TOSHIBA TLP2630

TOSHIBA PHOTOCOUPLER GaAlAs IRED & PHOTO IC

TLP2630

DEGITAL LOGIC ISOLATION

TELE-COMMUNICATION

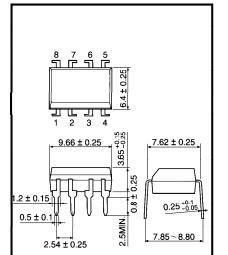
ANALOG DATA EQUIPMENT CONTROL

MICROPROCESSOR SYSTEM INTERFACE

The TOSHIBA TLP2630 dual photocoupler consists of a pair of GaAlAs light emitting diode and integrated high gain, high speed photodetector.

The output of the detector circuit is an open collector, Schottky clamped transistor. This unit is 8-lead DIP.

Input Current Threshold: IF=5mA (MAX.)


LSTTL/TTL Compatible : 5V Supply

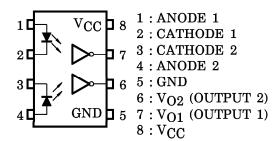
Switching Speed : 10MBd (TYP.)

Guaranteed Performance Over Temperature: 0~70°C

Isolation Voltage $: 2500 V_{rms} (MIN.)$

UL Recognized : UL1577, File No. E67349

11-10C4

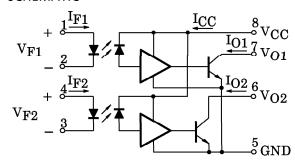

Unit in mm

11-10C4

Weight: 0.54g

PIN CONFIGURATION (TOP VIEW)

TOSHIBA



SCHEMATIC

(Positive Logic) **INPUT OUTPUT** \mathbf{H} Η

TRUTH TABLE

A 0.01 to $0.1\mu F$ bypass capacitor must connected between pins 8 and 5 (See Note 1).

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

 The products described in this document are subject to foreign exchange and foreign trade control laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.

MAXIMUM RATINGS (No derating required up to 70°C)

	CHARACTERISTIC	SYMBOL RATING		UNIT	
LED	Foward Current (Each Channel)	$I_{\mathbf{F}}$	15	mA	
	Pulse Forward Current (Each Channel)*	$I_{ extbf{FP}}$	30	mA	
	Reverse Voltage (Each Channel)	$v_{ m R}$	5	V	
	Output Current (Each Channel)	IO	16	mA	
Q.	Output Voltage (Each Channel)	v_{O}	-0.5~7	V	
DETECTOR	Supply Voltage (1 Minute Maximum)	v_{CC}	7	V	
	Output Collector Power Dissipation (Each Channel)	PO	40	mW	
0	perating Temperature Range	$\mathrm{T_{stg}}$	-55~125	°C	
St	orage Temperature Range	$T_{ m opr}$	-40~85	°C	
Lead Soldering Temperature (10s) (Note 1)		$T_{ m sol}$	260	°C	
Isolation Voltage (AC, 1min., R.H.≦60%, Note 3)		$BV_{\mathbf{S}}$	BV _S 2500		

^{*} $t \le 1$ msec Duration.

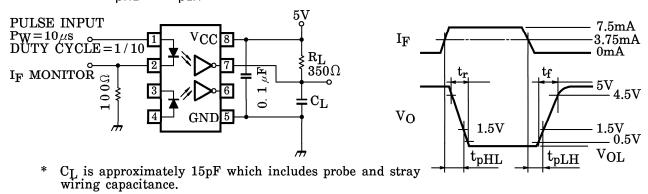
RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input Current, Low Level, Each Channel	${ m I_{FL}}$	0	_	250	μ A
Input Current, High Level, Each Channel	I_{FH}	6.3*	I	15	mA
Supply Voltage, Output	v_{CC}	4.5	5	5.5	V
Fan Out (TTL Load, Each Channel)	N	_	_	8	
Operating Temperature	${ m T_{opr}}$	0	_	70	°C

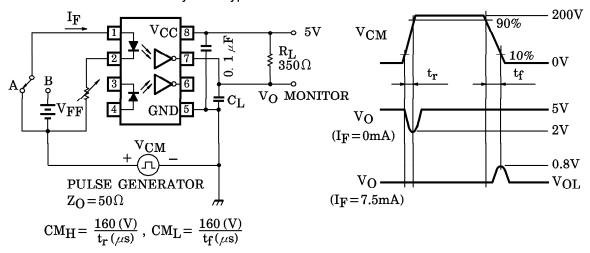
^{* 6.3}mA is a guard banded value which allows for at least 20% CTR degradation. Initial input current threshold value is 5.0mA or less.

ELECTRICAL CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, Unless otherwise noted)

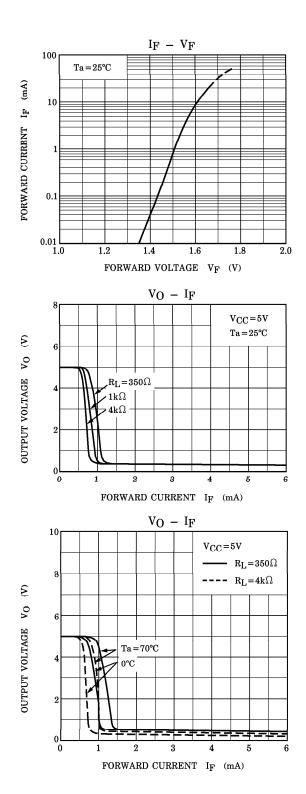
CHARACTERISTIC	SYMBOL	TEST CONDITION	ON	MIN.	TYP.*	MAX.	UNIT
Input Forward Voltage (Each Channel)	$ m V_{ m F}$	I _F =10mA, Ta=25°C		_	1.65	1.75	V
Input Diode Temperature Coefficient (Each Channel)	ΔV _F /ΔTa	I _F =10mA		-	-2.0	_	mV/°C
Input Reverse Breakdown Voltage (Each Channel)	$\mathrm{BV}_{\mathbf{R}}$	I _R =10μA, Ta=25°C		5	_	_	V
Input Capacitance (Each Channel)	C_{T}	$V_{ m F}$ =0, f=1MHz		1	45	_	pF
High Level Output Current (Each Channel)	ІОН	$V_{\rm CC} = 5.5 \text{V}, \ V_{\rm O} = 5.5 \text{V} $ $I_{\rm F} = 250 \mu \text{A}$		1	1	250	μ A
Low Level Output Voltage (Each Channel)	v_{OL}	$V_{CC}=5.5V$, $I_F=5mA$ I_{OL} (Sinking) = 13mA		1	0.4	0.6	V
High Level Supply Current (Both Channels)	ICCH	$V_{\rm CC} = 5.5 \text{V}, I_{\rm F} = 0$		_	14	30	mA
Low Level Supply Current (Both Channels)	$_{ m ICCL}$	$V_{\rm CC}$ =5.5V, I _F =10mA		_	24	36	mA
Isolation Voltage	$R_{\mathbf{S}}$	$V_{S} = 500V, R.H. \le 60\%$	(Note 3)	_	10^{14}	_	Ω
Capacitance (Input-Output)	c_{S}	f=1MHz	(Note 3)		0.6	_	pF
Input-Input Leakage Current	I_{I-I}	$R.H. \le 60\%, t=5s$ $V_{I-I} = 500V$	(Note 6)	_	0.005	_	μ A
Resistance (Input-Input)	R_{I-I}	$V_{I-I} = 500V$	(Note 6)	_	1011	_	Ω
Capacitance (Input-Input)	c_{I-I}	f=1MHz	(Note 6)	_	0.25	_	pF

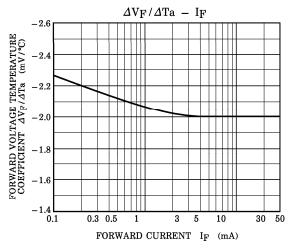

All typical values are at $V_{\mbox{\scriptsize CC}}\!=\!5V,\,Ta\!=\!25^{\circ}\!C.$

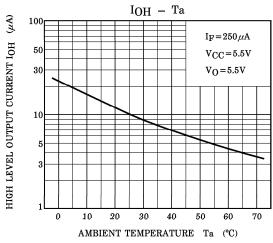
SWITCHING CHARACTERISTICS (Ta = 25° C, $V_{CC} = 5V$)

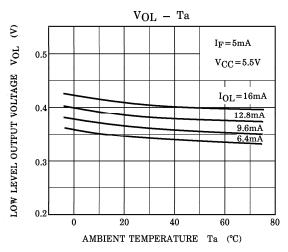

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation Delay Time to Low Output Level	$t_{ m pHL}$	1	$I_F=0 \rightarrow 7.5 \text{mA}, R_L=350 \Omega$ $C_L=15 \text{pF}$ (Each Channel)	_	60	75	ns
Propagation Delay Time to High Output Level	$t_{ m pLH}$	1	I_F =7.5mA \rightarrow 0, R_L =350 Ω C_L =15pF (Each Channel)	_	60	75	ns
Output Rise a Time, Output Fall Time (10~90%)	t _r , t _f	1	$I_F=0 \rightleftharpoons 7.5 \text{mA}, R_L=350\Omega$ $C_L=15 \text{pF}$ (Each Channel)	_	30	_	ns
Common Mode Transient Immunity at High Output Level	CM_{H}	2	$I_F=0, R_L=350\Omega$ $V_{CM}=200V$ $V_{O} (MIN.)=2V$ (Each Channel, Note 4)	_	200	_	V/μs
Common Mode Transient Immunity at Low Output Level	CM_{L}	2	$I_{F}=7.5\text{mA}, \ R_{L}=350\Omega$ $V_{CM}=200V$ $V_{O} \ (\text{MAX.})=0.8V$ $(\text{Each Channel, Note 5})$	_	-500	_	V/μs

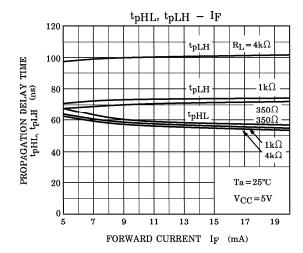
- 2mm below seating plane. (Note 1)
- (Note 2) The V_{CC} supply voltage to each TLP2630 isolator must be bypassed by a $0.01 \mu F$ capacitor or larger. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to the package VCC and GND pins each device.
- (Note 3) Device considered a two-terminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5, 6, 7 and 8 shorted together.
- (Note 4) CMH·The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state (i.e., VOUT>2.0V)
- CMI. The maximum tolerable rate of fall of the common mode voltage to ensure (Note 5) the output will remain in the low output state (i.e., VOUT>0.8V) Measured in volts per microsecond (V / μ s).
- (Note 6) Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.


TEST CIRCUIT 1. tpHL and tpLH




TEST CIRCUIT 2. Transient Immunity and Typical Waveforms.




* C_L is approximately 15pF which includes probe and stray wiring capacitance.

