5

11-BAND EVR FOR GRAPHIC EQUALIZER

GENERAL DESCRIPTION

The NJU7307 is a electrical variable resistor (EVR) incorporated 11-band each for left and right channels, especially apply to the stereo type graphic equalizer.

It consists of input controller, channel/band/level selector, 22 latches and resistor network blocks of 11 bands each for left and right channels.

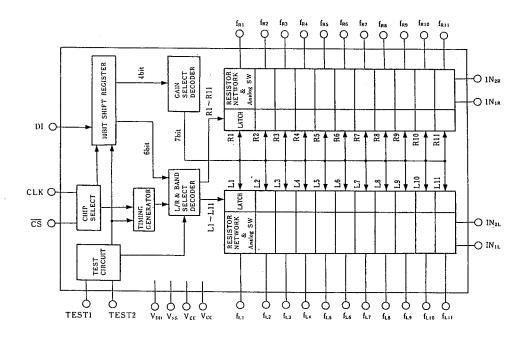
The boost and cut value for each band of each channel can be set independently to each other by the channel/band/level selector controlled by external controller.

The maximum boost and cut range is ±18dB and the boost and cut value is adjusted by ±3dB step.

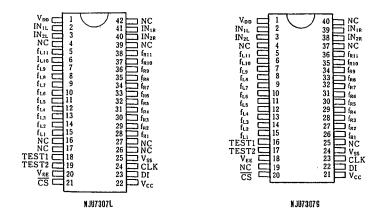
■ FEATURES

- 11 Bands Each for Left and Right Channels
- Stereo Application Graphic Equalizer
 Each Channel Independent Operation
- Maximum Boost and Cut --- ±18dB
- Boost and Cut Step --- ±3dB
- 10bit Serial Data for the Equalizing
- Flat Level Setting Function
- Operating Voltage --- 15V~30V
- Package Outline --- SDIP 42/SOP 40
- C-MOS Technology

■ PACKAGE OUTLINE



NJU7307L


NJU7307G

■ BLOCK DIAGRAM

5

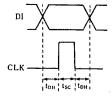
PIN CONFIGURATION

TERMINAL DESCRIPTION

NO.		evunni	FUNCTION		
NJU7307L	NJU7307G	SYMBOL	F U N C T I O N		
1	1	VDD	Power source for Audio signal +15V		
25	24	Vss	GND OV		
20	18	Vee	Power source for Audio signal -15V		
22	21	Vcc	Power source for Logic +5.0V		
2, 41	2, 39	Inil, Inir	Audio signal input terminal. Connect to Op-amp inverting terminal		
3, 40	3, 38	Inzi, Inzr	Audio signal input terminal. Connect to Op-amp non-inverting terminal		
5 to 15	5 to 15	fL1 to fL11	Band pass filter connecting terminal.		
28 to 38	26 to 36	fri to frii	(22 terminals for left/right)		
18	16	TEST1	Maker testing terminals.		
19	17	TEST2	Normally (except the test) OPEN		
21	20	cs	Chip-select input.		
23	22	DI	Serial data input.		
24	23	CLK	Clock signal input.		
4,16,17	4,19,25				
26,27,39	37,40	NC	Non connection		
42					

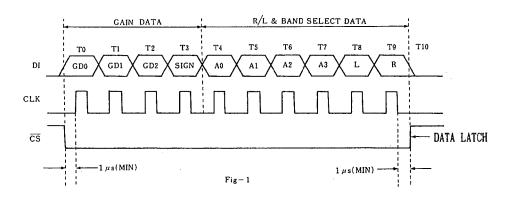
FUNCTIONAL DESCRIPTION

(1) Data set and code format


The setting of each band is performed by two signals of data and clock as shown in Fig.1. The 10 bits serial data including the information of channel selection (left/right), band selection and its gain are input from DI terminal.

The clock signal input from the CLK terminal shifts the serial data input form DI terminal into the shift register.

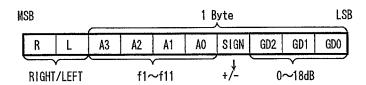
The data input from DI terminal is performed during the CS terminal is "L"level. Then the CS terminal change from "L" to "H" level, the data in the shift register is latched to the latch.


All "H" of 10 bits code are special code to set OdB for all bands at once. This function is useful for Power On initialization or flat level setting.

< Data and Shift Clock >

The shift clock should be risen after 1 \(\mu \)s from the data changing. \(t_{sc} = 1 \(\mu \)s (MIN) \(t_{DH} = 1 \(\mu \)s (MIN)

< Time Chart >



The $\overline{\text{CS}}$ terminal should be "L" level during the data input. The setting data is latched at the edge of $\overline{\text{CS}}$ signal rising. If the error data is latched, the correct data must be set again from the top.

Note: The clock line should be shielded from the noise.

< Data Format >

The data is input by the LSB first format as shown bellow. And the gain data GD2 to GD0, left/right and band selection data are also shown in bellow.

GAIN DATA CODE				
GAIN	SIGN	GD2	GD1	GD1
18	0	1	1	0
15	0	1	0	1
12	0	1	0	0
9	0	0	1	1
6	0	0	1	0
3	0	0	0	1
0dB	0	0	0	0
-3	1	0	0	1
-6	1	0	1	0
-9	1	0	11	1
-12	1	1	0	0
-15	1	1	0	1
-18	1_	1	1	0

BAND SELECT DATA CODE					
BAND	A3	A2	A1	A 0	
f1	0	0	0	1	
f2	0	. 0	1	0	
f3	0	0	1	11	
f4	0	1	0	0	
f5	0	1	0	1	
f6	0	1	1	0	
f7	0	1	1	1	
f8	1	0	0	0	
f9	1	0	0	1	
f10	1	0	1	0	
f11	1	0	1	1	

R/L SELECT DAT	A CODE	
R/L	R	L
RIGHT	1	0
LEFT	0	1
RIGHT & LEFT	1	1

(2) Power on initialization

The NJU7307 is not incorporated the Power On Initialization Circuits, so that internal circuits are not defined when the power is turned on. Therefore, the flat setting operation are required as 10 bits of "H" data with 10 clock pulse input during the $\overline{\text{CS}}$ terminal "L" state, then after change the $\overline{\text{CS}}$ terminal level from "L" to "H".

The internal circuits of NJU7307 are initialized by the above operation, then the following input will be accepted.

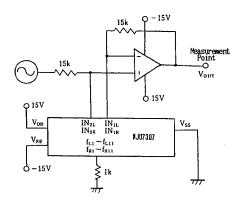
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

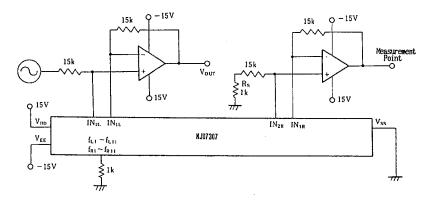
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{DD} -V _{EE}	34 V _{ss} ~V _{ss} +7(V _{DD} ≧V _{CC})	٧
Input Voltage	Vın	Vss-0.3 ~Vcc+0.3 (DI,CLK, CS) Vee-0.3~Vdd+0.3(N1L~ N2L, N1R~ N2R)	٧
Power Dissipation PD		250 (SDIP,SOP)	mW
Operating Temperature	Topr	−30 ~ +80	ဇ
Storage Temperature Tstg		-40 ~ +125	င

ELECTRICAL CHARACTERISTICS

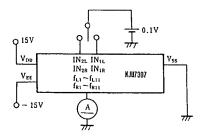
 $(V_{ss}=0V,V_{DD} \ge V_{cc} > V_{ss} \ge V_{EE},Ta=25^{\circ}C)$


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
One weting Veltage	V _{DD} -V _{EE}	V _{EE} ≧-15V	15	20	30	٧
Operating Voltage	Vac	VEEE-10V	4.5	5.0	5.5	
One weather Consument	IDD	V _{DD} -V _{EE} =30V			1	mÅ
Operating Current	lcc	Vcc=5V			0.5	ШA
1	Vih	CLK,DI, CS	0.8Vcc		Vcc	٧
Input Voltage	VIL	Terminals	rminals 0 (0.2Vcc] V
Input Pulse Width	tpw	CLK	1			μS
Setup Time	tsv	DI	1			μS
Holding Time	t _{HLD}	DI	1			μS
Operating Frequency	form	CLK			330	kHz
	THD1	Flat Status, f=20kHz		0.005	0.01	
Total Harmonics	THD2	Flat Status, f= 1kHz		0.0015	0.003	%
Distortion	THD3	Boost Status, f=20kHz		0.05	0.10	70
	THD4	Boost Status, f= 1kHz		0.015	0.03	
		(Circuit 1)		,		
Crosstalk	CT	f= 1kHz (Circuit 2)		60		dB
Setting Error	ΔB	V _{DD} -V _{EE} =30V (Circuit 1)	-1		1	dB
Analog SW Off	,	f _{L1} ~f _{L11}			100	۸
Leakage Current	off	f _{R1} ~f _{R11}			100	μA

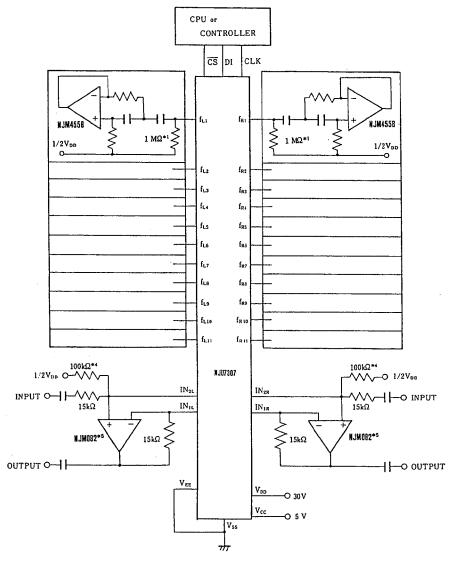
Note) The setting error of gain is specified by mesureing of Circuit 1 based on internal current flown on Circuit 3.


Actual setting error of gain is affected by external circuit characteristics. Therefore, experimental operation is recommended when designing.

5


Circuit 1

Circuit 2



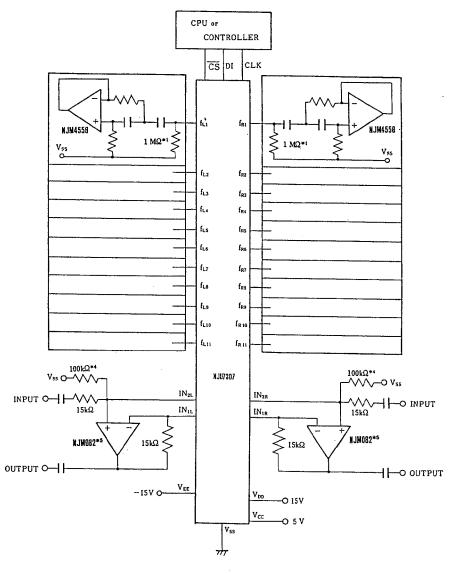
Circuit 3

■ APPLICATION CIRCUIT 1

< Single power supply operation >

- *1) In order to reduce the pop-noise, connecting $f_{\text{L}1} \sim f_{\text{L}11}$, $f_{\text{R}1} \sim f_{\text{R}11}$ to 1/2 V_{DD} by $1M\Omega$ resistance is recommended.
- *2) The best conditions for 3dB/step are as follows:

 $V_{\rm DD} = 30V$


OP-amp feedback resistance: 15k Ω .

Equivalent LC resonant impedance: 1kΩ

- *3) TEST1 and TEST2 terminals are normally OPEN.
- *4) In order to keep off noise input, connecting to 1/2 $V_{\rm DD}$ by $100k\Omega$ resistance is recommended.
- *5) J-FET input OP-AMP is recommended.

APPLICATION CIRCUIT 2

< Dual power supply operation >

- *1) In order to reduce the pop-noise, connecting $f_{\text{L}1} \sim f_{\text{L}11}$, $f_{\text{R}1} \sim f_{\text{R}11}$ to V_{SS} by $1M\Omega$ resistance is recommended.
- *2) The best conditions for 3dB/step are as follows:

 $V_{\rm DD} = 15V$, $V_{\rm EE} = -15V$

OP-amp feedback resistance: $15k\Omega$.

Equivalent LC resonant impedance: $1k\Omega$

- *3) TEST1 and TEST2 terminals are normally used as OPEN.
- *4) In order to keep off noise input, connecting to 1/2 $V_{\rm DD}$ by $100k\Omega$ resistance is recommended.
- *5) J-FET input OP-AMP is recommended.

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.