AK6480C/81C ## 8Kbit Serial CMOS EEPROM #### **Features** - ☐ ADVANCED CMOS EEPROM TECHNOLOGY - ☐ READ/WRITE NON-VOLATILE MEMORY - Wide VCC (1.8V to 5.5V) operation - 8192 bits: 512 × 16 organization - ☐ ONE CHIP MICROCOMPUTER INTERFACE - Interface with one chip microcomputer's serial communication port directly - ☐ LOW POWER CONSUMPTION - 0.8μA Max. (Standby mode) - ☐ HIGH RELIABILITY - Endurance : 1000K cycles/Address - Data Retention : 10 years - ☐ SPECIAL FEATURES - 8 word Page Write Mode - High speed operation (fMAX=5MHz: VCC=4.5V to 5.5V) - Automatic write cycle time-out with auto-ERASE (5ms Max.) - Automatic address increment (READ) - Ready/ Busy status signal - Software and Hardware controlled write protection #### ☐ IDEAL FOR LOW DENSITY DATA STORAGE - Low cost, space saving, 8-pin package (SOP, SSOP, MSOP, SON) Block diagram ## General Description The AK6480C/81C is a 8192bit, serial, read/write, non-volatile memory device fabricated using an advanced CMOS EEPROM technology. The AK6480C/81C has 8192bits of memory organized into 512 registers of 16 bits each. The AK6480C/81C can operate full function under wide operating voltage range from 1.8V to 5.5V. The charge up circuit is integrated for high voltage generation that is used for write operation. The AK6480C/81C can connect to the serial communication port of popular one chip microcomputer directly (3 line negative clock synchronous interface). At write operation, AK6480C/81C takes in the write data from data input pin (DI) to a register synchronously with rising edge of input pulse of serial clock pin (\overline{SK}). And at read operation, AK6480C/81C takes out the read data from a register to data output pin (DO) synchronously with falling edge of \overline{SK} . The AK6480C/81C has 5 instructions such as READ, WRITE, PAGE WRITE, WREN (write enable) and WRDS (write disable). Each instruction is organized by op-code block (8bits), address block (8bits) and data (8bits x 2). When input level of \overline{SK} pin is high level and input level of chip select (\overline{CS}) pin is changed from high level to low level, AK6480C/81C can receive the instructions. Special features of the AK6480C/81C include: automatic write time-out with auto-ERASE, Ready/ Busy status signal output and ultra-low standby power mode when deselected (CS =high). #### Software and Hardware controlled write protection The AK6480C/81C has 2 (hardware and software) write protection functions. After power on or after execution of WRDS (write disable) instruction, execution of WRITE instruction will be disabled. This write protection condition continues until WREN instruction is executed or VCC is removed from the part. Execution of READ instruction is independent of both WREN and WRDS instructions. Reset pin should be low level when WRITE instruction is executed. When the Reset pin is high level, the WRITE instruction is not executed. ## Ready/ Busy status signal During the automatic write time-out period (Busy status), the AK6480C/81C can't accept the other instructions. The AK6480C/81C has 2 functions to know the Busy status from exterior. The RDY/BUSY pin indicates the Busy status regardless of the CS pin status. The RDY/BUSY pin outputs the low level regardless of the CS pin status during Busy status. Except the above status, this pin outputs high level. Also the DO pin indicates the Busy status. When input level of SK pin is low level and input level of CS pin is changed from high level to low level, the AK6480C/81C is in the status output mode and the DO pin indicates the Ready/Busy status. The Ready/Busy status outputs on DO pin until CS pin is changed from low level to high level, or first bit ("1") of op-code of next instruction is given to the part. Except when the device is in the status output mode or outputs data, the DO pin is in the high impedance state. DAS04E-00 2005/03 # ■ Type of Products | Model | Temp.Range | VCC | Package | |----------|---------------|--------------|-------------------| | AK6480CF | -40°C to 85°C | 1.8V to 5.5V | 8pin Plastic SOP | | AK6480CM | -40°C to 85°C | 1.8V to 5.5V | 8pin Plastic SSOP | | AK6480CH | -40°C to 85°C | 1.8V to 5.5V | 8pin Plastic MSOP | | AK6480CL | -40°C to 85°C | 1.8V to 5.5V | 8pin Plastic SON | | AK6481CM | -40°C to 85°C | 1.8V to 5.5V | 8pin Plastic SSOP | | AK6481CH | -40°C to 85°C | 1.8V to 5.5V | 8pin Plastic MSOP | #### Pin Arrangement AK6480CF AK6480CM/81CM RDY/BUSY [RESET 8 CS [J VCC 8 1() VCC [2 7 SK [2 7 RDY/BUSY **GND** DI D 3 6 **RESET** CS [3 DO 6 4 5 GND DO [SK 5 DI 8pin SOP 8pin SSOP AK6480CH/81CH AK6480CL CS □ CS [1 8 □ VCC VCC SK □ 2 7 □ RDY/BUSY <u>SK</u> [2 7 RDY/BUSY DI 🗆 3 DI [3 6 □ RESET 6 **RESET** 5 5 DO □ 4 ⊐ GND 4 **GND** DO [8pin SON ## ■ Pin Function 8pin MSOP | Pin name | Functions | | | |----------|--------------------|--|--| | CS | Chip Select input | | | | SK | Serial Clock input | | | | DI | Serial Data input | | | | DO | Serial Data output | | | | RESET | RESET input | | | | RDY/BUSY | RDY/BUSY output | | | | VCC | Power Supply | | | | GND | Ground | | | #### ■ Pin Description ## CS (Chip Select) When SK is high level and CS is changed from high level to low level, AK6480C/81C can receive the instructions. CS should be kept low level while receiving op-code, address and data and while outputting data. If CS is changed to high level during the above period, AK6480C/81C stops the instruction execution. When SK is low and CS is changed from high level to low level, AK6480C/81C will be in status output mode. The CS need not be low level during the automatic write time-out period (Busy status). ## **SK** (Serial Clock) The SK clock pin is the synchronous clock input for input/output data. At write operation, AK6480C/81C takes in the write data from data input pin (DI) synchronously with rising edge of input pulse of serial clock pin (\overline{SK}). And at read operation, AK6480C/81C takes out the read data to data output pin (DO) synchronously with falling edge of \overline{SK} . The \overline{SK} clock is not needed during the automatic write time-out period (\overline{Busy} status), the status output period and when the device isn't selected (\overline{CS} = high level). #### **DI** (Data Input) The op-code, address and write data is input to the DI pin. ## **DO** (Data Output) The DO pin outputs the read data and status signal and will be high impedance except for this timing. ## RDY/ BUSY (Ready/ Busy status) This pin outputs the internal programming status. When the AK6480C/81C is in the automatic write time-out period, this pin outputs the low level (Busy status), and outputs the high level except for this timing. #### **RESET** (Reset) The AK6480C/81C stops executing the write instruction when the RESET pin is high level. The RESET pin should be low level while the write instruction input period and the page write instruction input period and the automatic write time-out period. If the RESET pin is high level while the automatic write time-out period, the AK6480C/81C stops execution of internal programming and the device returns to ready status. In this case the word data of the specified address will be incomplete. When inputting the new instruction after RESET, the $\overline{\text{CS}}$ pin should be set to high level. The read, write enable and write disable instructions are not affected by RESET pin status. **VCC** (Power Supply) **GND** (Ground) - 4 - ## **Functional Description** The AK6480C/81C has 5 instructions such as READ, WRITE, Page Write, WREN (write enable) and WRDS (write disable). Each instruction is organized by op-code block (8bits), address block (8bits) and data (8bits x 2). When input level of \overline{SK} pin is high level and input level of chip select (\overline{CS}) pin is changed from high level to low level, AK6480C/81C can receive the instructions. When the instructions are executed consecutively, the \overline{CS} pin should be brought to high level for a minimum of 250ns(tCS) between consecutive instruction cycle. #### ■ Instruction Set For AK6480C | Instruction | Op-Code | Address | Data | |-------------|-----------|---|----------| | WRITE | 1010010A8 | A7 A6 A5 A4 A3 A2 A1 A0 | D15 – D0 | | Page Write | 1011010A8 | A7 A6 A5 A4 A3 A2 A1 A0 | D15 – D0 | | READ | 1010100A8 | A7 A6 A5 A4 A3 A2 A1 A0 | D15 – D0 | | WREN | 10100011 | $X \; X X$ | | | WRDS | 10100000 | $X \; X X$ | | | (WRAL) | 10101111 | $X \; X X$ | D15 – D0 | X: don't care ### ■ Instruction Set For AK6481C | Instruction | Op-Code | Address | Data | |-------------|-----------|---|----------| | WRITE | 1010010A0 | A1 A2 A3 A4 A5 A6 A7 A8 | D0 – D15 | | Page Write | 1011010A0 | A1 A2 A3 A4 A5 A6 A7 A8 | D0 – D15 | | READ | 1010100A0 | A1 A2 A3 A4 A5 A6 A7 A8 | D0 – D15 | | WREN | 10100011 | $X \; X X$ | | | WRDS | 10100000 | $X \; X X$ | | | (WRAL) | 10101111 | X X X X X X X X | D0 – D15 | X: don't care (Note) The WRAL instruction is used for factory function test only. User can't use this instruction. #### Write The write instruction is followed by 16 bits of data to be written into the specified address. After the 32nd rising edge of \overline{SK} to read D0 in, the AK6480C/81C will be put into the automatic write time-out period. During the automatic write time-out period (\overline{Busy} status) and while entering write instruction, the RESET pin should be low level. If the RESET pin is set to high level during the automatic write time-out period, the AK6480C/81C stops execution of internal programming and the device returns to ready status. In this case the word data of the specified address will be incomplete. When inputting the new instruction after RESET, the \overline{CS} pin should be set to high level. When the RESET pin is kept at high level, the write is not executed. This becomes write protection function. The CS pin need not be high level during automatic write time-out period (Busy status). WRITE (AK6480C) WRITE (AK6481C) #### **Page Write** AK6480C/81C has Page Write mode, which can write the data within 8 words with one programming cycle. The input data sent to the shift register within 8 words. After the instruction input, the internal programming cycle starts when \overline{CS} pin changes low to high. After the instructions are inputted, CS pin should change low to high after the last data bit (D0, AK6481C: D15) inputs and before next SCK clock rises. Page Write function can start only at this timing. After the receipt of each word, the three lower order address pointer bits internally incremented by one. The higher order seven bits of the word address remains constant. When the highest address is reached "XX XXXX X111", the address counter rolls over to address "XX XXXX X000" allowing the page write cycle to be continued indefinitely. If AK6480C/81C is transmitted more than 8 words, the address counter will "roll over" and the previously written data will be overwritten. When AK6480C/81C is transmitted 10 words, ninth word will be overwritten to first word, and tenth word will be overwritten to second word. During the automatic write time-out period (Busy status) and while entering Page Write instruction, the RESET pin should be low level. If the RESET pin is set to high level during the automatic write time-out period, the AK6480C/81C stops execution of internal programming and the device returns to ready status. In this case the word data of the specified address will be incomplete. When inputting the new instruction after RESET, the $\overline{\text{CS}}$ pin should be set to high level. When the RESET pin is kept at high level, the Page Write is not executed. This becomes write protection function. The CS pin need not be high level during automatic write time-out period (Busy status). PAGE WRITE (AK6480C) PAGE WRITE (AK6481C) #### Read The read instruction is the only instruction which outputs serial data on the DO pin. When the 17th falling edge of SK is received, the DO pin will come out of high impedance state and shift out the data from D15 (AK6481C: D0) first in descending order which is located at the address specified in the instruction. The data in the next address can be read sequentially by continuing to provide clock. The address automatically cycles to the next higher address after the 16bit data shifted out. When the highest address is reached (A8-A0: 1 1111 1111), the address counter rolls over to address (A8-A0: 0 0000 0000) allowing the read cycle to be continued indefinitely. READ (AK6480C) READ (AK6481C) #### WREN / WRDS (Write Enable and Write Disable) When VCC is applied to the part, it powers up in the programming disable (WRDS) state. Programming must be preceded by a programming enable (WREN) instruction. Programming remains enabled until a programming disable (WRDS) instruction is executed or VCC is removed from the part. The programming disable instruction is provided to protect against accidental data disturb. Execution of a read instruction is not affected by both WREN and WRDS instructions. WREN / WRDS ## **Absolute Maximum Ratings** | Parameter | Symbol | Min. | Max. | Unit | |-----------------------------|--------|------|---------|------| | Power Supply | VCC | -0.6 | +6.5 | V | | All Input Voltages | VIO | -0.6 | VCC+0.6 | V | | with Respect to Ground | | | | | | Ambient storage temperature | Tst | -65 | +150 | °C | Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum conditions for extended periods may affect device reliability. ## **Recommended Operating Condition** | Parameter | Symbol | Min. | Max. | Unit | |-------------------------------|--------|------|------|------| | Power Supply | VCC | 1.8 | 5.5 | V | | Ambient Operating Temperature | Ta | -40 | +85 | °C | # **Electrical Characteristics** ## (1) D.C. ELECTRICAL CHARACTERISTICS ($1.8V \le VCC \le 5.5V$, $-40^{\circ}C \le Ta \le 85^{\circ}C$, unless otherwise specified) | Parameter | Symbol | Condition | | Min. | Max. | Unit | |------------------------------------|--------|--------------------------------|----|---------|---------|------| | Current Dissipation | ICC1 | VCC=5.5V,tSKP=200ns | *1 | | 2.5 | mA | | (WRITE) | ICC2 | VCC=2.5V,tSKP=400ns | *1 | | 2.0 | mA | | | ICC3 | VCC=1.8V,tSKP=1.0μs | *1 | | 1.5 | mA | | Current Dissipation | ICC4 | VCC=5.5V,tSKP=200ns | *1 | | 1.0 | mA | | (READ,WREN, | ICC5 | VCC=2.5V,tSKP=400ns | *1 | | 0.2 | mA | | WRDS) | ICC6 | VCC=1.8V,tSKP=1.0μs | *1 | | 0.1 | mA | | Current Dissipation (Standby) | ICCS | VCC=5.5V | *2 | | 0.8 | μА | | Input High Voltage | VIH1 | $2.5V \le VCC \le 5.5V$ | | 0.7×VCC | VCC+0.5 | V | | | VIH2 | 1.8V ≤ VCC < 2.5V | | 0.8×VCC | VCC+0.5 | V | | Input Low Voltage | VIL1 | $2.5V \le VCC \le 5.5V$ | | 0 | 0.3×VCC | V | | | VIL2 | 1.8V ≤ VCC < 2.5V | | 0 | 0.2×VCC | V | | Output High Voltage | VOH1 | 2.5V ≤ VCC ≤ 5.5V
IOH=-50μA | | VCC-0.3 | | V | | | VOH2 | 1.8V ≤ VCC < 2.5V
IOH=-50μA | | VCC-0.3 | | V | | Output Low Voltage | VOL1 | 2.5V ≤ VCC ≤ 5.5V
IOL=1.0mA | | | 0.4 | V | | | VOL2 | 1.8V ≤ VCC < 2.5V
IOL=0.1mA | | | 0.4 | V | | Input Leakage
CS , SK ,DI,RESET | ILI | VCC=5.5V, VIN=5.5V | | | ±1.0 | μА | | Output Leakage | ILO | VCC=5.5V
VOUT=5.5V, CS=VCC | | | ±1.0 | μА | ^{*1:} VIN=VIH/VIL, DO=RDY/BUSY =Open ^{*2:} CS = VCC, SK / DI/RESET = VCC/GND, DO= RDY/ BUSY = Open # (2) A.C. ELECTRICAL CHARACTERISTICS ($1.8V \le VCC \le 5.5V$, $-40^{\circ}C \le Ta \le 85^{\circ}C$, unless otherwise specified) | Parameter | Symbol | Condition | Min. | Max. | Unit | |----------------------------|----------|----------------------------|-----------|------|---------------------| | SK Cycle Time | tSKP1 | $4.5V \le VCC \le 5.5V$ | 200 | | ns | | | tSKP2 | $2.5V \le VCC < 4.5V$ | 400 | | ns | | | tSKP3 | $1.8V \le VCC < 2.5V$ | 1.0 | | μS | | SK Pulse Width | tSKW1 | $4.5V \le VCC \le 5.5V$ | 100 | | ns | | | tSKW2 | $2.5V \le VCC < 4.5V$ | 200 | | ns | | | tSKW3 | $1.8V \le VCC < 2.5V$ | 500 | | ns | | CS Setup Time | tCSS1 | $4.5V \le VCC \le 5.5V$ | 40 | | ns | | | tCSS2 | $1.8V \le VCC < 4.5V$ | 80 | | ns | | CS Hold Time | tCSH1 | $4.5V \le VCC \le 5.5V$ | 40 | | ns | | | tCSH2 | $1.8V \le VCC < 4.5V$ | 80 | | ns | | SK Setup Time | tSKSH/L1 | $4.5V \le VCC \le 5.5V$ | 40 | | ns | | | tSKSH/L2 | $1.8V \le VCC < 4.5V$ | 80 | | ns | | RESET Setup Time | tRESS | | 0 | | ns | | RESET Hold Time | tRESH | | 0 | | ns | | Data Setup Time | tDIS1 | $4.5V \le VCC \le 5.5V$ | 40 | | ns | | | tDIS2 | $2.5V \le VCC < 4.5V$ | 80 | | ns | | | tDIS3 | $1.8V \le VCC < 2.5V$ | 200 | | ns | | Data Hold Time | tDIH1 | $4.5V \le VCC \le 5.5V$ | 40 | | ns | | | tDIH2 | $2.5V \le VCC < 4.5V$ | 80 | | ns | | | tDIH3 | $1.8V \le VCC < 2.5V$ | 200 | | ns | | DO pin Output delay | tPD1 | $4.5V \le VCC \le 5.5V$ *3 | | 60 | ns | | | tPD2 | 2.5V ≤ VCC < 4.5V *3 | | 150 | ns | | | tPD3 | $1.8V \le VCC < 2.5V$ *3 | | 300 | ns | | RDY/BUSY pin Output delay | tPD | CL=100pF | | 1 | μS | | Selftimed Programming Time | tE/W | | | 5 | ms | | Write Recovery Time | tRC | | 100 | | ns | | Min CS High Time | tCS | | 250 | | ns | | DO High-Z Time | tOZ | | | 500 | ns | | Endurance *4 | | 5.5\\ 25°C | 1 000 000 | | E/W | | Endurance *4 | | 5.5V, 25°C, Page Write | 1,000,000 | | cycles /
Address | ^{*3:} CL=100pF DAS04E-00 2005/03 ^{*4 :} These parameters are not 100% tested. These are the sample value. # Synchronous Data Timing # Instruction Input Upper:AK6480C, Lower:AK6481C Data Output (READ) Upper:AK6480C, Lower:AK6481C Data Output (READ) WRITE Ready / Busy Signal Output (RDY/BUSY pin) opper.Arto4000, Lower.Arto4010 PAGE WRITE Ready / Busy Signal Output (RDY/BUSY pin) Ready/ Busy Signal Output (DO pin) ## **IMPORTANT NOTICE** - These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status. - AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein. - Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. - AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here: - (a) A hazard related device or system is one designed or intended for life support and maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property. - (b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability. - It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that part in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and reliability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.