

Current Transducer LB 100-S/SP3

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 100 A$

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		100 0 ± 200 $R_{M min} R_{M max}$		A A
	with ± 15 V	@ ± 100 A _{max}	0	85	W
		@ \pm 200 A $_{max}$	0	30	W
I _{sn}	Secondary nominal r.m.s. current		100		mΑ
K _N	Conversion ratio		1:1000)	
V _C	Supply voltage (± 5 %)	± 15		V
I _C	Current consumption		20 + I _s		mΑ
V_d	R.m.s. voltage for AC i	solation test, 50 Hz, 1 mn	5 ¹⁾		kV

Accuracy - Dynamic performance data

х е	Accuracy @ $I_{PN_r} T_A = 25^{\circ}C$ Linearity		± 0.5 < 0.1		% %
I _o	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O	+ 10°C + 50°C		Max ± 0.4 ± 0.4	mA mA
t _r di/dt f	Response time ²⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB) Zero crossing distortion		< 1 > 50 DC 1 neglige		μs Α/μs kHz

General data

T _A T _s R _s m	Ambient operating temperature Ambient storage temperature Secondary coil resistance @ T _A = 50°C Mass	+ 10 + 50 - 25 + 85 25 180	м °С °С
	Standards 3)	EN 50178	

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $\cdot V_{c} = \pm 15 (\pm 5 \%) V$
- · Better zero crossing performance
- $T_A = +10^{\circ}C ... + 50^{\circ}C$
- · Potted.

Advantages

- Excellent accuracy
- · Very good linearity
- · Low temperature drift
- · Optimized response time
- · Wide frequency bandwidth
- · No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- · Battery supplied applications
- · Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications
- · HVDC transmisions.

Notes: 1) Between primary and secondary.

2) With a di/dt of 100 A/µs

³⁾ A list of corresponding tests is available.

Dimensions LB 100-S/SP3 (in mm. 1 mm = 0.0394 inch)

Secondary terminals

Terminal + : supply voltage + 15 V

Terminal M: measure

Terminal - : supply voltage - 15 V

Connection

Mechanical characteristics

· General tolerance

Top view

- Fastening
- · Primary through-hole
- · Connection of secondary
- ± 0.3 mm
- 4 holes Æ 4.3 mm
- Æ 15 mm
- Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 70°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.