

Product Description

The Stanford Microdevices' SLX-2043 is a low noise amplifier module operating in the 1700 - 2500 MHz frequency band. This device has been optimized to serve high linearity basestation applications where a high intercept point is required with low noise figure. The SLX-2043 uses PHEMT device technology, internal bias circuitry, and proven ceramic module technology to yield a high performance product with proven reliability. Internal RF matching is also included on both the input and output to provide an easy to implement, unconditionally stable, 50 ohm circuit block.

Noise Figure 2.00 1.75 1.50 1.25 **9** 1.00 0.75 0.50 0.25 0.00 2.1 2.2 1.7 Frequency (GHz)

Advanced Data Sheet

SLX-2043

1700-2500 MHz High Linearity **Low Noise Amplifier Module**

Product Features

- NF = 1.1dB
- IIP₃ = +19dBm
- Gain = 15dB
- 50Ω input/output match
- Single supply operation

Applications

PCS, TDMA, CDMA, WCDMA receivers

Key Specifications

Symbol	Parameters Test Conditions ($Z_0=50\Omega$, $T=25^{\circ}C$, $V_D=4V$)		Unit	Min.	Тур.	Max.
	Frequency Range		MHz	1700		2500
IIP ₃	Input Third Order Intercept Point	Power out per tone = 6dBm	dBm		+19	
OIP ₃ Third Order Intercept Point		Power out per tone = 6dBm	dBm		+34	
NF	Noise Figure		dB		1.1	1.2
S ₂₁	Small Signal Gain		dB		15	
P _{1dB}	Output Power	@ 1dB Compression	dBm		20	
S ₁₁	Input VSWR		_		1.8:1	
S ₂₂	Output VSWR		_		1.8:1	
V _D	Device Voltage		V	+3.5	+4.0	+4.5
I _D	Device Current		mA	90	105	120
R _{th} j-c Thermal Resistance (ju		(junction-case)	°C/W		60	

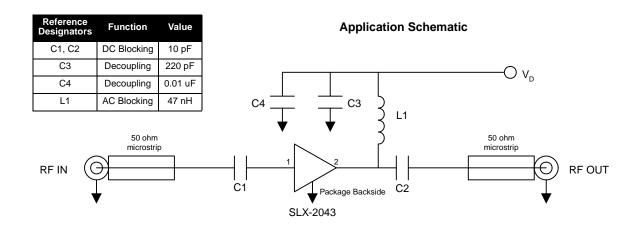
The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.
Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

Phone: (800) SMI-MMIC

522 Almanor Ave., Sunnyvale, CA 94086

Advanced Data Sheet

SLX-2043 1700-2500 MHz LNA Module


Absolute Maximum Ratings

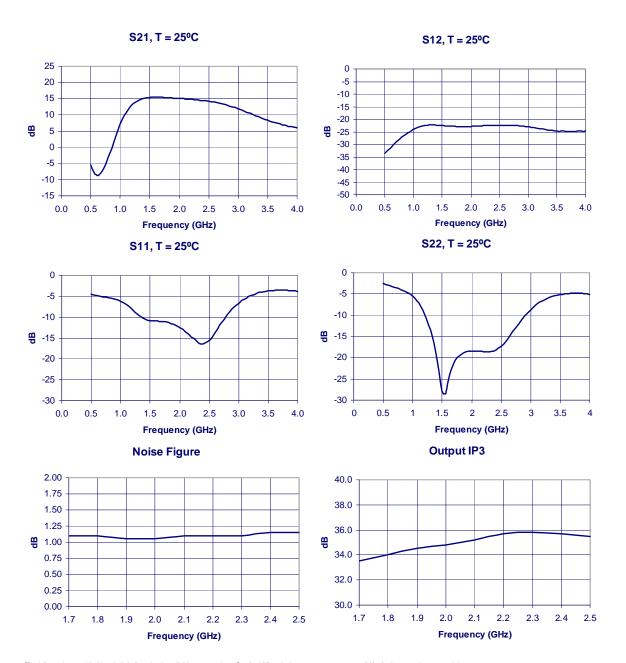
Parameters	Value	Unit
Supply Current	150	mA
Device Voltage	5.0	V
Operating Temperature	-40 to +85	°C
Maximum Input Power	+17	dBm
Storage Temperature Range	-65 to +150	°C
Operating Junction Temperature	+150	°C

Operation of this device above any one of these parameters may cause permanent damage.

Bias conditions should also satisfy the following expression: I_DV_D (max) < $(T_J - T_{OP})/R_{th}$, j-I

Pin#	Function	Description	Device Schematic
1	RF In	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	RF In
2	RF Out/ Bias	RF output and bias pin. Bias should be supplied to this pin through an external RF choke inductor. Because DC biasing is present on this pin, a DC blocking capacitor should be used in most applications (see application schematic). The supply side of the bias network should be well bypassed.	RF Out/ DC In
3 Package Backside	GND	Connection to ground. For best performance use via holes as shown in recommended PCB layout to reduce inductance and to provide adequate thermal path.	

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions.


Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.
Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.
522 Almanor Ave., Sunnyvale, CA 94086

Phone: (800) SMI-MMIC

SLX-2043 1700-2500 MHz LNA Module

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions.

Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.
Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.
522 Almanor Ave., Sunnyvale, CA 94086

Phone: (800) SMI-MMIC

Pin#

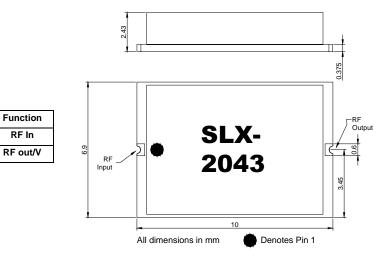
2

Advanced Data Sheet

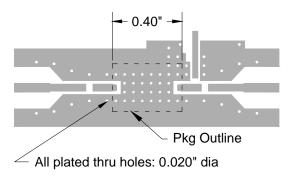
SLX-2043 1700-2500 MHz LNA Module

Caution: ESD Sensitive

Appropriate precaution in handling, packaging and testing devices must be observed.


Part Number Ordering Information

Part Number		Reel Size	Devices/Reel			
	SLX-2043	TBD	TBD			


Part Symbolization

The part will be symbolized with a "TBD" marking designator on the top surface of the package.

Package Dimensions ("43" package)

Test PCB Pad Layout

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions.

Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.
Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.
522 Almanor Ave., Sunnyvale, CA 94086

Phone: (800) SMI-MMIC