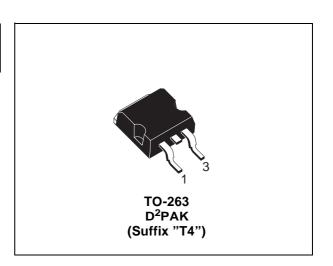


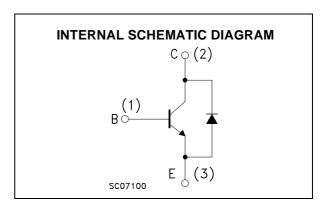
BULB49D

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

Ordering Code	Marking	Package / Shipment
BULB49DT4	BULB49D	D ² PAK / Tape & Reel

- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- HIGH RUGGEDNESS
- SURFACE MOUNTING TO-263 (D²PAK)
 POWER PACKAGE IN TAPE & REEL (SUFFIX "T4")


APPLICATIONS:


- ELECTRONIC TRANSFORMERS FOR HALOGEN LAMPS
- FLYBACK AND FORWARD SINGLE TRANSISTOR LOW POWER CONVERTERS

DESCRIPTION

The device is manufactured using High Voltage Multi Epitaxial Planar technology for high switching speeds and high voltage capability.

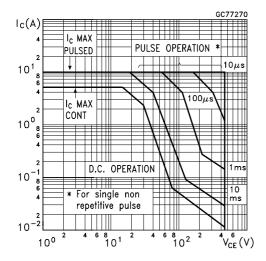
The BULB49D is designed for use in electronic transformers for halogen lamps.

ABSOLUTE MAXIMUM RATINGS

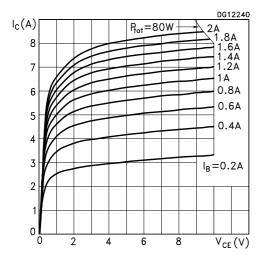
Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	850	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	450	V
V _{EBO}	Emitter-Base Voltage (I _C = 0, I _B < 2 A, t _p < 10 ms)	V _{(BR)EBO}	V
Ic	Collector Current	5	Α
I _{CM}	Collector Peak Current (t _p < 5 ms)	10	Α
I _B	Base Current	2	Α
I _{BM}	Base Peak Current (t _p < 5 ms)	4	Α
P _{tot}	Total Dissipation at T _c = 25 °C	80	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

September 2003 1/7

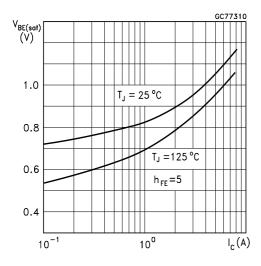
THERMAL DATA

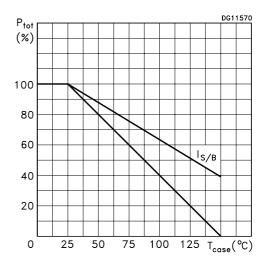

R _{thj-case}	Thermal Resistance Junction-case	Max	1.56	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	62.5	°C/W

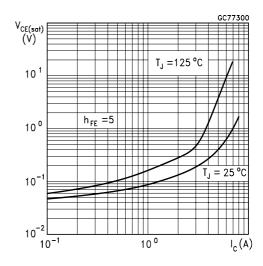
ELECTRICAL CHARACTERISTICS ($T_j = 25$ °C unless otherwise specified)

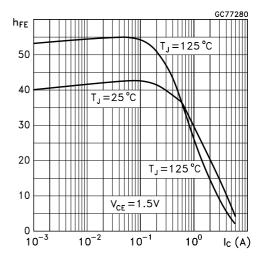

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 850 V V _{CE} = 850 V	T _j = 125 °C			100 500	μA μA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 9 V				100	μA
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	I _E = 10 mA		10		18	V
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 10 mA		450			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 1 A I _C = 2 A I _C = 4 A	I _B = 0.2 A I _B = 0.4 A I _B = 0.8 A		0.1	0.3 0.6 1.2	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 1 A I _C = 4 A	I _B = 0.2 A I _B = 0.8 A			1 1.3	V V
h _{FE} *	DC Current Gain	I _C = 10 mA I _C = 500 mA I _C = 7 A	V _{CE} = 5 V V _{CE} = 5 V V _{CE} = 10 V	10 4		60 10	
V _{CEW} *	Maximum Collector- Emitter Voltage Whithout Snubber	I _C = 8 A L = 50 μH t _p = 10 μs	V _{BB} = -2.5 V R _{BB} = 0	450			V
t _s	RESISTIVE LOAD Storage Time Fall Time	$I_C = 2 A$ $I_{B1} = -I_{B2} = 400 \text{ mA}$ (See Figure 1)	V _{CC} = 250 V	2		3 0.8	μs ns
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$I_C = 4 \text{ A}$ $I_{B(on)} = 800 \text{ mA}$ $V_{BE(off)} = -5 \text{ V}$ (See Figure 2)	$V_{CL} = 300 \text{ V}$ $R_{BB(off)} = 0$ $L = 1 \text{ mH}$		0.6 50	1.3 100	µs ns
V _f	Diode Forward Voltage	I _C = 3 A				1.5	V

 $^{^{\}star}$ Pulsed: Pulse duration = 300 $\mu s,$ duty cycle = 1.5 %.

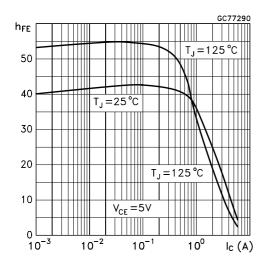

Safe Operating Area


Output Characteristics

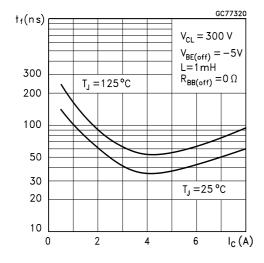

Base-Emitter Saturation Voltage


Derating Curve

Collector-Emitter Saturation Voltage



DC Current Gain



57

DC Current Gain

Inductive Load Fall Time

Inductive Load Storage Time

Reverse Biased Safe Operating Area

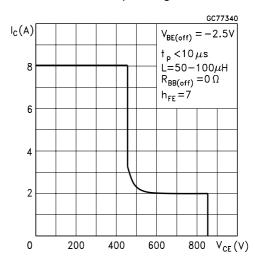


Figure 1: Resistive Load Switching Test Circuit

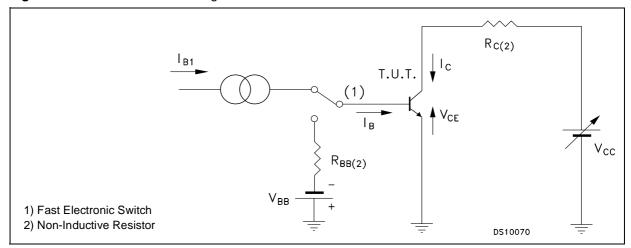
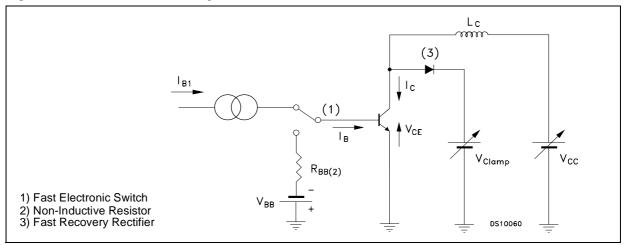
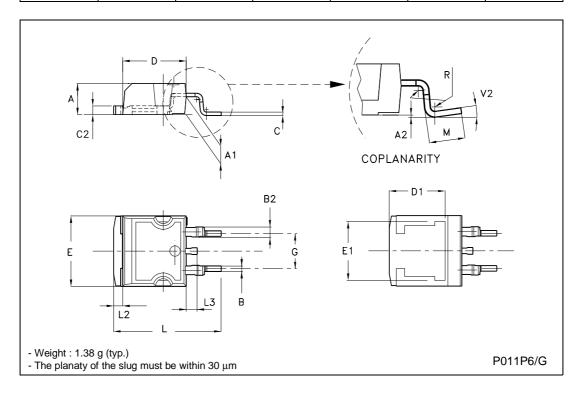




Figure 2: Inductive Load Switching Test Circuit

TO-263 (D²PAK) MECHANICAL DATA

DIM.	mm			inch		
DINI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.70		0.93	0.027		0.036
B2	1.14		1.70	0.044		0.067
С	0.45		0.60	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8.00			0.315	
E	10.00		10.40	0.393		0.409
E1		8.50			0.334	
G	4.88		5.28	0.192		0.208
L	15.00		15.85	0.590		0.624
L2	1.27	_	1.4	0.050		0.055
L3	1.40		1.75	0.055		0.068
М	2.40	_	3.2	0.094		0.126
R		0.40			0.016	
V2	0°		8°	0°		8°

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com