SCI5CON1 (S5RN0–S5RN3).

When the receive enable flag (bit 4 of SCI5CON1: TENR) is set to "1", the $\overline{\text{CS}}$ (chip select) pin first changes to a "L" level. Next, the leading address (1 byte) is output from the SDOUT pin to the CAN controller. Data is thereafter received from the SDIN pin (there is an interval between data-data transfers). Received data is transferred in order to the FIFO.

When the number of data bytes specified by S5RN0–S5RN3 are received, the reception is complete, the $\overline{\text{CS}}$ pin changes to a "H" level, the TENR bit is reset to "0", and an interrupt request flag (QSCI5) is set to "1" at the beginning of the next instruction (M1S1).

Data that was received and then transferred to the FIFO is read via the SFDIN register.

In this case, it is assumed that on the CAN controller side, receive data has been read in consecutive addresses beginning with the leading address that was transmitted first.

If the TENR bit is reset to "0" during a reception, the reception is immediately suspended and SIO5 initialized. In this case, the reception contents are not saved.

SCI5, when it has output leading address, checks the BUSY signal input to the WAIT pin. If the WAIT pin is "1", it halts operation. SCI5 starts operation when the WAIT pin changes to "0".

Figure 23-8-(a) shows the transmission operation timing during a consecutive transfer, and Figure 23-8-(b) shows the reception operation timing during a consecutive transfer.

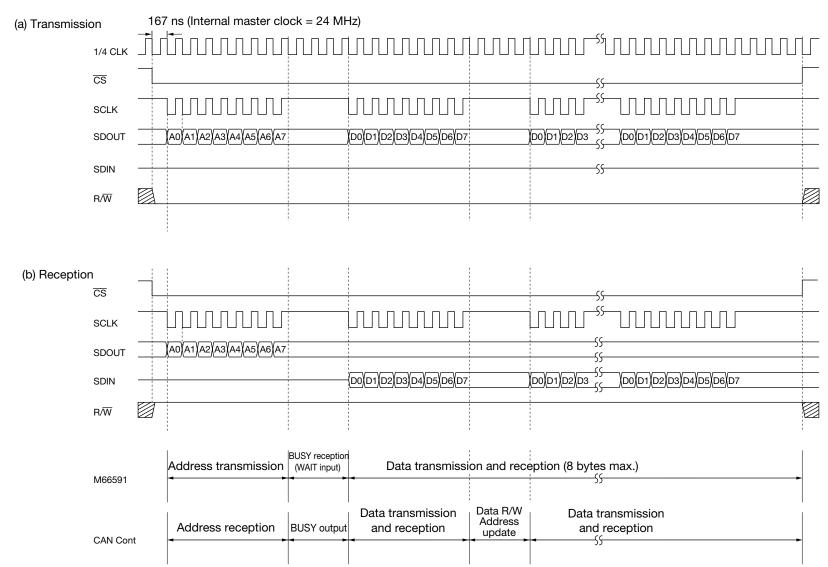


Figure 23-8 Consecutive Transfer Operation Timing (Internal Master Clock = 24 MHz)

Chapter 24

RAM Monitor Function

24. RAM Monitor Function

The MSM66591/ML66592 have a RAM monitor function that monitors data written to a set address in the data memory area during the execution of an instruction.

In the MSM66591 this function monitors data written to an address from 0000H to 19FFH in the data memory area, and in the ML66592 it monitors data written to an address from 0000H to 21FFH.

The RAM monitor function operates as follows. After data has been written to a set RAM address, an "address matching" signal is output when the set ROM address and program counter match. Monitor data is read by a synchronous serial transfer (by the slave) when this matching output is received.

ROM or RAM addresses to be monitored are set with synchronous serial transfers (by the slave).

Note that the MSM66Q591/ML66Q592 flash EEPROM version and the MSM66591/ML66592 mask ROM version have different pins to set the RAM monitor function.

In the MSM66Q591/ML66Q592 flash EEPROM version, the RAM monitor function cannot be used in the user mode used for reprogramming the flash EEPROM.

24.1 Configuration of RAM Monitor Function

Figure 24-1 shows the configuration of the RAM monitor function.

The RAM monitor function consists of a 21-bit shift register, a ROM address buffer, a RAM address buffer, a RAM data register, comparators and a control circuit. A total of four pins are used for data transfer: P11_0/RMRX (set address input), P11_1/RMTX (RAM data output), P11_2/RMCLK (synchronous clock input for data transfer), P11_3/RMACK (address match detect output).

In the MSM66Q591/ML66Q592 flash EEPROM version, the RAM monitor function is enabled when the $\overline{\text{EA}}$ pin is set to a "H" level; in the MSM66591/ML66592 mask ROM version, the RAM monitor function is enabled when the TEST pin is set to a "H" level. In the initial state (MSM66Q591/ML66Q592: state where $\overline{\text{EA}}$ pin is at a "L" level or a "H" level, MSM66591/ML66592: state where the TEST pin is at a "L" level), the entire contents of the shift register, ROM address buffer, RAM address buffer and RAM data register are initialized to 00000H.

24

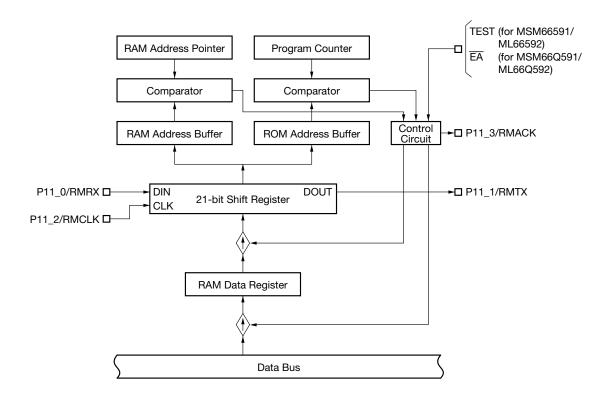


Figure 24-1 RAM Monitor Configuration

24.2 Configuration of Serial Transfer Data

Figure 24-2 shows the format of transfer data (RAM address/ROM address to be set, RAM address to be read).

The transfer data length is 21 bits. In accordance with the synchronous clock input to the RMCLK pin, data is transferred LSB first.

The desired RAM address to be read can be set within the range from 0000H to 19FFH for the MSM66591 and from 0000H to 21FFH for the ML66592. Data can be read from the set RAM address only if a write operation has been performed. If a read operation is attempted after an instruction other than a write instruction, such as in the case of a counter (including ACC, PSW, etc.) whose contents are changed automatically, incorrect values may be read.

The ROM address setting range is from 00000H to 1FFFDH for the MSM66591 and from 0000H to 2FFFDH for the ML66592.

<Description of Each Bit>

[RAM or ROM address reception]

- RAM address field (bit 0 to bit 15: when setting a RAM address)
 Sets the RAM address desired to be read.
- ROM address field (bit 0 to bit 17: when setting a ROM address)
 Sets the ROM address that determines read timing for the RAM address desired to be read.
- MODE (bit 18)

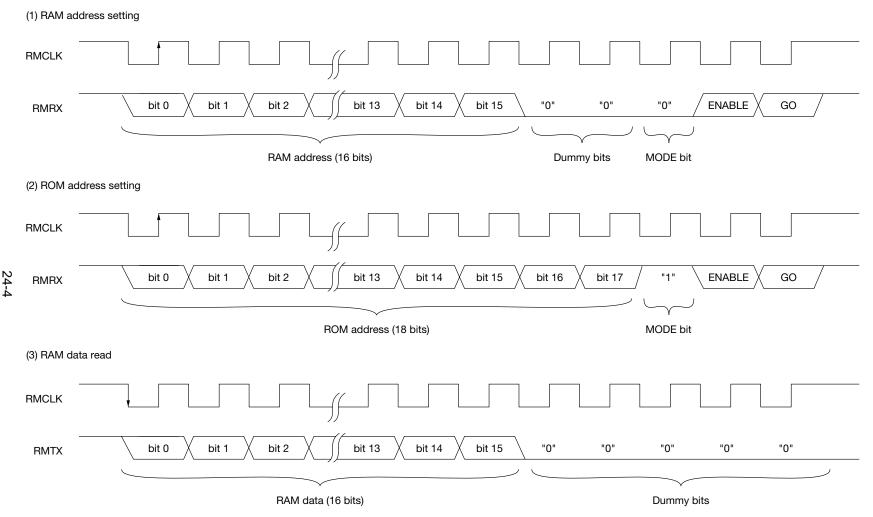
If setting a ROM address, set the MODE bit to "1". If setting a RAM address, set to "0".

• ENABLE (bit 19)

The enable bit specifies whether the addresses that have been set are valid or invalid. If the enable bit is "1", the addresses that were input are valid and are stored in each address buffer. If the enable bit is "0", the addresses that were input are ignored.

• GO (bit 20)

This bit controls operation of the RAM monitor. When the GO bit is "1", the RAM monitor function starts monitor operation at the set address. When the GO bit is "0", operation is stopped.


[RAM data transmission]

RAM data field (bit 0 to bit 15)

Outputs data at the RAM address desired to be read.

- [Notes] 1. When setting a RAM address, be sure to set the dummy bits (bit 16 and bit 17) to "0".
 - 2. The dummy bits (bit 16 to bit 20) in the transmit format of the RAM data desired to be read always output "0".

24

Note: The operation of (1) and (3) are simultaneously performed in synchronization with RMCLK. The operation of (2) and (3) are performed in the same manner.

Figure 24-2 Transfer Data Format

24.3 RAM Monitor Function Operation

To enable the RAM monitor function, set the $\overline{\text{EA}}$ pin to a "H" level for the MSM66Q591/ML66Q592, and set the TEST pin to a "H" level for the MSM66591/ML66592. Do not apply a high voltage (more than 5 V) to the $\overline{\text{EA}}$ and TEST pins of the MSM66591/ML66592 mask ROM version, because those pins of the mask ROM version will be damaged if a high voltage is applied to. Care must be taken especially when the mask ROM version and the flash EEPROM version share the substrate. With this setting, the secondary functions of P11_0 to P11_3 (RMRX, RMTX, RMCLK, and RMACK) will be enabled. The operating modes (RESET, STOP, and HALT) of the microcontroller do not affect operation of the RAM monitor function.

In the MSM66Q591/ML66Q592 flash EEPROM version, the RAM monitor function cannot be used in the user mode used for reprogramming the flash EEPROM.

This RAM monitor function requires that two addresses be set, a RAM address and a ROM address. Either address may be set first. The following example describes the case in which the RAM address is set first.

[1] Setting the addresses

First, as shown in the RAM address setting timing diagram of Figure 24-2 (1), set the RAM address desired to be read by inputting a serial input to the RMRX pin in accordance with the synchronous clock RXCLK. (Set MODE bit = "0", ENABLE bit = "1", and GO bit = "0".)

Next, determine the read timing for the RAM data desired to be read. Set a ROM address in accordance with the ROM address setting timing diagram of Figure 24-2 (2). (Set MODE bit = "1", ENABLE bit = "1", and GO bit = "1".)

When the RAM monitor function detects that the GO bit of the received ROM address is "1", the ROM address is loaded in the ROM address buffer, and address comparison is started.

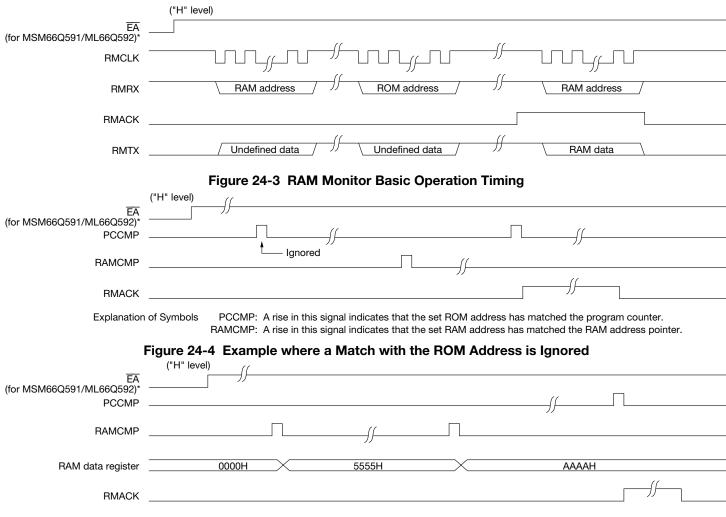
[2] Detection of address matching

When data is written to the set RAM address, the same data is also loaded into the RAM data register.

Next, when the program counter matches the set ROM address, the RMACK pin changes from a "L" to a "H" level, and address comparison is halted until another address whose GO bit is "1" is set. The RMACK pin remains at a "H" level until reading of the RAM data is complete. If the program counter matches the ROM address before matching the RAM address, as shown in Figure 24-4, the match with the ROM address is ignored. On the other hand, if there is another match with the RAM address before a match with the ROM address, as shown in Figure 24-5, the contents of the RAM data register are updated.

[3] Reading data

After the RMACK pin changes to a "H" level, by inputting an external synchronous clock to the RXCLK pin, contents of the RAM data register are read via the RMTX pin. The RMACK pin changes to a "L" level when the read is complete.


Because a new address can be set from the RMRX pin at the same time as data is read from the RMTX pin, reading can be restarted at a new address immediately after the current read is complete. To restart at the same address (without changing the address setting), set the ENABLE bit to "0" and only the GO bit to "1". (The values of the address bits are arbitrary.)

24

In the MSM66Q591/ML66Q592, when the \overline{EA} pin is brought back to a "L" or "H" level, the RAM monitor function is disabled and the control circuit is initialized.

In the MSM66591/ML66592, when the TEST pin is brought back to a "L" level, the RAM monitor function is disabled and the control circuit is initialized.

When enabling the RAM monitor function, externally apply a "H" level to the P11_0/RMRX pin and to the P11_2/RMCLK pin in advance.

Explanation of Symbols PCCMP: A rise in this signal indicates that the set ROM address has matched the program counter.

RAMCMP: A rise in this signal indicates that the set RAM address has matched the RAM address pointer.

* For the MSM66591/ML66592 mask ROM version, it is the TEST pin that is used to set the RAM monitor function, in which case a "H" level (5 V) is applied to the TEST pin.

Figure 24-5 Example of RAM Data Register Update Timing

Chapter 25

Electrical Characteristics

25. Electrical Characteristics

[MSM66591 Electrical Characteristics]

25.1 Absolute Maximum Ratings

MSM66591

Parameter	Symbol	Condition		Rating	Unit
Digital power supply voltage	V_{DD}			-0.3 to +7.0	
Input voltage	V_{l}			-0.3 to V _{DD} + 0.3	
Output voltage	Vo	-0.3 to V _{DD} + 0.3			
Analog power supply voltage	AV_{DD}	$GND = AGND = 0 V$ $-0.3 \text{ to } V_{DD} + 0.3$			
Analog reference voltage	V_{RFF}	Ta = 25°C		-0.3 to V _{DD} + 0.3 and	V
Analog reference voltage	V REF		14 - 25 0	-0.3 to AV _{DD} + 0.3	
Analog input voltage	V_{AI}			–0.3 to V _{REF}	
High-voltage tolerant input voltage*2	V_{HV}			-0.3 to +13	
Dower dissipation	D	Ta = 115°C ^{*1}	per package	300	mW
Power dissipation	P_{D}	113 0	per output	50	11100
Storage temperature	T_{STG}	_		−50 to +150	°C

^{*1} If this device is used in circumstances where the ambient temperature (Ta) exceeds 85°C, be sure to contact your local Oki sales office in advance.

*2 Applied to TEST, EA. Only for MSM66Q591
Apply a high voltage to the TEST or EA pin after a voltage within the range (4.75 to 5.25 V) guaranteed for operation is applied to V_{DD}.
Remove a high voltage from the TEST or EA pin while a voltage within the range (4.75 to 5.25 V) guaranteed for operation is being applied to V_{DD}.

25.2 Operating Range

MSM66591

Parameter	Symbol	С	ondition	Range	Unit
Digital power supply voltage	V_{DD}	20 MHz ≤	f _{OSC} ≤ 24 MHz ^{*1}	4.5 to 5.5	
Analog power supply voltage	AV_{DD}	$V_{DD} = A_{VDD}$		4.5 to 5.5	
Analog reference voltage	V _{REF}		_	AV_{DD} – 0.3 to AV_{DD}	V
Analog input voltage	V_{AI}		_	AGND to V _{REF}	
Memory hold voltage	V_{DDH}	fos	$_{SC} = 0 \text{ Hz}^{*1}$	2.0 to 5.5	
Operating frequency	fosc*1	V _{DD} :	= 5 V ±10%	20 to 24	MHz
Ambient temperature	Ta ^{*2}		_	-40 to +115	°C
		MOS load		20	_
Fanout	N	TTL load	P0, P7_0-P7_3	2	_
			P1-P12 (except P7_0-P7_3)	1	_
Digital power supply voltage during Flash ROM programming*3	V_{WR}	Ta = -40 to +90°C		4.75 to 5.25	V
Ambient temperature during Flash ROM programming*3	T _{WR}	V _{DD} = 4.75 to 5.25 V		-40 to +90	°C
Flash ROM programming cycle*3	C _{WR}	Ta = -40 to +90°C V_{DD} = 4.75 to 5.25 V		100	cycle

^{*1} f_{OSC} is the frequency of the internal master clock (the master clock is the frequency generated by multiplying the original oscillation clock by 2).

^{*2} If this device is used in circumstances where the ambient temperature (Ta) exceeds 85°C, be sure to contact your local Oki sales office in advance.

^{*3} Only for MSM66Q591

25.3 DC Characteristics

MSM66591

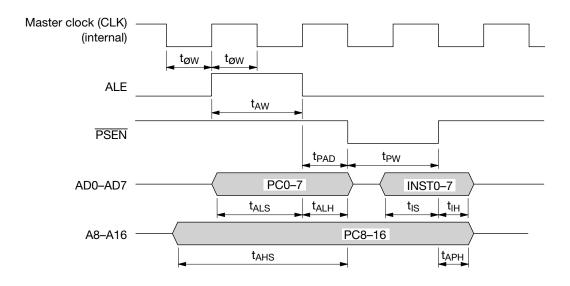
 $(V_{DD} = 5 \text{ V} \pm 10\%, \text{ Ta} = -40 \text{ to} +115^{\circ}\text{C})^{*2}$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
"H" level input voltage 1	1/		2.2	_	$V_{DD} + 0.3$	
"H" level input voltage 2,4,5,6,7	VIH	_	0.80V _{DD}	_	V _{DD} + 0.3	
"L" level input voltage 1			-0.3	_	0.8	
"L" level input voltage 2,4,5,6,7	V _{IL}	_	-0.3	_	0.2V _{DD}	v
"H" level output voltage 1,4	V _{OH}	I _O = -400 μA	V _{DD} – 0.4	_	_	•
"H" level output voltage 2	VOH	I _O = -200 μA	V _{DD} – 0.4	_	_	
"L" level output voltage 1,4	V ₂ .	I _O = 3.2 mA	_	_	0.4	
"L" level output voltage 2	V _{OL}	I _O = 1.6 mA	_	_	0.4	
Input leakage current 3			_	_	0.1/-0.1	
Input leakage current 6] , ,,	V V (0.V	_	_	1/–1	
Input current 5	liH/li∟	$V_I = V_{DD}/0 V$	_	_	1/–250	μА
Input current 7			_	_	15/–15	
"H" level output current 1,4		V _O = 2.4 V	-2	_	_	mA
"H" level output current 2	Іон		-1	_	_	
"L" level output current 1,4			10	_	_	
"L" level output current 2	loL		5	_	_	
Output leakage current 1,2,4	ILO	$V_O = V_{DD}/0 V$	_	_	±2	μА
Input capacity	Cı	f = 1 MHz, Ta = 25°C	_	5	_	nE
Output capacity	Co		_	7	_	pF
Analog reference power	I _{REF}	A/D conversion in progress	_	_	12	mA
supply current	INEF	A/D conversion stopped	_	_	10	μА
Supply current	I _{DDS}	$V_{DD} = 2 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}$ *	_	0.2	10	μΑ
(in STOP mode)	פטטי	*	_	1	100	μΛ
Supply current (in HALT mode)	I _{DDH}	f _{OSC} = 24 MHz*1,	_	55	70	mA
Supply current	I _{DD}	No Load	_	80	100	
High-voltage tolerant input voltage *3,4	V _{IHV}	V _{DD} = 4.75 to 5.25 V	V _{DD} + 4.75	_	12	V
High-voltage tolerant input current*3,4	l _{IHV}	$V_{DD} = 4.75 \text{ to } 5.25 \text{ V}$ $V_{IHV} = V_{DD} + 0.3 \text{ to } 12 \text{ V}$	_	_	1	mA

- 1. Applied to P0
- 2. Applied to P1–P12 (excluding P7_0–P7_3)
- 3. Applied to AI0-AI23
- 4. Applied to P7_0-P7_3
- 5. Applied to RES
- 6. Applied to EA, OE, NMI
- 7. Applied to OSC0
- * Ports configured to be input should be connected to V_{DD} or 0 V; other ports should take no load.

- *1 f_{OSC} is the frequency of the internal master clock.
- *2 If this device is used in circumstances where the ambient temperature (Ta) exceeds 85°C, be sure to contact your local Oki sales office in advance.
- *3 Applied to TEST, EA. Only for MSM66Q591
- *4 When programming data into Flash ROM using Oki's Flash ROM programmer or YDC's Flash ROM programmer, use a resistor of 1 k Ω or less if connecting an external resistor in series with the TEST pin.
 - Apply a high voltage to the TEST or \overline{EA} pin after a voltage within the range (4.75 to 5.25 V) guaranteed for operation is applied to V_{DD} .
 - Remove a high voltage from the TEST or \overline{EA} pin while a voltage within the range (4.75 to 5.25 V) guaranteed for operation is being applied to V_{DD} .

25.4 AC Characteristics


[1] External Program Memory Control

MSM66591

$(V_{DD} = 5 \text{ V} \pm 10\%, \text{ Ta} = -40 \text{ to} +$

Parameter	Symbol	Condition	Min.	Max.	Unit
Master clock (CLK) pulse width	t _{øW} *1	_	20.8	25	
ALE pulse width	t _{AW}		2t _{ØW} – 10		
PSEN pulse width	t _{PW}		2t _{øW} – 10		
PSEN pulse delay time	t _{PAD}		t _{øW} – 10	t _{øW} + 10	
Low address setup time	t _{ALS}		2t _{ØW} – 15	2t _{ØW} + 3	ns
Low address hold time	t _{ALH}	$C_{L} = 50 \text{ pF}$	t _{øW} – 10	t _{øW} + 10	113
High address setup time	t _{AHS}		3t _{øW} – 10	4t _{øW} + 3	
High address hold time	taph		0	t _{øW} + 10	
Instruction setup time	t _{IS}		30	_	
Instruction hold time	t _{IH}		0	t _{øW} – 10	

- *1 The master clock pulse is the frequency generated by multiplying the original oscillation clock by 2.
- *2 If this device is used in circumstances where the ambient temperature (Ta) exceeds 85°C, be sure to contact your local Oki sales office in advance.

25.5 A/D Converter Characteristics

MSM66591

$(Ta = -40 \text{ to } +115^{\circ}\text{C}, AV_{DD} = V_{DD})$	$= V_{RFF} = 5 V \pm 10\%$, AGND =	$GND = 0 V$, $f_{OSC} = 24 MHz)^{*1,2}$
(- 1 1	

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Resolution	n	Refer to the measurement	_	_	10	Bit
Linearity error	EL	circuit (Figure 25-1)	_	_	±3	
Differential linearity error	ED	Analog input source impedance	_	_	±1	
Zero scale error	Ezs	$R_l \le 5 k\Omega$ $t_{CONV} = 16 \mu s$	_	_	+3	LSB
Full scale error	E _{FS}		_	_	-3	LOD
Crosstalk	Ест	Refer to the measurement circuit (Figure 25-2)	_	_	±1	
Conversion time	tconv	by ADTM set data	10.7	_	21.3	μs/ch

- *1 f_{OSC} is the frequency of the internal master clock (the master clock is the frequency generated by multiplying the original oscillation clock by 2).
- *2 If this device is used in circumstances where the ambient temperature (Ta) exceeds 85°C, be sure to contact your local Oki sales office in advance.

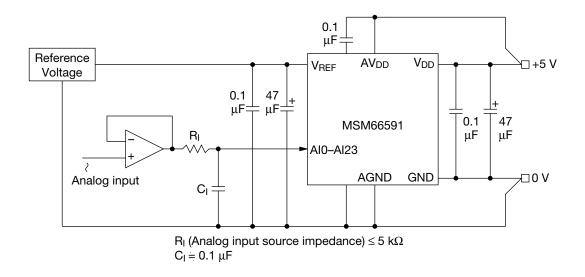


Figure 25-1 Measurement Circuit (MSM66591)

Crosstalk is defined as the difference between the A/D conversion result when applying the identical analog input to AIO-AI23 and the A/D conversion result in the circuit in the left figure.

Figure 25-2 Crosstalk Measurement Circuit (MSM66591)

Definition of Terminology

Resolution

Resolution is the value of minimum discernible analog input.

With 10 bits, since $2^{10} = 1024$, resolution of $(V_{RFF} - AGND) \div 1024$ is possible.

2. Linearity error

Linearity error is the difference between ideal conversion characteristics and actual conversion characteristics of a 10-bit A/D converter (not including quantization error).

Ideal conversion characteristics can be obtained by dividing the voltage between V_{REF} and AGND into 1024 equal steps.

Differential linearity error

Differential linearity error indicates the smoothness of conversion characteristics. Ideally, the range of analog input voltage that corresponds to 1 converted bit of digital output is $1LSB = (V_{REF} - AGND) \div 1024$. Differential error is the difference between this ideal bit size and bit size of an arbitrary point in the conversion range.

Zero scale error

Zero scale error is the difference between ideal conversion characteristics and actual conversion characteristics at the point where the digital output changes from 000H to 001H.

5. Full-scale error

Full-scale error is the difference between ideal conversion characteristics and actual conversion characteristics at the point where the digital output changes from 3FEH to 3FFH.

[ML66592 Electrical Characteristics]

25.6 Absolute Maximum Ratings

ML66592

Parameter	Symbol	Condition		Rating	Unit		
Digital power supply voltage	V_{DD}			-0.3 to +7.0			
Input voltage	VI			-0.3 to V _{DD} + 0.3			
Output voltage	Vo	-0.3 to V _{DD} -		-0.3 to V _{DD} + 0.3			
Analog power supply voltage	AV_{DD}	GNE) = AGND = 0 V	-0.3 to V _{DD} + 0.3			
Analog reference voltage	V _{REF}			-0.3 to V _{DD} + 0.3 and	V		
Analog reference voltage	VREF					-0.3 to AV _{DD} + 0.3	
Analog input voltage	V_{AI}			-0.3 to V _{REF}			
High-voltage tolerant input voltage*2	V _{HV}			-0.3 to +13			
Dawer dissipation	В	Ta = 95°C*1	per package	730	mW		
Power dissipation	P _D	1a - 35 C	per output	50	11100		
Storage temperature	T _{STG}			-50 to +150	°C		

^{*1} If this device is used in circumstances where the ambient temperature (Ta) exceeds 85°C, be sure to contact your local Oki sales office in advance.

*2 Applied to TEST, EA. Only for ML66Q592
Apply a high voltage to the TEST or EA pin after a voltage within the range (4.75 to 5.25 V) guaranteed for operation is applied to V_{DD}.
Remove a high voltage from the TEST or EA pin while a voltage within the range (4.75 to 5.25 V) guaranteed for operation is being applied to V_{DD}.

25.7 Operating Range

ML66592

Parameter	Symbol	С	ondition	Range	Unit
Digital power supply voltage	V_{DD}	20 MHz ≤	f _{OSC} ≤ 28 MHz*1	4.5 to 5.5	
Analog power supply voltage	AV_{DD}	$V_{DD} = A_{VDD}$		4.5 to 5.5	
Analog reference voltage	V_{REF}		_	AV_{DD} – 0.3 to AV_{DD}	V
Analog input voltage	V_{AI}		_	AGND to V _{REF}	
Memory hold voltage	V_{DDH}	fos	$_{SC} = 0 \text{ Hz}^{*1}$	2.0 to 5.5	
Operating frequency	fosc*1	V _{DD} :	= 5 V ±10%	20 to 28	MHz
Ambient temperature	Ta ^{*2}		_	-40 to +95	°C
		MOS load		20	
Fanout	N	TTL load	P0, P7_0-P7_3	2	_
			P1-P12 (except P7_0-P7_3)	1	_
Digital power supply voltage during Flash ROM programming*3	V_{WR}	Ta = -40 to +90°C		4.75 to 5.25	V
Ambient temperature during Flash ROM programming*3	T _{WR}	V _{DD} = 4.75 to 5.25 V		-40 to +90	°C
Flash ROM programming cycle*3	C _{WR}	Ta = -40 to +90°C V _{DD} = 4.75 to 5.25 V		100	cycle

^{*1} f_{OSC} is the frequency of the internal master clock (the master clock is the frequency generated by multiplying the original oscillation clock by 2).

^{*2} If this device is used in circumstances where the ambient temperature (Ta) exceeds 85°C, be sure to contact your local Oki sales office in advance.

^{*3} Only for ML66Q592

25.8 DC Characteristics

ML66592

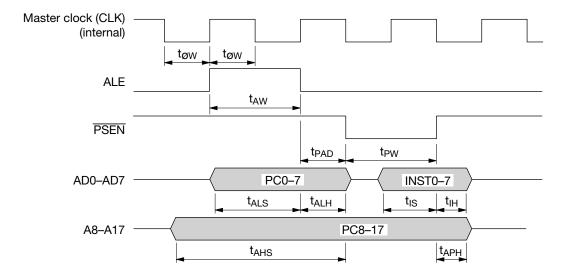
 $(V_{DD} = 5 \text{ V} \pm 10\%, \text{ Ta} = -40 \text{ to } +95^{\circ}\text{C})^{*2}$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
"H" level input voltage 1	V		2.2	_	V _{DD} + 0.3	
"H" level input voltage 2,4,5,6,7	VIH	V _{IH} —		_	V _{DD} + 0.3	
"L" level input voltage 1			-0.3	_	0.8	
"L" level input voltage 2,4,5,6,7	VIL	V _{IL} —		_	0.2V _{DD}	v
"H" level output voltage 1,4	V	Ιο = -400 μΑ	V _{DD} – 0.4	_	_	•
"H" level output voltage 2	Voh	Ι _Ο = –200 μΑ	V _{DD} – 0.4	_	_	
"L" level output voltage 1,4	V	I _O = 3.2 mA	_	_	0.4	
"L" level output voltage 2	V _{OL}	I _O = 1.6 mA	_	_	0.4	
Input leakage current 3			_	_	0.1/–0.1	
Input leakage current 6	1/1	V: V== /0 V	_	_	1/–1	
Input current 5	I _{IH} /I _{IL}	$V_I = V_{DD}/0 V$	_	_	1/–250	μΑ
Input current 7			_	_	15/–15	
"H" level output current 1,4	la	V _O = 2.4 V	-2	_	_	mA
"H" level output current 2	Іон		-1	_	_	
"L" level output current 1,4	I	VO - 2.4 V	10	_	_	
"L" level output current 2	l _{OL}		5	_	_	
Output leakage current 1,2,4	ILO	$V_O = V_{DD}/0 V$	_	_	±2	μΑ
Input capacity	Cı	f = 1 MHz, Ta = 25°C	_	5	_	nE
Output capacity	Co	1 = 1 WHZ, 1a = 25 C	_	7	_	pF
Analog reference power	I _{REF}	A/D conversion in progress	_		12	mA
supply current	'NLI	A/D conversion stopped	_	_	10	μΑ
Supply current	I _{DDS}	$V_{DD} = 2 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}$ *	_	0.2	10	μА
(in STOP mode)	1000	*	_	1	100	μ. ·
Supply current (in HALT mode)	I _{DDH}	$f_{OSC} = 28 \text{ MHz}^{*1},$ No Load	_	65	90	mA
Supply current	I _{DD}	NO LOAG	_	95	120	
High-voltage tolerant input voltage*3,4	V _{IHV}	V _{DD} = 4.75 to 5.25 V	V _{DD} + 4.75	_	12	V
High-voltage tolerant input current*3,4	I _{IHV}	$V_{DD} = 4.75 \text{ to } 5.25 \text{ V}$ $V_{IHV} = V_{DD} + 0.3 \text{ to } 12 \text{ V}$	_	_	1	mA

- 1. Applied to P0
- 2. Applied to P1-P12 (excluding P7_0-P7_3)
- 3. Applied to AI0-AI23
- 4. Applied to P7_0-P7_3
- 5. Applied to RES
- 6. Applied to EA, OE, NMI
- 7. Applied to OSC0
- * Ports configured to be input should be connected to V_{DD} or 0 V; other ports should take no load.

- *1 f_{OSC} is the frequency of the internal master clock.
- *2 If this device is used in circumstances where the ambient temperature (Ta) exceeds 85°C, be sure to contact your local Oki sales office in advance.
- *3 Applied to TEST, EA. Only for ML66Q592
- *4 When programming data into Flash ROM using Oki's Flash ROM programmer or YDC's Flash ROM programmer, use a resistor of 1 k Ω or less if connecting an external resistor in series with the TEST pin.
 - Apply a high voltage to the TEST or \overline{EA} pin after a voltage within the range (4.75 to 5.25 V) guaranteed for operation is applied to V_{DD} .
 - Remove a high voltage from the TEST or \overline{EA} pin while a voltage within the range (4.75 to 5.25 V) guaranteed for operation is being applied to V_{DD} .

25.9 AC Characteristics (Preliminary)


[1] External Program Memory Control

ML66592

 $(V_{DD} = 5 \text{ V} \pm 10\%, \text{ Ta} = -40 \text{ to} +95^{\circ}\text{C})^{*2}$

Parameter	Symbol	Condition	Min.	Max.	Unit
Master clock (CLK) pulse width	t _{øW} *1	_	20.8	25	
ALE pulse width	t _{AW}		2t _{ØW} – 10	_	
PSEN pulse width	tpw		2t _{ØW} – 10	_	
PSEN pulse delay time	t _{PAD}		t _{øW} – 10	t _{øW} + 10	
Low address setup time	t _{ALS}	fosc ≤ 24 MHz*3	2t _{øW} – 15	2t _{øW} + 3	ns
Low address hold time	t _{ALH}	C _L = 50 pF	t _{øW} – 10	t _{øW} + 10	113
High address setup time	t _{AHS}		3t _{øW} – 10	4t _{øW} + 3	
High address hold time	t _{APH}		0	t _{øW} + 10	
Instruction setup time	tıs		30	_	
Instruction hold time	t _{IH}		0	t _{øW} – 10	

- *1 The master clock pulse is the frequency generated by multiplying the original oscillation clock by 2.
- *2 If this device is used in circumstances where the ambient temperature (Ta) exceeds 85°C, be sure to contact your local Oki sales office in advance.
- *3 In the ML66Q592, the electrical characteristics for external memory access apply when the (internal) master clock frequency is 24 MHz or less.

25.10 A/D Converter Characteristics

ML66592

$(Ta = -40 \text{ to } +95^{\circ}C,$	$\Delta V_{DD} = V_{DD} = V_{DD}$	5 V +10% AGND	- GND - 0 V for	$20 - 28 \text{ MHz}^{1.2}$
11a = -40 10 +90 0.	Avdd = vdd = vre	F = 3 V IIU%. AGIND	' = GIND = U V. 109	$SC = ZO VI \square ZI \cdot \cdot \cdot = 1$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Resolution	n	Refer to the measurement	_	_	10	Bit
Linearity error	EL	circuit (Figure 25-3)	_	_	±3	
Differential linearity error	ED	Analog input source impedance	_	_	±1	
Zero scale error	Ezs	$R_{I} \leq 5 k\Omega$	_	_	+3	LSB
Full scale error	E _{FS}	t _{CONV} = 18.3 μs	_	_	-3	LOD
Crosstalk	Ест	Refer to the measurement circuit (Figure 25-4)	_	_	±1	
Conversion time	tconv	by ADTM set data	9.1	_	18.3	μs/ch

- *1 f_{OSC} is the frequency of the internal master clock (the master clock is the frequency generated by multiplying the original oscillation clock by 2).
- *2 If this device is used in circumstances where the ambient temperature (Ta) exceeds 85°C, be sure to contact your local Oki sales office in advance.

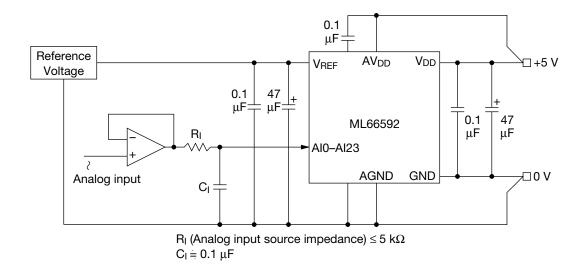
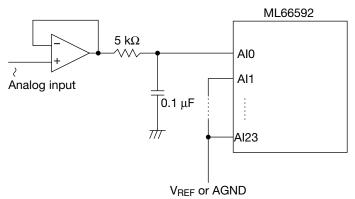



Figure 25-3 Measurement Circuit (ML66592)

Crosstalk is defined as the difference between the A/D conversion result when applying the identical analog input to AI0–AI23 and the A/D conversion result in the circuit in the left figure.

Figure 25-4 Crosstalk Measurement Circuit (ML66592)

Definition of Terminology

Resolution

Resolution is the value of minimum discernible analog input.

With 10 bits, since $2^{10} = 1024$, resolution of $(V_{REF} - AGND) \div 1024$ is possible.

2. Linearity error

Linearity error is the difference between ideal conversion characteristics and actual conversion characteristics of a 10-bit A/D converter (not including quantization error).

Ideal conversion characteristics can be obtained by dividing the voltage between V_{REF} and AGND into 1024 equal steps.

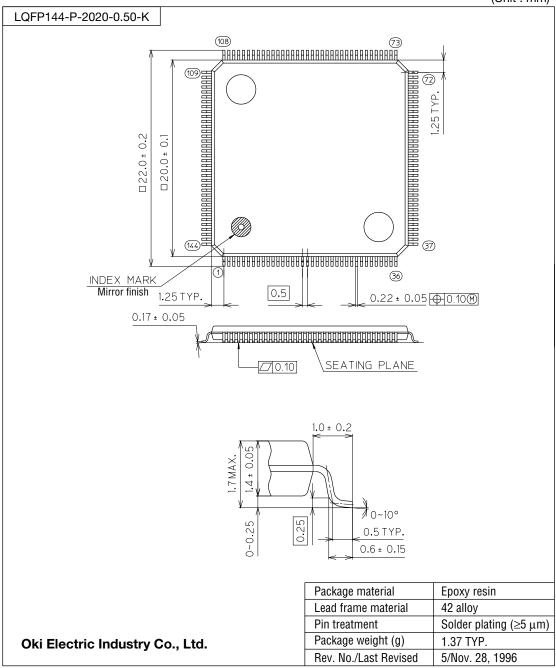
3. Differential linearity error

Differential linearity error indicates the smoothness of conversion characteristics. Ideally, the range of analog input voltage that corresponds to 1 converted bit of digital output is $1LSB = (V_{REF} - AGND) \div 1024$. Differential error is the difference between this ideal bit size and bit size of an arbitrary point in the conversion range.

4. Zero scale error

Zero scale error is the difference between ideal conversion characteristics and actual conversion characteristics at the point where the digital output changes from 000H to 001H.

Full-scale error


Full-scale error is the difference between ideal conversion characteristics and actual conversion characteristics at the point where the digital output changes from 3FEH to 3FFH.

Chapter 26

Package Dimensions

26. Package Dimensions

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

Chapter 27

Revision History

27. Revision History

D		Page			
Document No.	Date	Previous Edition	Current Edition	Description	
FEUL66591-66592-01	Mar. 4, 2002	_	_	First edition	

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2002 Oki Electric Industry Co., Ltd.