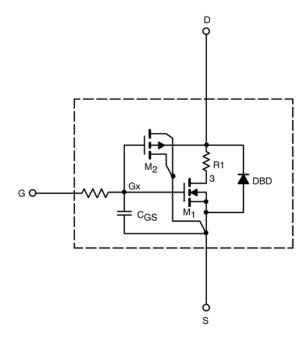


SPICE Device Model SiE806DF Vishay Siliconix

N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

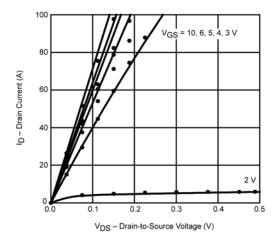
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

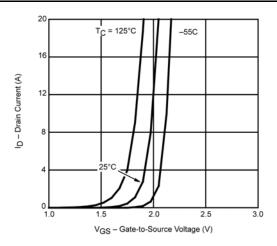
SUBCIRCUIT MODEL SCHEMATIC

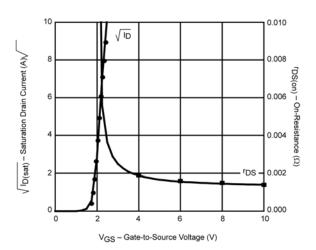
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

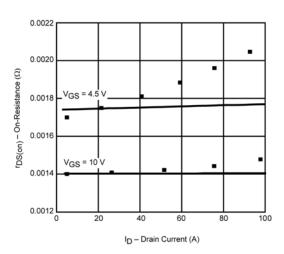
SPICE Device Model SiE806DF

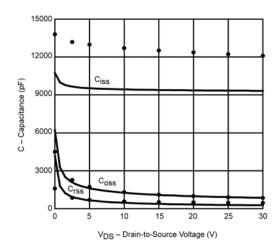
Vishay Siliconix

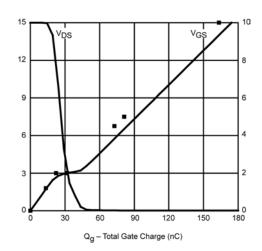

SPECIFICATIONS (T _J = 25°C UN	NLESS OTHER	WISE NOTED)			
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					•
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.1		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS}~\geq 5~V,~V_{GS}$ = 10 V	3290		Α
Drain-Source On-State Resistance ^a	_	V _{GS} = 10 V, I _D = 25 A	0.0014	0.0015	Ω
	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 25 \text{ A}$	0.0017	0.0017	
Forward Transconductance ^a	g _{fs}	V _{DS} = 15 V, I _D = 25 A	180	130	S
Forward Voltage ^a	V _{SD}	I _S = 10 A	0.83	0.90	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	9401	13000	pF
Output Capacitance	C _{oss}		1096	1150	
Reverse Transfer Capacitance	C_{rss}		385	550	
Total Gate Charge	Q_g	V_{DS} = 15 V, V_{GS} = 10 V, I_{D} = 20 A	174	165	nC
		V_{DS} = 15 V, V_{GS} = 4.5 V, I_{D} = 20 A	83	75	
Gate-Source Charge	Q_{gs}		23	23	
Gate-Drain Charge	Q_{gd}		9.5	9.5	


a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$ b. Guaranteed by design, not subject to production testing.




SPICE Device Model SiE806DF Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.