International **IPR** Rectifier

HEXFET[®] POWER MOSFET

IRFN9240

N-CHANNEL

-200 Volt, 0.51Ω HEXFET

HEXFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry achieves very low on-state resistance combined with high transconductance.

HEXFET transistors also feature all of the well-establish advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, and high energy pulse circuits.

The Surface Mount Device (SMD-1) package represents another step in the continual evolution of surface mount technology. The SMD-1 will give designers the extra flexibility they need to increase circuit board density. International Rectifier has engineered the SMD-1 package to meet the specific needs of the power market by increasing the size of the termination pads, thereby enhancing thermal and electrical performance.

Product Summary

Part Number	BVDSS	RDS(on)	b
IRFN9240	-200V	0.51Ω	-11A

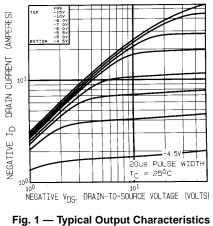
Features:

- Avalanche Energy Rating
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Surface Mount
- Light-weight

Parameter		IRFN9240	Units	
ID @ VGS = -10V, TC = 25°C	Continuous Drain Current	-11		
ID @ VGS = -10V, TC = 100°C Continuous Drain Current		-7	A	
IDM	Pulsed Drain Current ①	-44	-	
P _D @ T _C = 25°C	Max. Power Dissipation	125	W	
	Linear Derating Factor	1.0	W/K 5	
VGS	VGS Gate-to-Source Voltage		V	
EAS	EAS Single Pulse Avalanche Energy @		mJ	
IAR	IAR Avalanche Current ①		A	
EAR Repetitive Avalanche Energy ①		12.5	mJ	
dv/dt Peak Diode Recovery dv/dt 3		-5.5	V/ns	
Тј	Operating Junction	-55 to 150		
TSTG Storage Temperature Range			°C	
	Package Mounting Surface Temperature	300 (for 5 seconds)	1	
	Weight	2.6 (typical)	g	

Absolute Maximum Ratings

	Parameter	Min.	Тур.	Max.	Units	Test Conditions	
BVDSS	Drain-to-Source Breakdown Voltage	-200			V	$V_{GS} = 0V, I_{D} = -1.0mA$	
ΔBV _{DSS} /ΔTJ	Temperature Coefficient of Breakdown Voltage	—	-0.20	—	V/°C	Reference to 25°C, ID = -1.0mA	
RDS(on)	Static Drain-to-Source	—	—	0.51		VGS = -10V, ID = -7A ④	
	On-State Resistance	—	—	0.52	Ω	VGS = -10V, ID = -11A	
VGS(th)	Gate Threshold Voltage	-2.0	_	-4.0	V	$V_{DS} = V_{GS}$, $I_{D} = -250 \mu A$	
gfs	Forward Transconductance	4.0	—	_	S (7)	VDS > -15V, IDS = -7A ④	
IDSS	Zero Gate Voltage Drain Current	—	—	-25	•	VDS = 0.8 x Max Rating, VGS = 0V	
		—	—	-250	μΑ	VDS = 0.8 x Max Rating	
						VGS = 0V, TJ = 125°C	
IGSS	Gate-to-Source Leakage Forward	_	_	-100	nA	VGS = -20V	
IGSS	Gate-to-Source Leakage Reverse	—	—	100		VGS = 20V	
Qg	Total Gate Charge	28	—	60		VGS = -10V, ID = -11A	
Qgs	Gate-to-Source Charge	3.0	—	15	nC	VDS = Max. Rating x 0.5	
Qgd	Gate-to-Drain ("Miller") Charge	4.5	—	38		see figures 6 and 13	
td(on)	Turn-On Delay Time	—	—	35		VDD = -100V, ID = -11A,	
tr	Rise Time	—	—	85	ns	$R_G = 9.1\Omega$, $VGS = -10V$	
td(off)	Turn-Off Delay Time	—	_	85	115		
tf	FallTime	—	—	65		see figure 10	
LD	Internal Drain Inductance	—	2.0	_	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die.	
LS	Internal Source Inductance	_	6.5			Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.	
C _{iss}	Input Capacitance		1200			$V_{GS} = 0V, V_{DS} = -25V$	
C _{OSS}	Output Capacitance	_	570	—	pF	f = 1.0 MHz	
C _{rss}	Reverse Transfer Capacitance	_	81			see figure 5	


Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter		Min.	Тур.	Max.	Units	Test Conditions
١s	Continuous Source Current (Body Die	ode)	_	_	-11	A	Modified MOSFET symbol showing the
ISM	Pulse Source Current (Body Diode) (1	D	—	_	-44		integral reverse p-n junction rectifier.
VSD	Diode Forward Voltage		—	_	-4.6	V	$T_j = 25^{\circ}C, I_S = -11A, V_{GS} = 0V @$
t _{rr}	Reverse Recovery Time		—	—	440	ns	Tj = 25°C, IF = -11A, di/dt ≤ -100A/μs
QRR	Reverse Recovery Charge		—	—	7.2	μC	V _{DD} ≤ -50V ④
ton	Forward Turn-On Time Intrins	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$.					

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
RthJC	Junction-to-Case	—	—	1.0		
R _{th} J-PCB	Junction-to-PC Board	_	TBD	_	K/W	Soldered to a copper clad PC board

T_C = 25°C

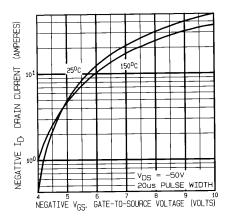


Fig. 3 — Typical Transfer Characteristics

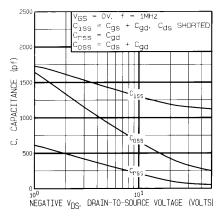


Fig. 5 — Typical Capacitance Vs. Drain-to-Source Voltage

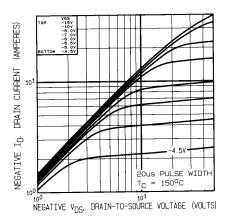


Fig. 2 — Typical Output Characteristics $T_C = 150^{\circ}C$

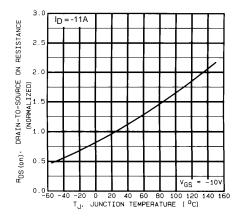


Fig. 4 — Normalized On-Resistance Vs.Temperature

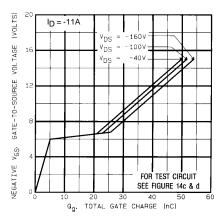
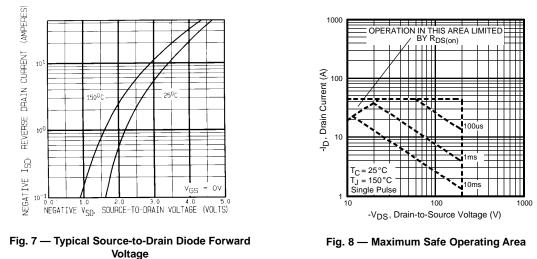




Fig. 6 — Typical Gate Charge Vs. Gate-to-Source Voltage

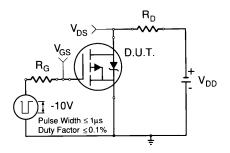


Fig. 10a — Switching Time Test Circuit

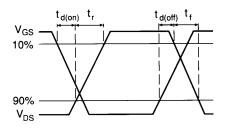


Fig. 10b — Switching Time Waveforms

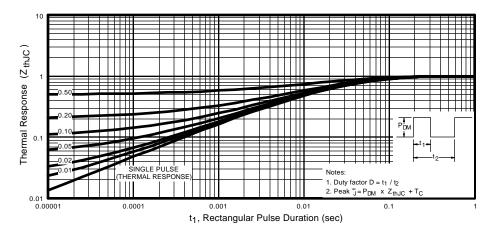


Fig. 11 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

Fig. 12a — Unclamped Inductive Test Circuit

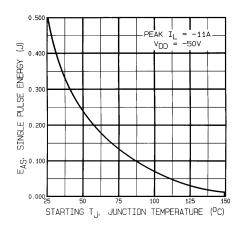


Fig. 12c — Max. Avalanche Energy vs. Current

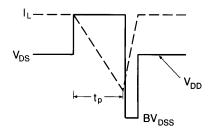
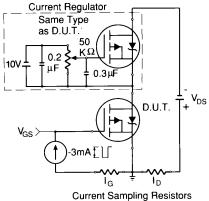
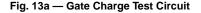




Fig. 12b — Unclamped Inductive Waveforms

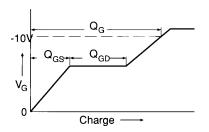
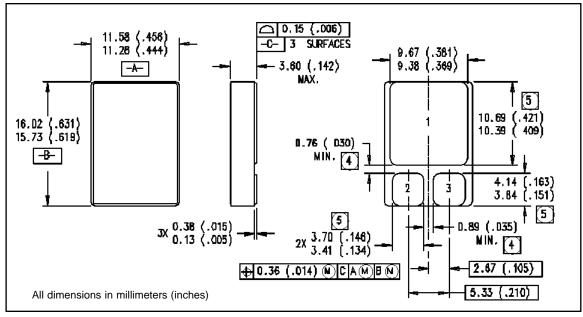



Fig. 13b — Basic Gate Charge Waveform

- Repetitive Rating; Pulse width limited by maximum junction temperature. (see figure 11)

- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%
- 5 K/W = °C/W W/K = W/°C

Case Outline and Dimensions — SMD-1

International **ICR** Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 9/96