
 TSE (PM5372) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-2001402, Issue 2

PM5372

TSE

DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL
RELEASE

ISSUE 2: NOVEMBER, 01

 TSE (PM5372) Driver Manual
Introduction

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 2
Document ID: PMC-2001402, Issue 2

ABOUT THIS MANUAL AND TSE
This manual describes the TSE device driver. It describes the driver’s functions, data structures,
and architecture. This manual focuses on the driver’s interfaces and their relationship to your
application, real-time operating system, and to the device. It also describes in general terms how
to modify and port the driver to your software and hardware platform.

Audience

This manual was written for people who need to:

�� Evaluate and test the TSE devices
�� Modify and add to the TSE driver’s functions
�� Port the TSE driver to a particular platform.

References

For more information about the TSE driver, see the driver’s release Notes. For more information
about the TSE device, see the documents listed in Table 1 and any related errata documents.

Table 1: Related Documents

Document Number Document Name

PMC-1991258 PM5372 Transmission Switch Element Telecom Standard Product Data
Sheet

Note: Ensure that you use the document that PMC-Sierra issued for your version of the device
and driver.

 TSE (PM5372) Driver Manual
Introduction

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 3
Document ID: PMC-2001402, Issue 2

REVISION HISTORY

Issue No. Issue Date Details of Change

Issue 1 October 2000 Document created

Issue 2 November
2001

Added the APIs: tseSetOnePage(), tseGetOnePage(),
tsePortSetMaskMode()

tseSetPage() and tseGetPage() API descriptions updated.

tseRmSlot() and tseClrSlot() API descriptions updated.

tseInit() now uses h/w defaults for the DIV when the pdiv
parameter is NULL.

Documented API error codes by replacing <TSE_ERROR
CODE> with explicit return values.

Legal Issues

None of the information contained in this document constitutes an express or implied warranty by
PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a particular purpose of any such
information or the fitness, or suitability for a particular purpose, merchantability, performance,
compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any
portion thereof, referred to in this document. PMC-Sierra, Inc. expressly disclaims all
representations and warranties of any kind regarding the contents or use of the information,
including, but not limited to, express and implied warranties of accuracy, completeness,
merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or
consequential damages, including, but not limited to, lost profits, lost business or lost data
resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has
been advised of the possibility of such damage.

The information is proprietary and confidential to PMC-Sierra, Inc., and for its customers’
internal use. In any event, no part of this document may be reproduced in any form without the
express written consent of PMC-Sierra, Inc.

© 2001 PMC-Sierra, Inc.

PMC-2001402 (R2), ref PMC-991543 (P1)

 TSE (PM5372) Driver Manual
Introduction

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 4
Document ID: PMC-2001402, Issue 2

Contacting PMC-Sierra

PMC-Sierra, Inc.
8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: +1-604-415-6000
Fax: +1-604-415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Technical Support: apps@pmc-sierra.com
Web Site: http://www.pmc-sierra.com

 TSE (PM5372) Driver Manual
Introduction

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 5
Document ID: PMC-2001402, Issue 2

TABLE OF CONTENTS

About this Manual and TSE ..2
Audience ...2
References ..2

Revision History ..3
Legal Issues ..3
Contacting PMC-Sierra ...4

Table of Contents ..5

List of Figures..10

List of Tables ... 11

1 Introduction ...12

2 Driver Functions and Features ...13

2.1 General Driver Functions..13
Open/Close Driver Module ..13
Start/Stop Driver Module ...13
Add/Delete Device...13
Device Initialization..13
Device Update...13
Activate/De-Activate Device..14
Read/Write Device Registers ..14
Interrupt Servicing/Polling ...14
Statistics Collection ...14
Traffic control and configuration ..14

2.2 TSE Specific Driver Functions..15
Time Slot Interchange and Space Switch ...15
Port Alarm, Status and Statistics ...15
Device Alarm, Status and Statistics ...15
Device Configuration ...16
Port Configuration ...16
8b/10b Decoder/Encoder ..16
Receive 8b/10b Frame Aligner..16
Transmit 8b/10b Disparity Encoder ...16
Device Diagnostics..16
Specific Callback Functions ..16

3 Software Architecture ...18

3.1 Driver External Interfaces ...18
Application Programming Interface ...18
Real-Time OS Interface...19
Hardware Interface..19

 TSE (PM5372) Driver Manual
Introduction

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 6
Document ID: PMC-2001402, Issue 2

3.2 Main Components...19
Module Data-Block and Device(s) Data-Blocks ..20
Interrupt-Service Routine ..21
Deferred-Processing Routine..21
Time Slot Interchange and Space Switch ...21
Port Alarm, Status and Statistics ...21
Device Alarm, Status and Statistics ...21
Device Configuration ...21
Port Configuration ...22
8b/10b Decoder/Encoder ..22

3.3 Software States...22
Module States..23
Device States ..24

3.4 Processing Flows ...24
Module Management...25
Device Management ...25

3.5 Interrupt Servicing ..26
Calling tseISR..27
Calling tseDPR ..28
Calling tsePoll..28

3.6 Theory of Operation..29
Time Slot Mapping...29

4 Data Structures ...32

4.1 Constants..32

4.2 Data Structures ...32
Structures Passed by the Application..32
Module Initialization Vector: MIV ...32
Device Initialization Vector: DIV ..33
TSI Connection Map: CONMAP..34
TSI Connection Map: CONPAGE..34
TSI Connection Map: SPTSLOT ...34
ISR Enable/Disable Mask..35
Structures in the Driver’s Allocated Memory ...35
Module Data Block: MDB ..36
Device Data Block: DDB ...36
Counts Block: PORT COUNTS ...38
Statistics Block: PORT STATS ..38
Counts Block: DEVICE COUNTS ...38
Statistics Block: DEVICE STATS...39
Device Status ..39
Port Status ...39
Port Configuration Block: PORT CONFIG ..40
Device Configuration Block: DEVICE CONFIG ..40
Structures Passed through RTOS Buffers...41
Interrupt Service Vector: ISV...41
Deferred Processing Vector: DPV...41

 TSE (PM5372) Driver Manual
Introduction

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 7
Document ID: PMC-2001402, Issue 2

4.3 Global Variable ...42

5 Application Programming Interface ..43

5.1 Module Management..43
Opening the Driver Module: tseModuleOpen..43
Closing the Driver Module: tseModuleClose ...44
Starting the Driver Module: tseModuleStart...44
Stopping the Driver Module: tseModuleStop...45

5.2 Device Management...46
Adding a Device: tseAdd ...46
Deleting a Device: tseDelete ...47
Initializing a Device: tseInit ..47
Updating the Configuration of a Device: tseUpdate..48
Resetting a Device: tseReset ..48
Activating a Device: tseActivate ..49
De-Activating a Device: tseDeActivate..49

5.3 Device Read and Write...50
Reading from Device Registers: tseRead ...50
Writing to Device Registers: tseWrite..50
Reading from a block of Device Registers: tseReadBlock..51
Writing to a Block of Device Registers: tseWriteBlock ..52
Indirect reading from a Device Register: tseReadIndirect ..52
Indirect writing to a Device Registers: tseWriteIndirect...53

5.4 Time Slot Interchange and Space Switch...54
Setting global mapping mode: tseSetMapMode ...54
Getting global mapping mode: tseGetMapMode...55
Setting active connection page: tseSetPage...55
Getting active connection page: tseGetPage..56
Setting active connection page: tseSetOnePage..56
Getting active connection page: tseGetOnePage ...57
Copying connection map from one page to another in: tseCopyPage..............................58
Mapping the source to destination slots(s): tseMapSlot..58
Removing established connection: tseRmSlot..59
Clearing all connections: tseClrSlot ..60
Getting source space-time Slot: tseGetSrcSlot...61
Getting destination space-time Slot: tseGetDestSlot ..61
Verifying a multicast connection: tseIsMulticast ..62
Inserting Idle Data: tseInsIdleData ..62

5.5 Port Alarm, Status and Statistics...63
Getting port cumulative statistics: tsePortGetStats ...63
Getting port status: tsePortGetStatus..63
Getting port delta statistics: tsePortGetDelta ..64
Getting port interrupt callback threshold: tsePortGetThresh...64
Setting port interrupt callback threshold: tsePortSetThresh..65
Clear all port statistics: tsePortClrStats ...65

5.6 Device Alarm, Status and Statistics ..66
Getting device cumulative statistics: tseDeviceGetStats...66

 TSE (PM5372) Driver Manual
Introduction

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 8
Document ID: PMC-2001402, Issue 2

Getting device status: tseDeviceGetStatus ...67
Getting device delta statistics: tseDeviceGetDelta..67
Getting device interrupt callback threshold: tseDeviceGetThresh68
Setting device interrupt callback threshold: tseDeviceSetThresh.....................................68
Clear all device statistics: tseDeviceClrStats...69

5.7 Device Configuration ..69
Setting device configuration: tseDeviceSetConfig ..69
Getting device configuration: tseDeviceGetConfig ...70

5.8 Port Configuration...71
Setting port configuration: tsePortSetConfig ...71
Getting port configuration: tsePortGetConfig ..71
Setting J0 Masking mode: tsePortSetMaskMode ...72

5.9 8b/10b Decoder/Encoder..73
Forcing port OOC alignment: tseForceOutOfChar..73
Forcing port OOF alignment: tseForceOutOfFrame ...74
Forcing port AIS: tseForceAIS...75
Forcing port LCV: tseForceLcv..75

5.10 Interrupt Service Functions ...76
Configuring ISR Processing: tseISRConfig...76
Getting the Interrupt Status Mask: tseGetMask ..76
Setting the Interrupt Enable Mask: tseSetMask ..77
Clearing the Interrupt Enable Mask: tseClearMask...77
Polling the Interrupt Status Registers: tsePoll ...78
Interrupt-Service Routine: tseISR ...79
Deferred-Processing Routine: tseDPR ...79

5.11 Device Diagnostics..80
Testing Register Accesses: tseTestReg ..80
Testing RAM Accesses: tseTestRAM ..81

5.12 Callback Functions..82
Calling Back to the Application due to device level events:

cbackTSEDevice ..82
Calling Back to the Application due to port level events: cbackTSEPort83

6 Hardware Interface ...84

6.1 Device I/O ...84
Reading from a Device Register: sysTSERead ..84
Writing to a Device Register: sysTSEWrite...84

6.2 System-Specific Interrupt Servicing..85
Installing the ISR Handler: sysTSEISRHandlerInstall ...85
ISR Handler: sysTSEISRHandler..85
Removing the ISR Handler: sysTSEISRHandlerRemove...86

7 RTOS Interface...87

7.1 Memory Allocation/De-Allocation..87

 TSE (PM5372) Driver Manual
Introduction

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 9
Document ID: PMC-2001402, Issue 2

Allocating Memory: sysTSEMemAlloc ..87
Freeing Memory: sysTSEMemFree ..87

7.2 Buffer Management ..88
Starting Buffer Management: sysTSEBufferStart ..88
Getting an ISV Buffer: sysTSEISVBufferGet...88
Returning an ISV Buffer: sysTSEISVBufferRtn...89
Getting a DPV Buffer: sysTSEDPVBufferGet ...89
Returning a DPV Buffer: sysTSEDPVBufferRtn..89
Stopping Buffer Management: sysTSEBufferStop ..90

7.3 System-Specific DPR Routine ..90
DPR Task: sysTSEDPRTask ...90

8 Porting the TSE Driver..91

8.1 Driver Source Files ...91

8.2 Driver Porting Procedures ..92
Step 1: Porting Driver OS Extensions ...92
Step 2: Porting Drivers to Hardware Platforms ...95
Step 3: Porting Driver Application Specific Elements ..96
Step 4: Building the Driver...97

Appendix A: Coding Conventions ...98
Variable Type Definitions...98
Naming Conventions ...99
Macros...99
Constants ..100
Structures ..100
Functions...100
Variables..101
File Organization ...101
API Files ..101
Hardware Dependent Files..103
RTOS Dependent Files ...103
Other Driver Files ..103

Appendix B: Error Codes ..104

Appendix C: Event Codes...106

List of Terms..107

Acronyms ..108

Index..108

 TSE (PM5372) Driver Manual
Introduction

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 10
Document ID: PMC-2001402, Issue 2

LIST OF FIGURES
Figure 1: Driver External Interfaces ... 18

Figure 2: Driver Architecture.. 20

Figure 3: Driver Software States... 23

Figure 4: Module Management Flow Diagram... 25

Figure 5: Device Management Flow Diagram.. 26

Figure 6: Interrupt Service Model... 27

Figure 7: Polling Service Model ... 29

Figure 8: Time Slot Interchange and Space Switch Model... 29

Figure 9: Space-time Slot Mapping, Multicast and Unicast ... 30

 TSE (PM5372) Driver Manual
Introduction

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 11
Document ID: PMC-2001402, Issue 2

LIST OF TABLES
Table 1: TSE Module Initialization Vector: sTSE_MIV... 33

Table 2: TSE Device Initialization Vector: sTSE_DIV... 33

Table 3: TSE TSI connection map data structure: sTSE_ CONMAP............................... 34

Table 4: TSE TSI connection page data structure: sTSE_ CONPAGE............................. 34

Table 5: TSE space-time slot data structure: sTSE_SPTSLOT .. 34

Table 6: TSE ISR Mask: sTSE_MASK .. 35

Table 7: TSE Module Data Block: sTSE_MDB ... 36

Table 8: TSE Device Data Block: sTSE_DDB... 37

Table 9: TSE Port Counts Block: sTSE_CNTR_PORT.. 38

Table 10: TSE Port Statistics Block: sTSE_STAT_PORT .. 38

Table 11: TSE Device Counts Block: sTSE_CNTR_DEVICE... 39

Table 12: TSE Port Statistics Block: sTSE_STAT_DEVICE ... 39

Table 13: TSE Device Status: sTSE_STATUS_DEVICE... 39

Table 14: TSE Port Status: sTSE_STATUS_PORT .. 40

Table 15: TSE Port Configuration Block: sTSE_CFG_PORT.. 40

Table 16: TSE Device Configuration Block: sTSE_CFG_DEVICE 41

Table 17: TSE Interrupt Service Vector: sTSE_ISV ... 41

Table 18: TSE Deferred Processing Vector: sTSE_DPV .. 42

Table 19: Variable Type Definitions.. 98

Table 20: Naming Conventions... 99

Table 21: File Naming Conventions ... 101

Table 22: TSE Error Codes ... 104

Table 23: TSE Event Codes .. 106

 TSE (PM5372) Driver Manual
Introduction

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 12
Document ID: PMC-2001402, Issue 2

1 INTRODUCTION
The following sections of the TSE driver manual describe the TSE device driver. The code
provided throughout this document is written in the C language. This has been done to promote
greater driver portability to other embedded hardware and Real-Time Operating System
environments.

Section 3 of this document, Software Architecture, defines the software architecture of the TSE
device driver by including a discussion of the driver’s external interfaces and its main
components. The Data Structure information in Section 4 describes the elements of the driver that
either configure or control its behavior. Included here are the constants, variables, and structures
that the TSE device driver uses to store initialization, configuration, and status information.
Section 5 provides a detailed description of each function that is a member of the TSE driver
Application Programming Interface (API). This section outlines: (1) function calls that hide
device-specific details and (2) application callbacks that notify the user of significant device
events.

For your convenience, this manual provides a brief guide to porting the TSE device driver to your
hardware and RTOS platform (page 91). In addition, an extensive Appendix (beginning on page
98) and Index (page 108), provide you with useful reference information.

 TSE (PM5372) Driver Manual
Driver Functions and Features

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 13
Document ID: PMC-2001402, Issue 2

2 DRIVER FUNCTIONS AND FEATURES
This section describes the main functions and features supported by the TSE driver.

2.1 General Driver Functions

Open/Close Driver Module

Opening the driver module allocates all the memory needed by the driver and initializes all
module level data structures.

Closing the driver module shuts down the driver module gracefully after deleting all devices that
are currently registered with the driver, and releases all the memory allocated by the driver.

Start/Stop Driver Module

Starting the driver module involves allocating all RTOS resources needed by the driver such as
timers and semaphores (except for memory, which is allocated during the Open call).

Closing the driver module involves de-allocating all RTOS resources allocated by the driver
without changing the amount of memory allocated to it.

Add/Delete Device

Adding a device involves verifying that the device exists, associating a device handle to the
device, and storing context information about it. The driver uses this context information to
control and monitor the device.

Deleting a device involves shutting down the device and clearing the memory used for storing
context information about this device.

Device Initialization

The initialization function first resets then initializes the device and any associated context
information about it. The driver uses this context information to control and monitor the TSE
device.

Device Update

A function is provided to update the device’s configuration without forcing a hardware reset.

 TSE (PM5372) Driver Manual
Driver Functions and Features

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 14
Document ID: PMC-2001402, Issue 2

Activate/De-Activate Device

Activating a device puts it into its normal mode of operation by enabling interrupts and other
global registers. A successful device activation also enables other API invocations.

On the contrary, de-activating a device removes it from its operating state and disables interrupts
and other global registers.

Read/Write Device Registers

These functions provide a ‘raw’ interface to the device. Device registers that are both directly and
indirectly accessible are available for both inspection and modification via these functions. If
applicable, block reads and writes are also available.

Interrupt Servicing/Polling

Interrupt Servicing is an optional feature. The user can disable device interrupts and instead poll
the device periodically to monitor status and check for alarm/error conditions.

Both polling and interrupt driven approaches detect a change in device status and report the status
to a Deferred-Processing Routine (DPR). The DPR then invokes application callback functions
based on the status information retrieved. This allows the driver to report significant events that
occur within the device to the application.

Statistics Collection

Functions are provided to retrieve a snapshot of the various counts that are accumulated by the
TSE device. Routines should be invoked often enough to avoid letting the counters rollover.

Traffic control and configuration

Functions are available to control the data flow to/from the LVDS serial links.

 TSE (PM5372) Driver Manual
Driver Functions and Features

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 15
Document ID: PMC-2001402, Issue 2

2.2 TSE Specific Driver Functions

These functions provide control and monitoring of the various sections of the TSE device. These
sections are generally enabled or disabled and configured by the MODE specified during device
initialization. Changes to these registers that would violate the characteristics of the initialized
mode should be disallowed.

Time Slot Interchange and Space Switch

The Time Slot Interchange (TSI) is where the space-time slot relationship across the TSE is
defined and manipulated.

�� Set/Get map mode
�� Set/Get active memory page
�� Copy memory page
�� Map TSI
�� Remove/Clear TSI mapping
�� Get source TSI given a destination TSI
�� Get destination TSIs given a source TSI
�� Is a TSI multicast
�� Set idle fill data for a TSI

Port Alarm, Status and Statistics

The TSE device driver has the capability to collect and report both port and device level status
and statistics. The following functions enable the collection and reporting of both port level
status and statistics.

�� Get port statistics and status
�� Get port delta statistics
�� Get/Set port thresholds
�� Clear port statistics

Device Alarm, Status and Statistics

The TSE device driver has the capability to collect and report both port and device level status
and statistics. The following functions enable the collection and reporting of both device level
status and statistics.

�� Get device statistics and status
�� Get device delta statistics
�� Get/Set device thresholds
�� Clear device statistics
�� Clear port statistics

 TSE (PM5372) Driver Manual
Driver Functions and Features

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 16
Document ID: PMC-2001402, Issue 2

Device Configuration

The TSE device has several device level modes. The following APIs allow these modes to be
reconfigured:

�� Set/Get device configuration

Port Configuration

The TSE device has 64 ports in each direction (ingress and egress). The following APIs allow
these ports to be reconfigured:

�� Set/Get port configuration

8b/10b Decoder/Encoder

The TSE device driver has the capability to force certain errors on the 8b/10b ports. The
following APIs are intended to give access to these features.

�� Force out of character alignment
�� Force out of frame alignment
�� Force line code violation

Receive 8b/10b Frame Aligner

Functions to control all 64 frame aligners that perform 8b/10b character alignment and STS-12
frame alignment:

�� Insertion of AIS high order path alarm
�� Control active polarity of incoming data stream
�� Report number of line code violation
�� Force error operations for device diagnostics: out-of-character alignment, out-of-frame

alignment

Transmit 8b/10b Disparity Encoder

Functions to configure and control the following:

�� FIFO centering
�� Test pattern and J0 byte insertion

Device Diagnostics
�� Device register read / write test

Specific Callback Functions

Callback functions are available to the application for event notification from the device driver.
Application will be notified via the callback functions for selected events of interest such as:

�� Stuck-at condition – Monitor Inactivity in system clock activity
�� Lock state change in the clock synthesis unit

 TSE (PM5372) Driver Manual
Driver Functions and Features

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 17
Document ID: PMC-2001402, Issue 2

�� Change of active page in the space switch stage, ingress time switch element and egress time
switch element

�� Line code violation, out-of-character, out-of-frame alignment error, & FIFO
underrun/overrun errors from receive 8b/10b frame aligner

�� FIFO underrun/overrun errors from transmit 8b/10b disparity encoder

 TSE (PM5372) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 18
Document ID: PMC-2001402, Issue 2

3 SOFTWARE ARCHITECTURE
This section describes the software architecture of the TSE device driver. This includes a
discussion of the driver’s external interfaces and its main components.

3.1 Driver External Interfaces

Figure 1 illustrates the external interfaces defined for the TSE device driver.

Figure 1: Driver External Interfaces

RTOS

 Function Calls Application Callbacks

Hardware
Interrupts

Service Callbacks

Application

TSE Device Driver

TSE Devices

Service Calls

Register
Accesses

Application Programming Interface

The driver Application Programming Interface (API) is a list of high-level functions that can be
invoked by application programmers to configure, control and monitor TSE devices. The API
functions perform operations that are more meaningful from a system’s perspective. The API
includes functions that:

�� Initialize the device(s)
�� Perform diagnostic tests

 TSE (PM5372) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 19
Document ID: PMC-2001402, Issue 2

�� Validate configuration information
�� Retrieve status and statistics information.

The driver API functions use the services of the other driver components to provide this system-
level functionality to the application programmer.

The driver API also consists of callback routines that are used to notify the application of
significant events that take place within the device(s) and module.

Real-Time OS Interface

The driver’s RTOS interface provides functions that let the driver use RTOS services. The driver
requires the memory, interrupt, and preemption services from the RTOS. The RTOS interface
functions perform the following tasks for the driver:

�� Allocate and de-allocate memory
�� Manage buffers for the ISR and the DPR

The RTOS interface also includes service callbacks. These are functions installed by the driver
using RTOS service calls such as installing interrupts. These service callbacks are invoked when
an interrupt occurs.

Note: You must modify RTOS interface code to suit your RTOS.

Hardware Interface

The hardware interface provides functions that read from and write to the device registers. The
hardware interface also provides a template for an ISR that the driver calls when the device raises
a hardware interrupt. You must modify this function based on the interrupt configuration of your
system.

3.2 Main Components

Figure 2 illustrates the top level architectural components of the TSE device driver. This
architecture supports both polled and interrupt-driven operation of the driver. In polled operation,
the ISR is called periodically. In interrupt operation, the interrupt directly triggers the ISR.

The driver includes ten main components:

�� Module and device(s) data-blocks
�� Interrupt-service routine
�� Deferred-processing routine
�� Alarm, status and statistics
�� Time Slot Interchange
�� Device Alarm, Status and Statistics
�� Port Alarm, Status and Statistics
�� Device Configuration
�� Port Configuration

 TSE (PM5372) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 20
Document ID: PMC-2001402, Issue 2

�� 8b/10b Decoder/Encoder

Figure 2: Driver Architecture

 Function
Calls

Register
Accesses

Hardware
Interrupts

Se
rv

ic
e

C
al

ls

Application

R
TO

S

TSE Devices

Deferred
Processing

Routine

Interrupt
Service
Routine

Interrupt
Context

R
TO

S
In

te
rfa

ce

Hardware Interface

Application
Callbacks

Se
rv

ic
e

C
al

lb
ac

ksDriver API

Alarm, Status &
Statistics

Device Alarm, Status
and Statistics

Port Alarm, Status and
Statistics

Time Slot Interchange

Module
Data Block

Device Data Blocks

.......

Port Configuration

Device Configuration

8b/10b Decoder/
Encoder

Module Data-Block and Device(s) Data-Blocks

The Module Data-Block (MDB) is the top layer data structure, created by the TSE driver to store
context information about the driver module, such as:

�� Module state
�� Maximum number of devices
�� The DDB(s)

The Device Data-Block (DDB) is contained in the MDB, and initialized by the driver module for
each TSE device that is registered. There is one DDB per device and there is a limit on the
number of DDBs available. This limit is set by the user when the module is initialized. The DDB
is used to store context information about one device, such as:

�� Device state
�� Control information
�� Initialization parameters
�� Callback function pointers

 TSE (PM5372) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 21
Document ID: PMC-2001402, Issue 2

Interrupt-Service Routine

The TSE driver provides an ISR called tseISR that checks if there is any valid interrupt
condition present for the device. This function is used by a system-specific interrupt-handler
function to service interrupts raised by the device.

The low-level interrupt-handler function that traps the hardware interrupt and calls tseISR is
system and RTOS dependent. Therefore, it is outside the scope of the driver. Example
implementations of an interrupt handler and functions that install and remove it are provided as a
reference in section 6.2. You can customize these example implementations to suit your specific
needs.

See section 3.5 for a detailed explanation of the ISR and interrupt-servicing model.

Deferred-Processing Routine

The TSE driver provides a DPR called tseDPR that processes any interrupt condition gathered
by the ISR for that device. Typically, a system-specific function, which runs as a separate task
within the RTOS, will call tseDPR.

Example implementations of a DPR task and functions that install and remove it are provided as a
reference in section 7.3. You can customize these example implementations to suit your specific
needs.

See section 3.5 for a detailed explanation of the DPR and interrupt-servicing model.

Time Slot Interchange and Space Switch

The Time Slot Interchange (TSI) is where the space-time slot relationship across the TSE is
defined and manipulated.

Port Alarm, Status and Statistics

The TSE device driver has the capability to collect and report both port level status and statistics.

Device Alarm, Status and Statistics

The TSE device driver has the capability to collect and report both device level status and
statistics.

Device Configuration

The TSE device has several device level modes that can be configured.

 TSE (PM5372) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 22
Document ID: PMC-2001402, Issue 2

Port Configuration

The TSE device has 64 ports in each direction. These ports can be reconfigured. Configurations
include controls like line inversion and enabling/disabling of ports.

8b/10b Decoder/Encoder

The TSE device driver has the capability to force errors on the 8b/10b ports.

3.3 Software States

Figure 3 shows the software state diagram for the TSE driver. State transitions occur on the
successful execution of the corresponding transition functions shown. State information helps
maintain the integrity of the MDB and DDB(s) by controlling the set of operations allowed in
each state.

 TSE (PM5372) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 23
Document ID: PMC-2001402, Issue 2

Figure 3: Driver Software States

Idle

Present

Inactive
tseActivate

tseDeActivate

Start

tseAdd tseDelete

Ready

tseModuleClosetseModuleStart

tseModuleOpen

tseModuleClose

tseModuleStop

Start

PER-DEVICE STATES

MODULE STATES

tseReset

tseInit

tseReset

Active

Module States

The following is a description of the TSE module states. See section 5.1 for a detailed description
of the API functions that are used to change the module state.

Start

The driver module has not been initialized. In this state the driver does not hold any RTOS
resources (memory, timers, etc), has no running tasks, and performs no actions.

 TSE (PM5372) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 24
Document ID: PMC-2001402, Issue 2

Idle

The driver module has been initialized successfully. The Module Initialization Vector (MIV) has
been validated, the Module Data Block (MDB) has been allocated and loaded with current data,
the per-device data structures have been allocated, and the RTOS has responded without error to
all the requests sent to it by the driver.

Ready

This is the normal operating state for the driver module. This means that all RTOS resources have
been allocated and the driver is ready for devices to be added. The driver module remains in this
state while devices are in operation.

Device States

The following is a description of the TSE per-device states. The state that is mentioned here is the
software state as maintained by the driver, and not as maintained inside the device itself. See
section 0 for a detailed description of the API functions that are used to change the per-device
state.

Start

The device has not been initialized. In this state the device is unknown by the driver and performs
no actions. There is a separate flow for each device that can be added, and they all start here.

Present

The device has been successfully added. A Device Data Block (DDB) has been associated with
the device and updated with the user context, and a device handle has been given to the user. In
this state, the driver performs no actions.

Inactive

In this state the device is configured but all data functions are de-activated, including interrupts
and alarms, status and statistics functions.

Active

This is the normal operating state for the device. In this state, interrupt servicing or polling is
enabled.

3.4 Processing Flows

This section describes the main processing flows of the TSE driver components.

The flow diagrams presented here illustrate the sequence of operations that take place for
different driver functions. The diagrams also serve as a guide to the application programmer by
illustrating the sequence in which the application must invoke the driver API.

 TSE (PM5372) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 25
Document ID: PMC-2001402, Issue 2

Module Management

The following diagram illustrates the typical function call sequences that occur when initializing
or shutting down the TSE driver module.

Figure 4: Module Management Flow Diagram

Performs Module level shutdown of the driver. This involves deleting all
devices currently installed and de-allocating all timers and semaphores as
well as removing the ISR handler and DPR task.

Performs module level shutdown of the driver. De-allocates all the driver's
memory.

Perform all device level functions here (add, init, activate, de-activate,
reset, delete,...)

Performs module level startup of the driver. This involves allocating RTOS
resources such as semaphores and timers and installing the ISR handler
and DPR task.

Performs module level initialization of the driver. Validates the Module
Initialization Vector (MIV). Allocates memory for the MDB and all its
components (i.e. all the memory needed by the driver) and then initializes
the contents of the MDB with the validated MIV.

tseModuleStart

tseModuleOpen

tseModuleStop

tseModuleClose

END

START

Device Management

The following figure shows the typical function call sequences that the driver uses to add,
initialize, re-initialize, and delete the TSE device.

 TSE (PM5372) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 26
Document ID: PMC-2001402, Issue 2

Figure 5: Device Management Flow Diagram

De-activates the TSE and removes it from normal operation. This involves
disabling the TSE interrupts. ISR routines for this TSE are removed using
sysTseISRRemoveHandler when the module is closed.

Applies a software reset to the TSE to put it in its default startup state.

Removes the TSE from the list of TSEs being controlled by the TSE
driver. This function de-allocates the TSE context information for the TSE
being deleted.

In order to re-initialize the TSE, reset the tse using tseReset and go
through the initialization sequence again.

Prepares the TSE for normal operation by enabling interrupts and other
global enables. ISR routines are installed when the module is started
using sysTseISRInstallHandler. The TSE is now operational and all
other APIs can be invoked.

Applies a reset to the TSE and initializes the TSE registers and associated
RAMs based on the DIV passed by the user.

Detects the new TSE in hardware, assigns a DDB to the new TSE and
stores the user's context for the TSE. Returns a TSE handle to the user.

tseInit

tseAdd

tseActivate

tseReset

tseDeactivate

tseReset

tseDelete

END

START

3.5 Interrupt Servicing

The TSE driver services device interrupts using an interrupt service routine (ISR) that traps
interrupts and a deferred processing routine (DPR) that actually processes the interrupt conditions
and clears them. This lets the ISR execute quickly and exit. Most of the time-consuming
processing of the interrupt conditions is deferred to the DPR by queuing the necessary
interrupt-context information to the DPR task. The DPR function runs in the context of a separate
task within the RTOS.

Note: Since the DPR task processes potentially serious interrupt conditions, you should set the
DPR task’s priority higher than the application task interacting with the TSE driver.

 TSE (PM5372) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 27
Document ID: PMC-2001402, Issue 2

The driver provides system-independent functions, tseISR and tseDPR. You must fill in the
corresponding system-specific functions, sysTSEISRHandler and sysTSEDPRTask. The
system-specific functions isolate the system-specific communication mechanism (between the
ISR and DPR) from the system-independent functions, tseISR and tseDPR.

Figure 6 illustrates the interrupt service model used in the TSE driver design.

Figure 6: Interrupt Service Model

tseISR

sysTseISRHandler

tseDPR

Interrupt
Context

Information
sysTseDPRTask Indication

Callbacks
Application

Note: Instead of using an interrupt service model, you can use a polling service model in the TSE
driver to process the device’s event-indication registers (see page 32).

Calling tseISR

An interrupt handler function, which is system dependent, must call tseISR. But first, the
low-level interrupt-handler function must trap the device interrupts. You must implement this
function to fit your own system. As a reference, an example implementation of the interrupt
handler (sysTSEISRHandler) appears on page 85. You can customize this example
implementation to suit your needs.

The interrupt handler that you implement (sysTSEISRHandler) is installed in the interrupt
vector table of the system processor. It is called when one or more TSE devices interrupt the
processor. The interrupt handler then calls tseISR for each device in the active state that has
interrupt processing enabled.

The tseISR function reads from the master interrupt-status of the TSE and disables the interrupt
cause. If at least one valid interrupt condition is found, then tseISR fills an Interrupt Service
Vector (ISV) with this status information as well as the current device handle. The tseISR
function also clears and disables device interrupts as they are detected. The causes are cleared in
the DPR task. The sysTSEISRHandler function is then responsible for sending this ISV buffer
to the DPR task.

Note: Normally you should save the status information for deferred processing by implementing a
message queue. The interrupt handler sends the status information to the queue by the
sysTSEISRHandler.

 TSE (PM5372) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 28
Document ID: PMC-2001402, Issue 2

Calling tseDPR

The sysTSEDPRTask function is a system-specific function that runs as a separate task within
the RTOS. You should set the DPR task’s priority higher than the application task(s) interacting
with the TSE driver. In the message-queue implementation model, this task has an associated
message queue. The task waits for messages from the ISR on this message queue. When a
message arrives, sysTSEDPRTask calls the DPR (tseDPR) with the received ISV.

Then tseDPR processes the status information and takes appropriate action based on the specific
interrupt condition detected and reads the miscellaneous interrupt-status registers and then re-
enables the interrupt cause. The nature of this processing can differ from system to system.
Therefore, tseDPR calls different indication callbacks for different interrupt conditions.

Typically, you should implement these callback functions as simple message posting functions
that post messages to an application task. However, you can implement the indication callback to
perform processing within the DPR task context and return without sending any messages. In this
case, ensure that this callback function does not call any API functions that would change the
driver’s state, such as tseDelete. Also, ensure that the callback function is non-blocking
because the DPR task executes while TSE interrupts are disabled. You can customize these
callbacks to suit your system. See page 82 for example implementations of the callback functions.

Note: Since the tseISR and tseDPR routines themselves do not specify a communication
mechanism, you have full flexibility in choosing a communication mechanism between the two.
A convenient way to implement this communication mechanism is to use a message queue, which
is a service that most RTOSs provide.

You must implement the two system-specific functions, sysTSEISRHandler and
sysTSEDPRTask. When the driver calls sysTSEISRHandlerInstall, the application installs
sysTSEISRHandler in the interrupt vector table of the processor, and the sysTSEDPRTask
function is spawned as a task by the application. The sysTSEISRHandlerInstall function
also creates the communication channel between sysTSEISRHandler and sysTSEDPRTask.
This communication channel is most commonly a message queue associated with
sysTSEDPRTask.

Similarly, during removal of interrupts, the driver removes sysTSEISRHandler from the
microprocessor’s interrupt vector table and deletes the task associated with sysTSEDPRTask.

As a reference, this manual provides example implementations of the interrupt installation and
removal functions on pages 85 and 90. You can customize these prototypes to suit your specific
needs.

Calling tsePoll

Instead of using an interrupt service model, you can use a polling service model in the TSE driver
to process the device’s event-indication registers.

Figure 7 illustrates the polling service model used in the TSE driver design.

 TSE (PM5372) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 29
Document ID: PMC-2001402, Issue 2

Figure 7: Polling Service Model

tseISR

tsePoll

tseDPR

Interrupt
Context

Information
Indication
Callbacks

Application

In polling mode, the application is responsible for calling tsePoll often enough to service any
pending error or alarm conditions. When tsePoll is called, the tseISR function is called
internally.

The tseISR function reads from the master interrupt-status registers and the miscellaneous
interrupt-status registers of the TSE. If at least one valid interrupt condition is found then tseISR
fills an Interrupt Service Vector (ISV) with this status information as well as the current device
handle. The tseISR function also clears and disables all the device’s interrupts detected. In
polling mode, this ISV buffer is passed to the DPR task by calling tseDPR internally.

3.6 Theory of Operation

Time Slot Mapping

Figure 8: Time Slot Interchange and Space Switch Model

Space Switch

timeslot#inPort outPort
Egress TSI

61
62
63
64

61
62
63
64

12 ... 1

timeslot#inPort outPort
Egress TSI

1
2
3
4

1
2
3
4

12 ... 1
timeslot#
12 ... 1

inPort outPort
Ingress TSI

1
2
3
4

1
2
3
4

timeslot#
12 ... 1

inPort outPort
Ingress TSI

61
62
63
64

61
62
63
64

timeslot#
12 ... 1

...
...

...

...
...

...

timeslot#
12 ... 1

timeslot#
12 ... 1

timeslot#
12 ... 1 1

2
3
4

61
62
63
64

1
2
3
4

61
62
63
64

TSE has a total of 16 time slot interchange units (TSI) for time slot mapping on the ingress and
egress.

 TSE (PM5372) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 30
Document ID: PMC-2001402, Issue 2

Mapping is defined at STS-1 granularity; however, a valid mapping must still fit into the required
time slot map in a manner mandated by the data rate of the channel. The user is responsible for
maintaining data integrity when redefining the connection map.

Time slot mapping can be viewed as a process of mapping source space timeslot to destination
space timeslot through both the ingress TSI and the space switch, and out the egress TSI. It is
equivalent to establishing a one-to-one mapping or one-to-many mapping between the source
slots and the destination slots, depending on whether the connection is unicast or multicast.

Figure 9: Space-time Slot Mapping, Multicast and Unicast

Unicast

Multicast

source slots destination slots

tseMapSlot establishes such mapping between the source space-time slot and the destination
space-time slot(s). tseRmSlot disconnects established connection between the given source and
destination slots. tseClrSlot clears all connections for the given source slot.

Function tseGetDestSlot returns the destination slot(s) given the source slot.
tseGetSrcSlot returns the source slot given the destination slot. tseIsMulticast verifies if
the given slot is mapped to multiple destination slots. tseSetMapMode sets the global mapping
mode of all the TSIs in the device. There are two valid modes, user-defined or bypass. Bypass
mode puts the chip in a through mode and time-slot rearrangement will not take place. If user-
defined mode is selected, time slots will be re-arranged based on the connection map inside the
device. tseSetMapMode retrieves the current mapping mode of the device.

There are two connection pages in each TSI, page 0 and 1. tseSetPage provides software
control of the active connection memory page in the TSI. The given page is exclusive-ORed with
either the hardware pin TCMP (controls ingress TSIs) or OCMP (controls egress TSIs) to
determine which active page is currently active. tseGetPage queries the current active
connection page. For connection page synchronization, tseCopyPage overwrites one connection
page with the other within the TSI block.

Software select page Hardware pin xCMP Active page

0 0 0

0 1 1

 TSE (PM5372) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 31
Document ID: PMC-2001402, Issue 2

Software select page Hardware pin xCMP Active page

1 0 1

1 1 0

Error Insertion

User may force line code violation (LCV) in the 8B/10B encoders and the disparity encoders.
tseForceLcv may be invoked to force LCV in the 8B/10B encoders. User may insert known
test patterns into the following blocks for further diagnostics: disparity encoders and transmit
TSIs. For the transmit TSIs, tseInsIdleData introduces a known data pattern into the data
stream.

User may also introduce a series of out of synchronization conditions in the 8B/10B decoders.
tseForceOutOfChar forces out of character alignment in the block which will then attempt to
realign with the alignment character (K28.5) in the data stream. In addition, out-of-frame error
may be introduced by invoking tseForceOutOfFrame. The decoder will again attempt to
resynchronize with the alignment character (K28.5).

Thresholds

The threshold mechanism allows the user to reduce the number of callbacks for a given statistic
such as line code violation. A call back to the application will be made when the specified
threshold is reached. The application functions defined in the DDB by the members
cbackTsePort and cbackTseDevice will be invoked based on configured thresholds.

The threshold can be dynamically changed via tsePortSetThresh or
tseDeviceSetThresh. The threshold values can be retrieved via tsePortGetThresh or
tseDeviceGetThresh.

 TSE (PM5372) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 32
Document ID: PMC-2001402, Issue 2

4 DATA STRUCTURES
This section describes the elements of the driver that configure or control its behavior and
therefore should be of interest to the application programmer. Included here are the constants,
variables and structures that the TSE device driver uses to store initialization, configuration and
statistics information. For more information on naming conventions, see section 0.

4.1 Constants

The following Constants are used throughout the driver code:

�� <TSE ERROR CODES>: error codes used throughout the driver code, returned by the API
functions and used in the global error number field of the MDB and DDB.

�� TSE_MAX_DEVS: defines the maximum number of devices that can be supported by this
driver. This constant must not be changed without a thorough analysis of the consequences to
the driver code.

�� TSE_MOD_START, TSE_MOD_IDLE, TSE_MOD_READY: are the three possible module states
(stored in stateModule).

�� TSE_START, TSE_PRESENT, TSE_ACTIVE, TSE_INACTIVE: are the four possible device
states (stored in stateDevice).

�� TSE_MAX_PORTS: is the maximum number of ports.
�� TSE_MAX_IE_BLOCKS: is the maximum number of Ingress/Egress blocks.
�� TSE_MAX_TSLOTS: is the maximum number timeslots.
�� TSE_MAX_CSU_BLOCKS: is the maximum number of CSUs.
�� TSE_J0MASK_ALLOW, TSE_J0MASK_DENY, TSE_J0MASK_DENY_REORDER: are the

possible masking modes for the enum eTSE_J0MASK_MODE

4.2 Data Structures

The following are the main data structures used by the TSE driver. They are of three types:

�� Structures that are passed by the application
�� Structures that are in the driver’s allocated memory
�� Structures that are passed through RTOS buffers

Structures Passed by the Application

These structures are defined for use by the application and are passed as argument to functions
within the driver. These structures are the Module Initialization Vector (MIV), the Device
Initialization Vector (DIV) and the ISR mask.

Module Initialization Vector: MIV

Passed via the tseModuleOpen call, this structure contains all the information needed by the
driver to initialize and connect to the RTOS.

 TSE (PM5372) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 33
Document ID: PMC-2001402, Issue 2

�� maxDevs is used to inform the driver how many devices will be operating concurrently
during this session. The number is used to calculate the amount of memory that will be
allocated to the driver. The maximum value that can be passed is TSE_MAX_DEVS (see section
4.1).

Table 1: TSE Module Initialization Vector: sTSE_MIV

Field Name Field Type Field Description

perrModule INT4 * An output: a pointer to errModule in the MDB

maxDevs UINT2 Maximum number of devices supported during this session

Device Initialization Vector: DIV

Passed via the tseInit call, this structure contains all the information needed by the driver to
initialize a TSE device.

�� pollISR is a flag that indicates the type of interrupt servicing the driver is to use. The
choices are ‘polling’ (TSE_POLL_MODE), and ‘interrupt driven’ (TSE_ISR_MODE). When
configured in polling the Interrupt capability of the device is NOT used, and the user is
responsible for calling devicePoll periodically. The actual processing of the event information
is the same for both modes.

�� cbackTseDevice, cbackTsePort are used to pass the address of application functions that
will be used by the DPR to inform the application code of pending events. If these fields are
set as NULL, then any events that might cause the DPR to ‘call back’ to the application will
be processed during ISR processing but ignored by the DPR.

Table 2: TSE Device Initialization Vector: sTSE_DIV

Field Name Field Type Field Description

pollISR eTSE_POLL Indicates the type of ISR / polling
to do

cbackTseDevice sTSE_CBACK Address for the callback function for
Device Events

cbackTsePort sTSE_CBACK Address for the callback function for Port
Events

iCfgPort
[TSE_MAX_PORTS]

sTSE_CFG_PORT TSE port configuration block

iCfgDevice sTSE_CFG_DEVICE TSE device configuration block

iThreshPort
[TSE_MAX_PORTS]

sTSE_CNTR_PORT TSE port threshold configuration

 TSE (PM5372) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 34
Document ID: PMC-2001402, Issue 2

Field Name Field Type Field Description

iThreshDevice sTSE_CNTR_DEVICE TSE device threshold configuration

TSI Connection Map: CONMAP

Used in the DDB for storing the TSI connection mapping for TSE device

Table 3: TSE TSI connection map data structure: sTSE_ CONMAP

Field Name Field Type Field Description

pg
[TSE_MAX_PAGE]

sTSE_CONPAGE Connection maps consist of multiple
connection pages

TSI Connection Map: CONPAGE

Used in the CONMAP for storing the TSI connection mapping for TSE device

Table 4: TSE TSI connection page data structure: sTSE_ CONPAGE

Field Name Field Type Field Description

dstSlot
[TSE_MAX_PORTS+1]
[TSE_MAX_TSLOTS+1]

sTSE_SLOT Connection pages consist of slots
mapping (both arrays start indexing from
1)

TSI Connection Map: SPTSLOT

Used in the TSI APIs for representing port and timeslot relationships for TSE device.

Table 5: TSE space-time slot data structure: sTSE_SPTSLOT

Field Name Field Type Field Description

numPort UINT1 Port number (1-64)

numTS UINT1 Time slot number (1-12)

spaceSwPort UINT1 Space switch port number (1-64) (must be within the
same TSI)

spaceSwTS UINT1 Space switch time slot number (1-12)

 TSE (PM5372) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 35
Document ID: PMC-2001402, Issue 2

ISR Enable/Disable Mask

Passed via the tseSetMask, tseGetMask and tseClearMask calls, this structure contains all
the information needed by the driver to enable and disable any of the interrupts in the TSE

Table 6: TSE ISR Mask: sTSE_MASK

Field Name Field Type Field Description

csulocke[TSE_MAX_CSU_BLOCKS] UINT1

Interrupt CSU lock status interrupts
(0 = disable, 1 = enable)

sswtpage UINT1 Interrupt enable SSWT page switch
(0 = disable, 1 = enable)

r8faooc[TSE_MAX_PORTS] UINT1 Interrupt enable R8FA out of
character alignment (0 = disable, 1
= enable)

r8faoof[TSE_MAX_PORTS] UINT1 Interrupt enable R8FA out of frame
alignment (0 = disable, 1 = enable)

r8falcv[TSE_MAX_PORTS] UINT1 Interrupt enable R8FA line code
violation (0 = disable, 1 = enable)

r8fafifo[TSE_MAX_PORTS] UINT1 Interrupt enable R8FA FIFO
underrun/overrun (0 = disable, 1
= enable)

itsepage[TSE_MAX_IE_BLOCKS] UINT1 Interrupt enable ingress TSIs
interrupts (0 = disable, 1 = enable)

etsepage[TSE_MAX_IE_BLOCKS] UINT1 Interrupt enable egress TSIs
interrupts (0 = disable, 1 = enable)

t8defifo[TSE_MAX_PORTS] UINT1 Interrupt enable T8DE FIFO
underrun/overrun (0 = disable, 1 =
enable)

Structures in the Driver’s Allocated Memory

These structures are defined and used by the driver and are part of the context memory allocated
when the driver is opened. These structures are the Module Data Block (MDB), the Device Data
Block (DDB).

 TSE (PM5372) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 36
Document ID: PMC-2001402, Issue 2

Module Data Block: MDB

The MDB is the top-level structure for the module. It contains configuration data about the
module level code and pointers to configuration data about the device level codes.

�� mSignature: When this field contains TSE_MDB_SIGNATURE, it indicates that this
structure has been properly initialized and may be read by the user.

�� errModule: Most of the module API functions return a specific error code directly. When
the returned code is TSE_FAILURE, this indicates that the top-level function was not able to
carry the specified error code back to the application. Under those circumstances, the proper
error code is recorded in this element.

�� stateModule: Contains the current state of the module and could be set to:
TSE_MOD_START, TSE_MOD_IDLE or TSE_MOD_READY.

Table 7: TSE Module Data Block: sTSE_MDB

Field Name Field Type Field Description

mSignature UINT4 An indicator that this structure is initialized and
valid.

errModule INT4 Global error Indicator for module calls

maxDevs UINT2 Maximum number of devices supported

numDevs UINT2 Number of devices currently registered

stateModule eTSE_MOD_STATE Module state; can be TSE_MOD_START,
TSE_MOD_IDLE or TSE_MOD_READY

pmDDBSem void * Semaphore that locks access to the DDB array
(for adding and deleting)

pddb sTSE_DDB * (array of) Device Data Blocks (DDB) in context
memory

Device Data Block: DDB

The DDB is the top-level structure for each TSE device. It contains configuration data about the
device level code and pointers to configuration data about device level sub-blocks.

�� dSignature: When this field contains TSE_DDB_SIGNATURE, indicates that this structure
has been properly initialized and may be read by the user.

�� errDevice: Most of the device API functions return a specific error code directly. When
the returned code is TSE_FAILURE, this indicates that the top-level function was not able to
carry the specific error code back top the application. In addition, some device functions do
not return an error code. Under those circumstances, the proper error code is recorded in this
element.

 TSE (PM5372) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 37
Document ID: PMC-2001402, Issue 2

�� stateDevice: Contains the current state of the device and could be set to: TSE_START,
TSE_PRESENT, TSE_ACTIVE or TSE_INACTIVE.

�� usrCtxt: A value that can be used by the user to identify the device during the execution of
the callback functions. It is passed to the driver when tseAdd is called and returned to the
user in the DPV when a callback function is invoked. The element is unused by the driver
itself and may contain any value.

Table 8: TSE Device Data Block: sTSE_DDB

Field Name Field Type Field Description

dSignature UINT4 An indicator that this structure is initialized
and valid

errDevice INT4 Global error indicator for device calls

baseAddr UINT2 * Base address of the TSE device

usrCtxt sTSE_USR_CTXT Application defined parameter

stateDevice eTSE_DEV_STATE Device State; can be one of the following:
TSE_START, TSE_PRESENT, TSE_ACTIVE
or TSE_INACTIVE

dDiv sTSE_DIV Device Initialization Vector

dMask sTSE_MASK Interrupt enable mask

pdStatDevSem void * Device statistics update semaphore

pdStatPortSem void * Port statistics update semaphore

dStatsDevice sTSE_STAT_DEVICE Device statistics

dStatPort
[TSE_MAX_PORTS]

sTSE_STAT_PORT Port statistics

mapMode eTSE_TSIMODE Specifies bypass or user configurable mode

dSswt sTSE_CONMAP SSWT connection map

dItse sTSE_CONMAP ITSE connection map

dEtse sTSE_CONMAP ETSE connection map

dPageNum UINT1 Current active page

 TSE (PM5372) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 38
Document ID: PMC-2001402, Issue 2

Field Name Field Type Field Description

dItPrevInsIdle
[TSE_MAX_PORTS]

UINT2 Previous ITSE mapping before
tseInsIdleData() is called

dEtPrevInsIdle
[TSE_MAX_PORTS]

UINT2 Previous ETSE mapping before
tseInsIdleData() is called

Counts Block: PORT COUNTS

The sTSE_CNTR_PORT is the structure for accumulating port counts.

Table 9: TSE Port Counts Block: sTSE_CNTR_PORT

Field Name Field Type Field Description

cpLCVhwreg UINT4 Rx linecode violation counts from h/w register

cpLineCodeVio UINT4 Rx Line code violation interrupts

cpOutOfChar UINT4 Rx Out of character interrupts

cpOutOfFrame UINT4 Rx Out of frame interrupts

cpRxFifoErr UINT4 Rx FIFO error interrupts

cpTxFifoErr UINT4 Tx FIFO error interrupts

Statistics Block: PORT STATS

The sTSE_STAT_PORT is the top-level structure for port statistics.

Table 10: TSE Port Statistics Block: sTSE_STAT_PORT

Field Name Field Type Field Description

ipThresh sTSE_CNTR_PORT Thresholds

ipCount sTSE_CNTR_PORT Counts

ipDelta sTSE_CNTR_PORT Delta counts

Counts Block: DEVICE COUNTS

The sTSE_CNTR_DEVICE is the structure for accumulating device counts.

 TSE (PM5372) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 39
Document ID: PMC-2001402, Issue 2

Table 11: TSE Device Counts Block: sTSE_CNTR_DEVICE

Field Name Field Type Field Description

cdLocke[TSE_MAX_CSU_BLOCKS] UINT4 CSU lock interrupts

cdSswtpage UINT4 SSWT active memory page
switch interrupts

cdItsepage[TSE_MAX_IE_BLOCKS] UINT4 ITSE page switch interrupts

cdEtsepage[TSE_MAX_IE_BLOCKS] UINT4 ETSE page switch interrupts

Statistics Block: DEVICE STATS

The sTSE_STAT_DEVICE is the top-level structure for device statistics.

Table 12: TSE Port Statistics Block: sTSE_STAT_DEVICE

Field Name Field Type Field Description

idThresh sTSE_CNTR_DEVICE Thresholds

idCount sTSE_CNTR_DEVICE Counts

idDelta sTSE_CNTR_DEVICE Delta counts

Device Status

The Device Status structure stores the instantaneous device status.

Table 13: TSE Device Status: sTSE_STATUS_DEVICE

Field Name Field Type Field Description

sdLockv[TSE_MAX_CSU_BLOCKS] UINT1 CSU lock status

sdSswtpage UINT1 SSWT active page

sdSysClkA UINT1 SYSCLK active

Port Status

The Port Status structure stores the instantaneous port status.

 TSE (PM5372) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 40
Document ID: PMC-2001402, Issue 2

Table 14: TSE Port Status: sTSE_STATUS_PORT

Field Name Field Type Field Description

spOutOfChar UINT1 Rx out of character alignment

spOutOfFrame UINT1 Rx out of frame alignment

Port Configuration Block: PORT CONFIG

The sTSE_CFG_PORT is the top-level structure for configuring ports.

Table 15: TSE Port Configuration Block: sTSE_CFG_PORT

Field Name Field Type Field Description

rxInvert UINT1 Rx, data invert

forceAis UINT1 Rx, Force Ais (if device is in out of frame state)

forceOutOfChar UINT1 Rx, Force out of character alignment

forceOutOfFrame UINT1 Rx, Force out of frame alignment

analogReset UINT1 Rx, Analog reset

druEnable UINT1 Rx, DRU enable

rxEnable UINT1 Receiver enable

txEnable UINT1 Transmitter enable

testPatEnb UINT1 Tx, Test pattern enable

testPattern UINT2 Tx, Test pattern

centerFifo UINT1 Tx, Center FIFO

j0Insert UINT1 Tx, J0 insertion enable

forceLineCodeV UINT1 Tx, force line code violation error

pisoEnable UINT1 Tx, PISO enable

Device Configuration Block: DEVICE CONFIG

The sTSE_CFG_DEVICE is the top-level structure for configuring the device.

 TSE (PM5372) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 41
Document ID: PMC-2001402, Issue 2

Table 16: TSE Device Configuration Block: sTSE_CFG_DEVICE

Field Name Field Type Field Description

csuEnable[TSE_MAX_CSU_BLOCKS] UINT1 CSU enable

csuReset[TSE_MAX_CSU_BLOCKS] UINT1 CSU reset

etseDisable UINT1 Egress disable

itseDisable UINT1 Ingress disable

rxJ0Delay UINT2 Receive J0 delay

txJ0Delay UINT2 Transmit J0 delay

Structures Passed through RTOS Buffers

Interrupt Service Vector: ISV

This buffer structure is used to capture the status of the device (during a poll or ISR processing)
for use by the Deferred-Processing Routine (DPR). It is the template for all device registers that
are involved in exception processing. It is the application’s responsibility to create a pool of ISV
buffers (using this template to determine the buffer’s size) when the driver calls the user-supplied
sysTSEBufferStart function. An individual ISV buffer is then obtained by the driver via
sysTSEISVBufferGet and returned to the ‘pool’ via sysTSEISVBufferRtn.

Table 17: TSE Interrupt Service Vector: sTSE_ISV

Field Name Field Type Field Description

deviceHandle sTSE_HNDL Handle to the device in cause

whichints sTSE_MASK Mask of interrupts that have occurred

Deferred Processing Vector: DPV

This block is used in two ways. First it is used to determine the size of buffer required by the
RTOS for use in the driver. Second it is the template for data that is assembled by the DPR and
sent to the application code. Note: the application code is responsible for returning this buffer to
the RTOS buffer pool, which is typically done by its callback routines before they return.

 TSE (PM5372) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 42
Document ID: PMC-2001402, Issue 2

Table 18: TSE Deferred Processing Vector: sTSE_DPV

Field Name Field Type Field Description

dpEvent eTSE_DPR_EVENT Event being reported

dpCause UINT2 Depends on the event. Either a port number,
CSU number, ITSE number or an ETSE number

4.3 Global Variable

Although most of the variables within the driver are not meant to be used by the application code,
there is one global variable that can be of great use to the application code.

�� tseMdb: A global pointer to the Module Data Block (MDB). The content of this global
variable should be considered read-only by the application.

�� errModule: This structure element is used to store an error code that specifies the reason for
an API function’s failure. The field is only valid for functions that do not return an error code
or when a value of TSE_FAILURE is returned.

�� stateModule: This structure element is used to store the module state (as shown in Figure
3).

�� pddb[]: An array of pointers to the individual Device Data Blocks. The user is cautioned
that a DDB is only valid if the dSignature field is correct. Note that the array of DDBs is in
no particular order.

�� errDevice: This structure element is used to store an error code that specifies the reason for
an API function’s failure. The field is only valid for functions that do not return an error code
or when a value of TSE_FAILURE is returned.

�� stateDevice: This structure element is used to store the device state (as shown in Figure 3).

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 43
Document ID: PMC-2001402, Issue 2

5 APPLICATION PROGRAMMING INTERFACE
This section provides a detailed description of each function that is a member of the TSE driver
Application Programming Interface (API).

The API functions typically execute in the context of an application task.

Note: These functions are not re-entrant. This means that two application tasks cannot invoke the
same API at the same time. However the driver protects its data structures from concurrent
accesses by the application and the DPR task.

5.1 Module Management

The module management is a set of API functions that are used by the application to open, start,
stop and close the driver module. These functions will take care of initializing the driver,
allocating memory and all the other RTOS resources needed by the driver. They are also used to
change the module state. For more information on the module states see the state diagram on page
23. For a typical module management flow diagram see page 25.

Opening the Driver Module: tseModuleOpen

This function performs module level initialization of the device driver. This involves allocating
all of the memory needed by the driver and initializing the internal structures.

Prototype INT4 tseModuleOpen(sTSE_MIV *pmiv)

Inputs pmiv : (pointer to) Module Initialization Vector

Outputs Places the address of the MDB into the MIV passed by the application.

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_ALREADY_INIT
 TSE_ERR_INVALID_MIV
 TSE_ERR_MEM_ALLOC

Valid States TSE_MOD_START

Side Effects Changes the MODULE state to TSE_MOD_IDLE

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 44
Document ID: PMC-2001402, Issue 2

Closing the Driver Module: tseModuleClose

This function performs module level shutdown of the driver. This involves deleting all devices
being controlled by the driver (by calling tseDelete for each device) and de-allocating all the
memory allocated by the driver.

Prototype INT4 tseModuleClose(void)

Inputs None

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_FAILURE

Valid States ALL STATES

Side Effects Changes the MODULE state to TSE_MOD_START

Starting the Driver Module: tseModuleStart

This function connects the RTOS resources to the driver. This involves allocating semaphores and
timers, initializing buffers and installing the ISR handler and DPR task. Upon successful return
from this function the driver is ready to add devices.

Prototype INT4 tseModuleStart(void)

Inputs None

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_WRONG_STATE
 TSE_ERR_SEMAPHORE
 TSE_ERR_STAT_INSTALL

Valid States TSE_MOD_IDLE

Side Effects Changes the MODULE state to TSE_MOD_READY

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 45
Document ID: PMC-2001402, Issue 2

Stopping the Driver Module: tseModuleStop

This function disconnects the RTOS resources from the driver. This involves de-allocating
semaphores and timers, freeing-up buffers and uninstalling the ISR handler and the DPR task. If
there are any registered devices, tseDelete is called for each.

Prototype INT4 tseModuleStop(void)

Inputs None

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_WRONG_STATE
 TSE_ERR_DEVS_EMPTY
 TSE_ERR_SEMAPHORE

Valid States TSE_MOD_READY

Side Effects Changes the MODULE state to TSE_MOD_IDLE

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 46
Document ID: PMC-2001402, Issue 2

5.2 Device Management

The device management is a set of API functions that are used by the application to control the
device. These functions take care of initializing a device in a specific configuration, enabling the
device general activity as well as enabling interrupt processing for that device. They are also used
to change the software state for that device. For more information on the device states see the
state diagram on page 23. For a typical device management flow diagram see page 26.

Adding a Device: tseAdd

This function verifies the presence of a new device in the hardware then returns a handle back to
the user. The device handle is passed as a parameter of most of the device API Functions. It’s
used by the driver to identify the device on which the operation is to be performed.

Prototype sTSE_HNDL tseAdd(void *usrCtxt, UINT2 *baseAddr,
INT4 **pperrDevice)

Inputs usrCtxt : user context for this device
baseAddr : base address of the device
pperrDevice : (pointer to) an area of memory

Outputs pperrDevice : (pointer to) errDevice (inside the MDB)

ERROR code written to the tseMdb->errModule on failure
 TSE_ERR_INVALID_ARG
 TSE_ERR_NULL_BASE_ADDR
 TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_DEVS_FULL
 TSE_ERR_SEMAPHORE
 TSE_ERR_DEV_ALREADY_ADDED
 TSE_ERR_DEV_NOT_DETECTED

Returns Pointer to device handle or NULL in case of failure.

Valid States TSE_MOD_READY

Side Effects Changes the DEVICE state to TSE_PRESENT

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 47
Document ID: PMC-2001402, Issue 2

Deleting a Device: tseDelete

This function is used to remove the specified device from the list of devices being controlled by
the TSE driver. Deleting a device involves un-validating the DDB for that device and releasing its
associated device handle.

Prototype INT4 tseDelete(sTSE_HNDL deviceHandle)

Inputs deviceHandle : device handle (from tseAdd)

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_DIV
 TSE_ERR_INVALID_ARG
 TSE_ERR_SEMAPHORE

Valid States TSE_PRESENT, TSE_ACTIVE, TSE_INACTIVE

Side Effects Changes the DEVICE state to TSE_PRESENT

Initializing a Device: tseInit

This function initializes the Device Data Block (DDB) associated with that device during
tseAdd, applies a soft reset to the device and configures it according to the DIV passed by the
Application. This routine may take up to 100ms to execute because it waits for CSUs to lock.

If the pdiv parameter is NULL, then h/w defaults are used instead for the DIV.

Prototype INT4 tseInit(sTSE_HNDL deviceHandle, sTSE_DIV *pdiv,
UINT1 profileNum))

Inputs deviceHandle : device handle (from tseAdd)
pdiv : pointer to Device Initialization Vector
profileNum : the profile number is ignored by this driver

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_DIV
 TSE_ERR_INVALID_ARG

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 48
Document ID: PMC-2001402, Issue 2

Valid States TSE_PRESENT

Side Effects Changes the DEVICE state to TSE_INACTIVE

Updating the Configuration of a Device: tseUpdate

This function updates the configuration of the device as well as the Device Data Block (DDB)
associated with that device according to the DIV passed by the application. The only difference
between tseUpdate and tseInit is that no soft reset will be applied to the device.

Prototype INT4 tseUpdate(sTSE_HNDL deviceHandle, sTSE_DIV *pdiv,
UINT1 profileNum)

Inputs deviceHandle : device handle (from tseAdd)
pdiv : pointer to Device Initialization Vector
profileNum : the profile number is ignored by this driver

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_DIV
 TSE_ERR_INVALID_ARG

Valid States TSE_ACTIVE, TSE_INACTIVE

Side Effects None

Resetting a Device: tseReset

This function applies a software reset to the TSE device. Also resets all the DDB contents (except
for the user context). This function is typically called before re-initializing the device (via
tseInit).

Prototype INT4 tseReset(sTSE_HNDL deviceHandle)

Inputs deviceHandle : device handle (from tseAdd)

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 49
Document ID: PMC-2001402, Issue 2

Valid States TSE_PRESENT, TSE_ACTIVE, TSE_INACTIVE

Side Effects Changes the DEVICE state to TSE_PRESENT

Activating a Device: tseActivate

This function restores the state of a device after a de-activate. Interrupts may be re-enabled.

Prototype INT4 tseActivate(sTSE_HNDL deviceHandle)

Inputs deviceHandle : device handle (from tseAdd)

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE

Valid States TSE_INACTIVE

Side Effects Changes the DEVICE state to TSE_ACTIVE

De-Activating a Device: tseDeActivate

This function de-activates the device from operation. Interrupts are masked and the device is put
into a quiet state via enable bits.

Prototype INT4 tseDeActivate(sTSE_HNDL deviceHandle)

Inputs deviceHandle : device handle (from tseAdd)

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE

Valid States TSE_ACTIVE

Side Effects Changes the DEVICE state to TSE_INACTIVE

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 50
Document ID: PMC-2001402, Issue 2

5.3 Device Read and Write

Reading from Device Registers: tseRead

This function is used to read a register of a specific TSE device by providing the register number.
This function derives the actual address location based on the device handle and register number
inputs. It then reads the contents of this address location using the system-specific macro,
sysTSERead. Note that a failure to read returns a zero and any error indication is written to the
associated DDB.

Prototype UINT2 tseRead(sTSE_HNDL deviceHandle, UINT2 regNum)

Inputs deviceHandle : device handle (from tseAdd)
regNum : register number

Outputs The DDB field .errDevice contains

Success = TSE_SUCCESS
Failure = TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_REG

Returns Value read

Valid States TSE_PRESENT, TSE_ACTIVE, TSE_INACTIVE

Side Effects May affect registers that change after a read operation

Writing to Device Registers: tseWrite

This function is used to write to a register of a specific TSE device by providing the register
number. This function derives the actual address location based on the device handle and register
number inputs. It then writes the contents of this address location using the system-specific
macro, sysTSEWrite.

Prototype UINT2 tseWrite(sTSE_HNDL deviceHandle, UINT2 regNum, UINT2
value)

Inputs deviceHandle : device handle (from tseAdd)
regNum : register number
value : value to be written

Outputs The DDB field .errDevice contains

Success = TSE_SUCCESS
Failure = TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_REG

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 51
Document ID: PMC-2001402, Issue 2

Returns Value written

Valid States TSE_PRESENT, TSE_ACTIVE, TSE_INACTIVE

Side Effects May change the configuration of the device

Reading from a block of Device Registers: tseReadBlock

This function is used to read a register block of a specific TSE device by providing the starting
register number, and the size to read. This function derives the actual start address location based
on the device handle and starting register number inputs. It then reads the contents of this data
block using multiple calls to the system-specific macro, sysTSERead. It is the user’s
responsibility to allocate enough memory for the block read.

Prototype UINT2 tseReadBlock(sTSE_HNDL deviceHandle, UINT2
startRegNum, UINT2 numu2, UINT2 *pblock)

Inputs deviceHandle : device handle (from tseAdd)
startRegNum : starting register number
numu2 : number of registers to read
pblock : (pointer to) the block to read

Outputs pblock : (pointer to) the block read

The DDB field .errDevice contains:

Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_INVALID_REG

Returns none

Valid States TSE_PRESENT, TSE_ACTIVE, TSE_INACTIVE

Side Effects May affect registers that change after a read operation

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 52
Document ID: PMC-2001402, Issue 2

Writing to a Block of Device Registers: tseWriteBlock

This function is used to write to a register block of a specific TSE device by providing the starting
register number and the block size. This function derives the actual starting address location
based on the device handle and starting register number inputs. It then writes the contents of this
data block using multiple calls to the system-specific macro, sysTSEWrite. A bit from the
passed block is only modified in the device’s registers if the corresponding bit is set in the passed
mask.

Prototype UINT2 tseWriteBlock(sTSE_HNDL deviceHandle, UINT2
startRegNum, UINT2 numu2, UINT2 *pblock, UINT2 *pmask)

Inputs deviceHandle : device handle (from tseAdd)
startRegNum : starting register number
numu2 : number of registers to write
pblock : (pointer to) block to write
pmask : (pointer to) mask

Outputs The DDB field .errDevice contains

Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_INVALID_REG

Returns None

Valid States TSE_PRESENT, TSE_ACTIVE, TSE_INACTIVE

Side Effects May change the configuration of the device

Indirect reading from a Device Register: tseReadIndirect

This function is used to perform an indirect read from an indirect register in the TSE device by
providing the register location and the indirect address to be read from. This function derives the
actual start address location based on the device handle. It then reads the data pointed to by the
indirect address using calls to the system-specific macro, sysTseRead. Note that a failure to read
returns a zero and any error indication is written to the DDB.

Prototype INT4 tseReadIndirect(sTSE_HNDL deviceHandle, UINT2
iaddrReg, UINT2 iaddr, UINT2 *pData)

Inputs deviceHandle : device handle (from tseAdd)
iaddrReg : indirect address register number
iaddr : indirect address to read

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 53
Document ID: PMC-2001402, Issue 2

pData : (pointer to) the data to read

Outputs pData : (pointer to) the block read

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_ARG
 TSE_ERR_POLL_TIMEOUT

Valid States TSE_PRESENT, TSE_ACTIVE, TSE_INACTIVE

Side Effects May affect registers that change after a read operation

Indirect writing to a Device Registers: tseWriteIndirect

This function is used to perform an indirect write to an indirect access register in the TSE device
by providing the register location and the indirect address to be written to. This function derives
the actual start address location based on the device handle. It then writes the data to the location
pointed to by the indirect address using calls to the system-specific macro, sysTseWrite. Note
that a failure to write returns a zero and any error indication is written to the DDB.

Prototype INT4 tseWriteIndirect(sTSE_HNDL deviceHandle, UINT2
iaddrReg, UINT2 iaddr, UINT2 data)

Inputs deviceHandle : device handle (from tseAdd)
iaddrReg : indirect address register number
iaddr : indirect address to read
data : new data

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_ARG
 TSE_ERR_POLL_TIMEOUT

Valid States TSE_PRESENT, TSE_ACTIVE, TSE_INACTIVE

Side Effects May affect registers that change after a read operation

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 54
Document ID: PMC-2001402, Issue 2

5.4 Time Slot Interchange and Space Switch

Each TSI has two connection memory pages, 0 and 1. Mapping is defined at the STS-1
granularity; however, a valid mapping must still fit into the required time slot map mandated by
the data rate of the channel. The higher lever application is responsible for maintaining data
integrity when redefining the connection map.

Time slot interchange is seen as a process of mapping source space timeslots to destination space
timeslots. This is used to establish a one-to-one mapping or one-to-many mapping between the
source slots and the destination slots, depending on whether it is a unicast or a multicast
connection.

The following functions allow for the configuration of the Time Slot Interchange and Space
Switch.

Setting global mapping mode: tseSetMapMode

This function is used to set global mapping mode of all the TSIs in the device. There are two
valid modes: user-defined and bypass. Bypass mode puts the chip in a through mode and timeslot
rearrangement will not occur. If user-defined mode is selected a valid time slot map will be
required.

Prototype INT4 tseSetMapMode (sTSE_HNDL deviceHandle, eTSE_TSIMODE
mode)

Inputs deviceHandle : device handle (from tseAdd)
mode : TSI mode

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_POLL_TIMEOUT

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 55
Document ID: PMC-2001402, Issue 2

Getting global mapping mode: tseGetMapMode

This function is used to get global mapping mode of all the TSIs in the device. There are two
valid modes: user-defined and bypass. Bypass mode puts the chip in a through mode and timeslot
rearrangement will not occur. If user-defined mode is selected a valid time slot map will be
required.

Prototype INT4 tseGetMapMode (sTSE_HNDL deviceHandle, eTSE_TSIMODE
*pmode)

Inputs deviceHandle : device handle (from tseAdd)

Outputs pmode : pointer to the TSI mode

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Setting active connection page: tseSetPage

This function sets the specified page number as the active connection memory pages for the TSIs.

A total of thirty-three pages numbers will be changed; one Space Switch (SSWT), sixteen Ingress
Time Switch Elements (ITSE) and sixteen Egress Time Switch Elements (ETSE).

Prototype INT4 tseSetPage (sTSE_HNDL deviceHandle, UINT2 pgNum)

Inputs deviceHandle : device handle (from tseAdd)
pgNum : active page number (0 or 1)

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 56
Document ID: PMC-2001402, Issue 2

Getting active connection page: tseGetPage

This function gets the active connection memory page that is stored in the driver’s database. See
the routine tseGetOnePage to get an individual TSI memory page number directly from the
device.

Prototype INT4 tseGetPage (sTSE_HNDL deviceHandle, UINT2 *ppgNum)

Inputs deviceHandle : device Handle (from tseAdd)
ppgNum : location to store page number

Outputs ppgNum : pointer to the active page number

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Setting active connection page: tseSetOnePage

This function sets an individual TSI connection memory page.

One of the following TSIs may be changed: Space Switch (SSWT), one of the sixteen Ingress
Time Switch Elements (ITSE) or one of the sixteen Egress Time Switch Elements (ETSE).

Prototype INT4 tseSetOnePage (sTSE_HNDL deviceHandle, eTSE_BLOCK
blockType, UINT1 blockNum, UINT2 pgNum)

Inputs deviceHandle : device Handle (from tseAdd)
blockType : the block to read page number from (SSWT,
 ITSE, ETSE)
blockNum : block within the TSI to read page number from
 (ignored for SSWT, otherwise it must be 1 to
 TSE_MAX_IE_BLOCKS)
pgNum : active page number (0 or 1)

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 57
Document ID: PMC-2001402, Issue 2

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Getting active connection page: tseGetOnePage

This function gets an individual TSI connection memory from the device.

Prototype INT4 tseGetOnePage (sTSE_HNDL deviceHandle, eTSE_BLOCK
blockType, UINT1 blockNum, UINT2 *ppgNum)

Inputs deviceHandle : device Handle (from tseAdd)
blockType : the block to read page number from (SSWT,
 ITSE, ETSE)
blockNum : block within the TSI to read page number from
 (ignored for SSWT, otherwise it must be 1 to
 TSE_MAX_IE_BLOCKS)
ppgNum : location to store page number

Outputs ppgNum : the active page number (0 or 1)

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 58
Document ID: PMC-2001402, Issue 2

Copying connection map from one page to another in: tseCopyPage

This function is used to synchronize (overwrite) the given page using the other connection page.

Prototype INT4 tseCopyPage (sTSE_HNDL deviceHandle, UINT2 src, UINT2
dest)

Inputs deviceHandle : device handle (from tseAdd)
src : source page number
dest : destination page number

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_INVALID_MODE
 TSE_ERR_POLL_TIMEOUT

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Mapping the source to destination slots(s): tseMapSlot

This function is used to map the source space-time slot to the destination space-time slots. If the
number of destinations is less than or equal to one the connection is unicast; otherwise it is
multicast.

Prototype INT4 tseMapSlot (sTSE_HNDL deviceHandle, UINT2 pgNum,
sTSE_SPTSLOT *psrcSlot, sTSE_SPTSLOT destSlot[], UINT4
numSlots)

Inputs deviceHandle : device handle (from tseAdd)
pgNum : connection page
psrcSlot : pointer to source space-time slot
destSlot : array of destination space-time slots
numSlots : number of destination space-time slots

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_INVALID_MODE

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 59
Document ID: PMC-2001402, Issue 2

 TSE_ERR_CONNECT_EXIST
 TSE_ERR_POLL_TIMEOUT

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Removing established connection: tseRmSlot

This function is used to remove a connection between the source space-time slot to the
destination space-time slots.

Note: the connection is removed from the driver’s database only. It is not possible to remove a
connection from the device because it does not support the concept of “no-connection”, an output
is always connected to an input.

Prototype INT4 tseRmSlot (sTSE_HNDL deviceHandle, UINT2 pgNum,
sTSE_SPTSLOT *psrcSlot, sTSE_SPTSLOT destSlot[], UINT4
numSlots)

Inputs deviceHandle : device handle (from tseAdd)
pgNum : connection page
psrcSlot : pointer to source space-time slot
destSlot : array of destination space-time slots
numSlots : number of destination space-timeslots

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_INVALID_MODE
 TSE_ERR_CONNECT_EXIST

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 60
Document ID: PMC-2001402, Issue 2

Clearing all connections: tseClrSlot

This function removes all given mapping for the source space-time.

Note: the connection is removed from the driver’s database only. It is not possible to remove a
connection from the device because it does not support the concept of “no-connection”, an output
is always connected to an input.

Prototype INT4 tseClrSlot (sTSE_HNDL deviceHandle, UINT2 pgNum,
sTSE_SPTSLOT *psrcSlot)

Inputs deviceHandle : device handle (from tseAdd)
pgNum : connection page
psrcSlot : pointer to source space-time slot

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_INVALID_MODE
 TSE_ERR_CONNECT_EXIST

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 61
Document ID: PMC-2001402, Issue 2

Getting source space-time Slot: tseGetSrcSlot

This function is used to get the space-time slot mappings given a specific destination space-time
slot. If the number of destinations is less than or equal to one the connection is unicast; otherwise
it is multicast.

Prototype INT4 tseGetSrcSlot (sTSE_HNDL deviceHandle, UINT2 pgNum,
sTSE_SPTSLOT *psrcSlot, sTSE_SPTSLOT *pdestSlot)

Inputs deviceHandle : device handle (from tseAdd)
pgNum : connection page
pdestSlot : pointer to destination space-time slots

Outputs psrcSlot : pointer to source space-time slot

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Getting destination space-time Slot: tseGetDestSlot

This function is used to get the space-time slot mappings given a specific source space-time slot.
If the number of destinations is less than or equal to one, the connection is unicast; otherwise, it is
multicast.

Prototype INT4 tseGetDestSlot (sTSE_HNDL deviceHandle, UINT2 pgNum,
sTSE_SPTSLOT *psrcSlot, sTSE_SPTSLOT destSlot[], UINT4
*pNumSlots)

Inputs deviceHandle : device handle (from tseAdd)
pgNum : connection page
psrcSlot : pointer to source space-time slot

Outputs destSlot : array of pointers to destination space-time slots
pNumSlots : pointer to number of destination space- time slots

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 62
Document ID: PMC-2001402, Issue 2

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Verifying a multicast connection: tseIsMulticast

This function is given a source space-time slot and discovers if this connection is a multicast.

Prototype INT4 tseIsMulticast (sTSE_HNDL deviceHandle, UINT2
pgNum, sTSE_SPTSLOT *psrcSlot)

Inputs deviceHandle : device handle (from tseAdd)
pgNum : connection page
psrcSlot : pointer to source space-time slot

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Inserting Idle Data: tseInsIdleData

This function is given a destination space-time slot and inserts idle data into that time slot.

Prototype INT4 tseInsIdleData (sTSE_HNDL deviceHandle, UINT2 pgNum,
UINT2 blk, sTSE_SPTSLOT *pSlot, BOOLEAN insert, UINT2
idleData)

Inputs deviceHandle : device handle (from tseAdd)
pgNum : connection page

blk : 0 = ITSE, 1 = ETSE
pSlot : pointer to source space-time slot
insert : enable/disable insertion
idleData : idle data to be inserted

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 63
Document ID: PMC-2001402, Issue 2

 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_POLL_TIMEOUT

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

5.5 Port Alarm, Status and Statistics

The TSE device driver has the capability to collect and report both port and device level status
and statistics. The functions described in this section are for the collection and reporting of port
level status and statistics. For the device level information, see section 5.6.

Getting port cumulative statistics: tsePortGetStats

This function retrieves all the port statistical counts that are kept in the Device Data Block
(DDB).

Prototype INT4 tsePortGetStats (sTSE_HNDL deviceHandle, UINT2 port,
sTSE_CNTR_PORT *pCnts)

Inputs deviceHandle : device handle (from tseAdd)
port : port number

Outputs pCnts : pointer to the statistics

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_SEMAPHORE

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Getting port status: tsePortGetStatus

This function retrieves all the port status information directly from the device.

Prototype INT4 tsePortGetStatus (sTSE_HNDL deviceHandle, UINT2 port,
sTSE_STATUS_PORT *pStatus)

Inputs deviceHandle : device handle (from tseAdd)
port : port number

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 64
Document ID: PMC-2001402, Issue 2

Outputs pStatus : pointer to the status

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Getting port delta statistics: tsePortGetDelta

This function retrieves all the port delta statistical counts that are kept in the Device Data Block
(DDB).

Prototype INT4 tsePortGetDelta (sTSE_HNDL deviceHandle, UINT2 port,
sTSE_CNTR_PORT *pCnts)

Inputs deviceHandle : device handle (from tseAdd)
port : port number

Outputs pCnts : pointer to the statistics

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_SEMAPHORE

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Getting port interrupt callback threshold: tsePortGetThresh

This function retrieves all the port thresholds that are kept in the Device Data Block (DDB).

Prototype INT4 tsePortGetThresh(sTSE_HNDL deviceHandle, UINT2 port,
sTSE_CNTR_PORT *pCnts)

Inputs deviceHandle : device handle (from tseAdd)
port : port number

Outputs pCnts : pointer to the thresholds

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 65
Document ID: PMC-2001402, Issue 2

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Setting port interrupt callback threshold: tsePortSetThresh

This function configures all the port thresholds that are kept in the Device Data Block (DDB).
The threshold controls how often the driver calls back to the application for an event. A threshold
of 2 means the driver will call back once for every 2 such events.

Prototype INT4 tsePortSetThresh(sTSE_HNDL deviceHandle, UINT2 port,
sTSE_CNTR_PORT *pCnts)

Inputs deviceHandle : device handle (from tseAdd)
port : port number
pCnts : pointer to the thresholds

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Clear all port statistics: tsePortClrStats

This function clears the cumulative and delta counts for a port that are kept in the Device Data
Block (DDB).

Prototype INT4 tsePortClrStats(sTSE_HNDL deviceHandle, UINT2 port)

Inputs deviceHandle : device handle (from tseAdd)
port : port number

Outputs None

Returns Success = TSE_SUCCESS
F il TSE ERR MODULE NOT INIT

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 66
Document ID: PMC-2001402, Issue 2

Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_SEMAPHORE

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

5.6 Device Alarm, Status and Statistics

The TSE device driver has the capability to collect and report both port and device level status
and statistics. The functions described in this section are for the collection and reporting of
device level status and statistics: For the port level information, see section 5.5.

Getting device cumulative statistics: tseDeviceGetStats

This function retrieves all the device statistical counts that are kept in the Device Data Block
(DDB).

Prototype INT4 tseDeviceGetStats (sTSE_HNDL deviceHandle,
sTSE_CNTR_DEVICE *pCnts)

Inputs deviceHandle : device handle (from tseAdd)

Outputs pCnts : pointer to the statistics

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_SEMAPHORE

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 67
Document ID: PMC-2001402, Issue 2

Getting device status: tseDeviceGetStatus

This function retrieves all the device status information directly from the device.

Prototype INT4 tseDeviceGetStatus (sTSE_HNDL deviceHandle,
sTSE_STATUS_DEVICE *pStatus)

Inputs deviceHandle : device handle (from tseAdd)

Outputs pStatus : pointer to the status

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Getting device delta statistics: tseDeviceGetDelta

This function retrieves all the device delta statistical counts that are kept in the Device Data Block
(DDB).

Prototype INT4 tseDeviceGetDelta (sTSE_HNDL deviceHandle,
sTSE_CNTR_DEVICE *pCnts)

Inputs deviceHandle : device handle (from tseAdd)

Outputs pCnts : pointer to the statistics

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_SEMAPHORE

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 68
Document ID: PMC-2001402, Issue 2

Getting device interrupt callback threshold: tseDeviceGetThresh

This function retrieves all the device thresholds that are kept in the Device Data Block (DDB).

Prototype INT4 tseDeviceGetThresh(sTSE_HNDL deviceHandle,
sTSE_CNTR_DEVICE *pCnts)

Inputs deviceHandle : device handle (from tseAdd)

Outputs pCnts : pointer to the thresholds

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Setting device interrupt callback threshold: tseDeviceSetThresh

This function configures all the device thresholds that are kept in the Device Data Block (DDB).
The threshold controls how often the driver calls back to the application for an event. A threshold
of 2 means the driver will call back once for every 2 such events.

Prototype INT4 tseDeviceSetThresh(sTSE_HNDL deviceHandle,
sTSE_CNTR_DEVICE *pCnts)

Inputs deviceHandle : device handle (from tseAdd)
pCnts : pointer to the thresholds

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 69
Document ID: PMC-2001402, Issue 2

Clear all device statistics: tseDeviceClrStats

This function clears all the device statistics that are kept in the Device Data Block (DDB).

Prototype INT4 tseDeviceClrStats(sTSE_HNDL deviceHandle)

Inputs deviceHandle : device handle (from tseAdd)

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_SEMAPHORE

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

5.7 Device Configuration

The TSE device has several device level modes. The following APIs allow these modes to be
configured.

Setting device configuration: tseDeviceSetConfig

This function allows the configuration of a TSE device to be dynamically changed.

Prototype INT4 tseDeviceSetConfig (sTSE_HNDL , sTSE_CFG_DEVICE
*pDevConfig)

Inputs deviceHandle : device handle (from tseAdd)
pDevConfig : pointer to the device configuration

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 70
Document ID: PMC-2001402, Issue 2

Getting device configuration: tseDeviceGetConfig

This function allows the configuration of an 8b/10b device.

Prototype INT4 tseDeviceGetConfig (sTSE_HNDL deviceHandle,
sTSE_CFG_DEVICE *pDevConfig)

Inputs deviceHandle : device handle (from tseAdd)

Outputs pDevConfig : pointer to the device configuration

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_ACTIVE or TSE_INACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 71
Document ID: PMC-2001402, Issue 2

5.8 Port Configuration

The TSE device has 64 ports in each direction (ingress and egress). The following APIs allow
these ports to be configured.

Setting port configuration: tsePortSetConfig

This function allows the configuration of an 8b/10b port.

Prototype INT4 tsePortSetConfig (sTSE_HNDL deviceHandle, UINT2 port,
sTSE_CFG_PORT *pconfig)

Inputs deviceHandle : device handle (from tseAdd)
port : port number
pconfig : pointer to the port configuration

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Getting port configuration: tsePortGetConfig

This function allows the configuration of an 8b/10b port.

Prototype INT4 tsePortGetConfig (sTSE_HNDL deviceHandle, UINT2 port,
sTSE_CFG_PORT *pconfig)

Inputs deviceHandle : device handle (from tseAdd)
port : port number

Outputs pconfig : pointer to the port configuration

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_ACTIVE or TSE_INACTIVE

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 72
Document ID: PMC-2001402, Issue 2

Side Effects None

Setting J0 Masking mode: tsePortSetMaskMode

This function defines one of three modes for filtering J0 characters from the time-space-time
switch core.

TSE_J0MASK_ALLOW mode will allow good J0’s into the switch core and is available on all
revisions of the device. It is also the default mode of the device when it is brought out of reset.

TSE_J0MASK_DENY mode will not allow good J0 characters into the switch. This mode is only
available on revision D, or later, TSE devices.

TSE_J0MASK_DENY_REORDER mode will not allow good J0 characters into the switch core and
the J0/Z0 bytes are re-ordered in the ITSE/ETSE. This mode is only available on revision D, or
later, TSE devices.

Prototype INT4 tsePortSetMaskMode (sTSE_HNDL deviceHandle, UINT2
portSet, eTSE_MASK_MODE mode)

Inputs deviceHandle : device Handle (from tseAdd)
portSet : the first port number of a set of 4 ports (1, 5, 9, 13, 17,
 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61)
mode : masking mode (Allow, Deny, Deny_Reorder)

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_DEV_VERSION

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Notes Ports can only be put into these modes 4 at a time because the ITSE/ETSE
applies masking configuration globally to the ports feeding them.

Depending on the mode, the following bits will be set or cleared:
 J0MASK in 4 R8FA ports
 IJ0RORDR in 1 ITSE block
 EJ0RORDR in 1 ETSE block
 J0INS in 4 T8DE ports

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 73
Document ID: PMC-2001402, Issue 2

5.9 8b/10b Decoder/Encoder

The TSE device driver has the capability to force certain errors on the 8b/10b ports. The
following functions are intended to give access to these features.

Forcing port OOC alignment: tseForceOutOfChar

This function allows the forcing of an out of character alignment on an 8b/10b port.

Prototype INT4 tseForceOutOfChar (sTSE_HNDL deviceHandle, UINT2
port, UINT2 force)

Inputs deviceHandle : device handle (from tseAdd)
port : port number
force : 1 = force Out Of Character with a 0->1 transistion of
 the R8FA_FOCA bit
 0 = no not force, write a 0 to R8FA_FOCA bit

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 74
Document ID: PMC-2001402, Issue 2

Forcing port OOF alignment: tseForceOutOfFrame

This function allows the forcing of an out of frame alignment on an 8b/10b port.

Prototype INT4 tseForceOutOfFrame(sTSE_HNDL deviceHandle, UINT2
port, UINT2 force)

Inputs deviceHandle : device handle (from tseAdd)
port : port number
force : 1 = force Out Of Frame with a 0->1 transistion of
 the R8FA_FOFA bit
 0 = no not force, write a 0 to R8FA_FOFA bit

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 75
Document ID: PMC-2001402, Issue 2

Forcing port AIS: tseForceAIS

This function allows the forcing of an out of frame Alarm Indication Signal.

As documented in the TSE Engineering document PMC-1990713, the AIS will only be inserted if
the corresponding R8FA block is in the out-of-frame state.

Prototype INT4 tseForceAIS(sTSE_HNDL deviceHandle, UINT2 port, UINT2
force)

Inputs deviceHandle : device handle (from tseAdd)
port : port number
force : force AIS (1) or not (0)

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

Forcing port LCV: tseForceLcv

This function allows the forcing a line character violation on an 8b/10b port.

Prototype INT4 tseForceLcv(sTSE_HNDL deviceHandle, UINT2 port, UINT2
force)

Inputs deviceHandle : device handle (from tseAdd)
port : port number
force : force LCV (1) or not (0)

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_INACTIVE or TSE_ACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 76
Document ID: PMC-2001402, Issue 2

5.10 Interrupt Service Functions

This Section describes interrupt-service functions that perform the following tasks:

�� Set, get and clear the interrupt enable mask
�� Read and process the interrupt-status registers
�� Poll and process the interrupt-status registers

See page 27 for an explanation of our interrupt servicing architecture.

Configuring ISR Processing: tseISRConfig

This function allows the user to configure how ISR processing is to be handled: polling
(TSE_POLL_MODE) or interrupt driven (TSE_ISR_MODE). If polling is selected, the user is
responsible for periodically calling devicePoll to collect exception data from the Device.

Prototype INT4 tseISRConfig(sTSE_HNDL deviceHandle, UINT2 mode)

Inputs deviceHandle : device handle (from tseAdd)
mode : mode of operation (TSE_ISR_MODE or
 TSE_POLL_MODE)

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_SEMAPHORE

Valid States TSE_PRESENT, TSE_ACTIVE, TSE_INACTIVE

Side Effects None

Getting the Interrupt Status Mask: tseGetMask

This function returns the contents of the interrupt mask registers of the TSE device.

Prototype INT4 tseGetMask(sTSE_HNDL deviceHandle, sTSE_MASK *pmask)

Inputs deviceHandle : device handle (from tseAdd)

Outputs pmask : (pointer to) updated mask structure

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 77
Document ID: PMC-2001402, Issue 2

 TSE_ERR_INVALID_ARG

Valid States TSE_ACTIVE, TSE_INACTIVE

Side Effects None

Setting the Interrupt Enable Mask: tseSetMask

This function sets the contents of the interrupt mask registers of the TSE device. Any bits that are
set in the passed structure are set in the associated TSE registers. Any bits that are not set are left
as is on the TSE device.

Prototype INT4 tseSetMask(sTSE_HNDL deviceHandle, sTSE_MASK *pmask)

Inputs deviceHandle : device handle (from tseAdd)
pmask : (pointer to) mask structure

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

Valid States TSE_ACTIVE, TSE_INACTIVE

Side Effects May change the operation of the ISR/DPR

Clearing the Interrupt Enable Mask: tseClearMask

This function clears individual interrupt bits and registers in the TSE device. Any bits that are set
in the passed structure are cleared in the associated TSE registers. Any bits that are not set are left
as is on the TSE device.

Prototype INT4 tseClearMask(sTSE_HNDL deviceHandle, sTSE_MASK
*pmask)

Inputs deviceHandle : device handle (from tseAdd)
pmask : (pointer to) mask structure

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 78
Document ID: PMC-2001402, Issue 2

Valid States TSE_ACTIVE, TSE_INACTIVE

Side Effects May change the operation of the ISR/DPR

Polling the Interrupt Status Registers: tsePoll

This function commands the driver to poll the interrupt registers in the Device. The call will fail
unless the device was initialized (via tseInit) or configured (via tseISRConfig) into polling
mode.

Prototype INT4 tsePoll(sTSE_HNDL deviceHandle)

Inputs deviceHandle : device handle (from tseAdd)

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_INVALID_ARG
 TSE_ERR_MODE
 TSE_FAILURE

Valid States TSE_ACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 79
Document ID: PMC-2001402, Issue 2

Interrupt-Service Routine: tseISR

This function reads the state of the interrupt registers in the TSE and stores them in an ISV.
Performs whatever functions are needed to clear the interrupt, from simply clearing bits to
complex functions. This routine is called by the application code from within
sysTSEISRHandler.

If ISR mode is configured, all interrupts that were detected are disabled and the ISV is returned to
the application. Note that the application is then responsible for sending this buffer to the DPR
task.

If polling mode is selected, no ISV is returned to the application and the DPR is called directly
with the ISV. Note: When designing these functions, keep in mind all possible issues that may
arise when multiple devices are present and some are in polling mode and some are in ISR mode.

Prototype void * tseISR(sTSE_HNDL deviceHandle)

Inputs deviceHandle : device handle (from tseAdd)

Outputs None

Returns (pointer to) ISV buffer (to send to the DPR) or NULL (pointer)

Valid States TSE_ACTIVE

Side Effects None

Deferred-Processing Routine: tseDPR

This function acts on data contained in the passed ISV, allocates one or more DPV buffers (via
sysTSEDPVBufferGet) and invokes one or more callbacks (if defined and enabled). This
routine is called by the application code, within sysTSEDPRTask. Note that the callbacks are
responsible for releasing the passed DPV. It is recommended that this be done as soon as possible
to avoid running out of DPV buffers. Note: When designing these functions, keep in mind all
possible issues that may arise when multiple devices are present and some are in polling mode
and some are in ISR mode.

Prototype void tseDPR(void *pivec)

Inputs pivec : (pointer to) ISV buffer

Outputs None

Returns None

Valid States TSE_ACTIVE

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 80
Document ID: PMC-2001402, Issue 2

Side Effects None

5.11 Device Diagnostics

Testing Register Accesses: tseTestReg

This function verifies the hardware access to the device registers by writing and reading back
values. The original register contents are restored after the test.

Prototype INT4 tseTestReg(sTSE_HNDL deviceHandle, UINT2 *
pErrorRegNum, UINT2 * pErrorWrite, UINT2 * pErrorRead,
UINT2 * pErrorMask)

Inputs deviceHandle : device handle (from tseAdd)
pErrorRegNum : pointer to register number test failed at
pErrorWrite : pointer to value written
pErrorRead : pointer to value read
pErrorMask : pointer to mask applied to test value

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_FAILRAMTEST

Valid States TSE_PRESENT, TSE_INACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 81
Document ID: PMC-2001402, Issue 2

Testing RAM Accesses: tseTestRAM

This function performs a RAM test at the read/write registers inside the device’s memory space to
verify the address and data bus connections between the CPU and the device.

Prototype INT4 tseTestRAM(sTSE_HNDL deviceHandle, UINT2 iaddrReg,
UINT1 timeSlotStart, UINT1 timeSlotEnd, UINT1 bpStart,
UINT1 bpEnd)

Inputs deviceHandle : device handle (from tseAdd)
iaddrReg : indirect address register
timeSlotStart : time slot to start test (1-12)
timeSlotEnd : time slot to end test (1-12)
bpStart : block or port to start test
bpEnd : block or port to end test

Outputs None

Returns Success = TSE_SUCCESS
Failure = TSE_ERR_MODULE_NOT_INIT
 TSE_ERR_INVALID_DEV
 TSE_ERR_INVALID_STATE
 TSE_ERR_FAILRAMTEST

Valid States TSE_PRESENT, TSE_INACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 82
Document ID: PMC-2001402, Issue 2

5.12 Callback Functions

The TSE driver has the capability to call back to functions within the user code when certain
events occur. These events and their associated callback routine declarations are detailed below.
There is no user code action that is required by the driver for these callbacks – the user is free to
implement these callbacks in any manner or else they can be deleted from the driver.

The names given to the callback functions are given as examples only. The addresses of the
callback functions invoked by the tseDPR function are passed during the tseInit call (inside a
DIV). However the user shall use the exact same prototype. The application is left responsible for
releasing the passed DPV as soon as possible (to avoid running out of DPV buffers) by calling
sysTSEDPVBufferRtn either within the callback function or later inside the application code.

Once the number of events exceeds its specified threshold (in the DIV) the callback to the
application is made. The thresholds can be changed dynamically by calling
tseDeviceSetThresh() or tsePortSetThresh(). Setting a threshold count to 0 or 1 means
that a callback will occur for every such event.

Calling Back to the Application due to device level events: cbackTSEDevice

This callback function is provided by the user and is used by the DPR to report significant device
level section events back to the application. This function should be non-blocking. Typically, the
callback routine sends a message to another task with the event identifier and other context
information. The task that receives this message can then process this information according to
the system requirements. NOTE: the callback function’s addresses are passed to the driver doing
the tseInit call. If the address of the callback function was passed as a NULL at initialization,
no callback will be made.

Prototype void cbackTSEDevice(sTSE_USR_CTXT usrCtxt, void *pdpv)

Inputs usrCtxt : user context (from tseAdd)
pdpv : (pointer to) DPV that describes this event

Outputs None

Returns None

Valid States TSE_ACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 83
Document ID: PMC-2001402, Issue 2

Calling Back to the Application due to port level events: cbackTSEPort

This callback function is provided by the user and is used by the DPR to report significant port
level section events back to the application. This function should be non-blocking. Typically, the
callback routine sends a message to another task with the event identifier and other context
information. The task that receives this message can then process this information according to
the system requirements. NOTE: the callback function’s addresses are passed to the driver doing
the tseInit call. If the address of the callback function was passed as a NULL at initialization,
no callback will be made.

Prototype void cbackTSEPort(sTSE_USR_CTXT usrCtxt, void *pdpv)

Inputs usrCtxt : user context (from tseAdd)
pdpv : (pointer to) DPV that describes this event

Outputs None

Returns None

Valid States TSE_ACTIVE

Side Effects None

 TSE (PM5372) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 84
Document ID: PMC-2001402, Issue 2

6 HARDWARE INTERFACE
The TSE driver interfaces directly with the user’s hardware. In this section, a listing of each point
of interface is shown, along with a declaration and any specific porting instructions. It is the
responsibility of the user to connect these requirements into the hardware, either by defining a
macro or by writing a function for each item listed. Care should be taken when matching
parameters and return values.

6.1 Device I/O

Reading from a Device Register: sysTSERead

sysTseRead provides the most basic kind of hardware access; it reads the contents of a specific
register location. This macro should be defined by the user according to the target system’s
addressing logic. There is no need for error recovery in this function.

Format #define sysTSERead(base, offset)

Prototype UINT2 sysTSERead(UINT2 *base, UINT2 offset)

Inputs base : base address of device
offset : offset of register from base address

Outputs None

Returns value read from the addressed register location

Writing to a Device Register: sysTSEWrite

sysTseWrite provides the most basic kind of hardware access; it writes the supplied value to
the specific register location. This macro should be defined by the user according to the target
system’s addressing logic. There is no need for error recovery in this function.

Format #define sysTSEWrite(base, offset, value)

Prototype void sysTSEWrite(UINT2 *base, UINT2 offset, UINT2 value)

Inputs base : base address of device
offset : offset of register from base address
data : data to be written

Outputs None

Returns None

 TSE (PM5372) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 85
Document ID: PMC-2001402, Issue 2

6.2 System-Specific Interrupt Servicing

The porting of an ISR routine between platforms is a rather difficult task. There are many
different implementations of these hardware level routines. In this driver, the user is responsible
for installing an interrupt handler (sysTSEISRHandler) in the interrupt vector table of the
system processor. This handler shall call tseISR for each device that has interrupt servicing
enabled, to perform the ISR related housekeeping required by each device.

During execution of the API function tseModuleStart / tseModuleStop the driver informs
the application that it is time to install / uninstall this shell via sysTSEISRHandlerInstall /
sysTSEISRHandlerRemove, which needs to be supplied by the user.

Note: A device can be initialized with ISR disabled. In that mode, the user should periodically
invoke a provided ‘polling’ routine (tsePoll) that in turn calls tseISR.

Installing the ISR Handler: sysTSEISRHandlerInstall

This routine installs the user-supplied Interrupt-Service Routine (ISR), sysTSEISRHandler into
the processor’s interrupt vector table. Also the Deferred Processing task (DPR), sysTSEDPRTask
and the ISR to DPR message queue is installed.

Format #define sysTSEISRHandlerInstall(void)

Prototype INT4 sysTSEISRHandlerInstall(void)

Inputs None

Outputs None

Returns Success = 0
Failure = <any other value>

ISR Handler: sysTSEISRHandler

This routine is invoked when one or more TSE devices raise the interrupt line to the
microprocessor. This routine invokes the driver-provided routine, tseISR, for each device
registered with the driver.

Format #define sysTSEISRHandler(irq)

Prototype void sysTSEISRHandler(INT4 irq)

Inputs irq : IRQ number for handler

Outputs None

Returns None

 TSE (PM5372) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 86
Document ID: PMC-2001402, Issue 2

Removing the ISR Handler: sysTSEISRHandlerRemove

This routine disables interrupt processing for this device. Removes the user-supplied Interrupt
Service routine (ISR), sysTSEISRHandler, from the processor’s interrupt vector table. Also the
Deferred Processing task (DPR), sysTSEDPRTask and the ISR to DPR message queue are
removed.

Format #define sysTSEISRHandlerRemove ()

Prototype void sysTSEISRHandlerRemove(void)

Inputs None

Outputs None

Returns None

 TSE (PM5372) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 87
Document ID: PMC-2001402, Issue 2

7 RTOS INTERFACE
The TSE driver requires the use of some RTOS resources. In this section, a listing of each
required resource is shown, along with a declaration and any specific porting instructions. It is the
responsibility of the user to connect these requirements into the RTOS, either by defining a macro
or writing a function for each item listed. Care should be taken when matching parameters and
return values.

7.1 Memory Allocation/De-Allocation

Allocating Memory: sysTSEMemAlloc

This function allocates specified number of bytes of memory.

Format #define sysTSEMemAlloc(numBytes)

Prototype UINT1 *sysTSEMemAlloc(UINT4 numBytes)

Inputs numBytes : number of bytes to be allocated

Outputs None

Returns Success = Pointer to first byte of allocated memory
Failure = NULL pointer (memory allocation failed)

Freeing Memory: sysTSEMemFree

This function frees memory allocated using sysTSEMemAlloc.

Format #define sysTSEMemFree(pfirstByte)

Prototype void sysTSEMemFree(UINT1 *pfirstByte)

Inputs pfirstByte : pointer to first byte of the memory region being de-allocated

Outputs None

Returns None

 TSE (PM5372) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 88
Document ID: PMC-2001402, Issue 2

7.2 Buffer Management

All operating systems provide some sort of buffer system, particularly for use in sending and
receiving messages. The following calls, provided by the user, allow the driver to Get and Return
buffers from the RTOS. It is the user’s responsibility to create any special resources or pools to
handle buffers of these sizes during the sysTSEBufferStart call.

Starting Buffer Management: sysTSEBufferStart

This function alerts the RTOS that the time has come to make sure ISV buffers and DPV buffers
are available and sized correctly. This may involve the creation of new buffer pools, or it may not
involve anything, depending on the RTOS.

Format #define sysTSEBufferStart()

Prototype INT4 sysTSEBufferStart(void)

Inputs None

Outputs None

Returns Success = 0
Failure = <any other value>

Getting an ISV Buffer: sysTSEISVBufferGet

This function gets a buffer from the RTOS that will be used by the ISR code to create an Interrupt
Service Vector (ISV). The ISV consists of data transferred from the device’s interrupt status
registers.

Format #define sysTSEISVBufferGet()

Prototype sTSE_ISV *sysTSEISVBufferGet(void)

Inputs None

Outputs None

Returns Success = (pointer to) a ISV buffer
Failure = NULL (pointer)

 TSE (PM5372) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 89
Document ID: PMC-2001402, Issue 2

Returning an ISV Buffer: sysTSEISVBufferRtn

This function returns an ISV buffer to the RTOS when the information in the block is no longer
needed by the DPR.

Format #define sysTSEISVBufferRtn(pisv)

Prototype void sysTSEISVBufferRtn(sTSE_ISV *pisv)

Inputs pisv : (pointer to) a ISV buffer

Outputs None

Returns None

Getting a DPV Buffer: sysTSEDPVBufferGet

This function gets a buffer from the RTOS that will be used by the DPR code to create a Deferred
Processing Vector (DPV). The DPV consists of information about the state of the device that is to
be passed to the user via a callback function.

Format #define sysTSEDPVBufferGet()

Prototype sTSE_DPV *sysTSEDPVBufferGet(void)

Inputs None

Outputs None

Returns Success = (pointer to) a DPV buffer
Failure = NULL (pointer)

Returning a DPV Buffer: sysTSEDPVBufferRtn

This function returns a DPV buffer to the RTOS when the information in the block is no longer
needed by the DPR.

Format #define sysTSEDPVBufferRtn(pdpv)

Prototype void sysTSEDPVBufferRtn(sTSE_DPV *pdpv)

Inputs pdpv : (pointer to) a DPV buffer

Outputs None

Returns None

 TSE (PM5372) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 90
Document ID: PMC-2001402, Issue 2

Stopping Buffer Management: sysTSEBufferStop

This function alerts the RTOS that the driver no longer needs any of the ISV buffers or DPV
buffers and that if any special resources were created to handle these buffers, they can be deleted
now.

Format #define sysTSEBufferStop()

Prototype void sysTSEBufferStop(void)

Inputs None

Outputs None

Returns None

7.3 System-Specific DPR Routine

The porting of a task between platforms is not always simple. There are many different
implementations of the RTOS level parameters. In this driver, the user is responsible for creating
a ‘shell’ (sysTSEDPRTask) that in turn calls tseDPR with an ISV to perform the ISR related
processing that is required by each interrupting device.

During execution of the API function tseModuleStart / tseModuleStop, the driver informs
the application that it is time to install / uninstall this shell via sysTSEISRHandlerInstall /
sysTSEISRHandlerRemove, which needs to be supplied by the user.

DPR Task: sysTSEDPRTask

This routine is installed as a separate task within the RTOS. It runs periodically and retrieves the
interrupt status information sent to it by tseISR and then invokes tseDPR for the appropriate
device.

Prototype void sysTSEDPRTask(void)

Inputs None

Outputs None

Returns None

 TSE (PM5372) Driver Manual
Porting the TSE Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 91
Document ID: PMC-2001402, Issue 2

8 PORTING THE TSE DRIVER
This section outlines how to port the TSE device driver to your hardware and OS platform.
However, this manual can offer only guidelines for porting the TSE driver because each platform
and application is unique.

8.1 Driver Source Files

The C source files listed below contain the code for the TSE driver. You may need to modify the
code or develop additional code. The code is in the form of constants, macros, and functions. For
the ease of porting, the code is grouped into source files (src) and header files (inc). The src
files contain the functions and the inc files contain the constants and macros.

Directory File Description

src tse_api1.c General driver API

src tse_apl2.c TSE specific API

src tse_hw.c Hardware interface routines

src tse_isr.c Interrupt service routines

src tse_rtos.c RTOS interface routines

src tse_util.c General utility routines

inc tse_api.h API prototypes

inc tse_defs.h TSE definitions

inc tse_err.h Error return values

inc tse_fns.h Prototypes for tse_isr.c and tse_util.c

inc tse_hw.h Prototypes for tse_hw.c

inc tse_rtos.h RTOS interface macros and prototypes

inc tse_strs.h TSE data structures

inc tse_typs.h TSE data types

example tse_debug.h Example debug definitions

example tse_app.c Example application callback routines

 TSE (PM5372) Driver Manual
Porting the TSE Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 92
Document ID: PMC-2001402, Issue 2

Directory File Description

example tse_debug.c Example debug task that prints API register accesses

8.2 Driver Porting Procedures

The following procedures summarize how to port the TSE driver to your platform. The
subsequent sections describe these procedures in more detail.

To port the TSE driver to your platform:

Step 1: Port the driver’s OS extensions (page 92)

Step 2: Port the driver to your hardware platform (page 95)

Step 3: Port the driver’s application-specific elements (page 96)

Step 4: Build the driver (page 97)

Step 1: Porting Driver OS Extensions

The OS extensions encapsulate all OS specific services and data types used by the driver. The
tse_rtos.h file contains data types and compiler-specific data-type definitions. It also contains
macros for OS specific services used by the OS extensions. These OS extensions include:

�� Task management
�� Message queues
�� Events
�� Memory Management

In addition, you may need to modify functions that use OS specific services, such as utility and
interrupt-event handling functions. The tse_rtos.c file contains the utility and interrupt-event
handler functions that use OS specific services.

 TSE (PM5372) Driver Manual
Porting the TSE Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 93
Document ID: PMC-2001402, Issue 2

To port the driver’s OS extensions:

1. Modify the data types in tse_rtos.h. The number after the type identifies the data-type size. For
example, UINT4 defines a 4-byte (32-bit) unsigned integer. Substitute the compiler types that
yield the desired types as defined in this file.

2. Modify the OS specific services in tse_rtos.h. Redefine the following macros to the
corresponding system calls that your target system supports:

Service Type Macro Name Description

sysTSEMemAlloc Allocates the memory block

sysTSEMemFree Frees the memory block

sysTSEMemCpy Copies the memory block from src to dest

Memory

sysTSEMemSet Sets each character in the memory buffer

sysTSESemCreate Create semaphore object

sysTSESemTake Take semaphore object

sysTSESemGive Give semaphore object

Semaphores

sysTSESemDelete Delete semaphore object

Miscellaneous sysTseAssert ANSI assert

 TSE (PM5372) Driver Manual
Porting the TSE Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 94
Document ID: PMC-2001402, Issue 2

3. Modify the utilities and interrupt services that use OS specific services in the tse_rtos.c.
The tse_rtos.c file contains the utility and interrupt-event handler functions that use OS
specific services. Refer to the function headers in this file for a detailed description of each of
the functions listed below:

Service Type Function Name Description

sysTSEBufferStart Allocates buffers for ISR and DSP Memory

sysTSEBufferStop Deallocates buffers for ISR and DSP

sysTSEISRHandlerInstall Installs the interrupt handler for the OS

sysTSEISRHandlerRemove Removes the interrupt handler from the
OS

sysTSEISRHandler Interrupt handler for the TSE device

Interrupt

sysTSEDPRTask Deferred interrupt-processing routine
(DPR)

 TSE (PM5372) Driver Manual
Porting the TSE Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 95
Document ID: PMC-2001402, Issue 2

Step 2: Porting Drivers to Hardware Platforms

This section describes how to modify the TSE driver for your hardware platform.

This section describes how to modify the TSE driver for your hardware platform.

To port the driver to your hardware platform:

1. Modify the hardware specific macros in tse_hw.h:

Service Type Function Name Description

sysTseRead Reads from a device register Device I/O

sysTseWrite Writes to a device register

2. Modify the hardware specific functions in tse_hw.c:

Service Type Function Name Description

sysTseISRHandlerInstall Installs the interrupt handler into
the processor’s interrupt vector
table and spawns the DPR task

sysTseISRHandlerRemove Removes the interrupt handler
from the RTOS and deletes the
DPR task

sysTseISRHandler Interrupt handler for the TSE
device

sysTseBufferSend Send ISV message to DPR task

Interrupt

sysTseDPRTask Task that calls the TSE DPR

sysTseStatTask Statistics polling task

sysTseStatTaskEnable Enable Statistics task count
collection

Statistics collection

sysTseStatTaskDisable Disable Statistics task count
collection

Device I/O sysTseBusyBitPoll Polls a device register given its
real address in memory

 TSE (PM5372) Driver Manual
Porting the TSE Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 96
Document ID: PMC-2001402, Issue 2

Step 3: Porting Driver Application Specific Elements

Application specific elements are configuration constants used by the API for developing an
application. This section describes how to modify the application specific elements in the TSE
driver.

To port the driver’s application specific elements:

1. Edit TSE_ERR_BASE in tse_err.h so that the driver’s error codes do not collide with any other
error codes in your system.

2. Define the following driver task-related constants for your RTOS specific services in file
tse_rtos.h:

Task Constant Description Default

TSE_DPR_TASK_PRIORITY Deferred Task (DPR) task priority 85

TSE_DPR_TASK_STACK_SZ DPR task stack size, in bytes 8192

TSE_STAT_TASK_PRIORITY Statistics task priority 95

TSE_STAT_TASK_STACK_SZ Statistics task stack size, in bytes 8192

TSE_TASK_SHUTDOWN_DELAY Delay time in milliseconds. When clearing the
DPR loop active flag in the DPR task, this delay
is used to gracefully shutdown the DPR task
before deleting it

100

3. Code the callback functions according to your application. There are two sample callback
functions in the tse_app.c file. You can customize them before using the driver, then
write their addresses into the cbackTseDevice and cbackTsePort members of the DIV
passed to tseInit(). These functions must free the DPR before returning and should
conform to the following prototypes:

�� void cbackTseDevice (sTSE_CTXT usrCtxt, sTSE_DPV *pdpv)
�� void cbackTsePort (sTSE_CTXT usrCtxt, sTSE_DPV *pdpv)

Note: The port callback routine in tse_app.c illustrates how you must disable the Rx Fifo
interrupt when it first occurs. See tse_app.c for a full explanation.

 TSE (PM5372) Driver Manual
Porting the TSE Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 97
Document ID: PMC-2001402, Issue 2

Step 4: Building the Driver

This section describes how to build the TSE driver.

To build the driver:

1. Ensure that the directory variable names in the makefile reflect your actual driver and
directory names.

2. Compile the source files and build the TSE driver using your make utility.

3. Link the TSE driver to your application code.

 TSE (PM5372) Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 98
Document ID: PMC-2001402, Issue 2

APPENDIX A: CODING CONVENTIONS
This section describes the coding conventions used in the implementation of all PMC driver
software.

Variable Type Definitions

Table 19: Variable Type Definitions

Type Description

UINT1 unsigned integer – 1 byte

UINT2 unsigned integer – 2 bytes

UINT4 unsigned integer – 4 bytes

INT1 signed integer – 1 byte

INT2 signed integer – 2 bytes

INT4 signed integer – 4 bytes

 TSE (PM5372) Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 99
Document ID: PMC-2001402, Issue 2

Naming Conventions

Table 30 presents a summary of the naming conventions followed by all PMC driver software. A
detailed description is then given in the following sub-sections.

The names used in the drivers are verbose enough to make their purpose fairly clear. This makes
the code more readable. Generally, the device’s name or abbreviation appears in prefix.

Table 20: Naming Conventions

Type Case Naming convention Examples

Macros Uppercase prefix with “m” and device
abbreviation

mTSE_WRITE

Constants Uppercase prefix with device
abbreviation

TSE_REG

Enumeration Hungarian prefix with “e” and device
abbreviation

eTSE_MOD_STATS

Structures Hungarian Notation prefix with “s” and device
abbreviation

sTSE_DDB

API Functions Hungarian Notation prefix with device name tseAdd()

Porting Functions Hungarian Notation prefix with “sys” and device
name

sysTSEReadReg()

Other Functions Hungarian Notation myOwnFunction()

Variables Hungarian Notation maxDevs

Pointers to
variables

Hungarian Notation prefix variable name with “p” pmaxDevs

Global variables Hungarian Notation prefix with device name tseMdb

Macros
�� Macro names must be all uppercase.
�� Words are separated by an underscore.
�� The letter ‘m’ in lowercase is used as a prefix to specify that it is a macro, then the device

abbreviation must appear.
�� Example: mTSE_WRITE is a valid name for a macro.

 TSE (PM5372) Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 100
Document ID: PMC-2001402, Issue 2

Constants
�� Constant names must be all uppercase.
�� Words are separated by an underscore.
�� The device abbreviation must appear as a prefix.
�� Example: TSE_REG is a valid name for a constant.

Structures
�� Structure names must be all uppercase.
�� Words are separated by an underscore.
�� The letter ‘s’ in lowercase must be used as a prefix to specify that it is a structure, then the

device abbreviation must appear.
�� Example: sTSE_DDB is a valid name for a structure.

Functions

API Functions

�� Naming of the API functions must follow the Hungarian notation.
�� The device’s full name in all lowercase is used as a prefix.
�� Example: tseAdd() is a valid name for an API function.

Porting Functions

Porting functions correspond to all function that are HW and/or RTOS dependent.

�� Naming of the porting functions must follow the Hungarian notation.
�� The ‘sys’ prefix is used to indicate a porting function.
�� The device’s name starting with an uppercase must follow the prefix.
�� Example: sysTSEReadReg() is a hardware specific function.

Other Functions

�� Other Functions are all the remaining functions that are part of the driver and have no special
naming convention. However, they must follow the Hungarian notation.

�� Example: myOwnFunction() is a valid name for such a function.

 TSE (PM5372) Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 101
Document ID: PMC-2001402, Issue 2

Variables
�� Naming of variables must follow the Hungarian notation.
�� A pointer to a variable shall use ‘p’ as a prefix followed by the variable name unchanged. If

the variable name already starts with a ‘p’, the first letter of the variable name may be
capitalized, but this is not a requirement. Double pointers might be prefixed with ‘pp’, but
this is not required.

�� Global variables must be identified with the device’s name in all lowercase as a prefix.
�� Examples: maxDevs is a valid name for a variable, pmaxDevs is a valid name for a pointer to

maxDevs, and tseBaseAddress is a valid name for a global variable. Note that both
pprevBuf and pPrevBuf are accepted names for a pointer to the prevBuf variable, and that
both pmatrix and ppmatrix are accepted names for a double pointer to the variable matrix.

File Organization

Table 21 presents a summary of the file naming conventions. All file names must start with the
device abbreviation, followed by an underscore and the actual file name. File names should
convey their purpose with a minimum amount of characters. If a file size is getting too big,
separate it into two or more files and add a number at the end of the file name (e.g. tse_api1.c
or tse_api2.c).

There are 4 different types of files:

�� The API file containing all the API functions
�� The hardware file containing the hardware dependent functions
�� The RTOS file containing the RTOS dependent functions
�� The other files containing all the remaining functions of the driver

Table 21: File Naming Conventions

File Type File Name

API tse_api1.c, tse_api.h

Hardware Dependent tse_hw.c, tse_hw.h

RTOS Dependent tse_rtos.c, tse_rtos.h

Other tse_init.c, tse_init.h

API Files
�� The name of the API files must start with the device abbreviation followed by an underscore

and ‘api’. Eventually a number might be added at the end of the name.
�� Example: tse_api1.c is the only valid name for the file that contains the first part of the

API functions.

 TSE (PM5372) Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 102
Document ID: PMC-2001402, Issue 2

�� Example: tse_api.h is the only valid name for the file that contains all of the API functions
headers.

 TSE (PM5372) Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 103
Document ID: PMC-2001402, Issue 2

Hardware Dependent Files
�� The name of the hardware dependent files must start with the device abbreviation followed

by an underscore and ‘hw’.
�� Example: tse_hw.c is the only valid name for the file that contains all of the hardware

dependent functions.
�� Example: tse_hw.h is the only valid name for the file that contains all of the hardware

dependent functions headers.

RTOS Dependent Files
�� The name of the RTOS dependent files must start with the device abbreviation followed by an

underscore and ‘rtos’. Eventually a number might be added at the end of the file name.
�� Example: tse_rtos.c is the only valid name for the file that contains all of the RTOS

dependent functions.
�� Example: tse_rtos.h is the only valid name for the file that contains all of the RTOS

dependent functions headers.

Other Driver Files
�� The name of the remaining driver files must start with the device abbreviation followed by an

underscore and the file name itself, which should convey the purpose of the functions within
that file with a minimum amount of characters.

�� Examples: tse_isr.c is a valid name for a file that would deal with initialization of the
device.

�� Examples: tse_isr.h is a valid name for the corresponding header file.

 TSE (PM5372) Driver Manual
Appendix B: Error Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 104
Document ID: PMC-2001402, Issue 2

APPENDIX B: ERROR CODES
This section of the manual describes the error codes used in the TSE device driver.

Table 22: TSE Error Codes

Error Code Description

TSE_SUCCESS Success

TSE_FAILURE Failure

TSE_ERR_MEM_ALLOC Not enough memory for allocation

TSE_ERR_INVALID_ARG Invalid function parameter

TSE_ERR_MODULE_NOT_INIT Module not initialized

TSE_ERR_MODULE_ALREADY_INIT Module already initialized

TSE_ERR_INVALID_MIV Invalid Module Initialization Vector

TSE_ERR_SEMAPHORE Semaphore error

TSE_ERR_WRONG_STATE Wrong module state

TSE_ERR_INT_INSTALL Unable to install interrupt handler

TSE_ERR_STAT_INSTALL Unable to install statistics task

TSE_ERR_CONNECT_NONEXISTENT Connection does not exist

TSE_ERR_CONNECT_EXIST Connection already exists

TSE_ERR_DEVS_FULL Device table is full

TSE_ERR_DEVS_EMPTY No devices in table

TSE_ERR_DEV_NOT_DETECTED Failed to see manufacturer and device ID on the chip

TSE_ERR_DEV_ALREADY_ADDED Device is already in table

TSE_ERR_INVALID_DEV Invalid device handle passed to driver API

TSE_ERR_INVALID_STATE Invalid device state

 TSE (PM5372) Driver Manual
Appendix B: Error Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 105
Document ID: PMC-2001402, Issue 2

Error Code Description

TSE_ERR_INVALID_DIV Invalid Device Initialization Vector

TSE_ERR_INVALID_MODE Invalid TSI mode

TSE_ERR_NULL_BASE_ADDR NULL base address passed to tseAdd

TSE_ERR_INVALID_REG Invalid register number

TSE_ERR_POLL_TIMEOUT Indirect read/write busy bit timeout

TSE_ERR_FAILRAMTEST RAM test failed

TSE_ERR_CSUNOTLOCKED CSUs did not lock after a reset

TSE_ERR_MODE Wrong mode, interrupt or polling

TSE_NODEBUG Debug not installed, use TSE_CSW_DEBUG compile
switch

TSE_ERR_DEV_VERSION Driver not tested with this device rev, or a mode is
not supported on the rev being using.

TSE_ERR_INVALID_INDIR_VAL Invalid indirect register value

 TSE (PM5372) Driver Manual
Appendix C: Event Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 106
Document ID: PMC-2001402, Issue 2

APPENDIX C: EVENT CODES
Table 23 below describes the interrupt event codes used in the TSE device driver.

Note that specific callback is defined by the “event” and “cause” fields of the sTSE_DPV structure
(for the structure’s definition, please refer to Table 18). Information encoded in these two fields
explicitly defines the cause of the callback. The “event” field encodes the nature of the callback
(e.g., TSE_EVENT_DEVICE_CSU represent a CSU changing lock state); the “cause” further
indicates the absolute cause(s) of the callback event and will be either a port number or a block
number.

Table 23: TSE Event Codes

Event Code Description Cause

TSE_EVENT_DEVICE_CSU Clock Synthesis Unit CSU number (1-4)

TSE_EVENT_DEVICE_SSWT Space Switch 0

TSE_EVENT_DEVICE_ITSE ITSE page switch ITSE number (1-16)

TSE_EVENT_DEVICE_ETSE ETSE page switch ETSE number (1-16)

TSE_EVENT_PORT_ROOC R8FA out of character alignment Port number (1-64)

TSE_EVENT_PORT_ROOF R8FA out of frame alignment Port number (1-64)

TSE_EVENT_PORT_RLCV R8FA line code violation Port number (1-64)

TSE_EVENT_PORT_RFIFO R8FA FIFO underrun/overrun Port number (1-64)

TSE_EVENT_PORT_TFIFO T8DE FIFO underrun/overrun Port number (1-64)

 TSE (PM5372) Driver Manual
List of Terms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 107
Document ID: PMC-2001402, Issue 2

LIST OF TERMS
APPLICATION: Refers to protocol software used in a real system as well as validation software
written to validate the TSE driver on a validation platform.

API (Application Programming Interface): Describes the connection between this module and the
user’s application code.

ISR (Interrupt-Service Routine): A common function for intercepting and servicing device events.
This function is kept as short as possible because an Interrupt preempts every other function
starting the moment it occurs, and gives the service function the highest priority while running.
Data is collected, Interrupt indicators are cleared and the function ended.

DPR (Deferred-Processing Routine): This function is installed as a task, at a user configurable
priority, that serves as the next logical step in Interrupt processing. Data that was collected by the
ISR is analyzed and then calls are made into the application that inform it of the events that
caused the ISR in the first place. Because this function is operating at the task level, the user can
decide on its importance in the system, relative to other functions.

DEVICE : One TSE Integrated Circuit. There can be many devices, all served by this one driver
module.

�� DIV (Device Initialization Vector): Structure passed from the API to the device during
initialization; it contains parameters that identify the specific modes and arrangements of the
physical device being initialized.

�� DDB (Device Data Block): Structure that holds the Configuration Data for each device.

MODULE: The module is all of the code that is part of this driver. There is only one instance of
this module connected to one or more TSE chips.

�� MIV (Module Initialization Vector): Structure passed from the API to the module during
initialization. It contains parameters that identify the specific characteristics of the driver
module being initialized.

�� MDB (Module Data Block): Structure that holds the Configuration Data for this module.

RTOS (Real-Time Operating System): The host for this driver.

 TSE (PM5372) Driver Manual
Acronyms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 108
Document ID: PMC-2001402, Issue 2

ACRONYMS
API: Application Programming Interface

DDB: Device Data Block

DIV: Device Initialization Vector

DPR: Deferred-Processing Routine

DPV: Deferred-Processing (routine) Vector

FIFO: First In, First Out

MDB: Module Data Block

MIV: Module Initialization Vector

ISR: Interrupt-Service Routine

ISV: Interrupt-Service (routine) Vector

RTOS: Real-time operating system

Index

activate
tseActivate, 49

add
tseAdd, 37, 46, 47, 48, 49, 50, 51, 52, 53, 54,

55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 99, 100, 105

address
iaddr, 52, 53
iaddrReg, 52, 53, 81
indirAddr, 52

AIS
forceAis, 40

analogue
reset

analogReset, 40

base address
tseBaseAddress, 101

buffer
pPrevBuf, 101
prevBuf, 101

callback
cbackTseDevice, 31, 33, 82, 96
cbackTsePort, 31, 33, 83, 96
DPR

TSE_DPR_TASK_PRIORITY, 96
TSE_DPR_TASK_STACK_SZ, 96

error
TSE_ERR_BASE, 96
TSE_ERR_CONNECT_EXIST, 104
TSE_ERR_CONNECT_NONEXISTENT,

104
TSE_ERR_CSUNOTLOCKED, 105

 TSE (PM5372) Driver Manual
Acronyms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 109
Document ID: PMC-2001402, Issue 2

TSE_ERR_DEV_ALREADY_ADDED, 104
TSE_ERR_DEV_NOT_DETECTED, 104
TSE_ERR_DEV_VERSION, 72, 105
TSE_ERR_DEVS_EMPTY, 104
TSE_ERR_DEVS_FULL, 104
TSE_ERR_FAILRAMTEST, 105
TSE_ERR_INT_INSTALL, 104
TSE_ERR_INVALID_ARG, 104
TSE_ERR_INVALID_DEV, 104
TSE_ERR_INVALID_DIV, 105
TSE_ERR_INVALID_INDIR_VAL, 105
TSE_ERR_INVALID_MIV, 104
TSE_ERR_INVALID_MODE, 105
TSE_ERR_INVALID_REG, 105
TSE_ERR_INVALID_STATE, 104
TSE_ERR_MEM_ALLOC, 104
TSE_ERR_MODE, 105
TSE_ERR_MODULE_ALREADY_INIT, 104
TSE_ERR_MODULE_NOT_INIT, 104
TSE_ERR_NULL_BASE_ADDR, 105
TSE_ERR_POLL_TIMEOUT, 105
TSE_ERR_SEMAPHORE, 104
TSE_ERR_STAT_INSTALL, 104
TSE_ERR_WRONG_STATE, 104

event
TSE_EVENT_DEVICE_CSU, 106
TSE_EVENT_DEVICE_ETSE, 106
TSE_EVENT_DEVICE_ITSE, 106
TSE_EVENT_DEVICE_SSWT, 106
TSE_EVENT_PORT_RFIFO, 106
TSE_EVENT_PORT_RLCV, 106
TSE_EVENT_PORT_ROOC, 106
TSE_EVENT_PORT_ROOF, 106
TSE_EVENT_PORT_TFIFO, 106

ISR
TSE_ISR_MODE, 33, 76

max
TSE_MAX_CSU_BLOCKS, 32, 35, 39, 41
TSE_MAX_DEVS, 32, 33
TSE_MAX_IE_BLOCKS, 32, 35, 39

TSE_MAX_PAGE, 34
TSE_MAX_PORTS, 32, 33, 34, 35, 37
TSE_MAX_PORTS+1, 34
TSE_MAX_TSLOTS, 32, 34
TSE_MAX_TSLOTS+1, 34

mdb
TSE_MDB_SIGNATURE, 36

mod
TSE_MOD_IDLE, 32, 36, 43, 44, 45
TSE_MOD_READY, 36, 44, 45, 46

mode
TSE_MOD_START, 32, 36, 43, 44

nodebug
TSE_NODEBUG, 105

poll
TSE_POLL_MODE, 33, 76

present
TSE_PRESENT, 32, 37, 46, 47, 48, 49, 50,

51, 52, 53, 76, 80, 81
ready

TSE_READY, 36
register

TSE_REG, 99, 100
shutdown

TSE_TASK_SHUTDOWN, 96
start

TSE_START, 32, 36, 37
TSE_START_DEV, 37
TSE_START_MOD, 36

statistic
TSE_STAT_TASK_PRIORITY, 96
TSE_STAT_TASK_STACK_SZ, 96

success
TSE_SUCCESS, 43, 44, 45, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78, 80, 81, 104

clearmask
tseClearMask, 35, 77

clearslot

 TSE (PM5372) Driver Manual
Acronyms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 110
Document ID: PMC-2001402, Issue 2

tseClrSlot, 30, 60

configuration
tseISRConfig, 76, 78

CONMAP, 34, 37

CONPAGE, 34

copypage
tseCopyPage, 30, 58

CSU
enable

csuEnable, 41
locke

csulocke, 35
reset

csuReset, 41

DDB
pmDDBSem, 36
TSE_DDB_SIGNATURE, 36

deactivate
tseDeActivate, 49

delete
tseDelete, 28, 44, 45, 47

destSlot
tseGetDestSlot, 30, 61

device
configuration

iCfgDevice, 33
pDevConfig, 69, 70

deviceHandle, 41, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81

devicePoll, 33, 76
eTSE_DEV_STATE, 37
iThresDevice, 34
maxDevs, 33, 36, 99, 101

numDevs, 36
pmaxDevs, 99, 101
pperrDevice, 46
stateDevice, 32, 37, 42
tseDeviceClrStats, 69
tseDeviceGetConfig, 70
tseDeviceGetDelta, 67
tseDeviceGetStats, 66
tseDeviceGetStatus, 67
tseDeviceGetThresh, 31, 68
tseDeviceSetConfig, 69
tseDeviceSetThresh, 31, 68, 82

DPR
eTSE_DPR_EVENT, 42
tseDPR, 21, 27, 28, 29, 79, 82, 90

error
errDevice, 36, 37, 42, 46, 50, 51, 52
errModule, 33, 36, 42
pErrorMask, 80
pErrorRead, 80
tse_err.h, 91, 96

FIFO
center

centerFIFO, 40

force
forceLineCodeV, 40
forceOutOfChar, 40
forceOutOfFrame, 40
tseForceAIS, 75
tseForceLcv, 31, 75
tseForceOutOfChar, 31, 73
tseForceOutOfFrame, 31
tseForceOutOfFrm, 74

ID
idCount, 39
idDelta, 39
idThresh, 39

 TSE (PM5372) Driver Manual
Acronyms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 111
Document ID: PMC-2001402, Issue 2

idledata
tseInsIdleData, 31, 62

initialise
tseInit, 33, 47, 48, 78, 82, 83, 96

ipCount, 38

ipDelta, 38

ipThresh, 38

ISR
tseISR, 21, 27, 28, 29, 79, 85, 90

ITSE
itseDisable, 41
itsepage, 35

map
tseGetMapMode, 55

mapSlot
tseMapSlot, 30, 58

mask
pmask, 52, 76, 77
tseGetMask, 35, 76

matrix
pmatrix, 101
ppmatrix, 101

MDB
tseMdb, 42, 99

MIV
pmiv, 43

mode
eTSE_TSIMODE, 37, 54, 55
mapMode, 37
pmode, 55

module
close

tseModuleClose, 44

eTSE_MOD_STATE, 36
open

tseModuleOpen, 32, 43
perrModule, 33
start

tseModuleStart, 44, 85, 90
stateModule, 32, 36, 42
stop

tseModuleStop, 45, 85, 90

multicast
tseIsMulticast, 30, 62

page
tseGetOnePage, 57
tseGetPage, 30, 56

pblock, 51, 52

pData, 52, 53

pddb, 36, 42

pdestSlot, 61, 62

pdpv, 82, 83, 89, 96

poll
eTSE_POLL, 33
pollISR, 33
tsePoll, 28, 29, 78, 85

port
iThresPort, 33
numPort, 34
tsePortClrStats, 65
tsePortGetConfig, 71
tsePortGetDelta, 64
tsePortGetStats, 63
tsePortGetStatus, 63
tsePortGetThresh, 31, 64
tsePortSetConfig, 71, 72
tsePortSetThresh, 31, 65, 82

 TSE (PM5372) Driver Manual
Acronyms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 112
Document ID: PMC-2001402, Issue 2

Port
configuration

iCfgPort, 33

porting function
sysTseBufferStart, 41, 88, 94
sysTseBufferStop, 90, 94
sysTseDPRTask, 27, 28, 79, 85, 86, 90, 94
sysTseDPVBufferGet, 79, 89
sysTseDPVBufferRtn, 82, 89
sysTseISRHandler, 27, 28, 79, 85, 86, 94
sysTseISRHandlerInstall, 28, 85, 90, 94
sysTseISRHandlerRemove, 85, 86, 90, 94
sysTseISVBufferGet, 41, 88
sysTseISVBufferRtn, 41, 89
sysTseMemAlloc, 87, 93
sysTseMemCopy, 93
sysTseMemFree, 87, 93
sysTseMemSet, 93
sysTseRead, 50, 51, 52, 84
sysTseReadReg, 99, 100
sysTseWrite, 50, 52, 53, 84

ppgNum, 56, 57

profile
profileNum, 47, 48

read
block

tseReadBlock, 51
mdirect

tseReadIndirect, 52
tseRead, 50

register
startRegNum, 51, 52

reset
tseReset, 48

return
rxEnable, 40

rxJ0Delay, 41

RmSlot
tseRmSlot, 30, 59

send
txEnable, 40
txJ0Delay, 41

set
tseSetMapMode, 30, 54
tseSetMask, 35, 77
tseSetOnePage, 56
tseSetPage, 30, 55

slots
numSlots, 58, 59

space
spaceSwPort, 34
spaceSwTS, 34
spOutOfChar, 40
spOutOfFrame, 40

src
slot

tseGetSrcSlot, 30, 61

statistic
device

pdStatDevSem, 37
port

pdStatPortSem, 37

statistics
dStatsDevice, 37

status
dStatPort, 37

structure
sTSE_CBACK, 33
sTSE_CFG_DEVICE, 33, 40, 41, 69, 70
sTSE_CFG_PORT, 33, 40, 71
sTSE_CNTR_DEVICE, 34, 38, 39, 66, 67, 68

 TSE (PM5372) Driver Manual
Acronyms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 113
Document ID: PMC-2001402, Issue 2

sTSE_CNTR_PORT, 33, 38, 63, 64, 65
sTSE_CONMAP, 37
sTSE_CONPAGE, 34
sTSE_DDB, 36, 37, 99, 100
sTSE_DIV, 33, 37, 47, 48
sTSE_DPV, 42, 89, 96, 106
sTSE_HNDL, 41, 46, 47, 48, 49, 50, 51, 52,

53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81

sTSE_ISV, 41, 88, 89
sTSE_MASK, 35, 37, 41, 76, 77
sTSE_MIV, 33, 43
sTSE_SLOT, 34
sTSE_SPTSLOT, 34, 58, 59, 60, 61, 62
sTSE_STAT_DEVICE, 37, 39
sTSE_STAT_PORT, 37, 38
sTSE_STATUS_DEVICE, 39, 67
sTSE_STATUS_PORT, 40, 63
sTSE_USR_CTXT, 37, 82, 83

test
testPatEnb, 40
testPattern, 40
tseTestRAM, 81
tseTestReg, 80

timeSlot
timeSlotEnd, 81

timeSlotStart, 81

TS
numTS, 34

TSE
TSE_ACTIVE, 32, 37, 47, 48, 49, 50, 51, 52,

53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 82, 83

TSE_FAILURE, 36, 42, 104
TSE_IDLE, 36
TSE_INACTIVE, 32, 37, 47, 48, 49, 50, 51,

52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
74, 75, 76, 77, 78, 80, 81

TSI, 57

update
tseUpdate, 48

usrCtxt, 37, 46, 82, 83, 96

write
block

tseWriteBlock, 52
indirect

tseWriteIndirect, 53
mTSE_WRITE, 99
tseWrite, 50

