PLL-Frequency Synthesizer

PMB 2306T

CMOSIC

Preliminary Data

Features

- Low operating current consumption (typically 3.5 mA)
- High input sensitivity, high input frequencies (220 MHz)
- Extremely fast phase detector without dead zone
- Linearization of the phase detector output by current sources
- Synchronous programming of the counters (n-, n/a-, r-counters) and system parameters
- Fast modulus switchover for 65-MHz operation
- Switchable modulus trigger edge
- Large dividing ratios for small channel spacing A scaler 0 to 127
 N scaler 3 to 16.380
 R scaler 3 to 65.535
- Serial control (3-wire bus: data, clock, enable) for fast programming (*f*_{max} ~ 10 MHz)
- Switchable polarity and phase detector current programmable
- 2 Multifunction outputs
- Digital phase detector output signals (e.g. for external charge pump)
- $f_{\rm rn}, f_{\rm vn}$ outputs of the R and N scalers
- Port 1 output (e.g. for standby of the prescaler)
- External current setting for PD output
- Lock detect output with gated anti-backlash pulse (quasi digital lock detect)

Туре	Version	Ordering Code	Package
PMB 2306T	V2.2	Q67100-H6423	P-DSO-14 (SMD)
PMB 2306T	V2.2	Q67106-H6423	P-DSO-14 (SMD, Tape & Reel)

The PMB 2306T PLL is a high speed CMOS IC, especially designed for use in battery powered radio equipment and mobile telephones. The primary applications will be in digital systems e.g. GSM, PCN, ADC, JDC and DECT systems. The wide range of dividing ratios also allows application in analog systems.

Pin Configuration

(top view)

Pin Definitions and Functions

Pin No.	Symbol	Function
6	$V_{\rm DD}$	Positive supply voltage for serial control logic.
2	V _{SS}	Ground for serial control logic.
11	V _{DD1}	Positive supply voltage for the preamplifiers, counters, phase detector and charge pump.
9	V _{ss1}	Ground for the preamplifiers, counters, phase detector and charge pump. (Note: The pins V_{DD} and V_{DD1} respectively V_{ss} and V_{ss1} have to have the same supply voltage.)
3	EN	3-Line Bus: Enable Enable line of the serial control with internal pull-up resistor. When EN = H the input signals CLK and DA are disabled internally. When EN = L the serial control is activated. The received data are transferred into the latches with the positive edge of the EN-signal.
4	DA	3-Line Bus: Data Serial data input with internal pull-up resistor. The last two bits before the EN- signal define the destination address. In a byte-oriented data structure the transmitted data have to end with the EN-signal, i.e. bits to be filled in (don't care) are transmitted first.
5	CLK	3-Line Bus: Clock Clock line with internal pull-up resistor. The serial data are read into the internal shift register with the positive edge (see pulse diagram for serial data control).

Pin Definitions and Functions (cont'd)

Pin No.	Symbol	Function				
7	MOD	Modulus Control Output for external dual modulus prescaler. The modulus output is low at the beginning of the cycle. When the a-counter has reached its set value, MOD switches to high. When the n-counter has reached its set value, MOD switches to low again, and the cycle starts from the top. When the prescaler has the counter factor P or P + 1 (P for MOD = H, P + 1 for MOD = L), the overall scaling factor is NP + A. The value of the a-counter must be smaller than that of the n-counter. The trigger edge of the modulus signal to the input signal can be selected (see programming tables and MOD A, B) according to the needs of the prescaler. In single modulus operation and for standby operation in dual modulus operation, the output is low.				
8	FI	VCO-Frequency Input with highly sensitive preamplifier for 14-bit n-counter and 7-bit a-counter. With small input signals AC coupling must be set up, where DC coupling can be used for large input signals.				
1	RI	Reference Frequency Input with highly sensitive preamplifier for 16-bit r-counter. With small input signals AC coupling must be set up, where DC coupling can be used for large input signals.				
10	PD	Phase DetectorTristate charge pump output. The integrated, positive and negative current sources can be programmed with respect to their current density by means of the serial control. Activation and deactivation depend on the phase relationship of the scaled-down input signals FI:N, RI:R. (See phase detector output waveforms.)frequency $f_V < f_R$ or f_V lagging: requencyp-channel current source active n-channel current source active frequencyfrequency $f_V < f_R$ or f_R leading: P-output is tristaten-channel current source active n-channel current source active frequencyIn standby mode the PD-output is set to tristate. The assignment of the current sources to the output signals of the phase detector can be swapped in it's polarity, i.e. the sign of the phase detector constant can be controlled.				
14	LD	Lock Detector Output (open drain). Unipolar output of the phase detector in the form of a pulse-width modulated signal. The L-pulse width corresponds to the phase difference. Phase differences < 20 ns are not indicated due to gating of the antibacklash impuls. In the locked state the LD-signal is at H-level. In standby mode the output is resistive. Only for ABL status 11 no gating of ABL impulse is performed.				

Pin Definitions and Functions (cont'd)

Pin No.	Symbol	Function
12	MFO1	Multifunction Output for the signals f_{RN} , Φ_{VN} , Φ_{VN} and port 1.
13	MFO2	 Multifunction I/O-Pin for the output signals f_{VN}, Φ_{RN} and the input signal I_{REF}. The signals Φ_R and Φ_V are the digital output signals of the phase and frequency detector for use in external active current sources (see phase detector output wave forms). The signals f_{RN} and f_{VN} are the scaled down signals of the reference frequency and VCO-frequency. The L-time corresponds to 1/f_{RI} and 1/f_{FI} respectively. In the port function the port 1 output signal is assigned to the information of the status program. The output switches with the rising edge of the EN-signal. The standby mode does not affect the port function. In the internal charge pump mode the input signal I_{REF} determines the value of the PD-output current.

Reference current for charge pump:

 $I_{\text{REF}} = (V_{\text{DD}} - V_{\text{REF}})/\text{R1}$

R1: see application circuit

 V_{REF} : see AC/DC characteristics

Block Diagram

Circuit Description

General Description

The circuit consists of a reference-, a- and n-counter, a dual modulus control logic, a phase detector with charge pump output and a serial control logic. The setting of the operating mode and the selection of the counter ratios is done serially at the ports CLK, DA and EN.

The operating modes allow the selection of single or dual operation, asynchronous or synchronous data acquisition, 4 different antibacklash-impulse times, 8 different PD-output current modes, polarity setting of the PD-output signal, adjustment of the trigger-edge of the MOD-output signal, 2 standby modes and the control of the multifunction outputs MFO1 and MFO2.

The reference frequency is applied at the RI-input and scaled down by the r-counter. It's maximum value is 100 MHz. The VCO-frequency is applied at the FI-input and scaled down by the n- or n/a-counter according to single or dual mode operation. The maximum value at FI is 220 MHz at single-, and 65 MHz at dual mode operation.

The phase and frequency sensitive phase detector produces an output signal with adjustable antibacklash impulses in order to prevent a dead zone for very small phase deviations. Phase differences of less than 100 ps can be resolved. In general the shortest anti-backlash pulse gives the best system performance.

Programming

Programming of the IC is done by a serial data control. The contents of the message are assigned to the functional units according to the address. Single or dual mode operation as well as asynchronous or synchronous data acquisition is set by status 2 and should therefore precede the programming of the counters.

Data acquisition

The PMB 2306T offers the possibility of synchronous data acquisition to avoid error signals at the phase detector due to non-corresponding dividing factors in the counters produced by asynchronous loading.

Synchronous programming guarantees control during changes of frequency or channel. That means that the state of the phase detector or the phase difference is kept maintained, and in case of "lock in", the control process starts with the phase difference "zero".

This is done as follows:

- 1. Setting of synchronous data acquisition by status 2.
- 2. Programming of the r-counter, status 1 (optional)-data is being loaded into shadow registers.
- 3. Programming of the n- or n/a-counter-data is being loaded into shadow registers, the EN-signal starts the synchronous loading procedure.
- 4. Synchronous programming which means data transfer of all data from the shadow registers to the data registers takes place at that point in time when the respective counter reaches "zero + 1", the maximum repetition rate for channel change is therefore f_{FI} :N.
- 5. Transfer of status 1 information into the corresponding data register is tied to the n-counter loading, but follows the loading of the n-data register in the distance of one n-counter dividing ratio, this guarantees that for example a new PD-current value becomes valid at the same time when the counters are loaded with the new data.

Synchronous avoids additional phase error caused by programming. Synchronous data acquisition is of especial advantage, when large steps in frequency are to be made in a short time. For this purpose a high reference frequency can be programmed in order to achieve rapid – "rough" – transient response. This method increases the fundamental frequency nearly by the square route of the reference frequency relation. When rough lock is achieved, another synchronous data transfer is needed to switch back to the original channel spacing. A "fine" lock in will finish the total step response. It may not be necessary to change reference frequency, but it make sense to perform synchronous data acquisition in any case. Especially for GSM, PCN, DECT, DAMPS, JDC, PHP systems the synchronous mode should be used to get best performance of the PMB 2306T.

Standby Condition

The PMB 2306T has two standby modes (standby 1, 2) to reduce the current consumption.

- Standby 1 switches off the whole circuit, the current consumption is reduced below 1 μA.
- Standby 2 switches off the counters, the charge pump and the outputs, only the preamplifiers stay active.

The standby modes do not affect the port output signal. For the influence on the other output signals **see standby table.**

Note: $f_{\text{RN}}, f_{\text{VN}}, \Phi_{\text{RN}}$ and Φ_{VN} are the inverted signals of $f_{\text{R}}, f_{\text{V}}, \Phi_{\text{R}}$ and Φ_{V} .

Status Bits		Multifunc	Multifunction Outputs			
Mode 2 Mode 1		MFO 1	MFO 2	Remarks		
0	0	$f_{\sf RN}$	$f_{\rm VN}$	test mode		
0	1	Φ_{V}	Φ_{RN}	external charge pump mode 1		
1	0	Φ_{VN}	Φ_{RN}	external charge pump mode 2		
1	1	Port 1	I _{REF}	internal charge pump mode		

Programming Tables

Status Bits			PD-Current Mode
PD-Current 3	PD-Current 2	PD-Current 1	
0	0	0	0.175
0	0	1	0.25
0	1	0	0.35
0	1	1	0.5
1	0	0	0.7
1	0	1	1
1	1	0	1.4
1	1	1	2

Programming Tables (cont'd)

Status Bits					
Anti-Backlash Pulse Width 2	Anti-Backlash Pulse Width 1	<i>t</i> _w (typ.) [ns]	Application		
0	0	1.3	$V_{\rm DD} = 5 \text{ V}$		
0	1	5			
1	0	10	not recommended		
1	1	13*	any application where continuous lock detect required		

*

No ABL gating performed In general the shortest anti-backlash pulse gives the best system performance. *

Status Bits		Preamplifier Function Mode		
Single/ Dual Mode	Preamplifier Select			
0	0	FI-input frequency, single HF-mode		
0	1	FI-input frequency, single LF-mode		
1	0	FI-input frequency, dual mode, FI-trigger edge LH, MOD A		
1	1	FI-input frequency, dual mode, FI-trigger edge HL, MOD B		

Standby Table

	Output Pins					
Status	MFO 1		MFO 2	LD	PD	MOD
	Φ_{V}	$\Phi_{\sf VN}$				
Standby 1	low	high	high	resistive	tristate	low
Standby 2	low	high	high	resistive	tristate	low

Serial Control Data Format (status 1, 2)

Status 1

Status 2

			0	1	
	Data acquisition mode	1	asynchronous	synchronous	
	Mode 1	2	see table		
	Mode 2	3	see table		
	PD-polarity	4	negative	positive	
	Standby 1	5	standby	active	
	Standby 2	6	standby	active	
	Anti-backlash pulse width 1	7	see table		
	Anti-backlash pulse width 2	8	see table		
	Preamplifier select	9	see table		
	Single / dual mode	10	single dual		
	Port 1	11	low	high	
	PD-current 1	12	see table		
	PD-current 2	13	see table		
PD-current 3		14	see table		
	0 Address 0	15			
	0 1	16			
		EN			

	1
	2
I	3
I	4
I	5
	6

Serial Control Data Format (n-, n/a-counter)

Dual Mode

Single Mode

Serial Control Data Format (r-counter)

Phase Detector Output Waveforms

Absolute Maximum Ratings

 $T_{\rm A} = -40$ to 85 °C

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	V_{DD}	- 0.3	6	V	
Input voltage	V_1	- 0.3	V _{DD} + 0.3	V	
Output voltage	V _Q	GND	V _{DD}	V	
Power dissipation per output	P _Q		10	mW	
Total power dissipation	P _{tot}		300	mW	
Ambient temperature	T _A	- 40	85	°C	in operation
Storage temperature	$T_{\rm stg}$	- 50	125	°C	

Operating Range

Supply voltage	V _{DD}	3.0	5.5	V	
Input frequency dual mode	f_{FI}	0.1	65	MHz	V _{DD} = 4.5 5.5 V
Input frequency single HF-mode	f_{FI}	0.1	220	MHz	$V_{\rm DD}$ = 4.5 5.5 V
Input frequency single LF-mode	f_{FI}	0.1	90	MHz	$V_{\rm DD}$ = 4.5 5.5 V
Input reference frequency	f_{RI}		100	MHz	$V_{\rm DD}$ = 4.5 5.5 V
Input frequency dual mode	f_{FI}	0.1	30	MHz	$V_{\rm DD}$ = 3.3 V
Input frequency single HF-mode	f_{FI}	0.1	120	MHz	$V_{\rm DD}$ = 3.3 V
Input frequency single LF-mode	f_{FI}	0.1	35	MHz	$V_{\rm DD}$ = 3.3 V
Input reference frequency	f_{RI}		20	MHz	$V_{\rm DD}$ = 3.3 V
PD-output current	/ I _{PD} /		4	mA	
PD-output voltage	V_{PD}	0.5	$V_{\rm DD} - 0.5$	V	$V_{\rm DD}$ = 4.5 – 5.5 V
PD-output voltage	V_{PD}	0.5	$V_{\rm DD} - 0.5$	V	$V_{\rm DD}$ = 3.3 V
Ambient temperature	T _A	- 40	85	C°	

Typical Supply Current I_{DD}

Supply voltage	V_{DD}	3.3	5	5.5	V
Supply current					
single mode HF	I_{DD}	1.63	2.6	2.94	mA
dual mode	I_{DD}	1.76	2.80	3.17	mA
standby 2	I_{DD}	0.11	0.62	0.75	mA
standby 1	I_{DD}			1	μA

Test conditions:

 $f_{\rm FI}$ = 50 MHz, $V_{\rm FI}$ = 150 mVrms $f_{\rm RI}$ = 10 MHz, $V_{\rm RI}$ = 150 mVrms $I_{\rm PD}$ = 0.25 mA, $I_{\rm ref}$ = 100 μ A

All pins are protected against ESD. Unused inputs without pullup resistors must be connected to either V_{DD} or V_{SS} .

AC/DC Characteristics

 $T_{\rm A} = -20$ to 85 °C

Parameter	Symbol	Limit Values			Unit	Test Condition
		min. typ. max.				

Input Signals DA, CLK, EN (with internal pull-up resistors)

H-input voltage	V_{IH}	0.7 V _{DD}	V_{DD}	V	
L-input voltage	V_{IL}	0	$0.3 V_{DD}$	V	
Input capacity	$C_{\rm I}$		5	pF	
H-input current	I _H		10	μA	$V_{\rm I} = V_{\rm DD} = 5.5 \ { m V}$
L-input current	I_{L}	- 40		μA	$V_{I} = GND$

Input Signal RI

Input voltage	V_1	100		mVrms	$f = 4 \dots 100 \text{ MHz}, V_{\text{DD}} = 4.5 \text{ V}$
Input voltage	V_1	100		mVrms	$f = 4 \dots 20 \text{ MHz}, V_{\text{DD}} = 3.3 \text{ V}$
Slew rate		2.5		V/µs	$V_{\rm DD} = 3.3 \dots 5.5 \rm V$
Input capacity	C_1		3	pF	
H-input current	I _H		10	μA	$V_{\rm I} = V_{\rm DD} = 5.5 \ {\rm V}$
L-input current	IL	– 10		μA	$V_{I} = GND$

Input Signal FI (dual mode)

Input voltage	$V_{\rm I}$	180		mVrms	$f = 4 \dots 65 \text{ MHz}, V_{\text{DD}} = 4.5 \text{ V}$
Input voltage	$V_{\rm I}$	180		mVrms	$f = 4 \dots 30 \text{ MHz}, V_{\text{DD}} = 3.3 \text{ V}$
Slew rate		4		V/µs	$V_{\rm DD}$ = 3.3 5.5 V
Input capacity	C_1		3	pF	
H-input current	I _H		10	μA	$V_{\rm I} = V_{\rm DD} = 5.5 \ {\rm V}$
L-input current	I_{L}	- 10		μA	$V_1 = GND$
Input voltage V_{I}	V_1	50		mVrms	$f = 10 \dots 30 \text{ MHz}, V_{\text{DD}} = 3.3 \text{ V}$

Input Signal FI (single HF-mode)

Input voltage	V_1	200		mVrms	$f = 4 \dots 220 \text{ MHz}, V_{\text{DD}} = 4.5 \text{ V}$
Input voltage	V_1	200		mVrms	$f = 4 \dots 120 \text{ MHz}, V_{\text{DD}} = 3.3 \text{ V}$
Slew rate		2.5		V/µs	$V_{\rm DD}$ = 3.3 5.5 V
Input capacity	C_1		3	pF	
H-input current	I_{H}		10	μA	$V_{\rm I} = V_{\rm DD} = 5.5 \ {\rm V}$
L-input current	I_{L}	- 10		μA	$V_1 = GND$
Input voltage	V_1	50		mVrms	$f = 10 \dots 50 \text{ MHz}, V_{\text{DD}} = 4.5 \text{ V}$

AC/DC Characteristics (cont'd)

 $T_{\rm A}$ = - 20 to 85 °C

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	min. typ.			

Input Signal FI (single LF-mode)

Input voltage	V_1	100		mVrms	$f = 4 \dots 90 \text{ MHz}, V_{\text{DD}} = 4.5 \text{ V}$
Input voltage	V_1	100		mVrms	$f = 4 \dots 35 \text{ MHz}, V_{\text{DD}} = 3.3 \text{ V}$
Slew rate		2.5		V/µs	$V_{\rm DD} = 3.3 \dots 5.5 \ V$
Input capacity	C_1		3	pF	
H-input current	I _H		10	μA	$V_{\rm I} = V_{\rm DD} = 5.5 \ {\rm V}$
L-input current	IL	– 10		μA	$V_{I} = GND$

Output Current I_{PD}

Current mode						
"0.175 mA"	IPROG	- 20 %		+ 20 %	mA	
"0.25 mA"	IPROG	– 20 %		+ 20 %	mA	
"0.35 mA"	I _{PROG}	– 20 %		+ 20 %	mA	$V_{\rm DD}$ = 4.5 5.5 V
"0.5 mA"	I_{PROG}	– 20 %		+ 20 %	mA	$V_{\rm PD} = V_{\rm DD}/2$
"0.7 mA"	I_{PROG}	– 20 %		+ 20 %	mA	$I_{REF} = 100 \muA$
"1.0 mA"	I_{PROG}	– 10 %		+ 10 %	mA	
"1.4 mA"	I_{PROG}	– 10 %		+ 10 %	mA	
"2.0 mA"	I_{PROG}	– 10 %		+ 10 %	mA	
"Standby"	/ I _{PD} /		0.1	50	nA	$V_{\rm DD}$ = 5.5 V
* guaranteed by						
design						

Output Tolerances $I_{\rm PD}$

$\Delta I_{\rm PD} / I_{\rm PROG}$	- 20 %		+3%	$V_{\rm PD} = V_{\rm DD}/2, V_{\rm DD} = 3.3 \text{ V}$
Δ $I_{\rm PD}$ / $I_{\rm PROG}$		t.b.d.		$V_{\rm PD}$ = 1 4 V, $V_{\rm DD}$ = 5 V

Input Voltage MFO2 (internal charge pump mode)

Reference voltage	V_{REF}	0.9	1.1	1.3	V	$V_{\rm DD}$ = 4.5 5.5 V,
						$I_{REF} = 100 \ \mu A$

AC/DC Characteristics (cont'd)

 $T_{\rm A}$ = - 20 to 85 °C

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Output Signal MFO1 (push pull)

V_{QH}	$V_{\rm DD}$ – 1			V	$V_{\rm DD}$ = 4.5 5.5 V, $I_{\rm QH}$ = 2 mA
V_{QL}			1	V	$V_{\rm DD}$ = 4.5 5.5 V, $I_{\rm QL}$ = 2 mA
V_{QH}	$V_{\rm DD}-1$			V	$V_{\rm DD}$ = 3.3 V, $I_{\rm QH}$ = 1.2 mA
V_{QL}			1	V	$V_{\rm DD}$ = 3.3 V, $I_{\rm QL}$ = 1.2 mA
t _R		2.5	10	ns	$V_{\rm DD} = 4.5 \dots 5.5 \text{ V}, C_{\rm I} = 10 \text{ pF}$
t _F		2.0	10	ns	$V_{\rm DD} = 4.5 \dots 5.5 \text{ V}, C_{\rm I} = 10 \text{ pF}$
t _R		4.0	10	ns	$V_{\rm DD}$ = 3.3 V, $C_{\rm I}$ = 10 pF
t _F		2.5	10	ns	$V_{\rm DD}$ = 3.3 V, $C_{\rm I}$ = 10 pF
	$\begin{array}{c} V_{\rm QH} \\ V_{\rm QL} \\ V_{\rm QH} \\ V_{\rm QL} \\ t_{\rm R} \\ t_{\rm F} \\ t_{\rm R} \\ t_{\rm F} \end{array}$	$\begin{array}{ccc} V_{\rm QH} & V_{\rm DD} - 1 \\ V_{\rm QL} & \\ V_{\rm QH} & V_{\rm DD} - 1 \\ V_{\rm QL} & \\ t_{\rm R} & \\ t_{\rm F} & \\ t_{\rm R} & \\ t_{\rm F} & \\ t_{\rm F} & \\ \end{array}$	$\begin{array}{c c} V_{\rm QH} & V_{\rm DD} - 1 \\ V_{\rm QL} & \\ V_{\rm QH} & V_{\rm DD} - 1 \\ V_{\rm QL} & \\ t_{\rm R} & 2.5 \\ t_{\rm F} & 2.0 \\ t_{\rm R} & 4.0 \\ t_{\rm F} & 2.5 \end{array}$	$\begin{array}{c cccc} V_{\rm QH} & V_{\rm DD} - 1 & & & \\ V_{\rm QL} & & & & 1 \\ V_{\rm QH} & V_{\rm DD} - 1 & & & \\ V_{\rm QL} & & & & 1 \\ t_{\rm R} & & 2.5 & 10 \\ t_{\rm F} & & 2.0 & 10 \\ t_{\rm R} & & 4.0 & 10 \\ t_{\rm F} & & 2.5 & 10 \end{array}$	$\begin{array}{c ccccc} V_{\rm QH} & V_{\rm DD} - 1 & & V \\ V_{\rm QL} & & 1 & V \\ V_{\rm QH} & V_{\rm DD} - 1 & & 1 & V \\ V_{\rm QL} & & 1 & V \\ t_{\rm R} & 2.5 & 10 & {\rm ns} \\ t_{\rm F} & 2.0 & 10 & {\rm ns} \\ t_{\rm F} & 4.0 & 10 & {\rm ns} \\ t_{\rm F} & 2.5 & 10 & {\rm ns} \end{array}$

Output Signal MFO2 (push pull)

H-output voltage	V_{QH}	$V_{\rm DD}$ – 1			V	$V_{\rm DD}$ = 4.5 5.5 V, $I_{\rm QH}$ = 2 mA
L-output voltage	V_{QL}			1	V	$V_{\rm DD}$ = 4.5 5.5 V, $I_{\rm QL}$ = 2 mA
H-output voltage	V_{QH}	$V_{\rm DD}-1$			V	$V_{\rm DD}$ = 3.3 V, $I_{\rm QH}$ = 1.2 mA
L-output voltage	V_{QL}			1	V	$V_{\rm DD}$ = 3.3 V, $I_{\rm QL}$ = 1.2 mA
Rise time	t _R		2	10	ns	$V_{\rm DD}$ = 4.5 5.5 V, $C_{\rm I}$ = 10 pF
Fall time	t _F		2	10	ns	$V_{\rm DD}$ = 4.5 5.5 V, $C_{\rm I}$ = 10 pF
Rise time	t _R		3	10	ns	$V_{\rm DD}$ = 3.3 V, $C_{\rm I}$ = 10 pF
Fall time	t _F		3	10	ns	$V_{\rm DD}$ = 3.3 V, $C_{\rm I}$ = 10 pF
L-output voltage Rise time Fall time Rise time Fall time	V_{QL} t_{R} t_{F} t_{R} t_{F}		2 2 3 3	1 10 10 10 10	V ns ns ns ns	$V_{\rm DD} = 3.3 \text{ V}, I_{\rm QL} = 1.2 \text{ mA}$ $V_{\rm DD} = 4.5 \dots 5.5 \text{ V}, C_{\rm I} = 10 \text{ pl}$ $V_{\rm DD} = 4.5 \dots 5.5 \text{ V}, C_{\rm I} = 10 \text{ pl}$ $V_{\rm DD} = 3.3 \text{ V}, C_{\rm I} = 10 \text{ pF}$ $V_{\rm DD} = 3.3 \text{ V}, C_{\rm I} = 10 \text{ pF}$

Output Signal LD (n-channel open drain)

L-output voltage	V_{QL}		0.4	V	$V_{\rm DD} = 4.5 \dots 5.5 \rm V,$
					$I_{\rm QL} = 0.5 \ \rm mA$
L-output voltage	V_{QL}		0.4	V	$V_{\rm DD}$ = 3.3 V, $I_{\rm QL}$ = 0.5 mA
Fall time	t _F	3	10	ns	$V_{\rm DD}$ = 4.5 5.5 V, $C_{\rm I}$ = 10 pF
Fall time	t _F	4.5	10	ns	$V_{\rm DD}$ = 3.3 V, $C_{\rm I}$ = 10 pF

Equivalent I/O Schematics

Equivalent I/O Schematics (cont'd)

AC/DC Characteristics (cont'd)

 $T_{\rm A}$ = - 20 to 85 °C

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Output Signal MOD (push-pull)

H-output voltage	V_{QH}				V	$V_{\rm DD} = 4.5 \dots 5.5 \rm V,$
L-output voltage	V_{QL}	- 0.4		0.4	V	$V_{\rm DD} = 4.5 \dots 5.5 \rm V,$
H-output voltage	V_{QH}	$V_{\rm DD}$			V	$I_{\rm QL}$ = 0.5 mA $V_{\rm DD}$ = 3.3 V, $I_{\rm QH}$ = 0.3 mA
L-output voltage	$V_{\rm OI}$	- 0.4		0.4	V	$V_{\rm DD} = 3.3 \text{ V}, I_{\rm OI} = 0.3 \text{ mA}$
Rise time			1.5	3	ns	$V_{\rm DD} = 4.5 \dots 5.5 \text{ V}, C_{\rm I} = 5 \text{ pF}$
Fall time	t _F		1.3	3	ns	$V_{\rm DD} = 4.5 \dots 5.5 \text{ V}, C_{\rm I} = 5 \text{ pF}$
Propagation delay	t _{DQHL}		8	12	ns	$V_{\rm DD}$ = 4.5 5.5 V, $C_{\rm I}$ = 5 pF
time H-L to FI						
Propagation delay	t _{DQLH}		8	12	ns	$V_{\rm DD}$ = 4.5 5.5 V, $C_{\rm I}$ = 5 pF
time L-H to FI						
Rise time	t _R		2.8	4	ns	$V_{\rm DD}$ = 3.3 V, $C_{\rm I}$ = 5 pF
Fall time	t _F		1.6	4	ns	$V_{\rm DD}$ = 3.3 V, $C_{\rm I}$ = 5 pF
Propagation delay	t _{DQHL}		12		ns	$V_{\rm DD}$ = 3.3 V, $C_{\rm I}$ = 5 pF
time H-L to FI						
Propagation delay	t _{DQLH}		12		ns	$V_{\rm DD}$ = 3.3 V, $C_{\rm I}$ = 5 pF
time L-H to FI						

Pulse Diagram

Serial Control Data Input Timing

Parameter	Symbol	Lir	nit Values	Unit
		min.	max.	
Clock frequency	f _{cl}		10	MHz
H-pulsewidth (CL)	t _{WHCL}	60		ns
Data setup	t _{DS}	20		ns
Setup time clock-enable	t _{CLE}	20		ns
Setup time enable-clock	t _{ECL}	20		ns
H-pulsewidth (enable)	t _{WHEN}	60		ns
Rise, fall time	$t_{\rm R}, t_{\rm F}$		10	μs
Propagation delay time EN-PORT	t _{DEP}		1	μs

PMB 2306T

Input Sensitivity

GSM Application Circuit

List of Components

ltem	Quantity Reference		Part		
1 2 3	1 R ₇ 2 R ₁₃ , R ₁₄ 1 R	100 Ω 150 Ω 220 Ω	SMD/0805 SMD/0805	5 B54102-A1101-X60 5 B54102-A1151-J60 5 B54102-A1221-J60	SIEMENS SIEMENS
J 1	1 <i>P</i>	220 52	SMD/0805	S B54102 A1221-500	SIEMENS
4 5	1 R.	33k0	SMD/0805	S B5/102-A1332-160	SIEMENS
6	$1 R_{10}$	6.8 kO	SMD/0805	5 B54102-A1682-160	SIEMENS
7	$\frac{1}{4} \frac{R_{12}}{R_0} R_0 R_0 R_0 R_1$	8.2 kO	SMD/0805	5 B54102-A1822-160	SIEMENS
8	$1 R_{1}$	18 kO	SMD/0805	5 B54102-A1183-160	SIEMENS
9	$1 R_{0}$	22 kO	SMD/0805	B54102-A1223-J60	SIEMENS
10	$1 R_{0}$	39 kO	SMD/0805	5 B54102-A1393-160	SIEMENS
10	T K2	00 1/22	01112/0000	004102 /(1000 000	OLMENO
11	1 <i>L</i> ₁	22 nH	SIMID 01	B82412-A3220-M	SIEMENS
12	1 C_{11}	1.2 pF	COG/0805	5 B37940-K5010-C262	SIEMENS
13	1 C_{13}	2.2 pF	COG/0805	5 B37940-K5020-C262	SIEMENS
14	$1 C_8$	10 pF	COG/0805	5 B37940-K5100-J62	SIEMENS
15	6 $C_{20}, C_{10}, C_{12},$	·			
	C_{14}, C_{15}, C_{16}	22 pF	COG/0805	5 B37940-K5220-J62	SIEMENS
16	3 C_{17}, C_1, C_2	33 pF	COG/0805	5 B37940-K5330-J62	SIEMENS
17	1 C ₉	100 pF	COG/0805	5 B37940-K5101-J62	SIEMENS
18	1 <i>C</i> ₃	330 pF	COG/0805	5 B37940-K5331-J62	SIEMENS
19	1 C ₅	560 pF	COG/0805	5 B37940-K5561-J62	SIEMENS
20	1 C ₇	5.6 nF	COG/1210)	
21	1 C ₆	100 nF	X7R/1210	B37950-K5104-K62	SIEMENS
22	1 C ₁₉	22 µF			
23	1 D1	BBY 51		Q62702-B631	SIEMENS
24	2 T3, T2	BFR 280		Q62702-F1298	SIEMENS
25	1 T1	BFT 92		Q62702-F1062	SIEMENS
26	1 <i>C</i> .	1 0 nF			
27	2 X2 X1	SMA		Connector	
28	1 RX	1.3 GHz		B69620-G1307-A410	S+M
29	1 IC1	PMB 2306T P-F	DSO-14	Q67100-H6333 (TUBE)	SIEMENS
_0		PMB 2306T P-	DSO-14	Q67106-H6333 (T+R)	SIEMENS
30	1 IC2	PMB 2312 P-D	SO-8	Q67000-A6039	SIEMENS

Phase Noise Close to the Carrier

Spectrum at Lower End of GSM TX Board (Mobile)

Lock-In Time for GSM Application

Measurement Set-Up for Lock- In Time

Package Outlines

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information" SMD = Surface Mounted Device

Dimensions in mm