OKI Semiconductor

MSM9802/03/05-xxx

Built-in Mask ROM Voice Synthesis IC

GENERAL DESCRIPTION

The MSM9802/03/05 is a PCM voice synthesis IC with built-in mask ROM.

This IC employs the OKI nonlinear PCM method and contains a current mode 10-bit D/A converter and a low-pass filter.

External control has been made easy by the built-in edit ROM that can form sentences by linking phrases.

With the stand-alone mode/microcontroller interface mode switching pin, the MSM9802/03/05 can support various applications.

Device	DOM oizo*	Speech period (sec)					
	RUIVI SIZE	f _{SAM} =4.0 kHz	f _{SAM} =6.4 kHz	f _{SAM} =8.0 kHz	f _{SAM} =16.0 kHz		
MSM9802	512 Kbits	16.0	10.0	8.0	4.0		
MSM9803	1 Mbits	32.4	20.2	16.2	8.1		
MSM9805	2 Mbits	65.1	40.7	32.5	16.2		

FEATURES

* Actual voice ROM area is smaller by 11 Kbits.

- ROM custom
- 8-bit OKI nonlinear PCM method
- Built-in edit ROM
- Random playback function
- Sampling frequency : 4.0 kHz/5.3 kHz/6.4 kHz/8.0 kHz/10.6 kHz/12.8 kHz/ 16.0 kHz Note: If RC oscillation is selected, 10.6 kHz, 12.8 kHz, and 16.0 kHz cannot be selected.
- Maximum number of phrases : 63 (Microcontroller interface mode)

56 (Stand-alone mode)

- Built-in current mode 10-bit D/A converter
- Built-in low-pass filter
- Standby function
- RC oscillation (256 kHz)/ceramic oscillation(4.096 MHz) selectable
- Package options:

```
    18-pin plastic DIP (DIP18-P-300-2.54) (Product name: MSM9802-xxxRS/MSM9803-xxxRS/
MSM9805-xxxRS)
    24-pin plastic SOP (SOP24-P-430-1.27-K) (Product name: MSM9802-xxxGS-K/MSM9803-xxxGS-K/
MSM9805-xxxGS-K)
    30-pin plastic SSOP (SSOP30-P-56-0.65-K) (Product name: MSM9802-xxxGS-AK/MSM9803-xxxGS-
```

AK/MSM9802-xxxG5-AK/M5M9605-xxxG

xxx indicates code number.

Chip

Note: This data sheet explains a stand-alone mode and a microcontroller interface mode, separately.

CONTENTS

(1) Stand-alone Mode

BLOCK DIAGRAM	3
PIN CONFIGURATION	4
PIN DESCRIPTIONS	6
ABSOLUTE MAXIMUM RATINGS	8
RECOMMENDED OPERATING CONDITIONS	8
ELECTRICAL CHARACTERISTICS	9
TIMING DIAGRAMS 1	11
FUNCTIONAL DESCRIPTION 1	13
1. Playback Code Specification 1	13
2. Pull-up/Pull-down Resistor 1	13
3. Stand-alone Mode 1	13
APPLICATION CIRCUITS 1	18

(2) Microcontroller Interface Mode

BLOCK DIAGRAM	. 20
PIN CONFIGURATION	. 21
PIN DESCRIPTIONS	. 23
ABSOLUTE MAXIMUM RATINGS	. 24
RECOMMENDED OPERATING CONDITIONS	. 24
ELECTRICAL CHARACTERISTICS	. 25
TIMING DIAGRAMS	. 28
FUNCTIONAL DESCRIPTION	. 30
1. Playback Code Specification	. 30
2. Address Data	. 30
3. Stop Code	. 31
4. Generating Pseudo - BUSY Signal through NAR pin	. 32
APPLICATION CIRCUITS	. 33

(3) Common

1. Sampling Frequency	
2. Voice Playback Time	
3. Playback Method	
4. Edit ROM	
5. RC Oscillation	
6. Ceramic Oscillation	
7. Low-pass Filter	40
8. Standby Transition	41
D/A CONVERTER CURRENT CHARACTERISTICS	
PAD CONFIGURATION	43

Ξ STAND-ALONE MODE (CPU/STD: "L" level)

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

Note: Applicable to MSM9802-xxxRS, MSM9803-xxxRS, and MSM9805-xxxRS.

NC: No connection

24-Pin Plastic SOP

Note: Applicable to MSM9802-xxxGS-K, MSM9803-xxxGS-K, and MSM9805-xxxGS-K.

NC: No connection

30-Pin Plastic SSOP

Note: Applicable to MSM9802-xxxGS-AK, MSM9803-xxxGS-AK, and MSM9805-xxxGS-AK.

PIN DESCRIPTIONS

	Pin		O such al		Deservition		
DIP	SOP	SSOP	Symbol Type		Description		
4	17	21	RESET	I	The IC enters the standby state if this pin is set to "L" level. At this time, oscillation stops and AOUT drives a current of OmA and becomes GND level, then the IC returns to the initial state. This IC has a built-in power-on reset circuit. To operate power-on reset correctly, apply the power within 1 ms up to V_{DD} . If the power cannot be applied within 1 ms, apply a RESET pulse during power-on. This pin has an internal pull-up resistor.		
6	20	25	BUSY	0	Outputs "L" level while voice is being played back. At power-on, this pin is at "H" level.		
5	18	23	XT/CR	I	XT/RC switching pin. Set to "H" level if ceramic oscillation is used. Set to "L" level if RC oscillation is used.		
14	7	8	CPU/STD	I	Microcontroller interface/stand-alone mode switching pin. Set to "L" level if the MSM9802/03/05 is used in stand-alone mode.		
8	23	29	V _{REF}	I	Volume setting pin. If this pin is set to GND level, the maximum current is forced in. If this pin is set to V_{DD} level, the minimum current is forced in. This pin has a built-in pull-down resistor of approx. 10 k Ω .		
9	24	30	AOUT	0	Voice output pin. The voice signals are output as current changes. In standby state, this pin drives a current of 0 mA and becomes GND level.		
7	22	28	GND		Ground pin.		
10	1	1	V _{DD}		Power supply pin. Insert a bypass capacitor of 0.1 μF or more between V_{DD} and GND pins.		
11	2	2	OSC1	I	Ceramic oscillator connection pin when ceramic oscillation is selected. RC connection pin when RC oscillation is selected. Input from this pin if external clock is used.		
12	3	3	OSC2	0	Ceramic oscillator connection pin when ceramic oscillation is selected. RC connection pin when RC oscillation is selected. Leave this pin open if external clock is used. Outputs "L" level in standby state.		
13	5	6	OSC3/TEST	0	Leave this pin open when ceramic oscillation is used. RC connection pin when RC oscillation is selected. Outputs "H" level in standby state when RC oscillation is selected.		
15	8	10	RND	I	Random playback starts if RND pin is set to "L" level. Fetches addresses from random address generation circuit in the IC at fall of RND. Set to "H" level when the random playback function is not used. This pin has internal pull-up resistor.		

Pin		Symphol	T	Description		
DIP	SOP	SSOP	Symbol Type		Description	
					Phrase input pins corresponding to playback sound.	
10 10	10 10	10.15			If input changes, SW0 to SW2 pins fetch addresses after 16 ms and	
10-10	10-12	10-12 13-15 SW0 - SW2	300-302		start voice synthesis.	
					Each of these pins has internal pull-down resistor.	
1.0	10.15	10 10	A.O. A.O.		Phrase input pins corresponding to playback sound.	
1-3 13-15 10	10-18	-18 AU - A2		A0 input becomes invalid if the random playback function is used.		

ABSOLUTE MAXIMUM RATINGS

			(0	GND=0 V)
Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{DD}	To 05°0	-0.3 to +7.0	V
Input Voltage	V _{IN}	1a=20 0	–0.3 to V _{DD} +0.3	V
Storage Temperature	T _{STG}	_	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

					(6	iND=0 V)
Parameter	Symbol	Condition		Range		Unit
Power Supply Voltage	V _{DD}	—		2.0 to 5.5		V
Operating Temperature	T _{op}	—		-40 to +85		°C
Maatar Claak Fraguanay 1	fosc1	When errotel is calested	Min.	Тур.	Max.	
Master Glock Frequency I		when crystal is selected	3.5	4.096	4.5	
Master Clock Frequency 2	f _{OSC2}	When RC is selected (*1)	200	256	300	kHz

*1 The accuracy of the oscillation frequency when RC oscillation is selected depends largely on the accuracy of the external R and C.

ELECTRICAL CHARACTERISTICS

DC Characteristics

		(V _{DD} =5.0 V, GND=0 V, Ta=-	40 to +85°	°C, unless o	otherwise s	specified)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
"H" Input Voltage	V _{IH}	—	4.2	_	_	V
"L" Input Voltage	VIL	_		_	0.8	V
"H" Output Voltage	V _{OH}	I _{OH} =–1 mA	4.6	_	_	V
"L" Output Voltage	V _{OL}	I _{OL} =2 mA		_	0.4	V
"H" Input Current 1	I _{IH1}	V _{IH} =V _{DD}	_	_	10	μA
"H" Input Current 2 *1	I _{IH2}	Internal pull-down resistor	30	90	200	μA
"H" Input Current 3	I _{IH3}	Applies to OSC1 pin only. V _{IH} =V _{DD}	_	_	15	μA
"L" Input Current 1	I _{IL1}	V _{IL} =GND	-10		_	μA
"L" Input Current 2 *2	I_{IL2}	Internal pull-up resistor	-200	-90	-30	μA
Dynamic supply Current 1 *3	I _{DD1}	V _{REF} =V _{DD} , AOUT bias voltage=0V	_	0.4	1	mA
Dynamic supply Current 2 *4	I _{DD2}	At maximum output current V _{REF} =GND, AOUT bias voltage=0V		_	16	mA
Standby Supply Surrant	Ι.	Ta=-40 to +70°C	—	_	10	μA
Stanuby Supply Current	IDS	Ta=70 to 85°C	—	—	50	μA
		At maximum output current,				
AOUT Output Current	I _{AOUT}	V _{REF} =GND,	6	9.5	15	mA
		AOUT bias voltage=0V				
V _{REF} Pin Pull-down Resistance	RVREF	_	7	10	13	kΩ

*1 Applicable to SW0-SW2

*2 Applicable to RESET, RND

*3 Dynamic supply current (excluding DAC output current)

*4 Dynamic supply current at maximum output current

DC Characteristics

	(V _{DD} =3.1 V, GND=0 V, Ta=-40 to +85°C, unless otherwise specified)						
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	
"H" Input Voltage	V _{IH}	_	2.7	—	—	V	
"L" Input Voltage	VIL	—	—		0.5	V	
"H" Output Voltage	V _{OH}	I _{OH} =–1 mA	2.6			V	
"L" Output Voltage	V _{OL}	I _{OL} =2 mA	—		0.4	V	
"H" Input Current 1	I _{IH1}	V _{IH} =V _{DD}	—	_	10	μA	
"H" Input Current 2 *1	I _{IH2}	Internal pull-down resistor	10	30	100	μA	
"H" Input Current 3	I _{IH3}	Applies to OSC1 pin only. V _{IH} =V _{DD}	_		15	μA	
"L" Input Current 1	I _{IL1}	VIL=GND	-10		_	μA	
"L" Input Current 2 *2	I_{IL2}	Internal pull-up resistor	-100	-30	-10	μA	
Dynamic Supply Current 1 *3	I _{DD1}	V _{REF} =V _{DD} , AOUT bias voltage=0V	_	0.15	0.5	mA	
Dynamic Supply Current 2 *4	I _{DD2}	At maximum output current V _{REF} =GND, AOUT bias voltage=0V	_	_	5.5	mA	
Standby Supply Surrant	1.	Ta=-40 to +70°C	—	—	5	μA	
Stanuby Supply Current	IDS	Ta=70 to 85°C	—		20	μA	
		At maximum output current,					
AOUT Output Current	I _{AOUT}	V _{REF} =GND,	1.4	3.2	5	mA	
		AOUT bias voltage=0V					
V _{REF} Pin Pull-down Resistance	R _{VREF}	_	7	10	13	kΩ	

*1 Applicable to SW2-SW0

*2 Applicable to RESET, RND

*3 Dynamic supply current (excluding DAC output current)

*4 Dynamic supply current at maximum output current

AC Characteristics

			(V _{DD} =5.0 \	/, GND=0 V	′, Ta=−40 t	o +85°C)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Master Clock Duty Cycle	f _{duty}	_	40	50	60	%
RESET Input Pulse Width	t _{w(RST)}	—	10		—	μs
RESET Input Time After Power-on	t _{D(RST)}	_	0	—	—	μs
RND Input Pulse Width	t _{w(RAN)}	—	100	—	—	μs
SW0-SW2 Input Pulse Width	t _{w(SW)}	—	16	—	—	ms
BUSY Output Time	t _{SBS}	—	_		10	μs
Chattering Prevention Time 1	t _{CHA}	—	14	15	16	ms
Chattering Prevention Time 2 t _{CHB}		_	—		16	ms
D/A Converter Change Time	t _{DAR} , t _{DAF}	—	60	64	68	ms
Standby Transition Time	t _{STB}	—	200	250	300	ms
Silence Time Between Phrases t _{BLN}		f _{SAM} =8 kHz	350	375	500	μs
Random Address Fetch Time	t _{RA}		15	16	17	μs

TIMING DIAGRAMS

AC Characteristics at Power-On

AC Characteristics in Standby Status and when the IC is Activated

Repeated Playback Timing

Timing when Changing from SW2 to SW0 During Playback

Repeated Playback Timing for Random Playback

Timing when Changing from A2 to A0 During Playback

FUNCTIONAL DESCRIPTION

1. Playback Code Specification

The users can specify a maximum of 56 phrases. Table 1.1 shows the settings by the A2-A0 and SW2-SW0 pins.

A2-A0	SW2-SW0	Code Details
000	000	Inhibit code
111	001 111	User-specified phrase (56 phrases)

Table 1.1 User-specified Phrases

2. Pull-up/Pull-down Resistor

The RESET and RND pins have internal pull-up resistors and the SW2-SW0 pins have internal pull-down resistors.

3. Stand-alone Mode

In a stand-alone mode, the SW input interface function and the random playback function can be used.

3.1 SW input interface

With the SW input interface, speech synthesis starts when the state of the SW2-SW0 pins has changed. To prevent chattering, the address data is latched 16 ms (t_{CHA}) after the state of SW2-SW0 has changed. Voice synthesis does not start if the state of the A2-A0 pins has changed. Set the $\overline{\text{RND}}$ pin to "H" level if the random playback function is not used.

Set the A2-A0 pins to "L" level at power-on or at reset.

The SW input interface is effective when the MSM9802/03/05 is operated using a push-button switch. Voice synthesis starts when an address is changed by pressing the push-button switch. If the push-button switch is released during playback, then playback stops after the current phrase is completed.

Figure 3.1 SW Input Interface Single-Phrase Playback Timing

If playback is attempted at an unused address in the phrases, AOUT goes to $1/2 I_{AOUT}$ and playback does not occur. Figure 3.2 shows the timing.

Figure 3.2 Timing when Playback is Attempted at an Unused Phrase Address

In the SW input interface, addresses (against SW2-SW0) that do not start up voice playback exist without fail. Therefore, when the circuit consists of a diode matrices that use push-button switches, the maximum playback phrases are 56 phrases.

Combinations of A2-A0 are eight kinds. When addresses of SW2-SW0 that do not start up voice playback are 000 (at power-on), $2^{6}-8=56$ (phrases)

3.2 Random playback function

The random playback function randomly generates 15 different addresses corresponding to the four bits of the addresses of A0 and SW2-SW0 (except ALL "L") on the IC, after which playback commences.

This means there is no external input to the A0 and SW2-SW0 pins. Since the A0 pin has no internal pull-up/pull-down resistors, permanently tie it "L" or "H".

Playback may not occur if all the 15 addresses have not been assigned a phrase. Care must be taken when creating ROM data.

For example, when four phrases, "sunny", "rainy", "cloudy", and "snowy", are to be played randomly, set the phrases as shown in Table 3.1 to 15 addresses. The four phrases are then played back at random as shown below.

A2, A1	A0, SW2-SW0	Phrase
00	0001	sunny
	0010	rainy
	0011	cloudy
	0100	snowy
	0101	sunny
	1110	rainy
	1111	snowy

Table 3.1 Random Address Setup Example

Random playback starts when the timing shown in Figure 3.3 is input to the $\overline{\text{RND}}$ pin. A random address is fixed based on the "H" level time of the $\overline{\text{RND}}$ pin during IC oscillation. Random address is captured at the fall of the $\overline{\text{RND}}$ pin, and voice playback commences. Therefore, when power is turned on, or when $\overline{\text{RESET}}$ is input, the phrase at fixed address "0001" is played while the random counter remains initialized until random playback is initiated.

Figure 3.3 Random Address Capture

A2, A1	A0, SW2-SW0*	Code Details
00	0001	Random playback address
	1111	(15 addresses)
01		
10	Same as above	Same as above
11		

Table 3.2 Random Playback Address

* Address(es) corresponding to the A0 and SW2-SW0 pins

For a random address, 15 phrases can be set for each logical condition of addresses A2 and A1 (i.e., "00", "01", "10", and "11").

In random playback, the four logic states ("000000", "010000", "100000" and "110000") in userspecified phrases cannot be used. Take it into consideration when creating ROM data.

A random address is set by the "H" level time of the RND pin, so if the same pulse width is input by microcontroller, the random address fixed time becomes constant, and a random phrase may not be played under these conditions. The random address fixed time must be inconsistent in order to produce random playback.

Figure 3.4 Timing when a Pulse is Input to the RND Pin During Random Playback

A2, A1	A0, SW2-SW0*	Code Details
00	0001 	Random playback address (15 addresses)
01	0001	Stop address

Table 3.3 Random Playback and Stop Address

* Address(es) corresponding to the A0 and SW2-SW0 pins

Figure 3.5 Circuit Example for Random Playback Stop

An unused user-specified address is used as a stop address, therefore the IC can enter standby without voice playback, as shown in Figure 3.2.

APPLICATION CIRCUITS

		A2	A1	A0	SW2	SW1	SW0	Address [HEX]
	S1	0	0	0	0	0	1	01
S4="L"	S2	0	0	0	0	1	0	02
	S3	0	0	0	1	0	0	04
	S1	0	0	1	0	0	1	09
S4="H"	S2	0	0	1	0	1	0	0A
-	S3	0	0	1	1	0	0	00

Application Circuit for Playing Six Phrases Using Four Switches

Application Circuit Using Switches

(2) MICROCONTROLLER INTERFACE MODE (CPU/STD: "H" level)

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

18-Pin Plastic DIP

Note: Applicable to MSM9802-xxxRS, MSM9803-xxxRS, and MSM9805-xxxRS.

NC: No connection

24-Pin Plastic SOP

Note: Applicable to MSM9802-xxxGS-K, MSM9803-xxxGS-K, and MSM9805-xxxGS-K.

NC: No connection

30-Pin Plastic SSOP

Note: Applicable to MSM9802-xxxGS-AK, MSM9803-xxxGS-AK, and MSM9805-xxxGS-AK.

PIN DESCRIPTIONS

	Pin		Cumple al	T	Description			
DIP	SOP	SSOP	Symbol	туре	Description			
4	17	21	RESET	I	The IC enters the standby state if this pin is set to "L" level. At this time, oscillation stops and AOUT drives a current of 0 mA and becomes GND level, then the IC returns to the initial state. This IC has a built-in power-on reset circuit. To operate power-on reset correctly, apply the power within 1 ms up to V_{DD} . If the power cannot be applied within 1ms, apply a RESET pulse during power-on. This pin has an internal pull-up resistor.			
6	20	25	NAR	0	Signal output pin that indicates whether the 6-bit LATCH (see Block Diagram) is idle. NAR at "H" level indicates that the LATCH is empty and $\overline{\text{ST}}$ input is enabled.			
5	18	23	XT/CR	I	XT/RC switching pin. Set to "H" level if ceramic oscillation is used. Set to "L" level if RC oscillation is used.			
14	7	8	CPU/STD	I	Microcontroller interface/stand-alone mode switching pin. Set to "H" level if the MSM9802/03/05 is used in microcontroller interface mode.			
8	23	29	V _{REF}	I	Volume setting pin. If this pin is set to GND level, the maximum current is forced in, and if set to V_{DD} level, the minimum current is forced in. This pin has a built-in pull-down resistor of approx. 10 k Ω .			
9	24	30	AOUT	0	Voice output pin. The voice signals are output as current changes. In standby state, this pin drives a current of 0 mA and becomes GND level.			
7	22	28	GND	_	Ground pin.			
10	1	1	V _{DD}	_	Power supply pin. Insert a bypass capacitor of 0.1 μF or more between this pin and the GND pin.			
11	2	2	OSC1	I	Ceramic oscillator connection pin when ceramic oscillation is selected. RC connection pin when RC oscillation is selected. Input from this pin if external clock is used.			
12	3	3	OSC2	0	Ceramic oscillator connection pin when ceramic oscillation is selected. RC connection pin when RC oscillation is selected. Leave this pin open if external clock is used. Outputs "L" level in standby state.			
13	5	6	OSC3/TEST	0	Leave this pin open when ceramic oscillation is used. RC connection pin when RC oscillation is selected. Outputs "H" level in standby state when RC oscillation is selected.			
15	8	10	ST	I	Voice synthesis starts at fall of \overline{ST} , and addresses IO to I5 are fetched at rise of \overline{ST} . Input \overline{ST} when NAR, the status signal, is at "H" level. This pin has internal pull-up resistor.			
16-18 1-3	10-15	13-18	10 - 15	I	Phrase input pins corresponding to playback sound.			

ABSOLUTE MAXIMUM RATINGS

			(GND=0V)
Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{DD}	To 05%0	-0.3 to +7.0	V
Input Voltage	VIN	1a=25 6	-0.3 to V _{DD} +0.3	V
Storage Temperature	T _{STG}	_	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

					(G	ND=0 V)
Parameter	Symbol	Condition		Range		Unit
Power Supply Voltage	V _{DD}	_		2.0 to 5.5		V
Operating Temperature	T _{op}	—		–40 to +85		°C
Original Oscillation Frequency 1	f _{OSC1}	When emisted is calested	Min.	Тур.	Max.	N/11-
Original Oscillation Frequency 1		when crystal is selected	3.5	4.096	4.5	
Original Oscillation Frequency 2	f _{OSC2}	When RC is selected (*1)	200	256	300	kHz

*1 The accuracy of the oscillation frequency when RC oscillation is selected depends largely on the accuracy of the external R and C.

ELECTRICAL CHARACTERISTICS

DC Characteristics

		(V _{DD} =5.0 V, GND=0 V, Ta=-	40 to +85°	°C, unless o	otherwise s	pecified)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
"H" Input Voltage	V _{IH}	—	4.2	—	_	V
"L" Input Voltage	VIL	—	_	—	0.8	V
"H" Output Voltage	V _{OH}	I _{OH} =–1 mA	4.6	_	_	V
"L" Output Voltage	V _{OL}	I _{OL} =2 mA	_	—	0.4	V
"H" Input Current 1	I _{IH1}	V _{IH} =V _{DD}	—	—	10	μA
"II" Input Ourront O		Applies to OSC1 pin only.			15	
H Input Current 2	IH2	V _{IH} =V _{DD}	_	_	10	μΑ
"L" Input Current 1	l _{IL1}	V _{IL} =GND	-10	_		μA
"L" Input Current 2 *1	I _{IL2}	Internal pull-up resistor	-200	-90	-30	μA
Dynamia Supply Current 1 *2		$V_{REF}=V_{DD}$,		0.4	4	m۸
Dynamic Supply Current 1 2	IDD1	AOUT bias voltage=0V		0.4		
		At maximum output current				
Dynamic Supply Current 2 *3	I _{DD2}	V _{REF} =GND,	—	_	16	mA
		AOUT bias voltage=0V				
Standby Supply Surrant	1.	Ta=-40 to +70°C	—	—	10	μA
Stanuby Supply Current	IDS	Ta=70 to 85°C	_	—	50	μA
		At maximum output current,				
AOUT Output Current	I _{AOUT}	V _{REF} =GND,	6	9.5	15	mA
		AOUT bias voltage=0V				
V _{REF} Pin Pull-down Resistance	R _{VREF}		7	10	13	kΩ

*1 Applicable to $\overline{\text{RESET}}, \overline{\text{ST}}$

*2 Dynamic supply current (excluding DAC output current)

*3 Dynamic supply current at maximum output current

DC Characteristics

		(V _{DD} =3.1 V, GND=0 V, Ta=-	40 to +85°	°C, unless o	otherwise s	pecified)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
"H" Input Voltage	V _{IH}	—	2.7	_	_	V
"L" Input Voltage	VIL	_	_	_	0.5	V
"H" Output Voltage	V _{OH}	I _{OH} =–1 mA	2.6	_		V
"L" Output Voltage	V _{OL}	I _{OL} =2 mA	_	—	0.4	V
"H" Input Current 1	I _{IH1}	V _{IH} =V _{DD}		—	10	μA
"U" Input Current 0		Applies to OSC1 pin only.			15	
	IH2	V _{IH} =V _{DD}			15	μΑ
"L" Input Current 1	I _{IL1}	V _{IL} =GND	-10			μA
"L" Input Current 2 *1	I _{IL2}	Internal pull-up resistor	-100	-30	-10	μA
Dynamic Supply Current 1 *2	1	V _{REF} =V _{DD} ,		0.15	0.5	m۸
	IDD1	AOUT bias voltage=0V		0.15	0.5	IIIA
		At maximum output current				
Dynamic Supply Current 2 *3	I _{DD2}	V _{REF} =GND,	—	—	5.5	mA
		AOUT bias voltage=0V				
Standby Supply Current	I	Ta=-40 to +70°C	_		5	μA
	IDS	Ta=70 to 85°C	—	_	20	μA
		At maximum output current,				
AOUT Output Current	I _{AOUT}	V _{REF} =GND,	1.4	3.2	5	mA
		AOUT bias voltage=0V				
V _{REF} Pin Pull-down Resistance	R _{VREF}	_	7	10	13	kΩ

*1 Applicable to $\overline{\text{RESET}}, \overline{\text{ST}}$

*2 Dynamic supply current (excluding DAC output current)

*3 Dynamic supply current at maximum output current

AC Characteristics

			(V _{DD} =5.0 ∖	/, GND=0 V	′, Ta=–40 t	o +85°C)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Master Clock Duty Cycle	f _{duty}	_	40	50	60	%
RESET Input Pulse Width	$t_{W}(\overline{RST})$	—	10	_	_	μs
RESET Input Time After Power-on	$t_{D(\overline{RST})}$	—	0	—	—	μs
ST Signal Setup Time	t _{STP}	At power-on	1	—	_	μs
ST Input Pulse Width	$t_{(\overline{ST})}$	_	0.35	_	2000	μs
ST-ST Pulse Interval	t _{SS}	Upon entering the stop code	40	_		μs
Data Setup Time	t _{DW}	_	1	—	_	μs
Data Hold Time	t _{WD}	—	1	—	_	μs
NAR Output Time (1)	t _{SNS}	f _{SAM} =8 kHz		—	10	μs
NAR Output Time (2)	t _{NAA}	f _{SAM} =8 kHz	350	375	400	μs
NAR Output Time (3)	t _{NAB}	f _{SAM} =8 kHz	315	440	500	μs
NAR Output Time (4)	t _{NAC}	f _{SAM} =8 kHz	350	375	500	μs
D/A Converter Change Time	t _{DAR} , t _{DAF}	—	60	64	68	ms
Standby Transition Time	+		200	250	200	me
(at end of voice output)	LSTB	_	200	200	300	IIIS
Silence Time Between Phrases	t _{BLN}	f _{SAM} =8 kHz	350	375	500	μs

TIMING DIAGRAMS

AC Characteristics at Power-On

AC Characteristics in Standby Status and when the IC is Activated

FUNCTIONAL DESCRIPTION

1. Playback Code Specification

The user can specify a maximum of 63 phrases. Table 1.1 shows the settings by the I5-I0 pins.

Table 1.1	User-specified	Phrases
-----------	----------------	---------

15-10	Code Details
000000	Stop code
000001 111111	User-specified phrase (63 Phrases)

2. Address Data

If a phrase is input at I5-I0 pins by address data, and if a ST pulse is then applied, voice playback starts. Figure 2.1 shows voice start timing. Figure 2.2 shows timing when an address other than a phrase is input.

Oscillation start

3. Stop Code

If I5-I0 are set to "000000" during voice playback, and a \overline{ST} signal is input, playback stops regardless of whether NAR is at "H" or "L" level, then AOUT becomes 1/2 I_{AOUT}. Stop code becomes valid at the falling edge of \overline{ST} .

Figure 3.1 shows stop code input timing.

Figure 3.1 Stop Code Input Timing

The stop code does not initialize internal units but only stops playback. To initialize an internal register, use the **RESET** pin.

4. Generating Pseudo-BUSY Signal through NAR Pin

If the application in use requires a BUSY signal when this IC is used in microcontroller interface mode, a pseudo-BUSY signal can be generated through the NAR pin by controlling signal timing, as shown below.

4.1 When edit ROM is not used

4.2 When edit ROM is used

APPLICATION CIRCUIT

Application Circuit when Used as Microcontroller Interface

(3) Common

1. Sampling Frequency

Sampling frequencies can be specified for each phrase in the voice data of the internal ROM. The following seven frequencies can be selected when creating voice data:

4.0 kHz, 5.3 kHz, 6.4 kHz, 8.0 kHz, 10.6 kHz, 12.8 kHz, 16.0 kHz

Note: When RC oscillation is selected, 10.6 kHz, 12.8 kHz, and 16 kHz cannot be selected.

2. Voice Playback Time

Table 2.1 shows the internal ROM configuration. The actual ROM area in the voice data is different from the indicated ROM capacity.

The Voice data management area and edit ROM area contain 4 Kbits each, and the test data area contains approx. 3 Kbits.

Edit ROM Area
Voice Data Management Area
Test Data Area
Voice Data Area

Table 2.1 ROM Configuration

Use the following expression for a rough estimate of voice playback time.

Playback time = ((internal ROM capacity) -4-4-3) [Kbits] $\times 1024 \div 8 \div$ (sampling frequency) [kHz]

For example, if data is created at an 8.0 kHz sampling rate, the playback time is

(512 - 4 - 4 - 3) [Kbits] × 1024 ÷ 8 ÷ 8000 [Hz] = 8.0 [sec]

3. Playback Method (Nonlinear PC Method)

The MSM9802/03/05 uses the nonlinear PCM method. Its accuracy around the center of a waveform is equivalent to the 10-bit straight PCM.

4. Edit ROM

With the internal edit ROM, the MSM9802/03/05 can perform continuous playback of multiple phrases with the same control as single phrase playback.

For example: The phrase "Today's weather is ..." can be used to illustrate the differences between an IC without the edit ROM and the MSM9802/03/05. In the case of an IC without the edit ROM, individual data must be stored as a phrase in ROM (see Table 4.1), then for playback of "Today's weather is sunny" and "Today's weather is rainy", each phrase must be addressed individually.

On the other hand, the MSM9802/03/05 has edit ROM functions, which eliminate the need for an external microcontroller to provide the continuous timing necessary for voice concatenation. This means that individual phrases or words which are stored in phrase ROM can be concatenated in the edit ROM and assigned a single address according to their content. This feature allows for efficient use of memory for phrase storage in ROM. Table 4.2 shows phrases/words stored in ROM and their addresses, Table 4.3 shows how you can combine the phrase/word addresses (up to a maximum of 8) in the edit ROM to achieve fully concatenated phrases.

The edit ROM can also perform silence playback without storing silence data in the voice data area.

Adress [HEX]	Phrase
01	Today's weather is sunny.
02	Today's weather is rainy.
03	Today's weather is sunny becoming cloudy, rainy in some areas.
3F	

Table 4.1 Conventional Phrase ROM Configuration

Table 4.2 Phrase ROM Configuration with Edit ROM

Address [HEX]	Phrase
01	Today's
02	weather
03	is
10	sunny
11	cloudy
12	rainy
13	snowy
20	occasionally
21	becoming
22	in some areas
3F	

Table4.3 Edit ROM Configuration

Address [HEX]	Edit Content (Up to 8 Phrases)
01	[01][02][10][03]
02	[01][02][12][03]
03	[01][02][10][21][11][22][12][03]
1	
3F	

5. RC Oscillation

Figure 5.1 shows an external circuit using RC oscillation. Figure 5.2 shows the RC oscillation frequency characteristics.

Figure 5.1 RC Oscillation

Figure 5.2 RC Oscillation Frequency Characteristics

5.1 Determining RC constants

The RC oscillation frequecy characteristics are shown in Figure 5.2. If f_{osc} is set to 256 kHz, use the following values as a guide (see Figure 5.2) to set the C and R2 that fit the printed-circuit board type used.

R1=100 kΩ, R2=30 kΩ, C=30 pF

When choosing RC oscillation, the RC oscillation frequency varies according to the fluctuation of the external C and R2.

5.2 Fluctuation of RC oscillation frequencies

When choosing RC oscillation, the error of RC oscillation frequency due to process variations of the IC is $\pm 4\%$ maximum, and the fluctuation of the RC oscillation frequency when using a capacitor (C) of $\pm 1\%$ accuracy and a resistor (R2) of $\pm 2\%$ accuracy is a maximum of $\pm 7\%$ approximately.

6. Ceramic Oscillation

Figure 6.1 shows an external circuit using a ceramic oscillator.

Figure 6.1 Ceramic Oscillation Diagram

Figures 6.2 and 6.3 show external circuits using a ceramic oscillator, CSA4.09MGU and CST4.09MGWU made by Murata MFG. Co., Ltd. Operating range: V_{DD} =3.0 to 5.5 V, Ta=-40 to +85°C

Figure 6.2 CSA4.09MGU

Figure 6.3 CST4.09MGWU

Figures 6.4 and 6.5 show external circuits using a ceramic oscillator, PBRC4.00A/KBR-4.0MSB and PBRC4.00B/KBR-4.0MKC made by Kyocera Corp. Operating range: V_{DD} =3.1 to 5.5V, Ta=-20 to +80°C

Note: When using an oscillator 4.00 MHz, playback speed is approximately 2% slower than AR761 and AR762 analysis tools and demonstration board.

Figure 6.4 PBRC4.00A/KBR-4.0MSB

Figure 6.5 PBRC4.00B/KBR-4.0MKC

Figures 6.6 shows an external circuit using the ceramic oscillator CCR4.00MC3 made by TDK Corp.

Operating range: V_{DD}=2.4 to 5.5V, Ta=-40 to +85°C

Note: When a 4.00 MHz oscillator is used, the playback speed is approximately 2% slower than a voice played with the analysis tools AR761 and AR762 and a demonstration board.

Figure 6.6 CCR4.00MC3

7. Low-Pass Filter

In this IC, all voice outputs are through the built-in low-pass filter (LPF). Figure 7.1 and Table 7.2 show the LPF frequency characteristics and LPF cutoff frequency respectively. Only the voice output through LPF is enabled in this IC.

Sampling Frequency (kHz)	Cutoff Frequency (kHz)
(f _{SAM})	(fсит)
4.0	1.2
5.3	1.6
6.4	2.0
8.0	2.5
10.6	3.2
12.8	4.0
16.0	5.0

Table 7.2 LPF Cutoff Frequency

8. Standby Transition

When playback of a phrase is finished, if playback of the next pharase does not start up within t_{STB} (0.25 sec. typ.), the IC enters standby status and the entire operation stops.

Figure 8.1 Timing for Voice Playback during D/A Converter Change Time (Stand-alone Mode)

Figure 8.2 Timing for Voice Playback during D/A Converter Change Time (Microcontroller Interface Mode)

If playback is attempted during D/A converter change time as shown in figures 8.1 and 8.2, the IC exits from standby status and the output from the D/A converter begins going to the $1/2 I_{AOUT}$ level. When the output reaches $1/2 I_{AOUT}$, voice playback starts.

D/A CONVERTER OUTPUT CURRENT CHARACTERISTICS

Power Supply Voltage vs. Output Current Characteristics (Ta=25°C, V_{AOUT}=0V)

Temperature vs. Output Current Characteristics (V_{DD}=5V, V_{AOUT}=0V)

V_{REF} Voltage vs. Output Current Characteristics (Ta=25°C, V_{DD}=5V, V_{AOUT}=0V)

PAD CONFIGURATION

MSM9802

Pad Layout

Chip size	: X=3.22mm Y=3.17mm
Chip thickness	: 350μm ± 30μm
Pad size	: 110μm × 110μm
Substrate potential	: GND

Pad Coordinates (Chip center is located at X=0 and Y=0)

		_					(Unit: µm)
Pad No.	Pad Name	X-axis	Y-axis	Pad No.	Pad Name	X-axis	Y-axis
1	I3/ (A0)	-415	1385	10	V _{DD}	462	-1347
2	I4/ (A1)	-816	1385	11	OSC1	742	-1333
3	I5/ (A2)	-1460	1385	12	OSC2	1349	-1333
4	RESET	-1460	1049	13	OSC3	1460	-972
5	XT/CR	-1458	-20	14	CPU/STD	1389	183
6	NAR	-1460	-899	15	ST/(RND)	1389	1058
7	GND	-1460	-1375	16	10/(SW0)	1389	1385
8	V _{REF}	-1135	-1333	17	I1/(SW1)	719	1385
9	AOUT	-585	-1333	18	I2/(SW2)	276	1385

Pad name in parentheses is for stand-alone mode.

... .

MSM9803

Pad Layout

Chip size	: X=3.22mm Y=4.06mm
Chip thickness	: 350µm ± 30µm
Pad size	: 110μm × 110μm
Substrate potential	: GND

Pad Coordinates (Chip center is located at X=0 and Y=0)

(Unit: µm)

Pad No.	Pad Name	X-axis	Y-axis	Pad No.	Pad Name	X-axis	Y-axis
1	I3/ (A0)	-415	1829	10	V _{DD}	452	-1788
2	I4/ (A1)	-816	1829	11	OSC1	742	-1776
3	I5/ (A2)	-1460	1829	12	OSC2	1349	-1776
4	RESET	-1460	1493	13	OSC3	1460	-1415
5	XT/CR	-1458	424	14	CPU/STD	1389	628
6	NAR	-1460	-1342	15	ST/(RND)	1389	1502
7	GND	-1460	-1818	16	10/(SW0)	1389	1829
8	VREF	-1135	-1776	17	I1/(SW1)	720	1829
9	AOUT	-585	-1776	18	I2/(SW2)	276	1829

Pad name in parentheses is for stand-alone mode.

MSM9805

Pad Layout

Chip size	: X=3.2
Chip thickness	: 350µr
Pad size	: 110µr
Substrate potential	: GND

X=3.22mm Y=5.96mm 350μm ± 30μm 110μm × 110μm

Pad Coordinates (Chip center is located at X=0 and Y=0)

			1-0)				(Unit: µm)
Pad No.	Pad Name	X-axis	Y-axis	Pad No.	Pad Name	X-axis	Y-axis
1	I3/ (A0)	-415	2777	10	V _{DD}	452	-2723
2	I4/ (A1)	-816	2777	11	OSC1	742	-2726
3	I5/ (A2)	-1460	2777	12	OSC2	1349	-2726
4	RESET	-1460	882	13	OSC3	1460	-1532
5	XT/CR	-1458	364	14	CPU/STD	1453	267
6	NAR	-1460	-1546	15	ST/(RND)	1455	1338
7	GND	-1460	-2768	16	10/(SW0)	1432	2777
8	V _{REF}	-1136	-2726	17	I1/(SW1)	754	2777
9	AOUT	-585	-2726	18	I2/(SW2)	312	2777

Pad name in parentheses is for stand-alone mode.

PACKAGE DIMENSIONS

(Unit : mm)

(Unit : mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

(Unit : mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).