

Current Transducer LTS 25-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Preliminary

$I_{PN} = 8 - 12 - 25 A$

Electrical data

I _{PN}	Primary nominal r.m.s. current		25	At
I _P	Primary current, measuring range		0 ± 80	At
V _{OUT}	Analog output voltage	$I_{p} = 0$	2.5 1)	V
		± I _{PN}	2.5 ± 0.625	V
N _s	Number of secondary turns (± 0.1 %)		2000	
R _.	Load resistance		≥ 2	kΩ
\mathbf{R}_{IM}^{T}	Internal measuring resistance (± 0.5 %)		50	Ω
TCR	Thermal drift of R _{IM}		< 50	ppm/K
$V_{\rm c}$	Supply voltage (± 5 %)		5	V
I _c	Current consumption @ $V_c = 5 \text{ V}$	Тур	20 + I _s	mΑ
V _d	R.m.s. voltage for AC isolation test, 50/60 Hz,	1 mn	2.5	kV
V _b	R.m.s. rated voltage		525 ²⁾	V

Accuracy - Dynamic performance data

X	Accuracy @ I_{PN} , $T_A = 25^{\circ}C$	± 0.	2	%
	Accuracy with $\mathbf{R}_{\text{IM}} \otimes \mathbf{I}_{\text{PN}}$, $\mathbf{T}_{\Delta} = 25^{\circ}\text{C}$	± 0.	7	%
$\mathbf{e}_{\scriptscriptstyle\! L}$	Linearity	< 0.	1	%
		Тур	Max	
TCV	Thermal drift of \mathbf{V}_{OUT} @ $\mathbf{I}_{P} = 0$ - 10°C + 85°C	50	100	ppm/K
	Thermal drift of the gain - 10°C + 85°C		50 ³⁾	ppm/K
V _{OM}	Residual voltage @ $I_p = 0$, after an overload of $3 \times I_{pN}$		± 0.5	mV
	5 x I _{PN}		± 2.0	mV
	10 x I _{PN}		± 2.0	mV
t _{ra}	Reaction time @ 10 % of I _{P max}	< 50)	ns
t,	Response time @ 90 % of I _{P max}	< 20	00	ns
di/dt	di/dt accurately followed	> 10	00	A/µs
f	Frequency bandwidth (0 0.5 dB)	DC	100	kHz

General data

T_{A}	Ambient operating temperature	- 10 + 85	°C
T _s	Ambient storage temperature	- 25 + 100	°C
m	Mass	10	g
	Standards	EN 50178	

(-0.5..1dB)

Notes: 1) Absolute value @ $T_A = 25$ °C, 2.4875 < V_{OUT} < 2.5125

- 2) Pollution class 2, category III
- $^{3)}$ Only due to TCR $_{\rm IM}$

Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- Unipolar voltage supply
- Insulated plastic case recognized according to UL 94-V0
- Compact design for PCB mounting
- Incorporated measuring resistance
- Extended measuring range.

Advantages

- Excellent accuracy
- Very good linearity
- Very low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

DC .. 200

kHz

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Copyright protected.

981222/4

Dimensions LTS 25-NP (in mm. 1 mm = 0.0394 inch)

Number of primary turns	Primary nominal r.m.s. current I _{PN} [A]	Nominal output voltage \mathbf{V}_{OUT} [V]	Primary resistance R _P [mΩ]	Primary insertion inductance L _P [µH]	Recommended connections
1	± 25	2.5 ± 0.625	0.18	0.013	6 5 4 OUT O 3
2	± 12	2.5 ± 0.600	0.81	0.05	6 5 4 OUT
3	± 8	2.5 ± 0.600	1.62	0.12	6 5 4 OUT OUT IN 1 2 3

Mechanical characteristics

• General tolerance ± 0.2 mm

• Fastening & connection of primary Recommended PCB hole

• Fastening & connection of secondary Recommended PCB hole

• Additional primary through-hole

6 pins 0.7 x 0.8 mm

1.3 mm

3 pins 0.5 x 0.35 mm

0.8 mm

Ø 3.2 mm

Remark

 \bullet $\, {\bf V}_{\rm OUT}$ is positive when ${\bf I}_{\rm p}$ flows from terminals 1, 2, 3 to terminals 6, 5, 4

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.